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We study the phase diagram of (large-Nc) QCD using a simplistic holographic hard-wall model with a
dynamical scalar field and a homogeneous Ansatz representing a smeared instanton/baryon density. The
resulting phase diagram is qualitatively consistent with expectations, including a mesonic, baryonic,
quarkyonic, and quark-gluon plasma phase. As in other holographic models, we also find a baryonic
popcorn transition, which appears at large chemical potential as a crossover. We then evaluate the nuclear
matter equation of state, which turns out to be rather stiff with a large peaked sound velocity above the
conformal limit, construct corresponding neutron stars using the Tolman-Oppenheimer-Volkov equations,
and finally use a full numerical gravity/hydrodynamics computation to extract the gravitational wave signal
of neutron star mergers.
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I. INTRODUCTION

Determining the phase diagram of QCD, the theory
governing the constituents of nuclear matter at the funda-
mental level, is one of the most important issues in modern
theoretical physics, with applications to the cosmology of
the early universe, neutron stars, hadronic physics, cosmic
rays, heavy-ion collision experiments and more. The
confinement of quarks and gluons into hadrons and in
particular baryons is an essential feature of nature, which
allows the low-energy physics to be described in terms of
atoms, molecules and electrons with suitable theories at
those scales. This fact is strongly tied with asymptotic
freedom of QCD, which permits to describe the high-
energy processes with satisfactory precision using pertur-
bation theory. Unfortunately, ordinary matter is governed
by the low-energy limit of QCD, where the theory runs into
strong coupling and is tremendously hard to study theo-
retically. Brute-force numerical computations of QCD in
the version where spacetime is discretized on a lattice is so

far the most reliable source of our knowledge about the
phase diagram of QCD. Unfortunately, lattice QCD works
well only for small or vanishing chemical potentials, due to
a technical problem known as the sign problem, which is
a severe obstacle to the convergence of the numerical
computations [1–3].
In 1997 an alternative toolbox became available to

theoretical physicists by the discovery of the AdS=CFT
correspondence by Maldacena [4]. In the original and most
precise version, it relates a particular conformal field theory
(CFT), namely 4-dimensional N ¼ 4 super-Yang-Mills
theory in the limit of large color numberNc, to supergravity
in 5-dimensional anti–de Sitter (AdS) space. The exciting
property about the correspondence or duality is that the
CFT at strong coupling is mapped to gravity at weak
coupling, which means that perturbation theory in the bulk
in a theory with one extra dimension can be used to
studying the field theory living on the boundary of AdS at
strong coupling. Conformal field theories do not possess
particles as we know them, but describe operators, their
fall-offs, and their anomalous dimensions. A large volume
of work in the past 25 years, however, has shown that
various deformations of the correspondence are possible,
which has led to enormous progress in the understanding of
strongly coupled gauge theories, see e.g., [5,6] for reviews.
There are basically two ways to use the holographic

correspondence to studying QCD, which are top-down or
bottom-up, both of which are often referred to by now as
holographic QCD. The top-down category of holographic
models are based on constructions in string theory that give
rise to QCD-like theories in the low-energy limit. The most
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successful of those is arguably the Witten-Sakai-Sugimoto
model [7,8], where flavor and color branes geometrically
describe the theory of strong interactions with chiral quarks
resulting from strings with one endpoint on a flavor brane
and one endpoint on the color branes, whereas gluons have
both endpoints on the color branes and are thus adjoint
fields. In the confined phase, the flavor branes and
antibranes corresponding to left and right-handed quarks
merge in the cigar-shaped bulk geometry and thus geo-
metrically explain non-Abelian chiral symmetry breaking.
A simpler holographic setup is inspired by the same

type of geometric construction and a particularly simple
model considered originally by Polchinski and Strassler
where the AdS space is cut off at a finite value of the
radial coordinate [9–12]. Meson and baryons were then
subsequently added to the model, providing the basis
of perhaps the simplest possible phenomenologically
viable holographic description of QCD and hadron
physics [13–17], which we shall take as basis for our
study. In contrast to the Witten-Sakai-Sugimoto model,
where deconfinement and chiral symmetry restoration
can be set up to occur at different temperatures [18,19],
the simplest version of the hard-wall model has them
locked together. In order to enrich the phase structure of
the theory also in the hard-wall models, we implement a
so-called double hard-wall condition, where the wall for
the gluons is kept at the hard-wall, but allowing for the
flavor gauge and scalar fields to end on a second hard-
wall, thus giving the possibility of separately adjusting
the deconfinement transition.
As is well known, the low-energy limit of the strong

interactions is sufficiently well described by only two
flavors of quarks, namely the up and the down quarks—
enough for describing proton, neutrons and pions. The
flavor symmetry of this low-energy sector is thus SUð2Þ,
which in 4-dimensional spacetime possesses a topological
degree, which counts the number of instantons. In the
holographic context, the instantons in the bulk are identi-
fied as the baryons of the theory.
In this paper, we are interested in the part of the QCD

phase diagram where the chemical potential is finite to
large. For this reason, we employ a homogeneous Ansatz,
describing the instantons in the approximation suitable
for large densities or equivalently finite/large chemical
potential. By large densities, we mean larger than the
saturation density of nuclear matter but below the asymp-
totic, perturbative regime. The phase diagram we find is
rather rich, phenomenologically, and is consistent with
common lore for the different phases and their approximate
placement in the diagram [20,21]. Indeed we find mesonic,
baryonic and quarkyonic (baryonic popcorn [22]) phases as
we increase the chemical potential for small but finite
temperatures. For large temperatures, the model loses the
hard-wall as it moves behind the black hole horizon in the
bulk geometry and the theory is thus in the chiral symmetry

restoration phase. We nevertheless find a new speculative
phase transition at large temperatures for relatively large
chemical potential, where a kind of quarkyonic phase
appears in our model—in the sense that deconfined quarks
and baryons coexist—reminiscent of the quarkyonic phase
found in the Witten-Sakai-Sugimoto model in [23].
We use the model in the baryonic phase to calculate the

equation of state, which for a range of densities of order of a
few times the saturation density for nuclear matter is a
difficult region for other types of models to make pre-
dictions for. Indeed, traditional nuclear models are trustable
only at lower densities and perturbative QCD is trustable
only at much larger densities than can be realized in neutron
stars. Since already simple hard-wall holographic QCD
models have proven surprisingly successful in describing
low-energy hadron physics [6,24], it is interesting to
explore what they are predicting for the equation of state
in exactly such range of densities. The equation of state we
find in our simple model is rather stiff compared to other
holographic models in the literature1 [27–29]; at any rate,
the behavior of the speed of sound having a large peak
before asymptotically tending toward the conformal value
c2CFT ¼ 1=3 is a rather welcome feature. Whereas pertur-
bative quark matter that arises at sufficiently high baryonic
densities has a speed of sound below the conformal value, a
stiffer equation of state is required for the density ranges
of neutron stars’ cores to reach the observed masses of at
least 2 M⊙, so that a peak structure at densities higher than
saturation is what is expected [30].
While our treatment does not take care of nuclear

matter at lower energies and would need substantial
refinements for including the outer regions of a
neutron star, we also use the obtained equation of state
to simulate a neutron star merger of two neutron stars
of 1.4 solar masses each at a separation distance of
45 kilometers and calculate the gravitational wave
spectrum using a full-fledged numerical gravity and
hydrodynamics code.
The paper is organized as follows. In Sec. II, we set up

the action of the model and introduce our notation and
conventions, whereas in Sec. III, we adapt the model to the
case of finite temperature, introduce a generalization of
the double hard-wall as well as a dynamical scalar. In
Sec. IV, we discuss baryonic matter in the confined and
deconfined phases and finally, in Sec. V, we calculate the
entire phase diagram of the model. In Sec. VI, we consider
neutron stars and their gravitational waves. Finally, we
conclude the paper with a discussion and an outlook in
Sec. VII. We have delegated details of the speed of sound at
large densities, the single instanton used to calibrate the
model, boundary conditions and the stress-energy tensor to
the Appendixes A, B, C and D, respectively.

1See also [25,26] for recent reviews on holographic modeling
of neutron stars.
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II. ACTION AND NOTATION

Largely following the setup and notation of [31,32], the
background geometry is taken to be that of a slice of AdS5
ending at bulk coordinate z0 with curvature scale indicated
by L. We will work in the mostly minus convention (when
we do not Wick rotate) so that the metric assumes the form:

ds2 ¼ L2

z2
ðdxμdxμ − dz2Þ: ð2:1Þ

The flavor field content is given by the presence of two
Uð2Þ gauge vectors,LMðx; zÞ;RMðx; zÞ, dual to the left and
right-handed quark currents and a bi-fundamental complex
scalar Φðx; zÞ dual to the order parameter of chiral
symmetry breaking. The action can be divided into three
main contributions: a gauge part containing Yang-Mills-
like terms, Chern-Simons terms to account for flavor
anomalies, and a piece containing kinetic and interaction
terms for the scalar. The minimal action reads [31,32]:

S ¼ Sg þ SCS þ SΦ; ð2:2Þ

Sg ¼ −
M5

2

Z
d4xdz aðzÞ

�
TrðLMNLMNÞ þ 1

2
L̂MNL̂

MN

þ fR ↔ Lg
�
; ð2:3Þ

SCS ¼
Nc

16π2

Z
d4xdz

1

4
ϵMNOPQL̂M

�
Tr½LNOLPQ�

þ 1

6
L̂NOL̂PQ − fR ↔ Lg

�
; ð2:4Þ

SΦ ¼ M5

Z
d4xdz a3ðzÞfTr½ðDMΦÞ†DMΦ�

− a2ðzÞM2
ΦTr½Φ†Φ�g; ð2:5Þ

where aðzÞ ¼ L
z, LM ¼ La

M
τa

2
and L̂M are the SUð2Þ and

Uð1Þ parts of the Uð2Þ field LM,

LM ¼ La
M
τa

2
þ L̂M

1
2
; ð2:6Þ

whose field strength is LMN ¼ ∂MLN − ∂NLM − i½LM;LN �
and analogouslyRMN is the field strength for the fieldRM.
DMΦ is the covariant derivative defined by

DMΦ ¼ ∂MΦ − iLMΦþ iΦRM: ð2:7Þ

For spacetime indices we use instead the following labels:
capital latin letters starting from M;N;… run over all
four-dimensional space plus time, latin letters starting
from i; j… run instead over the three dimensions of space
transverse to the bulk direction. Finally, greek letters

starting from μ; ν;… run over the three dimensions of
space labeled by i; j;…, plus time:

M;N;…¼0;1;2;3;z; i;j;…¼1;2;3; μ;ν;…¼0;1;2;3:

ð2:8Þ

Requiring that the vector-vector correlator has the same
asymptotic short-distance behavior as in QCD fixesM5L ¼
Nc=ð12π2Þ (in [14] this parameter is denoted by 1=g25Þ.
To break chiral symmetry, the following boundary

conditions are imposed in [31,32] on the IR brane:

ðLzμ þ RzμÞz¼zIR
¼ 0; ð2:9Þ

ðLμ − RμÞz¼zIR
¼ 0: ð2:10Þ

As we will see, the homogeneous Ansatz we wish to use
cannot lead to a finite baryon density if both the above
boundary conditions are employed. Changing boundary
conditions can in principle introduce terms via the Chern-
Simons action that are not present in 4D QCD: we discuss
this aspect in Appendix C, while for now we just keep
Eq. (2.9), and will use another IR boundary condition on
the Li, Ri fields to fix baryon number density.
The scalar field Φ, upon imposition of the boundary

conditions

Φðz ¼ zUVÞ ¼
�
zUV
zIR

�
Δ−

Mq
1
2
; ð2:11Þ

Φðz ¼ zIRÞ ¼ �ξ
1
2
; ð2:12Þ

acquires a nontrivial vacuum as given in [32]:

hΦi ¼ z2αIR
z2αIR − z2αUV

ðξ −MqÞ
�

z
zIR

�
Δþ 1

2

þ 1

z2αIR − z2αUV
ðz2αIRMq − z2αUVξÞ

�
z
zIR

�
Δ− 1

2
; ð2:13Þ

that once the zUV → 0 limit is taken reduces to

hΦi ¼ ðξ −MqÞ
�

z
zIR

�
Δþ 1

2
þMq

�
z
zIR

�
Δ− 1

2
¼ vðzÞ 1

2
;

ð2:14Þ

with Δ� ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ L2M2

Φ

p
¼ 2� α.

Here it was chosen to have the boundary condition as

ΦðzIRÞ ¼ þξ
1
2
; ð2:15Þ

which is appropriate for the mesonic sector with both
Mq; ξ > 0 but, as shown in [31], there also exists a sector
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with the minus sign: it is in this sector that the single baryon
configuration exists. However, the homogeneous nuclear
matter Ansatz will not need this sign change: we will also
discuss this topic in Appendix C.
As can be seen, in the usual scenario in which

L2M2
Φ ¼ −3 (that is, for α ¼ 1), the vacuum of the scalar

reduces to the configuration

vðzÞ ¼ Mq
z
zIR

þ ðξ −MqÞ
�

z
zIR

�
3

; ð2:16Þ

where we see the explicit dependence on the infrared
boundary condition of the parameter multiplying the cubic
term (holographically dual to the chiral condensate).

A. Infrared boundary condition
from a boundary action

In the previous sections we treated ξ as a free parameter
that is determined just by fitting some phenomenological
data. As noted, in the chiral limit Mq ¼ 0 the parameter ξ
plays the role of the chiral condensate σ. If the quark mass
is nonvanishing, then it can simply be regarded as the IR
boundary value of the scalar field, dual to a combination of
quark mass and chiral condensate.
However, following [33] the parameter ξ can be thought

of as originating from a variational principle, by minimiz-
ing the energy with the addition of an IR localized
boundary term to allow for a nonvanishing ξ:

SIR ¼ m2
b

2
ξ2 − λξ4: ð2:17Þ

Let us now analyze what happens in the simpler scenario in
whichM2

ΦL
2 ¼ −3, Mq ¼ 0, α ¼ 1; with these parameters

the vacuum of the scalar field is given by

hΦi ¼ ξ

�
z
zIR

�
3 1
2
; ð2:18Þ

so that in the vacuum, ξ is stabilized to

ξ20 ¼
1

4λ
ðm2

b − 3M5=LÞ; ð2:19Þ

due to the IR potential. Also the value ξ ¼ 0 makes the
energy stationary, but it is a local maximum.
The parameters λ; mb determine this value, but usually

only ξ0 is relevant, so it is simply fitted, and the former
parameters are traded away. However, we note that in
nuclear matter the situation can and will change, as the
coupling between the scalar and the gauge fields can
introduce corrections to the stable value of ξ, potentially
restoring chiral symmetry for certain combinations of the
other parameters (chemical potential μ and temperature T):
we will discuss this possibility in subsequent sections, after

introducing suitable Ansätze to account for the presence of
baryonic matter in the bulk.

III. HARD-WALL MODEL AT FINITE
TEMPERATURE

A. Hawking-Page transition

As shown in [34], the deconfinement transition happens
via a Hawking-Page transition from the cutoff thermal AdS
geometry to the AdS black hole geometry described by the
metric (not yet continued to Euclidean signature)

ds2 ¼ L2

z2

�
fðzÞdt2 − dx2i −

dz2

fðzÞ
�
; fðzÞ ¼ 1 −

�
z
zh

�
4

:

ð3:1Þ

The temperature of the dual theory is determined by the
periodicity of the Euclidean time coordinate 0 ≤ τ < 1=T,
which is unconstrained in the thermal AdS case, but fixed
in the black hole case by the regularity of the near-horizon
solution

T ¼ 1

πzh
: ð3:2Þ

For a critical value zc of the horizon position, and thus for
a certain temperature Td, the black hole phase becomes
energetically favored, hence the deconfinement transition.
This transition depends only on the cutoff scale z0:

z4c ¼
1

2
z40 ⇒ Td ¼

21=4

πz0
: ð3:3Þ

Here z0 is the cutoff for the geometry: we labeled it zIR in
the previous section, here we introduce this new notation
in order to not make confusion in the next section, so for
the moment we have two names for two quantities, zIR (the
cutoff for the flavor fields) and z0 (the cutoff for the
geometry), that are usually taken to coincide, see Fig. 1.
This evaluation also neglects the role of the vacuum

configuration of the scalar Φ: its vacuum energy changes
the critical horizon coordinate to favor the confined phase
and introduces a dependence on zIR in the expression for zc:
however the trace of the scalar is proportional to Nf so it
would be of the same order as the backreaction of the fields
on the geometry, a correction we are neglecting in the
present work.

B. Double hard-wall model

One issue with the usual hard wall approach is that, as
can be seen by the previous section on deconfinement, the
critical value zc of the black hole horizon at which the
phase transition happens is always lower than the cutoff
z0 ¼ zIR. The horizon of the black hole, as soon as it
appears, hides the IR brane on which the spontaneous

BARTOLINI, GUDNASON, LEUTGEB, and REBHAN PHYS. REV. D 105, 126014 (2022)

126014-4



breaking of chiral symmetry is realized by the boundary
conditions of the gauge and scalar fields: this implies that as
soon as the theory undergoes a deconfining transition, it
also unavoidably restores chiral symmetry. However, in
general these phase transitions can be widely separated
[35]. To have a richer phase diagram with separate
confined, deconfined, and chiral symmetry restored phases,
we postulate that the geometrical cutoff and the gauge
cutoff do not coincide, so we keep the notation zIR for the
cutoff of the flavor gauge fields propagation which we
permit to be smaller than z0 where the geometry ends.
This kind of construction looks artificial, but an analo-

gous configuration is actually realized in the top-down
holographic QCD model of Witten-Sakai-Sugimoto when
the flavor D-branes are not chosen to be antipodal: in this
configuration, the flavor gauge fields that live on the branes
also do not exist for all values of the radial coordinate.
Since the Hawking-Page transition is sensitive only to z0, to
have Td ≠ Tc we need to have

z0 > 21=4zIR: ð3:4Þ

Since our critical temperature corresponds to a critical
zc ¼ 2−1=4z0, having a higher value of z0 than in [34] (since
their z0 corresponds now to our zIR) means ending up with a
lower temperature for the Hawking-Page transition

Td ¼
21=4

πz0
<

1

πzIR
≈ 102.6 MeV; ð3:5Þ

departing even more from a phenomenologically accurate
value, if zIR is fixed by the mass of the rho meson to be

zIR ¼ L; L−1 ¼ 323 MeV; ð3:6Þ

as is usually done. An alternative way to look at this choice
without invoking a “double wall” structure, is simply to
take the deconfinement temperature to be a free parameter,
disregarding the dynamics of the deconfining Hawking-
Page transition and instead imposing the change in geom-
etry by hand: we will take this approach in drawing the
phase diagram, plotting temperatures as ratios of the critical
temperature Tc ¼ ðπzIRÞ−1.
This choice will not affect the main results of this paper,

namely the equation of state of cold nuclear matter and
the properties of neutron stars, whose typical temperatures
are far below the scale of Tc and Td, for which we shall
consider the model at T ¼ 0. The benefit of having a setup
where the deconfinement temperature Td is different from
the critical temperature Tc rather lies in reproducing the
analogous freedom that is found in the Witten-Sakai-
Sugimoto model with nonantipodal D-branes, thereby
permitting to see whether any of the features of the latter
can be reproduced in our much simpler model.

C. Scalar thermal vacuum

We have already shown in Eq. (2.13) the vacuum
configuration of the scalar for nonvanishing Mq and ξ in
the truncated AdS5 geometry. Since we want to study the
theory also in the deconfined phase, we need to find the
vacuum configuration also for the thermal black hole
geometry, for the case in which the black hole horizon
lies beyond the IR-brane.
Parametrizing again hΦi ¼ vðzÞ1, the equation of

motion for the scalar alone is modified by the presence
of blackening factors fðzÞ as

∂zðfðzÞa3ðzÞ∂zvðzÞÞ−M2
Φa

5ðzÞvðzÞ¼0; fðzÞ¼1−
z4

z4h
;

ð3:7Þ

keeping the same boundary conditions provided in [32].
The presence of the blackening factors modifies the
configuration (2.13) by the introduction of hypergeometric
functions, so that a general solution reads

vðzÞ¼C1ð−1Þ2−α4
�
z
zh

�
2−α

2F1

�
1

2
−
α

4
;
1

2
−
α

4
;1−

α

2
;

�
z
zh

�
4
�

þC2ð−1Þ2þα
4

�
z
zh

�
2þα

2F1

�
1

2
þα

4
;
1

2
þα

4
;1þα

2
;

�
z
zh

�
4
�
;

ð3:8Þ

with C1, C2 integration constants (but potentially depen-
dent on T through zh) to be fixed by the boundary
conditions. Here we provide the full configuration for
our boundary conditions: we employ the following short-
hand notation

FIG. 1. On the left: a sketch of our extended hard-wall model,
with two separate cutoffs, zIR for the flavor gauge fields and z0 for
the bulk geometry formed by confined gluons. On the right:
the model after the Hawking-Page transition. The value of zh
determines the temperature, deconfinement happens when
zh < zc, while chiral symmetry is restored when zh < zIR.
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F�ðzÞ≡ 2F1

�
2� α

4
;
2� α

4
;
2� α

2
;
z4

z4h

�
: ð3:9Þ

Then the vacuum of the scalar in the deconfined back-
ground is given by:

vðz;TÞ ¼C−1ðξF−ðzUVÞ−MqF−ðzIRÞÞ
�

z
zIR

�
2þα

z2αIRFþðzÞ

þC−1ðMqz2αIRFþðzIRÞ− ξz2αUVFþðzUVÞÞ

×

�
z
zIR

�
2−α

F−ðzÞ; ð3:10Þ

with the constant C being

C≡ z2αIRF−ðzUVÞFþðzIRÞ − z2αUVF−ðzIRÞFþðzUVÞ: ð3:11Þ

IV. HOMOGENEOUS BARYONIC MATTER

From the holographic point of view baryons are solitonic
configurations in the flavor gauge fields: to build a many-
instantons configuration accounting for interactions and
minimization of the energy with respect to the moduli of the
solitons is extremely challenging, so usually an approxi-
mation scheme is necessary to extract some qualitative
result from the model.
Another possibility is to take the fields to only depend on

z to begin with, instead of starting with individual baryons
and then performing some averaging. A configuration like
this2 would, of course, be far from reality when densities
are low, but as the density increases the system tends to
look homogeneous up to very short distances in R3.
The benefit of using this approximation is threefold:

first, it reduces the number of variables in our equations of
motion, secondly it decouples the non-Abelian part of the
scalar field Φ from the baryonic matter, hence allowing us
to only turn on its Uð1Þ term, and lastly it allows us to
easily solve the equations of motion numerically without
fixing the configuration of certain fields, so that the
resulting field configuration will be a true classical solution
of the theory.
The gauge fields and the scalar are taken to depend only

on z, so as to reproduce a distribution of a large number
of baryons smeared in flat three-dimensional space. This
requirement alone, together with the condition (2.9) for the
gauge fields, and withMq ¼ m1 for the scalar, enforces the
following form [32]:

Lz ¼ Rz ¼ 0; ð4:1Þ

Li ¼ −Ri ¼ −HðzÞ τ
i

2
; L̂0 ¼ R̂0 ¼ â0ðzÞ; ð4:2Þ

Φ ¼ ω0ðzÞ
1
2
: ð4:3Þ

The imposition of Ri ¼ −Li is also necessary in order to
obtain a nonvanishing baryon number. The field strengths
are then given by:

Liz ¼ −Riz ¼ H0ðzÞ τ
i

2
; ð4:4Þ

Lij ¼ Rij ¼
H2ðzÞ
2

ϵijkτk; ð4:5Þ

L̂0z ¼ R̂0z ¼ −â00ðzÞ: ð4:6Þ

From now on we shall simplify our equations by setting

zUV ¼ 0; zIR ¼ L ¼ 1: ð4:7Þ

(zIR ¼ 1 corresponds to measuring all dimensionful
physical quantities in some units essentially fixed by the
rho mass, to be fitted later, whereas L ¼ zIR ¼ 1 can be
achieved by appropriate rescalings.)
Given the Ansatz in the previous paragraph, we can

extract a one-dimensional effective Lagrangian density
from the model. It is given by

L ¼ Lg þ LCS þ LΦ; ð4:8Þ

Lg ¼ −M5aðzÞ½3H4 þ 3H02 − â020 �; ð4:9Þ

LCS ¼
3Nc

8π2
â0H2H0; ð4:10Þ

LΦ ¼ −M5a3ðzÞ
�
3

2
H2ω2

0 þ
1

2
M5ω

02
0 þ

1

2
MΦa2ðzÞω2

0

�
:

ð4:11Þ

From this Lagrangian density we can obtain the grand-
canonical potential via the holographic correspondence as

Ω ¼ −V
Z

dzL: ð4:12Þ

A. Equations of motion

The set of equations of motion for the z-dependent fields
of the homogeneous Ansatz are easily obtained as:

6M5∂zðaðzÞH0ðzÞÞ − 12aðzÞM5H3ðzÞ − 3Nc

8π2
â00ðzÞH2ðzÞ

− 3M5a3ðzÞHðzÞω2
0 ¼ 0; ð4:13Þ

2The same Ansatz has been employed to describe dense
nuclear matter within the top-down model of Witten-Sakai-
Sugimoto, see [36].
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−2M5∂zðaðzÞâ00ðzÞÞ þ
3Nc

8π2
H2ðzÞH0 ¼ 0; ð4:14Þ

M5∂zða3ðzÞω0
0Þ−3M5a3ðzÞH2ðzÞω0−M5M2

Φa
5ðzÞω0¼0:

ð4:15Þ

The boundary conditions in the UV descend from

LμjUV ¼ RμjUV ¼ 0; ð4:16Þ

ΦjUV ¼
�
zUV
zIR

�
Δ−

Mq
1
2
; ð4:17Þ

and are thus translated into Dirichlet conditions for the
fields of the homogeneous Ansatz:

HðzUV ¼ 0Þ ¼ 0; ð4:18Þ

ω0ðzUV ¼ 0Þ ¼ 0: ð4:19Þ

We also need to specify conditions for the IR boundary: for
the fields ΦðzÞ and â0ðzÞ we still make use of the original
boundary conditions, that is

ΦðzIR ¼ 1Þ ¼ ξ
1
2
; ð4:20Þ

L̂zμðzIR ¼ 1Þ ¼ R̂zμðzIR ¼ 1Þ ¼ 0: ð4:21Þ

As mentioned earlier, the only IR condition we have
imposed for the field HðzÞ is automatically satisfied by
construction. We still need one more boundary condition
for the field HðzÞ to be able to integrate the differential
equation: this freedom reflects the freedom that we have to
choose an arbitrary baryon number for the constructed
Ansatz. The baryon number is obtained as the topological
charge

B ¼ 1

32π2

Z
d3xdz ϵMNPQTr½LMNLPQ − RMNRPQ�

¼ 3V
4π2

Z
1

0

dzH0H2

¼ V
4π2

½H3�10: ð4:22Þ

SinceHð0Þ ¼ 0, the value of B can be fixed byHð1Þ: since
we are working with an infinite volume it is more mean-
ingful to trade the global topological charge B with its
density d, obtaining the following boundary conditions for
Hð1Þ at a given value of d, and for the other fields

HðzIR¼1Þ¼ð4π2dÞ13; â00ðzIR¼1Þ¼0; ω0¼ ξ: ð4:23Þ

Note that the field â0 appears only through its derivative:
we will thus be able to determine its shape up to an additive
constant. This is not unexpected, and is in agreement with
the holographic interpretation of such constant, that is,
the chemical potential μB: it can easily be understood by
inspection of the Chern-Simons action, which reduces to a
coupling between μB and the baryon number (density). We
are thus free to choose this value, as we are free to choose
the chemical potential we are working at. Furthermore,
since Eq. (4.14) contains the baryon number density (which
reduces to a boundary term upon integration), it can be
immediately integrated and solved for â00ðzÞ:

â00ðzÞ ¼
Nc

16π2M5

H3ðzÞ
aðzÞ þ C

aðzÞ : ð4:24Þ

The integration constant C can be fixed using the Neumann
boundary condition at z ¼ zIR ¼ 1 for â0ðzÞ, and then the
Dirichlet condition for HðzÞ:

C ¼ −
Nc

16π2M5

H3ð1Þ ¼ −
Ncd
4M5

: ð4:25Þ

So after all we can solve the two equations (4.13), (4.15)
[using (4.24)] to find HðzÞ, ωðzÞ and then plugging HðzÞ
into Eq. (4.24) together with the boundary condition
â0ð0Þ ¼ μ to find â0ðzÞ. Note however that with this
notation, the integration constant μ does not give the
physical chemical potential for baryons μB, but is propor-
tional to it via

μB ¼ Nc

2
μ; ð4:26Þ

which will be important to take into account when fitting
the free parameters to obtain phenomenologically mean-
ingful quantities.

B. Confined phase

To move to the finite temperature theory we perform
a Wick rotation as t ¼ −iτ: because of this, the time
components of vector fields will be defined as L0 ¼ iLτ.
Keeping the same homogeneous Ansatz as that of Eq. (4.2),
but trading L0, R0 for Lτ; Rτ ¼ −iL0 ¼ −iâ0 ≡ âτ, the one-
dimensional Lagrangians read

L ¼ Lg þ LCS þ LΦ; ð4:27Þ

Lg ¼ iM5aðzÞ½3H4 þ 3H02 þ â02τ �; ð4:28Þ

LCS ¼
3Nc

8π2
âτH2H0; ð4:29Þ

LΦ ¼ iM5a3ðzÞ
�
3

2
H2ω2

0þ
1

2
ω02

0þ
1

2
MΦa2ðzÞω2

0

�
: ð4:30Þ
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Consistency of the Chern-Simons term with the other ones
requires the field âτ to be imaginary, so we rewrite it as
âτ ¼ −iâ0 with â0ðzÞ a real field. We then define the
Euclidean Lagrangian LE as LE ¼ −iL. With these pre-
scriptions we end up with the very same form of the
Lagrangian as in the zero temperature scenario, and thus
with the same equations of motion: no temperature induced
corrections to the baryonic matter appear in this particular
phase. By substituting the numerical solution of the
equations of motion for this phase into the action, we
can compute the grand canonical potential.

C. Deconfined phase

When the geometry undergoes a transition to the black
hole background, the effective one-dimensional Lagrangian
(and correspondingly the equations of motion) change,
including additional blackening factors in some terms:

LE ¼ LE
g þ LE

CS þ LE
Φ; ð4:31Þ

LE
g ¼ M5aðzÞ½3H4 þ 3fðzÞH02 − â020 �; ð4:32Þ

LE
CS ¼ −

3Nc

8π2
â0H2H0; ð4:33Þ

LE
Φ ¼ M5a3ðzÞ

�
3

2
H2ω2

0 þ
1

2
fðzÞω02

0 þ
1

2
M2

Φa
2ðzÞω2

0

�
;

ð4:34Þ

leading to the following set of equations:

6M5∂zðfðzÞaðzÞH0ðzÞÞ − 12aðzÞM5H3ðzÞ

−
3Nc

8π2
â00ðzÞH2ðzÞ − 3M5a3ðzÞHðzÞω2

0 ¼ 0; ð4:35Þ

−2M5∂zðaðzÞâ00ðzÞÞ þ
3Nc

8π2
H2ðzÞH0 ¼ 0; ð4:36Þ

M5∂zðfðzÞa3ðzÞω0
0Þ − 3M5a3ðzÞH2ðzÞω0

−M5M2
Φa

5ðzÞω0 ¼ 0: ð4:37Þ

Boundary conditions can be imposed as in the T ¼ 0
scenario. This time zh (hence temperature) enters directly
into the equations of motion, so the corresponding nuclear
matter solution will have temperature induced corrections:
this translates in the phase diagram T vs μ into the phase
transition line between mesonic phase and nuclear matter
phase no longer being a straight vertical line (a feature
already seen for pointlike instantons). Numerical evaluation
confirms this and also establishes the transition line
remaining of first order.

V. PHASE DIAGRAM

A. Chiral symmetry restoration at zero temperature

The presence of couplings between the scalar field and
HðzÞ implies that a finite density can indeed introduce
corrections to the stable value of ξ which is determined
in the vacuum by the IR boundary action (2.17) according
to Eq. (2.19).
To show how this happens, let us start from a simplified

picture, in which the value of ξ does not affect the shape of
HðzÞ: if this was the case, then the only relevant additional
term in the stabilization of ξ would be given by the one that
explicitly contains ω0ðzÞ

LHω
Φ ¼ −

3

2
M5a3ðzÞH2ω2

0

¼ −
3

2
M5ξ

2z3H2: ð5:1Þ

Upon integration over z and exploiting the assumption that
∂ξH ¼ 0, we find the following stable value for ξ that
minimizes the energy:

ξ2 ¼ 1

4λ
½m2

b − 3M5ð1þ J Þ�; J ≡
Z

dzz3H2; ð5:2Þ

where λ is the self coupling of ξ, see Eq. (2.17). The integral
J depends on the density and behaves roughly as d2=3,
but in general it is sufficient to note that it is a monotonic
increasing function of the baryon density. We note that in
nuclear matter we then have indeed a dynamical chiral
condensate. More interestingly, the additional term can in
principle allow for a restoration of chiral symmetry: if the
right-hand side of Eq. (5.2) becomes negative, this signals
that only the solution ξ ¼ 0 survives, and it becomes a local
minimum. This would establish a critical density at which
chiral symmetry is restored even at zero temperature.
In reality, the function HðzÞ also depends weakly on ξ

and so does J , so the behavior of the energy as a function
of d, ξ has to be evaluated numerically.
To perform the numerical analysis, we need to find a

scheme to fit the free parameters of the model. At this stage,
the free parameters are L;mb; λ. The parameter mb can be
traded for the value of ξ since it is obtained by minimizing
the energy. The most common fit for L has it chosen to be
L−1 ¼ 320 MeV, to reproduce the ρ-meson mass, while the
parameter ξ in the vacuum at zero temperature should be set
as3 ξ ¼ 4

ffiffiffi
2

p
: however in holographic models the fits of

the mesonic sector are often at odds with observables

3Note that with respect to [33] we have a definition of ξ that
differs by a factor of

ffiffiffi
2

p
: this originates from the choice of the

boundary conditions of the scalar field, and on the different
normalization of the group structure of the fields, since we use
TrTaTb ¼ 1

2
δab, while they use TrTaTb ¼ δab.
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in the baryonic sector. Since in this work we are mainly
concerned with the physics of baryons, we choose a fit that
reproduces baryonic observables relevant to the construc-
tion of the phase diagram and neutron stars, keeping only λ
as a free parameter. We choose our parameters to reproduce
the mass of the baryon and the onset of the nuclear matter
phase, independently of the chosen λ (neglecting binding
energy):

MB ¼ Nc

2
μon ¼ 939.56 MeV: ð5:3Þ

These two values are in principle not independent as they
must coincide, however since we employ the homogeneous
Ansatz, the system loses track of the mass of the single
baryon. In order to determine the mass of a single baryon,
we construct a single instanton holographically in the
theory, see Appendix B.
If we plot the free energy (see Fig. 2 for its complete

behavior for a particular choice of μ) as a function of d, ξ,
we immediately note that the only two local minima lie
on the two axes d ¼ 0, ξ ¼ 0, so that the two phases of
the theory are one in which there are no baryons and
the chiral symmetry is spontaneously broken (d ¼ 0 and
finite ξ), and one in which there are baryons and the chiral
symmetry is restored (finite d and ξ ¼ 0). Which one of the
two local minima is the global one depends on the chemical
potential μ.
To study the phases of this system we numerically find

those local minima (checking that this structure of local
minima holds true for each μ), compare them, and
determine which one is the global minimum of the function
at each given value of μ (note that the value of the minimum

on the d ¼ 0 axis is independent on μ, but the one on the
ξ ¼ 0 axis is not). For the purpose of this work we have
chosen a nominal value of λ ¼ 0.002, a value close to the
small λ limit which gives the best results for the mass-radius
relation of neutron stars among this class of calibrations.

B. Chiral symmetry restoration at finite temperature

We introduce temperature dependence by employing the
deconfining geometry of the AdS black hole. Naively chiral
symmetry is automatically restored as soon as the horizon
of the black hole reaches zh ¼ zIR ¼ 1 and hides the
boundary conditions for the scalar field ΦðzIRÞ ¼ ξ1.
However, before this happens, the true minimum of the
energy can in principle be realized for ξ ¼ 0 even at lower
temperatures, depending on the μ and T dependence of the
energy density. Because of the black hole metric, the IR
boundary term of the action is modified as

SIRðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðzIR ¼ 1Þ

p �
m2

b

2
ξ2 − λξ4

�
: ð5:4Þ

We find that this is indeed the case, and that the chiral
restoration transition once again coincides with a baryonic
onset, but this time the critical chemical potential μonðTÞ
is a strictly decreasing function of the temperature.
Interestingly, for T ¼ Tc, the curve ends at a finite value
of μonðTcÞ: this way our phase diagram shows a triple point
as expected for large-Nc QCD.
However, depending on the choice of the parameters, the

equilibrium value of ξ reaches zero for temperatures lower
than Tc in a second order phase transition: with our choices
the critical temperatures for this dynamical chiral restora-
tion is T ¼ 0.939Tc, for the parameter set that fits the
baryonic onset and baryon mass, and T ¼ 0.9983Tc (barely
visible in Fig. 6) for the one that gives more realistic
neutron stars. This is clearly an artifact of the model, but
may be interpreted as a trend toward a weakening of the
first-order phase transition around and below the value of μ
at the triple point, which in real QCD should actually be a
critical endpoint.

C. Quarkyonic phase

We now turn our attention to the high μ region: the
equilibrium density d is a monotonically increasing func-
tion of μ, so this means also analyzing the solutions of the
equations of motion at high density. As we increase the
density, we observe a continuous deformation of the baryon
number density distribution, as it changes from being
peaked on the infrared brane, where its boundary condition
encodes the value of d, to a configuration where it develops
a second peak at a distance from the hard-wall which is
monotonically increasing with d (see Fig. 3 for a set of
density profiles where the peak development is manifest).
This appearance of a peak in the distribution at a finite
distance from the hard wall (in general, from the position

FIG. 2. A 3D plot of the grand canonical potential at T ¼ 0 as a
function of ξ and d, at a fixed value of μ ¼ 5 for λ ¼ 0.001 and
mb ¼ 0.512, in units where L ¼ 1 (these values determine an
equilibrium value ξ ¼ 4

ffiffiffi
2

p
and are used in one of our choices of

calibration). Two local minima develop along the axes d ¼ 0,
ξ ¼ 0, and μ will determine their position along the axes and
which one is the global minimum. This general structure is not
modified by the choice of parameters or a finite temperature, but
the local minima may vary for different values of mb; λ; T.
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toward which the baryons are pulled by the gravitational
background) is reminiscent of the “popcorn transition” in
the nonhomogeneous scenario. It was argued that the
distribution in the holographic direction should be related
to a spectrum of energies for the condensed baryons [37],
so it is dual to a Fermi sphere. However the baryon at this
level is still a classical object, neither fermion nor boson,
so the fermionic nature has to come from quarks: this
transition then indicates the onset of a quarkyonic phase for
cold and dense nuclear matter [22]. The nuclear homo-
geneous matter in our model exhibits the same feature,
performing a (continuous) popcorn transition, where the
distribution of baryon charge density is gradually pushed
away from the infrared brane. This continuous distribution
is in contrast to the case of individual layers of baryons
considered in [22] where the position modulus in the
holographic direction is determined dynamically.
Because this is not a transition that we determine by

comparing order parameters, it should be regarded as a
crossover,4 with the exact value of μ at which it is
happening being set by our choice of the identification
of when we consider this popcorn transition to have
happened. Note that this would not be the case if we were
working within the single-instanton approximation, since
in that case we would be able to determine whether a single
layer or a double layer of instantons is favored at a given
density. The choice we employed in this work to draw a
crossover line in the phase diagram is to declare the
transition to happen when the baryon density distribution
is no longer a monotonic function of z, that is, when it

develops a local maximum far from the infrared wall.
However, the presence of this phase has no impact on the
physics of neutron stars in our model, which we study
below, since the high densities at which this crossover
happens are never reached in their cores.
In [22] the baryonic popcorn transition was proposed as

a true phase transition from nuclear matter to quarkyonic
matter, whereas in our case these phases are strictly
speaking one. In fact, a continuity between the two has
been suggested by the lattice study of [39]. A characteristic
property of quarkyonic matter has been argued in [30] to be
a steep rise of the speed of sound after baryon on-set to
values of order one, above the conformal value c2s ¼ 1=3.
As we shall show next, this indeed happens in our model
quickly after baryon on-set, already before our analog of
the popcorn transition, with implications for neutron stars
like in [30].

D. Speed of sound

In early studies of holographic models, it was conjec-
tured that the conformal value of the speed of sound
presents an upper bound [40] for such models, but this
was disproved later by holographic models at finite density
[27,29,41–45].5 In fact, the comparatively simple hard-wall
AdS/QCD model that we are studying here also provides
such a counterexample, which makes it possible to satisfy
the empirical evidence from neutron stars that call for a
speed of sound above the conformal value [47–49].
In the T ¼ 0 limit, the squared speed of sound can be

obtained from the simplified formula:

c2s ¼
d
μ

�
∂μ

∂d

�
: ð5:5Þ

In Fig. 4 we plot the squared speed of sound in the baryonic
phase with the parameter choices described in the previous
section. As can be seen the speed of sound rapidly increases
above the sound barrier of c2s ¼ 1=3, to reach almost
double this value, then slowly decreases. This fits well
the expectations of [30] for a quarkyonic nature of nuclear
matter, which in our model is in fact continuously con-
nected to the baryonic popcorn phase. If the latter is
interpreted as a quarkyonic phase [22], nuclear matter in
our model may be viewed as always having a quarkyonic
nature. However, also in the Witten-Sakai-Sugimoto
model, where the quarkyonic phase obtained in [23] is
separated from the nuclear matter phase, a speed of sound
peaking to values above the conformal one has been found
in the ordinary nuclear matter phase [43] (albeit not as high
as in our model).

0.2 0.4 0.6 0.8 1.0
z

50

100

150

200

b (z)

d

FIG. 3. The baryon number density distribution in the holo-
graphic direction per unit baryon number at various densities
ranging from d ¼ 0.1 to d ¼ 10 (in units where L ¼ 1). Colors
from blue to red indicate an increase in baryon density, and the
continuous development of a peak in the distribution away from
the infrared wall can be clearly seen, signaling a crossover to a
quarkyonic phase.

4For a different holographic realization of the quarkyonic
phase, see also [38].

5The Witten-Sakai-Sugimoto model also provides a counter-
example [28,43,46], but does not respect the requirement in [40]
of a four-dimensional conformal fixed point in the UV.
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Our numerical analysis indicates that for large μ, the
squared speed of sound decreases continuously without
falling below 1=3. In Appendix A we argue that asymp-
totically the conformal value is reached, in contrast to the
Witten-Sakai-Sugimoto model, where the asymptotic value
of the squared speed of sound is given by 2=5 [46]. At any
rate, eventually perturbative QCD should take over, where
the conformal value is reached from below [50].

E. Above the critical temperature

When zh reaches zIR, all boundary conditions that
encode spontaneous chiral symmetry breaking remain
suddenly hidden beyond a black hole horizon, effectively
keeping chiral symmetry restored in the theory for any
value of μ. Note that an explicit breaking (absent in this
work) would be introduced via a quark mass which appears
in the UV boundary condition for the scalar, so the explicit
breaking cannot be undone (as expected). From these
considerations follows that we can always assume the
following boundary conditions for the scalar:

ω0ðzhÞ ¼ ω0ð0Þ ¼ 0; ð5:6Þ

and since its equation of motion is homogeneous, we can
always trivially solve it for

ω0ðzÞ ¼ 0: ð5:7Þ

The presence of the black hole horizon forces us to choose
Dirichlet boundary conditions for the fields L̂0; R̂0 in the
infrared: the usual recipe is to set Â0ðzIRÞ ¼ 0; however, we
immediately see that this choice is not unique, since the
value of the gauge field is not gauge invariant. We could set

this value to any constant, modifying the interpretation of
the value Â0ðzUVÞ as the chemical potential. To avoid such
redefinition, we will choose:

L̂0ðzhÞ ¼ R̂0ðzhÞ ¼ 0; L̂0ð0Þ ¼ R̂0ð0Þ ¼ μ: ð5:8Þ

Note that now the value of μ will determine the value of the
derivative â00ðzÞ, so it will enter the dynamics of the fields.
Starting from the easier scenario of d ¼ 0 (expected to

hold for low chemical potential) we can see how a quark
density arises: the equation of motion for â0 in integrated
form reads

−2M5aðzÞâ00ðzÞ ¼ k; ð5:9Þ

with k being an integration constant. If we were to impose
the usual boundary condition â00ðzIRÞ ¼ 0, then we would
conclude that k has to vanish for every temperature.
However, the IR boundary is now hidden behind the
horizon, where we have to impose a new boundary
condition. If we take as the boundary condition the
vanishing of the field on the horizon (while retaining the
UV boundary condition fixing μ), then we end up with

â0ðzÞ ¼ −
z2

4M5

kþ μ; ð5:10Þ

k ¼ 4M5

z2h
μ ¼ 4M5π

2T2μ: ð5:11Þ

We can see from the holographic dictionary that k is then
associated to the baryon density, a role played before by the
baryonic matter density from HðzIRÞ: in this phase we have
no baryon matter explicitly built into the fields (in fact, this
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FIG. 4. The squared speed of sound in the baryonic phase as a function of the chemical potential μ (left) and density d (right) in units
where L ¼ 1. The dashed sections represent unstable branches, never realized since at those chemical potentials the mesonic phase is
energetically favored. The colors correspond (as will throughout all this article) to the two fit choices we employed, that we call fit A
(blue) and fit B (red) in the next section. Where the curves coincide for the two fits, we draw a single purple line. The saturation density is
approximately at dA ≃ 0.2 for the fit A, and at dB ≃ 0.39 for the fit B. The behavior is not monotonic and it lies above the “sound barrier”
value of 1=3, reaching a maximum close to double this value, enabling the possibility of highly stiff equations of state.
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density does not contribute to the topological charge), so
this contribution can be interpreted as coming from free
quarks—hence we identify the matter in this phase with a
quark-gluon plasma. This construction opens up a pos-
sibility for the presence of a quarkyonic phase along the
lines of [23], where in the top-downmodel of Witten-Sakai-
Sugimoto, baryons are included forming a symmetrical
layer far from the branes’ joining point. For us, this
amounts to relaxing the assumption that solitons are located
on the IR brane (that is inaccessible in the chirally restored
phase) and include both their contribution and that of free
quarks in the equation of motion for the field â0.
To do so, we turn on the SUð2Þ fields with boundary

conditions (i.e., adding “hair” to the AdS black hole)

Hð0Þ ¼ 0; HðzhÞ ¼ ð4π2dÞ13; ð5:12Þ

and we solve again numerically the coupled system of
H; â0, choosing d that minimizes the grand canonical
potential. The numerical evaluation leads to the conclusion
that a phase with both baryons and free quarks arises at high
chemical potential for every temperature above Tc, with the
transition curve being almost a straight line in the μ − T
plane (see Figs. 5 and 6). The transition is of first order,
and the baryonic matter appears always with its distribution
peaked at a finite distance from the horizon, signaling a
quarkyonic nature of this phase, which is marked
“quarkyonic�” in Figs. 5 and 6.6

While Fig. 5 shows the qualitative structure in the single-
wall case (z0 ¼ zIR), where there is no temperature
dependence for T < Td, Fig. 6 shows the numerical results
obtained for one arbitrary choice of Td < Tc and the
resulting temperature dependence of the otherwise straight
lines separating mesonic and baryonic phases and the
baryonic popcorn crossover. The two sets of choices for
the free parameters we employed here (and that we will
employ in the next section) are the following:

Fit A∶L−1¼186MeV; λ¼2×10−3; ξ0¼1.05; ð5:13Þ

Fit B∶ L−1 ¼ 150 MeV; λξ40 ¼ 1.024; ð5:14Þ

where the fit A indicates one that correctly reproduces the
baryon mass and the critical chemical potential for the
baryon onset, and the fit B is chosen as an example of a fit
that produces an equation of state which lies as much
as possible within the constraints by observational data
from neutron stars. For fit A the values of ξ0 and λ are
independently relevant, since the combination 1

2
λξ40 is the

depth of the potential well set by the infrared potential

(and as such it governs the value of the baryon onset), while
only ξ0 enters the mass of the single baryon calculated in
Appendix B. For fit B instead only the value λξ40 enters the
calculations through the value of the baryon onset, since the
baryonic phase always sets ξ ¼ 0.
It should be noted that the phase diagram that we have

obtained here does not include backreactions of the flavor
physics on the geometry, which is always AdS. These
backreactions will certainly become increasingly important
as the baryon density is increased such that the phase
transition at T=Tc ¼ 1 acquires a nontrivial dependence
on μ. The expectation is that TcðμÞ decreases with
increasing μ. If so, the phase diagram that we have obtained
in Fig. 6 in terms of T=Tc vs μ could be mapped to one in
terms of T vs μ where the horizontal lines bend down at
large μ, and if its structure remains intact it could be
interpreted as predicting a phase transition inside the
baryonic phase, where the latter does not need to extend
to high absolute temperatures but could in fact be restricted
to the low-temperature domain.

VI. NEUTRON STARS

In the following we shall take the above results for the
low-temperature equation of state at face value and con-
sider the consequences for a toy neutron star formed by the
corresponding baryonic matter. Unlike the holographic
models reviewed in [25,26] we refrain from matching to
realistic equation of states for conventional nuclear matter
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FIG. 5. Phase diagram in the case of holographic QCD with a
single IR wall (z0 ¼ zIR) with μ in units of L−1; ξ is the order
parameter of chiral symmetry, d and k are baryon and deconfined
quark densities, respectively. The vertical line for T=Td < 1
represents the first order transition to nuclear matter and chiral
restoration, while the dotted line marks a crossover to a regime
similar to the baryonic popcorn phase of [22]. For T=Td > 1 and
sufficiently large μ there is a phase of coexistence of deconfined
quarks and baryons.

6The results above are obtained in the absence of isospin
chemical potential: for the derivation of a phase diagram within a
holographic bottom-up model which includes effects of a finite
isospin chemical potential, see [51].

BARTOLINI, GUDNASON, LEUTGEB, and REBHAN PHYS. REV. D 105, 126014 (2022)

126014-12



at moderate densities, thereby completely neglecting any
effects from the crust of a neutron star. The modeling of a
phenomenologically viable neutron star crust cannot be
done purely within the homogeneous Ansatz and will
require additional input, such as the physics of individual
baryons and the presence of leptons, or simply a hybrid
matching with other phenomenological equations of state.
Also, the nontrivial phase diagram that we have obtained
above for temperatures above the deconfinement temper-
ature will play no role here.

A. Tolman-Oppenheimer-Volkov equations

Neutron stars are described by the Tolman-
Oppenheimer-Volkov (TOV) equations, which read:

dP
dr

¼ −Gðεþ PÞ mþ 4πr3P
rðr − 2GmÞ ; ð6:1Þ

dm
dr

¼ 4πr2ε: ð6:2Þ

The equations are solved by using as a boundary condition
Pðr ¼ 0Þ ¼ P0 for a range of values of P0, and the radius
of the neutron star obtained, is defined as the value of R
for which PðRÞ ¼ 0. Different values of P0 will produce
results of R, m that define a curve in the m − R plot
to be compared with observational data. The TOV
equation is dependent on the equation of state of the
baryonic matter in the model, and since our quantities
at equilibrium and T ¼ 0 are solely dependent on μ,
we effectively solve for μ by minimizing the grand
potential to obtain dðμÞ, and feeding it to P, ε so as to
obtain Pðμ; dðμÞÞ; εðμ; dðμÞÞ.
Since we work in the grand canonical ensemble, we use

the holographic dictionary as before to identify the grand
potential with (minus) the on-shell action. Then we can use
the relations:

PV ¼ −Ω ¼ V
Z

dzLon−shell; ð6:3Þ

ε ¼ E
V
¼ −Pþ μ

∂P
∂μ

¼ −Pþ Nc
μ

2
d: ð6:4Þ
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FIG. 6. Phase diagrams of holographic QCD from the double hard-wall model (right panel with μ in units of L−1, left panel in physical
units). The green line represents a(n arbitrary in our setup) deconfining transition, below which every transition line is perfectly vertical
(there is no temperature dependence). The blue and red colors represent respectively two choices of parameter sets: the blue one has
parameters fitted to reproduce the correct chemical potential at the baryonic onset and the correct baryon mass from the hard-wall soliton
(see Appendix B), while the red one has parameters chosen to have the equation of state lie predominantly in a phenomenologically
relevant region, so as to obtain more realistic neutron stars. The solid curved lines for T=Tc < 1 represent the corresponding first order
transitions to nuclear matter and chiral restoration, while the dotted lines mark crossovers to a regime similar to the baryonic popcorn
phase of [22] that is identified with a quarkyonic phase. The horizontal dashed red and blue lines represent a second-order transition to
chiral restoration within the mesonic phase, with the colored regions identifying phases with broken chiral symmetry. Above the critical
temperature, a phase of quark-gluon plasma exists, while for large enough chemical potentials, and as a function of temperature, baryons
also appear in this phase, realizing a quarkyonic phase of a fundamentally different nature than the one below Tc with coexistence of
deconfined quarks and baryons.

NEUTRON STARS AND PHASE DIAGRAM IN A HARD-WALL … PHYS. REV. D 105, 126014 (2022)

126014-13



In agreement with the identification of the grand potential
as Ω ¼ E − μ̃N: note that we have an additional factor of
1=2 that consistently stems from the definition of μ we
employed. With all these identifications we can plot the
P − ε curve that defines our equation of state, and the
m − R curve that arises from the solutions to the TOV
equations. The identification of P and ε with the dual
holographic quantities can also be done by constructing the
stress-energy tensor Ti

j and reading off T0
0 and Ti

i from
there. In general, the hydrodynamic pressure found this
way is different from the thermodynamical one, but they
coincide at equilibrium, as we have verified numerically
(see Appendix D for this derivation of P, ε).
In Fig. 7 we plot the equation of state and the mass-

radius relations for both the fit of the parameters according
to (5.13), and an alternate scenario (5.14) where we do not
fit any observable quantity, but we choose parameters such
that the equation of state falls as much as possible within
the window allowed by observational data, and such as to
obtain more realistic mass-radius relations. With fit A
(5.13), we find that the speed of sound inside stable
neutron stars never reaches the maximum allowed by the
equation of state, peaking instead at a value of c2s ¼ 0.645
at the center of the most massive stable star, while the
polytropic index γ ¼ d lnP=d ln ε reaches a minimum
value of γ ¼ 1.5; with fit B (5.14) instead the allowed
speed of sound values extend beyond the peak in the curve
c2sðμÞ, so that the maximum value reached corresponds to
the global maximum c2s ¼ 0.659, while the polytropic
index inside stable neutron stars reaches a lower minimum
value of γ ¼ 1.31. Similarly to the results obtained in
Ref. [28] with the Witten-Sakai-Sugimoto model, we thus

find that at the center of neutron stars γ drops below the
value 1.75 used in Ref. [52] as criterion for the presence of
quark matter, while within the holographic model the
nuclear matter phase persists.
Another important property of neutron stars is the tidal

deformability: in Fig. 8 we plot the tidal deformability Λ as
a function of the star’s mass: we see that by choosing the
more phenomenologically accurate equation of state, we
obtain the least likely tidal deformability for a star with
mass of 1.4 M⊙, at the lower boundary of the allowed
values. The equation of state obtained by fitting the baryon
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FIG. 7. Equations of state (left) and radius-mass relations for neutron stars with two choices of parameters. The dashed sections of the
equations of state indicate values of central pressure that lead to unstable neutron stars. In the mass-radius plot, these stars lie beyond the
turning point (corresponding to the maximum mass) of the respective curves. For the blue lines (fit A), we fitted the baryonic mass and
the chemical potential at baryon onset to the phenomenological values, leaving us with one free parameter which is then chosen to
reproduce the best possible mass-radius relation, which in this case is quite far from what is expected, leading to quite heavy stars. For
the red plots (fit B) all parameters are instead chosen to obtain a good compromise between highest mass, radius for stars of 1.4 M⊙
(whose most recent measurement by NICER is represented by the gray interval), and tidal deformability (see Fig. 8). We see that in both
cases the measured radius is not completely compatible with our predictions: however, the effect of a crust is expected to increase the
radius of neutron stars, refining the precision of the “phenomenological” set of parameters.
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FIG. 8. Tidal deformabilities as a function of star mass in the
two parameter choices considered. Color coding of the plots is as
in Fig. 7. We see that both fits lead to acceptable results, with the
“phenomenological” one being extremely close to the lower end
of the allowed region. Effects of a crust are expected to increase
tidal deformabilities, pushing this last fit to more realistic
predictions.
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mass and onset instead produces a tidal deformability well
within the experimental bounds.

B. Neutron star mergers and gravitational waves

We will now use the equation of state (EoS) found in the
previous sections and tested by the TOVequations in a full
numerical gravity simulation, giving rise to a gravitational
wave signal, in principle detectable at the LIGO and
VIRGO experiments.
The setup that we will consider is a binary of two

neutron stars, each of mass 1.4 solar masses (M⊙) with an
initial separation of 45 km. The initial configuration
is made with LORENE [53] using first init_bin and
then coal with suitable initial enthalpies (large enough
for creating an initial configuration of the desired mass.
We perform the numerical gravity simulations using

whiskyTHC [54–56] using the method of lines with a third
order Runge-Kutta (RK3) evolution, a hybrid EoS mode
in the “thorn” EOS_Thermal with the holographic EoS
input as the cold EoS and the temperature dependence
given by a simple Gamma law with coefficient Γth ¼ 1.75
[57]: this accounts for shock-heating effects during the
merger [58] by adding a thermal component to the
equation of state with Pth ¼ Γthρðεtotal − εcÞ ¼ Γthρεth
where ρ ¼ mbd is the baryon mass density, mb is the
baryon rest mass and d is the number density. The total
pressure is then P from the cold equation of state plus the
thermal component Pth, i.e., Ptotal ¼ Pþ Pth. The result
for the choice of parameters fitted to the baryon mass
and baryon onset is shown in Fig. 9, whereas the result for
the “phenomenological” parameter choice is shown in
Fig. 10, both for 1.4 M⊙ þ 1.4 M⊙ neutron stars as initial
condition.

FIG. 9. The gravitational wave signal of a two 1.4 M⊙ neutron stars merger, in the model fitted to the baryon mass and baryon onset,
measured from the fourth Weyl scalar ψ4 in terms of the spherical harmonic decomposition into the function h22þ , extrapolated to
40 Mpc. The bottom row shows the frequencies of the signal as a function of time using bins of roughly 2 ms, whereas the top row of
figures shows snapshots of the hydrodynamic general relativistic numerical simulation.
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VII. CONCLUSIONS AND OUTLOOK

We studied the phase diagram of a holographic “hard-
wall” model of QCD, identifying baryonic and quarkyonic
phase transitions for arbitrary temperatures, with a non-
trivial temperature dependence arising from a generaliza-
tion to separate infrared walls for gluonic and quark degrees
of freedom. To do so, we employed the approximation of
homogeneous baryonic matter, which holds true for suffi-
ciently high densities, while we expect corrections to this
picture at low densities to arise by treating baryons as
individual topological solitons. At high densities we found
an analogue of the baryonic popcorn transition observed
before in [22] in the Witten-Sakai-Sugimoto model, which
we interpret as a continuous crossover to a quarkyonic
phase. Another quarkyonic phase emerged at high densities
above the critical temperature for chiral symmetry restora-
tion, which could be taken as an indication that in a

more refined treatment with backreacted geometry and
μ-dependent critical temperature there is a larger quar-
kyonic regime with embedded phase transition.
In the low-temperature phases, we have evaluated the

resulting equation of state with a view toward modeling
cold nuclear matter at high densities. Independently of the
fit chosen for the free parameters in our model, the resulting
speed of sound at zero temperature in this baryonic matter
turned out to be rather high, quickly rising above the
conformal value of c2s ¼ 1=3 and reaching a maximum of
approximately c2s ¼ 0.66 before monotonically decreasing
with further increases of the chemical potential. A steep rise
of the speed of sound to values of order one has been
argued in [30] to be associated with a quarkyonic nature of
baryonic matter, which is consistent with the continuous
connection between the baryonic and quarkyonic (baryonic
popcorn) phases in our model.

FIG. 10. The gravitational wave signal of a two 1.4 M⊙ neutron stars merger, in the model with the choice of parameters made to
optimize the equation of state, measured from the fourth Weyl scalar ψ4 in terms of the spherical harmonic decomposition into the
function h22þ , extrapolated to 40 Mpc. The bottom row shows the frequencies of the signal as a function of time using bins of roughly
2 ms, whereas the top row of figures shows snapshots of the hydrodynamic general relativistic numerical simulation.
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We used the equation of state of the model to solve the
TOV equations and build neutron stars: to do so, we
employed two different sets of parameter choices, one that
reproduces the correct baryon mass and the correct baryon
onset, while the other gives a good compromise for the
observable properties of neutron stars. The resulting neutron
stars turn out to be quite compact, with maximum masses
higher than what is expected, with the radius for stars of
mass 1.4 M⊙ being slightly outside (smaller than) the
allowed interval, and with tidal deformability for the same
star exactly on the lower bound of the allowed interval.
However, we have to bear in mind an important limitation in
our setup: the homogeneous Ansatz is expected to only
describe accurately the core of neutron stars, while we do not
have a description for a phase with more diluted solitons,
which would provide the stars with a softer crust. The effects
of the presence of a crust are expected to be an increase in the
radius of stars (at fixed mass), and an increase in the tidal
deformability. To put this intuition to the test, we extended
our holographic equation of state with the tabulated “SLy4”
one [59] and built again neutron stars with the phenomeno-
logical set of parameters. As a result, the radius of the
1.4 M⊙ star increased to over 12.3 km, while its tidal
deformability increased over the allowed interval, to a value
of about 775. This result opens up the possibility to obtain a
better phenomenological fit by slightly changing parameters
in order to obtain a lower maximum mass, which would in
turn also lower the tidal deformability and the radius. We
leave the modeling of a suitable crust phase for neutron stars
within the same holographic model, and thus a more refined
computation of neutron stars’ properties, for a future work.
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APPENDIX A: THE SPEED OF SOUND IN THE
LIMIT OF LARGE DENSITIES

In this appendix, we will consider taking the limit of
large chemical potential, which corresponds to large

densities. We will do the considerations for T ¼ 0 and
in the baryonic phase, so ξ ¼ 0. The equation of motion
(4.15) for ω0 is trivial for ξ ¼ 0 and hence ω0 ¼ 0 every-
where. H has to obey the boundary conditions (4.18) and
(4.23), which for large d becomes very energetically
expensive. We conjecture, based on numerical experience,
that the limit of the function HðzÞ tends to a step function
for μ → ∞:

lim
μ→∞

HðzÞ ¼ ð4π2dÞ13ΘHðzÞ; ðA1Þ

and for large μ, we have that d ∝ μα with α ≥ 2. Integrating
the Chern-Simons term by parts, we have the contributing
terms in the Lagrangian:

L ¼ −3M5aðzÞH4 þ Nc

8π2
∂zðâ0H3Þ: ðA2Þ

Integrating over z we obtain

L ¼ −3M5ð4π2dÞ43I þ Ncμd
2

; ðA3Þ

where we have defined the regularized integral

I ≔
Z

aðzÞΘHðz − ϵðdÞÞdz ¼ − log ϵðdÞ > 0; ðA4Þ

where ϵðdÞ parametrizes our ignorance about how the
true solution approaches the step function in the limit of
d → ∞. Minimizing the energy with respect to d yields

−
∂L
∂d

¼ 4M5ð4π2Þ43
�
d

1
3I − d

4
3
ϵ0ðdÞ
ϵðdÞ

�
−
Ncμ

2

¼ 4M5ð4π2Þ43ðI þ γÞd1
3 −

Ncμ

2
¼ 0; ðA5Þ

where in the second line, we have assumed a power-law
behavior of ϵðdÞ ∝ d−γ. The solution to the above equation
in terms of μ3 is

μ3 ¼ 2ðI þ γÞ3M3
5ð4πÞ8d

N3
c

; ðA6Þ

where I is logarithmically dependent on d. In the limit
d → ∞ the speed of sound becomes:

lim
d→∞

c2s ¼ lim
d→∞

d
μ

�
∂d
∂μ

�
−1

¼ 1

3
; ðA7Þ

and the conformal value of the speed of sound squared is
thus obtained.

APPENDIX B: THE BARYON AS AN INSTANTON

In this appendix, we will calculate the mass of the baryon
using the Ansatz
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Riðx; zÞ ¼ A1ðr; zÞ
x · τxi

2r2
þ 1

2r2
ð1 − ϕ1ðr; zÞÞτaϵaikxk

þ 1

2r
ϕ2ðr; zÞ

�
x · τxi

r2
− τi

�
; ðB1Þ

Liðx; zÞ ¼ −A1ðr; zÞ
x · τxi

2r2
þ 1

2r2
ð1 − ϕ1ðr; zÞÞτaϵaikxk

−
1

2r
ϕ2ðr; zÞ

�
x · τxi

r2
− τi

�
; ðB2Þ

R5ðx; zÞ ¼ −L5ðx; zÞ ¼
1

2r
A2ðr; zÞx · τ; ðB3Þ

R0ðx; zÞ ¼ L0ðx; zÞ ¼
sðr; zÞ
2r

1; ðB4Þ

Φðx; zÞ ¼ λ2
1
2
þ iλ1

x · τ
2r

; ðB5Þ

for a single instanton, following [31,32,60], giving rise to
the reduced energy functionals

Eg ¼ 8πM5

Z
∞

0

dr
Z

zIR

zUV

dz

�
aðzÞ

�
jDμ̄ϕj2 þ

r2

4
A2
μ̄ ν̄ þ

ð1 − jϕj2Þ2
2r2

−
1

2
ð∂μ̄sÞ2

�

−
Nc

32π2M5

s
r
ϵμ̄ ν̄ð∂μð−iϕ�Dν̄ϕþ iϕðDν̄ϕÞ�Þ þ Aμ̄ ν̄Þ

�
; ðB6Þ

EΦ ¼ 8πM5

Z
∞

0

dr
Z

zIR

zUV

dz

�
a3ðzÞ

�
r2

4
jDμ̄λj2 −

1

8
ðϕλ� − λϕ�Þ2

�
þ a5ðzÞ r

2

4
M2

Φjλj2
�
; ðB7Þ

where we have defined the complex fields

ϕ ¼ ϕ1 þ iϕ2; λ ¼ λ1 þ iλ2; ðB8Þ

the covariant derivative Dμ̄ ¼ ∂μ̄ − iAμ̄, the Abelian field
strength Aμ̄ ν̄ ¼ ∂μ̄Aν̄ − ∂ν̄Aμ̄ and finally, the barred indices,
μ̄; ν̄ run over r, z with Euclidean metric.
The equations of motion relevant for the instanton are

Dμ̄ðaðzÞDμ̄ϕÞ þ
aðzÞ
r2

ϕð1 − jϕj2Þ þ a3ðzÞ
4

λðλϕ� − ϕλ�Þ

þ iNc

16π2M5

ϵμ̄ ν̄∂μ̄

�
s
r

�
Dν̄ϕ ¼ 0; ðB9Þ

∂μ̄ðr2aðzÞAμ̄ ν̄Þ − aðzÞðiϕ�Dν̄ − iϕðDν̄ϕÞ�Þ

−
ia3ðzÞr2

4
ðλ�Dν̄λ − ðDν̄λÞ�λÞ

þ Nc

16π2M5

ϵμ̄ ν̄∂μ̄

�
s
r

�
ðjϕj2 − 1Þ ¼ 0; ðB10Þ

∂μ̄ðaðzÞ∂μ̄sÞ

−
Nc

32π2M5r
ϵμ̄ ν̄½∂μ̄ð−iϕ�Dν̄ϕþ iϕðDν̄ϕÞ�Þ þ Aμ̄ ν̄� ¼ 0;

ðB11Þ

Dμ̄ðr2a3ðzÞDμ̄λÞ − a3ðzÞϕðλϕ� − ϕλ�Þ − a5ðzÞr2M2
Φλ ¼ 0;

ðB12Þ

the Lorentz gauge condition is

∂μ̄Aμ̄ ¼ 0; ðB13Þ

the boundary condition in the infrared (z ¼ zIR) are

ϕ1¼0; φzϕ2¼0; Ar¼0; ∂zAz¼0; ∂zs¼0; λ¼−2iξ;

ðB14Þ

and in the ultraviolet (z ¼ zUV) they are

ϕ ¼ −i; Ar ¼ 0; ∂zAz ¼ 0; s ¼ 0; λ ¼ 0;

ðB15Þ

whereas at spatial infinity, the boundary condition for the
single instanton are

ϕ ¼ −ie
iπðz−zUVÞ
zIR−zUV ; ∂rAr ¼ 0; Az ¼

π

zIR − zUV
;

s ¼ 0; λ ¼ 2iξz3e
iπðz−zUVÞ
zIR−zUV ; ðB16Þ

and at the origin we have

ϕ1 ¼ 0; ϕ2 ¼ −1; ∂rAr ¼ 0; Az ¼ 0;

s ¼ 0; λ1 ¼ 0; ∂rλ2 ¼ 0: ðB17Þ

By using suitable initial conditions and a numerical scheme
sometimes called arrested Newton flow, we solve the
PDEs numerically and integrate the energy functionals (B6)
and (B7) to find the energy of the instanton, which is
identified with the mass of the baryon (nucleon). In Fig. 11
we show an example of the instanton solution in the bulk
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for ξ ¼ 4,M5 ¼ Nc
12π2

, Nc ¼ 3 andM2
Φ ¼ −3. For numerical

convenience, we have defined a new scalar field which is
defined as being relative to the vacuum solution (up to a
factor of ξ):

λ ¼ λ1 þ iλ2 ¼ z3λ̃: ðB18Þ

Changing ξ affects the energy and the size or “radius”
of the instanton. The result for a range of ξs is shown
in Fig. 12. We use the data of Fig. 12 to calibrate the
model by fitting the energy of the instanton to the mass of
the proton/neutron (we work in the limit of unbroken
isospin):
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FIG. 12. Energy (a) and radius (b) as functions of ξ. In this figure, we have taken the parameters of the model as M5 ¼ Nc

12π2
, Nc ¼ 3

and M2
Φ ¼ −3.

FIG. 11. Instanton solution in the bulk for ξ ¼ 4, M5 ¼ Nc

12π2
, Nc ¼ 3 and M2

Φ ¼ −3.
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L ¼ Einstanton

Mproton
; ðB19Þ

where L is the curvature scale in the metric as given
in Eq. (2.1).

APPENDIX C: BOUNDARY CONDITIONS AND
BARYON NUMBER

Here we discuss our choice of boundary conditions
for the homogeneous Ansatz. As noted in [32], a gauge
transformation gL;R ¼ expðiαL;RÞ that does not reduce to
unity at the UV brane correctly reproduces the QCD global
anomaly, but also carries an infrared term which is not
present in QCD and which should be canceled for the
holographic model to be consistently describing QCD.
The action is gauge invariant except for the Chern-

Simons term, whose variation amounts to:

ΔαSCS ¼
Nc

24π2

�Z
UV

½ω̄1
4ðαL; lÞ − ω̄1

4ðαR; rÞ�

−
Z
IR
½ω̄1

4ðαL; LÞ − ω̄1
4ðαR; rÞ�

�
: ðC1Þ

We want to cancel the infrared term, which can be done by
the following choice of boundary conditions:

ðLμ − RμÞjzIR ¼ 0; ðLμz þ RμzÞjzIR ¼ 0: ðC2Þ

The second one of these conditions is automatically
satisfied by the homogeneous Ansatz, while the first is
in general not satisfied for μ ¼ i:

ðLi − RiÞjzIR ¼ −HðzIRÞσi ¼ −ð4π2dÞ1=3σi: ðC3Þ

If we want to describe baryonic matter within this Ansatz,
we have to give up on this choice of boundary condition, as
it is incompatible withH3ðzIRÞ ¼ 4π2d. However, this does
not mean that the infrared variation of the Chern-Simons
term cannot vanish. Let us take a look at ω̄1

4;

ω̄1
4ðα; AÞ ¼

1

4
α̂ðdÂÞ2 þ 3

2
α̂TrF2: ðC4Þ

The conditions (C3) enforce the vanishing of the variation
by cancellation between the L and R terms: another
possibility is that they both vanish independently which
is precisely what happens for the homogeneous Ansatz.
The first term in Eq. (C4) amounts to

1

4
α̂ðdÂÞ2¼1

4
α̂F̂α1α2F̂α3α4dx

α1 ∧dxα2 ∧dxα3 ∧dxα4 : ðC5Þ

Since the form lives on a four-dimensional surface orthogo-
nal to z, then actually αi ¼ μi. But from the homogeneous
Ansatz we know that the only dependence of the fields is

on z, and only the 0th component of the Abelian field is
turned on, so that:

F̂μν ¼ 0; ðC6Þ

hence the first term vanishes. Similarly, the second term is
proportional to:

TrF2 ∝ Fa
μ1μ2F

a
μ3μ4dx

μ1 ∧ dxμ2 ∧ dxμ3 ∧ dxμ4 ; ðC7Þ

and because of antisymmetry of the wedge product it will
select the only term with all indices different, which then
vanishes because of the presence of F0k.

Fa
ijF

a
0kϵ

ijk ¼ 0: ðC8Þ

In the end, each ω̄1
4ðα; AÞ independently vanishes and the

unwanted anomaly is still canceled with our choice of
boundary conditions in the homogeneous Ansatz.

APPENDIX D: PRESSURE AND ENERGY
DENSITY FROM STRESS-ENERGY TENSOR

Here we want to compute the pressure and the energy
density of the baryonic phase, starting from the stress-
energy tensor, verifying that the definitions match the
relations with the grand-canonical potential. We start by
recalling the definition of the stress-energy tensor Tαβ of
matter fields in general relativity:

Tαβ ¼
2ffiffiffiffiffiffi−gp ∂ð ffiffiffiffiffiffi−gp

LmatterÞ
∂gαβ

; ðD1Þ

where Lmatter indicates the Lagrangian density of matter
fields, not including the

ffiffiffiffiffiffi−gp
factor (as it is part of the

integration measure). In our model, there are two kinds of
action terms for matter fields: the ones from Lg;LΦ which
depend on the metric, and the Chern-Simons one from LCS,
which is topological and hence does not contribute to Tαβ

by definition (it can and will still contribute via the
equations of motion). In the baryonic phase, and in the
chiral limit we are considering, the scalar field vanishes
because of the minimum energy boundary condition ξ ¼ 0,
hence LΦ also vanishes, so for us holds the following
identification:

Lmatter ¼ −
M5

2

�
TrðLMNLMNÞ þ 1

2
L̂MNL̂

MN þfR↔ Lg
�
;

ðD2Þ

where now the indices are to be lowered with the full
curved metric gαβ, as opposed to with ηαβ as was the case in
Eq. (2.3). To perform the computation it is useful to use the
following form of the stress-energy tensor:
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Tαβ ¼ Tð1Þ
αβ þ Tð2Þ

αβ ¼ 2
∂Lmatter

∂gαβ
− gαβLmatter: ðD3Þ

We want to compute the energy density E and the hydro-
dynamic pressure P of the model:

ε ¼ 1

V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
T0
0; P ¼ −

1

3V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
Tj
j:

ðD4Þ

Let us begin by computing the energy density, starting
from the first term of Eq. (D3), remembering that with
the homogeneous Ansatz, only the field strengths Lij; Liz

and L̂0z are turned on:

Tð1Þ
00 ¼ 2

∂Lmatter

∂g00
¼ −M5ðgzzL̂0zL̂0z þ gzzR̂0zR̂0zÞ

¼ 2M5a−2ðzÞð∂zâ0Þ2: ðD5Þ

We now raise one index and perform the integration
by parts:

1

V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
T0ð1Þ
0

¼ 2M5

Z
dz

ffiffiffiffiffiffi
−g

p
g00ð∂zâ0Þ2

¼ 2M5

Z
dzaðzÞð∂zâ0Þ2

¼ 2M5½aðzÞâ0∂zâ0�10− 2M5

Z
dz∂zðaðzÞ∂zâ0Þâ0: ðD6Þ

The integral term can be immediately seen to give rise to
−LCS after making use of the equation of motion for the
field â0. The boundary term vanishes in the infrared, but
despite the warp factor approaching zero on the ultraviolet
boundary, there also â00 vanishes. We can then make use of
the ultraviolet expansion of â0 to compute the contribution
of this term:

â0ðz → 0Þ ¼ μ − z2
Ncd
8M5

þ…; ðD7Þ

2M5½aðzÞâ0∂zâ0�10 ¼
Nc

2
μd: ðD8Þ

The second term in the definition of the stress-energy tensor
is proportional to Lmatter, and since this differs from Lg only
by a warp factor, it is easy to check that once we raise one
index and include the factor of

ffiffiffiffiffiffi−gp
we obtain the simple

contribution:

−
1

V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
g00Lmatter ¼ −Lg; ðD9Þ

so that when we sum the two contributions and we use the
definition for E we obtain

ε ¼ −LCS − Lg þ
Nc

2
μd ¼ −Lon−shell þ μBd; ðD10Þ

where Lon−shell is the total on-shell Lagrangian integrated
over z.
We now turn to compute the hydrodynamic pressure:

again we divide the computation into two parts, this time
starting with the trivial one

Tpð2Þ
j ¼ −gpigijLmatter ¼ −δpjLmatter; ðD11Þ

which upon taking the trace and integrating becomes:

1

V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
Tjð2Þ
j ¼ −3

Z
dz

ffiffiffiffiffiffi
−g

p
Lmatter ¼ −3Lg:

ðD12Þ

The first term is instead more complicated, again requiring
to rely on integration by parts and the equations of motion:
differentiating with respect to gij removes the Abelian
fields from the computation (with the homogeneous Ansatz
only L̂0z is turned on), so we find

2
∂Lmatter

∂gij
¼ −2M5½TrðLikLjkÞgkk þ TrðLizLjzÞgzz þ fL ↔ Rg�

¼ −4a−2ðzÞM5

�
Tr

�
H4

4
ϵikaϵjkbτaτb

�
ηkk þ Tr

�
H02

4
τiτj

�
ηzz

�

¼ −a−2ðzÞM5½2H4ϵikaϵjkaηkk þ 2H02δijηzz�: ðD13Þ
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As before, we now raise one index, take the trace:

Tj
j ¼ gjiTð1Þ

ij ¼ −a−4M5½12H4 þ 6H02�; ðD14Þ

and then integrate, using integration by parts:

1

V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
Tjð1Þ
j

¼ −
Z

dz½12M5aðzÞH4 þ 6M5aðzÞH02�

¼ −M5

Z
dz½12aðzÞH4 − 6∂zðaðzÞ∂zHÞ�H

− 6M5½aðzÞHH0�10: ðD15Þ

As a first step, we recognize in the integral term the
equation of motion for HðzÞ, so we plug it into our
expression and then we integrate again by parts, to remove
the derivative of the Abelian field and make the presence of
the Chern-Simons Lagrangian manifest:

1

V3

Z
d3xdz

ffiffiffiffiffiffi
−g

p
Tjð1Þ
j

¼
Z

dz

�
3Nc

8π2
â00H3

�
− 6M5½aðzÞHH0�10

¼ 3Nc

8π2

Z
dz½∂zðâ0H3Þ − 3â0H2H0� − 6M5½aðzÞHH0�10

¼ −3LCS þ
�
3Nc

8π2
â0H3 − 6M5aðzÞHH0

�
1

0

: ðD16Þ

We are left with the boundary term to evaluate: it is
straightforward that the two terms evaluated on the UV

boundary individually vanish, so that this is truly a purely
infrared term. When evaluated on a solution of the
equations of motion that is also in thermodynamic equi-
librium, this boundary term is found to vanish (an evalu-
ation we did numerically). Putting all the results together,
we can then write the following identifications, where with
Lon−shell we mean the Lagrangian density integrated along z
(that is, the Lagrangian density from the point of view of
the boundary theory):

ε ¼ −Lon-shell þ μBd; P ¼ Lon−shell; ðD17Þ

The holographic duality also identifies the grand canonical
potential Ω with the on-shell Lagrangian, so that the usual
thermodynamic relation for homogeneous matter

PV ¼ −Ω ðD18Þ

correctly emerges. The relation between energy density and
pressure also is correctly reproduced:

ε ¼ −Pþ μBd: ðD19Þ

Note that to find all these thermodynamical results, we had
to plug a thermodynamically stable configuration in the
boundary term that enters the definition of P: this is
however not unexpected, since thermodynamical and
hydrodynamical pressure are in principle not the same
quantity, but they are required to coincide at equilibrium.
The stress-energy tensor computes the hydrodynamical
pressure, hence the need to make use of the condition of
thermodynamical equilibrium to connect with relations
from thermodynamics.
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