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2Università di Pisa and INFN - Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

(Received 20 October 2021; accepted 24 May 2022; published 3 June 2022)

We present a generalization of the string’s Polyakov action that describes a conformally invariant four-
dimensional brane. The new extended object is very different from the traditional D-branes of string theory,
but, nevertheless, shares some structural similarities with the string, especially when it comes to the low-
energy limit of small tension. We introduce a rather rich structure of tensors that can play a role at low
energies. In analogy with the bosonic string, we initiate the quantization of the new brane discussing the
extent in which it produces a critical dimension of spacetime and Einstein’s equations coupled to a scalar
dilaton under some approximations.
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I. INTRODUCTION

String theory has seen an enormous development over
the past forty years, much of which was achieved through
two “revolutions,” the second of which is still ongoing. The
theoretical foundation of string theory is based on the fact
that in the low-energy limit of the string, which is obtained
as the limit of small string tension α0, a gravitonlike mode is
predicted for the embedding spacetime, among other things
[1]. With opportune tweaking of boundary conditions and
symmetries, it is eventually possible to argue that all
fundamental particles, including the graviton, could emerge
as different excitations of an otherwise unique object,
which would be the string itself, as opposed to more
traditional point particle descriptions.
In these regards, several other higher dimensional objects

have been introduced over the years to support the con-
struction of a string theory which produces the correct
degrees of freedom [2]. The most important ones are
probably Dp-branes, which are p-dimensional objects
propagating in spacetime described by a Nambu-Goto-like
action, and which are used to enforce the correct boundary
conditions for open strings. Dp-branes generalize strings to
the extent in which the objects use similar geometrical
actions to begin with, but do not lead to the same
predictions for the low-energy limit, simply because

Dp-branes are not conformally invariant. As such, branes
have acquired a more auxiliary role in the construction of
string theory.
In this paper we discuss an alternative generalization of

the string that emanates directly from the Polyakov’s string
description [3]. The new object is a four-dimensional brane
embedded in spacetime which enjoys a conformally invari-
ant action built from the same degrees of freedom of the
string, that is, from its embedding function. Classically, the
new action is the unique conformally invariant generali-
zation of the Polyakov action with four derivatives and, to
an extent that we will clarify, it has been previously studied
as a nonlinear sigma model in four dimensions [4–7]. In
anticipation, we show it here in its simplest form, which
happens to be the one for a boundaryless four-dimensional
brane

Sbl ¼
1

ð4πÞ2α0
Z

d4x
ffiffiffi
g

p �
Gμν□Xμ

□Xν

− 2

�
Rαβ −

1

3
Rgαβ

�
Gμν∂αXμ

∂βXν

þΦcðXÞC2 þ Tμνρθ∂αXμ
∂
αXν

∂βXρ
∂
βXθ

�
; ð1Þ

where the most important ingredients are Gμν, that is the
metric of spacetime, a scalar dilatonlike field Φc, a tensor
Tμνρθ with four indices, and the brane’s embedding Xμ,
besides metric, connection and curvature tensors on the
brane itself, whose meaning will be clarified later. The
tension of the brane is controlled by the dimensionful
parameter α0, which has a very similar role to the analog
parameter appearing in the string’s action.
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As a field theory, the action (1) can be interpreted as a
generalized higher derivative nonlinear sigma model in a
curved four-dimensional space, which is the four brane
itself [4,5]. Quantum mechanically, the covariant approach
to the quantization of (1) requires the construction of a
path-integral over the embedding degrees of freedom Xμ as
well as the integration over the nonconformal degrees of
freedom of the brane’s four-dimensional metric gμν, in the
assumption that the conformal mode of the brane is not
dynamical even after quantization like for the string [8].
This requirement hinges on the absence of a conformal
anomaly, as we shall discuss later in the paper.
In the rest of the paper we outline the main steps toward

the construction of (1), making the analogy with the
Polyakov’s string as manifest as possible. For this reason,
we begin by very briefly reviewing some pivotal steps in
the quantization of the bosonic string first, which will be
recalled when discussing the four brane later on. The
literature on string theory is rather vast, so we do not
attempt to capture it in its entirety. Furthermore, our
analogy between the brane and the string holds, for the
moment, at the level of the bosonic string with critical
dimension Dcr ¼ 26, which is why we limit ourselves to
such model in the recap. We will conclude by outlining
some first steps toward the quantization of (1) and the
difficulties that we must circumvent, discussing also some
of its possible extensions.

II. RECAP OF THE POLYAKOV ACTION

The traditional construction of the string of string theory
is based on the geometrical Nambu-Goto action. Upon
introducing an auxiliary metric on the Nambu-Goto string,
it is possible to replace its action with the classically
equivalent string’s Polyakov action, which is more suited
for modern quantization purposes. We present here some of
the steps associated to the covariant analysis of Polyakov’s
bosonic string in their most basic form, which is what we
need for the comparison with the same steps undertaken in
the next sections for the four-dimensional membrane. Our
conventions are that Greek letters from the beginning of the
alphabet (e.g., α; β; γ � � �) are associated to the string’s
coordinates (and later to the brane’s), while those at the end
of the alphabet (e.g., μ; ν; ρ � � �) are associated to spacetime.
For a string embedded with coordinates Xμ in a

D-dimensional target spacetime equipped with a metric
Gμν the Polyakov action takes the form

S ¼ 1

4πα0

Z
d2x

ffiffiffi
g

p
Gμν∂αXμ

∂
αXν; ð2Þ

where we introduced coordinates xα and the metric gαβ on
the string. The action (2) is invariant under reparametriza-
tions if the metric Gμν transforms as a tensor, however the
true symmetries of the Polyakov action are the isometries of

the embedding that leave Gμν invariant. We omit the
famous antisymmetric Kalb-Ramond field from (2), though
some comments on it will come toward the end of the
paper. In the case in which the embedding is flat
Minkowski’s space, then Gμν ¼ ημν in some coordinates,
and consequently (2) is invariant under Lorentz trans-
formations, besides reparametrizations of the string’s coor-
dinates. In general conserved currents are associated with
isometries of Gμν.
An important consequence of adopting the Polyakov

action has to do with the status of conformal symmetry. We
have that (2) is invariant under local Weyl transformations
of the string’s metric, gαβ → e2σgαβ, which is a manifes-
tation of the fact that the conformal degree of freedom of
gαβ was not present in the original Nambu-Goto action.
Given that two dimensional metrics are all locally con-
formally equivalent, theWeyl mode is expected to decouple
from the path integral resulting in a summation over distinct
topologies [9,10]. Quantum conformal symmetry, however,
is anomalous for (2). One strategy to restore it involves the
generalization of (2) to the effective action

Seff ¼
1

4πα0

Z
d2x

ffiffiffi
g

p fGμν∂αXμ
∂
αXν þ α0ΦRg; ð3Þ

which is classically not invariant because of the newly
introduced dilatonΦðXÞ, but can be quantum mechanically
invariant if the expectation value of the trace of the stress
energy tensor on the string vanishes [1]. The anomaly has
the form

2πhΘμ
μi ¼ BðGÞ

μν ∂αXμ
∂
αXν þ BðΦÞR; ð4Þ

and its coefficients contain both classical and quantum
contributions in the form of the beta functions of the
renormalized tensor couplings of (3), which is understood
as a generalized nonlinear sigma model [11] (for an
excellent recent review see [12]). The cancellation requires

BðGÞ
μν ¼ BðΦÞ ¼ 0. Very roughly speaking, from the con-

dition BðGÞ
μν ¼ 0 one can derive Einstein’s equations for the

spacetime metric Gμν coupled to the dilaton, while from
BðΦÞ ¼ 0 one derives the critical dimension of the embed-
ding as well as equations of motion for Φ itself. In
particular,

BðΦÞ ¼ D − 26

6
þOðα0Þ; ð5Þ

which has a contribution proportional to D from the
coordinate fields Xμ as well as a −26 coming from the
integration of the ghosts of the nonconformal modes of
the metric gμν.
As already stressed, the cancellation thus requires

Dcr ¼ 26, which is the well-known critical dimension of
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the bosonic string, while further orders in α0 are set to zero
as equations of motion for the spacetime fields. A
renowned aspect of this cancellation is that the low energy
equations of motion can be derived from an effective
action, which has the form

S ¼ 1

κ0

Z
dDX

ffiffiffiffi
G

p
e−2ΦfRþ 4Gμν

∂μΦ∂νΦg þOðα0Þ; ð6Þ

where κ0 is a scale related to α0 on dimensional grounds,
and further corrections are determined by higher loop
computations of the beta functions of the covariant bosonic
string. One important aspect that connects (6) with
real-world general relativity is the Curci-Paffuti relation
[13], which shows that the dilaton is actually constant.
Therefore we can use the Einstein frame metric, defined
G̃μν ¼ e−

Φ
D−2Gμν, and effectively determine the relation

among the physical Planck scale, the string’s scale α0,
and the dilaton’s vev.
It is worth stressing few facts before going forward. The

fields Xμ of (2) contribute as a number D of free conformal
fields to the leading part of the anomaly (5), because in flat
spacetime the kernel of their propagation is the Laplacian
Δ2 ¼ −gαβ∇α∂β, constructed with the metric gαβ and the
compatible connection ∇α ¼ ∂α þ γα on the string, which
is a Weyl-covariant operator in two dimensions.
Furthermore, with the exception of the dependencies of
the spacetime tensors, the Xμ explicitly enter the actions (2)
and (3) only through their derivatives ∂αXμ, as one would
expect from the action of an embedded object. The above
two facts are actually intimately connected, because in
general d ≠ 2 the differential operator Δ2 is generalized by
the Yamabe operator, which contains a nonminimal inter-
action with the curvature scalar of the form d−2

4ðd−1ÞR.
Therefore, a conformal action in d ≠ 2 would necessitate
nonderivative interactions for Xμ, which obviously goes
against the interpretation of Xμ as embedding coordinates.
This points to the fact that the construction of an object of
different dimensionality, such as the brane that we are
going to introduce soon, might need a radical change of (2).

III. PULL-BACK AND CONFORMALITY

As a first step toward the generalization of (2) we
promote the embedding Xμ to be the coordinates of a four
dimensional brane. The reasons for this generalization
should become clear soon during the development of this
section. We transfer to the brane all the geometrical
ingredients previously defined for the string (e.g., the
metric gμν, compatible connection, curvatures). We also
want to develop some additional geometrical ingredients
which are particularly useful when working with an
embedded brane and mutiple metrics. Given a spacetime
vector field vμ, we can construct a new connection

Dαvμ ¼ ∇αvμ þ ∂αXνΓν
μ
ρvρ; ð7Þ

which adds to the original connection γμ the pull-back to
the string of the spacetime connection Γμ compatible with
the spacetime metric Gμν. In general, the new connection
contains both a four-dimensional and an embedding con-
tributions, Dα ¼ ∂α þ γα þ ∂αXμΓμ. On an arbitrary space-
time tensor, T ¼ TðXÞ it is easy to see that

DαTμ���
ν��� ¼ ∂αXρ∇ρTμ���

ν���; ð8Þ

where ∇μ denotes the spacetime connection compatible
with Gμν. Notice that we use the same symbol for brane’s
∇μ and spacetime’s ∇α covariant derivatives to avoid
overburdening the notation, the distinction should be made
obvious by the indices. By construction, the covariant
derivative Dμ is compatible with both metrics Gμν and gαβ,
and allows us to introduce a helpful new Laplacian,
□≡ gαβDα∂β, on the brane [14,15].
Now we concentrate on the search for conformal

invariant operators constructed with derivatives of Xμ

and curvature tensors of the brane’s geometry. Under
conformal transformations we require

Xμ → X0μ; gαβ → g0αβ ¼ e2σgαβ; ð9Þ

for some arbitrary local scalar function σðxÞ. The embed-
ding coordinates thus transform with zero conformal
weight on the brane—they are dimensionless coordinates
as they should—and consequently spacetime tensors, such
as Tμ���

ν���, do not transform either. As a consequence, we
seek for conformally invariant operators of the form ∂

nXm

that must be contracted with the already invariant spacetime
tensors. A naive analysis based on scale invariance suggests
that, for a four-dimensional brane, such operators must
contain at least four derivatives with respect to the
coordinates on the brane.
Each instance of Xμ must be paired with at least one

derivative ∂α so that the resulting operators are covariant
with respect to both brane’s and spacetimes’s transforma-
tions. Furthermore, the operators must be densities in order
to be integrated in an action, therefore they will all be
proportional to

ffiffiffi
g

p
. Since there must be four derivatives in

each operator, we can classify the basis of possible
operators using the number of Xμ that explicitly appear
outside spacetime tensor dependencies. This number
ranges from zero to four, and the resulting operators will
have an equal number of uncontracted spacetime indices. In
this construction, we have to take into account that each
curvature tensor of the brane, e.g., the brane’s Riemann
tensor Rαβγδ, counts as two derivatives, Rαβγδ ∼ ∂

2. All
brane’s indices must be contracted with an appropriate
number of the other available tensors on the brane,
which are the metric gαβ and the Levi-Civita tensor
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ϵαβγδ. For determining the conformal invariants we have
adopted the most general ansatze built from very lengthy
linear combinations of operators and determined the
relative coefficients by brute force.
There is only one conformally invariant operator with no

spacetime indices, corresponding to the square of the
brane’s Weyl tensor

O0 ¼
ffiffiffi
g

p
CμνρθCμνρθ ¼ ffiffiffi

g
p

C2: ð10Þ

Another operator that might come to mind is the four-
dimensional Euler’s density

ffiffiffi
g

p
E4, and in fact it will play

an important role later, but it is not actually conformal
invariant, so we leave it outside our basis for now. Moving
on to one uncontracted index, we find that there is another
operator

Oμ
1 ¼

ffiffiffi
g

p �
□

2 þ 2RαβDα∂β −
2

3
R□þ 1

3
∇αR∂α

�
Xμ;

≡ ffiffiffi
g

p
Δ̂4Xμ ð11Þ

The above structure is not unexpected as the differential
operator Δ̂4 acting on Xμ is conformally covariant and we
shall return to this point later.
Also the case with two uncontracted indices contains a

single conformally invariant operator, that is

Oμν
2 ¼ ffiffiffi

g
p �

−4∂αXðμDα□XνÞ−2Dα∂βXμDα
∂
βXν

−□Xμ
□Xν−4Rαβ

∂αXμ
∂βXνþ2

3
R∂αXμ

∂
αXν

�
; ð12Þ

which too has some relation with the aforementioned
differential operator Δ̂4 as we are going to see explicitly
soon. The operator turns out to be symmetric in the

spacetime indices, Oμν
2 ¼ OðμνÞ

2 and its arbitrary normali-
zation has been chosen for later convenience. The situation
becomes even more interesting when constructing oper-
ators with three external spacetime indices. We find three
distinct conformally invariant combinations

Oμνρ
3a ¼ ffiffiffi

g
p f2gβγ∂αXðμ

∂βXνDα∂γXρÞ þgαβ∂αXðμ
∂βXν

□XρÞg;
Oμνρ

3b ¼ ffiffiffi
g

p f2∂αXμ
∂
βXðνDα∂βXρÞ þ∂αXν

∂
αXρ

□Xμg;
Oμνρ

3c ¼ ffiffiffi
g

p f∂αXμ
∂
βX½νDα∂βXρ�−∂αXμ

∂
αX½ν

□Xρ�g: ð13Þ

We arranged the combinations in such a way that their
symmetries are as manifest as possible. Namely, the first is

fully symmetric Oμνρ
3a ¼ OðμνρÞ

3a , the second is symmetric in

the last pair of indices, Oμνρ
3b ¼ OμðνρÞ

3b , while the last one is

antisymmetric in the same pair, Oμνρ
3c ¼ Oμ½νρ�

3c .
Finally, there are two conformal operators with four

spacetime indices

Oμνρθ
4 ¼ ffiffiffi

g
p

∂αXμ
∂
αXν

∂βXρ
∂
βXθ;

Oμνρθ
wz ¼ ϵαβγδ∂αXμ

∂βXν
∂γXρ

∂δXθ: ð14Þ

The first operator ismanifestly symmetric under the exchange

of two symmetric pairsOμνρθ
4 ¼ OððμνÞðρθÞÞ

4 , while the second

one is totally antisymmetric Oμνρθ
wz ¼ O½μνρθ�

wz and it is the
unique structure that we can form using the Levi-Civita
tensor. Notice that the totally antisymmetric operator containsffiffiffi
g

p
through the Levi-Civita tensor with raised indices.

A general action for the conformally invariant brane
must include all the above operators contracted with
spacetime tensors with the correct indices and symmetries.
The action has thus the form S½X� ¼ P

i Gi ·Oi, where
Gi ¼ GiðXÞ are spacetime tensor that act as couplings
with the appropriate number of indices, the sum ranges
over all the above operators denoted collectively as
Oi ¼ OiðX; ∂XÞ, and the dot-product includes a summation
over the spacetime indices as well as an integration over the
coordinates on the brane. We are going to display and
discuss the action functional S ¼ S½X�more carefully in the
next section. A similar analysis of the Polyakov’s string
operator can be found in [16,17].
Some of the above operators can be written as total

derivatives, which is a property that is going to be useful
later on, when restricting our attention to a closed brane. In
particular the operators with an odd number of indices are
all total derivatives

Oμ
1 ¼

ffiffiffi
g

p
DαJμ1;α;

Oμνρ
3q ¼ ffiffiffi

g
p

DαJμ3q;α ðq ¼ a; b; cÞ; ð15Þ

where we introduced the following “currents” for the one-
indexed operator

Jμ1;α ¼ Dα□Xμ þ 2Rα
β
∂βXμ −

2

3
R∂αXμ; ð16Þ

and for the three-indexed ones

Jμνρ3a;α ¼ 2gβγ∂αXðμ
∂βXν

∂γXρÞ;

Jμνρ3b;α ¼ ∂αXμ
∂βXν

∂
βXρ;

Jμνρ3c;α ¼ ∂
βXμ

∂αX½ν
∂βXρ�: ð17Þ

Finally, we can write Jμ1;α as the divergence of a symmetric
two-tensor on the brane with one spacetime index,
Jμ1;α ¼ DβZμ

αβ, as

Zμ
αβ ¼

1

3
fDα∂β þ gαβ□þ 4Rαβ − 2gαβRgXμ; ð18Þ

where we used the fact that the coordinates are spacetime
scalars, DαXμ ¼ ∂αXμ. Notice, however, that the final
expression loses the manifest covariance with respect to
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spacetime transformations since the Xμ appear without a
derivative. This implies that Zμ

αβ is covariant under repar-
ametrizations of the brane, but not under spacetime
transformations.

IV. THE HIGHER DERIVATIVE ACTION

Using the new Laplacian and the operators discussed in
the previous section, we can construct a higher derivative
generalization of the Polyakov action as linear combination
by contracting the operators with appropriate spacetime
tensors. We begin by noticing that the action must contain a

unique symmetric spacetime two-tensor contracting Oμν
2 . It

is straightforward to observe that the four derivatives
operator Oμν

2 is a natural generalization to four dimensions
of the two derivatives operator ∂αXμ

∂
αXν contracting the

metric in the bosonic string (2). We are thus lead to identify
the tensor coupling of Oμν

2 with the metric Gμν of
spacetime. The other tensors are, in principle, arbitrary,
so the action must contain several additional spacetime
tensors compatible with the symmetries induced by con-
formal invariance. The main result of the analysis leads to
the full brane action

S ¼ 1

ð4πÞ2α0
Z

d4x
ffiffiffi
g

p �
Gμν

�
−2Dα∂βXμDα

∂
βXν − 2∂αXμDα

□Xν − 2Dα
□Xμ

∂αXν −□Xμ
□Xν

− 4Rαβ
∂αXμ

∂βXν þ 2

3
R∂αXμ

∂
αXν

�
þ Sμνρ½□Xμ

∂αXν
∂
αXρ þ 2Dα∂βXμ

∂
αXν

∂
βXρ�

þDμνρ½∂αXρ
∂
αXν□Xμ þ 2∂αXμ

∂
βXνDα∂βXρ� þAμνρ½∂αXμ

∂
αXν□Xρ − ∂

αXμ
∂
βXνDα∂βXρ�

þΦcðXÞC2 þ T μνρθ∂αXμ
∂
αXν

∂βXρ
∂
βXθ

�
; ð19Þ

which is weighted by a dimension two coupling α0, that
plays an analog role to the one of the bosonic string with the
same name. From the above action we have intentionally
left out two tensors that, to some extent, are decoupled from
the others. They are the linear term sourcing the operator
Oμ

1 of (11), which can be helpful for setting up higher loop
computations [18], and Oμνρθ

wz of (14) that we are going to
discuss later.
We have introduced several tensor couplings in (19). The

simplest one is Φc ¼ ΦcðXÞ, which is an arbitrary scalar
tensor on the bulk spacetime, that could remind the reader of
the dilaton field introduced in (3), but actually couples to the
conformally covariant scalar C2 ¼ CαβγδCαβγδ. The tensor
T μνρθ is symmetric under two pairwise exchanges and the
exchange of two pairs of indices, T μνρθ ¼ T ðμνÞρθ ¼
T μνðρθÞ ¼ T ρθμν, but is otherwise arbitrary. The tensors
Sμνρ, Dμνρ and Aμνρ couple to the operators of (13) in
order, and thus have the following symmetries:
Sμνρ ¼ SðμνρÞ, Dμνρ ¼ DμðνρÞ and Aμνρ ¼ Aμ½νρ�. For the
contractions of the terms involving the three-tensors we have
explicitly used their symmetries to make the full form of S
more compact. One could check explicitly even at this stage
that (19) is fully invariant under the conformal transforma-
tions (9). As far as we know, this action has never been
studied.
The action (19) is a higher derivative nonlinear sigma

model. Higher derivative actions are known to ne nonuni-
tary, and consequently oftentimes avoided, because they
give rise to negative norm states in the spectrum known as
ghosts [19]. Even so, it should be evident that (19) is much

richer and more complex than its two dimensional counter-
part. Considerable simplifications occur if we allow for
integration by parts in (19), which would correspond to
studying a closed, e.g., boundaryless, brane. The first two
lines of the integrand of (19) can easily be manipulated in
the form

Gμν□Xμ□Xν þ total derivative; ð20Þ

and are already normalized to produce a naive higher
derivative generalization of the string’s Polyakov action (2).
The operators contracting with the spacetime three-tensors
can be written as total derivatives, as shown in (17),
therefore we can integrate them by parts and hide their
contributions in a redefinition of T μνρθ. To show this in
practice, consider for example the fully symmetric inter-
action with Sμνρ, which can be written as

SμνρDβð∂βXμ
∂αXν

∂
αXρÞ: ð21Þ

Integrating by parts we find

SμνρDβð∂βXμ
∂αXν

∂
αXρÞ

¼ −∇νSμρθ∂αXμ
∂
αXν

∂βXρ
∂
βXθ þ total derivative; ð22Þ

and the remaining term is automatically symmetrized as
T μνρθ because of the contractions. As a consequence, with a
redefinition of the tensor T μνρθ as implied by (22), given
below in (24), it is possible to rewrite the fourth line of (19)
as a total derivative.
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V. MORE ON THE CLOSED BRANE

As a consequence of the above manipulations, if we
concentrate on a brane with no boundary, we can use the
above steps to recover the action presented in Eq. (1) of the
introduction. We repeat it here for convenience

Sbl ¼
1

ð4πÞ2α0
Z

d4x
ffiffiffi
g

p �
Gμν□Xμ

□Xν

− 2

�
Rαβ −

1

3
Rgαβ

�
Gμν∂αXμ

∂βXν

þΦcðXÞC2 þ Tμνρθ∂αXμ
∂
αXν

∂βXρ
∂
βXθ

�
; ð23Þ

where the new spacetime tensor Tμνρθ has the same
symmetries of T μνρθ and they are related by the trans-
formation

Tμνρθ ¼ T μνρθ −
3

2
½∇ðνSμÞρθ þ∇ðρSθÞμν

þ∇ðνDμÞρθ þ∇ðρDθÞμν� −
1

4
½∇θAðμνÞρ

þ∇ρAðμνÞθ þ∇μAðρθÞν þ∇νAðρθÞμ�: ð24Þ

Interestingly, the action (23) of the closed brane makes
the Weyl symmetry more manifest, to some extent. In fact,
a simple way to convince oneself that (23) is conformally
invariant begins by observing that the kernel of the
propagation of the Xμ fields, as induced by the first two
lines of (23), in flat embedding spacetime is the differential
operator

Δ4 ¼ ð∇2Þ2 þ 2Rαβ∇α∂β −
2

3
R∇α

∂α þ
1

3
∇αR∂α; ð25Þ

that is known as Fradkin-Tseytlin [20], or Paneitz [21], or
Riegert [22] (FTPR) operator, as it was independently
discovered several times. The FTPR operator replaces here
the two dimensional Laplacian (of the string) because it
is a conformally covariant operator [23,24] that transforms
as Δ4 → e−4σΔ4 for gαβ → e2σgαβ in four dimensions.
Similarly to the two dimensional case, Δ4 could be
generalized to a conformally covariant operator in a general
brane dimension at the price of introducing nonderivative
curvature based interactions for Xμ, which are however not
allowed for a Polyakov-like embedding theory. From this
we deduce the uniqueness of (23) as four-derivatives
generalization of (2) for a closed brane, having also recalled
that the last line of (23) involving the tensor Tμνρθ is
manifestly Weyl invariant. As a matter of fact, we could
have engineered the action (23) specifically to produce a
conformal operator of the form Δ4 upon integration by
parts, which is actually the original way in which we came
across this action [25].

The above discussion on conformal invariance should
not mislead the reader to think that (23) and (19) are the
generalizations of a free (quadratic) theory with higher
derivatives. In fact, the equations of motion are

Δ̂4Xμ −Rμ
νρθ∂αXν

∂
αXρ

□Xθ þ 1

2
∇μΦcC2

− 4Tμ
νρθ∂

αXρ
∂
βXθDα∂βXν − 2Tμ

νρθ∂
αXρ

∂αXθ
□Xν

þ 1

2
∇μTνρθσ∂αXν

∂
αXρ

∂βXθ
∂
βXσ

− 2∇σTμ
νρθ∂αXσ

∂
αXν

∂βXν
∂
βXθ ¼ 0; ð26Þ

where the operator Δ̂4 has already appeared in (11). This
differential operator has exactly the same form as Δ4 given
in (25), but is nontrivial in the internal space spanned by
spacetime indices (from the point of view of the brane),
because all covariant derivatives are replaced with the
ones involving the pull-back of the spacetime connec-
tion, ∇μ → Dμ.
In the equations of motion (26), derivative interactions

are hidden in the form of the connection of Dμ, but also
show up explicitly through the tensor Tμνρθ defined in (24)
and the components Rμνρθ of the Riemann curvature of
spacetime, ½∇μ;∇ν� ¼ Rμν

·
·, for which we used a calli-

graphic symbol to more clearly distinguish it from the
curvature tensors on the brane.

VI. TOWARD QUANTUM CONFORMAL
INVARIANCE

Now we want to discuss the status of conformal
invariance of (19) and (23) at the quantum level. This step
should intuitively require an analysis similar to the one that
has lead to (3) for the string. An anomaly for conformal
symmetry that generalizes (4) is expected on the basis of
the fact that scalar fields conformally coupled with the
operatorΔ4 are known to produce one. The anomaly should
be naturally expressed in terms of the basis of the operators
Oi given in Sec. III, with the eventual inclusion of
conformal symmetry breaking operators (like the dilaton
Φ coupling of the string), and the final result must be
evaluated on-shell with (26). The analysis is, however,
considerably more complicate for the action with four
derivatives, so we approach it in steps.
An action that generalizes (19) by including terms of

order α0 should at least include four new symmetric
spacetime two-tensors to accommodate the possibility that
radiative corrections depart the relative coefficients of the
first three lines from the values constrained by conformal
invariance as in (19), as well as many more operators that
break conformal invariance at the level of the tensors with
three indices. The resulting action would also be a
generalized nonlinear sigma model which, besides being
very complicate and requiring a local renormalization
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grouplike analysis [26] such as the one of [27], has simply
not yet been studied in the literature.
In order to slightly simplify the problem, we concentrate

on the boundaryless brane with action (23), thus basically

allowing for partial integration and elimination of the
boundary terms. In this setup, we introduce a generalization
of (23) that follows the spirit of (3) of including conformal
breaking terms with a power of α0

Seff ¼
1

ð4πÞ2α0
Z

d4x
ffiffiffi
g

p �
Gμν□Xμ

□Xν þΦcC2 − 2

�
Rαβ −

1

3
Rgαβ

�
Gμν∂αXμ

∂βXν

þ ∂αXμ
∂
αXν

∂βXρ
∂
βXθTμνρθ þ α0Rαβ

∂αXμ
∂βXνPμν þ α0R∂αXμ

∂
αXνQμν

þ α0Dα∂βXμ
∂
αXν

∂
βXρAμνρ þ α0

X
Φ · I

�
: ð27Þ

In the above action we followed a notation similar to the flat
space case [4,5] and included two new symmetric tensors
Pμν and Qμν, as well as a tensor Aμνρ that is invariant under
the exchange of the last two indices, Aμνρ ¼ AμðνρÞ. It
should not be confused with the conformally invariant three
tensors of (19).
The contributions from Pμν, Qμν and Aμνρ are all

departures from the original conformal symmetry of
(23): the symmetric two tensors account for relative
departures from the structure of the first two lines of
(23) (so only two tensors are needed for the closed brane),
while Aμνρ is not invariant because it contracts with only
one of the tensor structures appearing in the original
action (19).
In (27) we have also compactly denoted further dilaton-

like curvature interactions as

X
Φ · I ¼ ΦaE4 þΦrR2 þΦa0□R; ð28Þ

which forms a basis of curvature square terms on the brane.
The tensor E4 ¼ RαβγδRαβγδ − 4RαβRαβ þ R2 denotes the
four-dimensional Euler density on the brane which inte-
grates to a topological invariant. The scalar tensors Φi for
i ¼ c; a; a0 are labeled according to their role in the
“traditional” notation [28] of the four-dimensional con-
formal anomaly [29,30]. The two most important contri-
butions are the c- and a-anomalies, where the latter
generalizes the anomaly of the string discussed in the
previous section [26]. As expected, all deviations from the
conformally invariant action (23) are weighted by an
additional power of α0 in the effective action (27).
The leading radiative corrections of the quantization of

(27) must include contributions from the quantization of the
fields Xμ of the four-dimensional brane, as well as con-
tributions from the integration over the nonconformal
degrees of freedom of the metric gμν. The latter are
equivalent to the bc-ghosts resulting in the −26 contribu-
tion to the anomaly of the string. The complete computa-
tion of the radiative corrections is still surprisingly

complicate, so we approximate the result by assuming
that the two contributions are decoupled in the leading
renormalization of the effective action.
We simplify the problem by temporarily neglecting

the nonconformal modes of gμν. Essentially, we regard
the action (27) as the one of a generalized higher
derivative nonlinear sigma model in curved space.
The renormalization of this sigma model has been
already carried over in flat space in the past with several
different methods and target spaces [4–7,15]. For the
purpose of this paper, we have generalized the compu-
tation to curved space using dimensional regularization
[25] and covariant heat kernel methods for higher
derivatives operators [31–33]. In this way, it is possible
to find beta functions for all the tensors appearing in
(27), some of which have been already given elsewhere
[7]. Even with the simplification of a nondynamical
metric, these beta functions are unwieldy, mostly
because of the tensor Aμνρ, which allows for many
independent contractions of its indices, yet their com-
plete form is known in flat space [5].
For this presentation, we take Aμνρ ¼ 0 and discuss the

consistency of this choice later. In this limit, the
beta function of Gμν is like the one found for the
string’s nonlinear sigma model modulo an overall coef-
ficient

βGμν
¼ α0Rμν; ð29Þ

which hints to the fact that we are on the right track to
produce Einstein-like equations as consistency equations
for the background spacetime.
Denoting P̃μν ¼ −2Gμν þ α0Pμν and Q̃μν ¼ 2

3
Gμν þ

α0Qμν the tensor coupling combinations contracting with
the operators of the general form R∂2X2, we compactly find
the beta functions (independently of Aμνρ)
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βP̃μν

2α0
¼ 4

3
Tμρν

ρ þ 2

3
P̃ρθTμρνθ þ 2RρðμP̃νÞρ þ 2∇2P̃μν;

βQ̃μν

2α0
¼ 2

3
ðRμν − Tμρν

ρ − Tμνρ
ρÞ þ 2RρðμQ̃νÞρ

þ 2∇2Q̃μν − ðP̃ρθ þ 4Q̃ρθÞðRμρνθ − TμνρθÞ

þ 1

3
ðP̃ρθ þ 6Q̃ρθÞTμρνθ: ð30Þ

It is straightforward, but still rather nontrivial, to check that
P̃μν ¼ −2Gμν and Q̃μν ¼ 2

3
Gμν are actually fixed point

solutions of the renormalization group flow of these two
couplings (using also the form of βGμν

). This confirms both
the precise structure of (23) on the basis of quantum scale
invariance, and the first two lines of (27) independently of
the other tensors appearing at the subleading order in α0.
The real difficulties emerge when considering the beta

functions of the tensors Aμνρ and Tμνρθ. We find that a
running for Aμνρ is generated by radiative corrections

βAμνρ
¼ ∇ðνRρÞμ − 2∇μRνρ; ð31Þ

and a similar relation holds for the tensor Tμνρθ [4,5,7]. In
other words, neither the condition A ¼ T ¼ 0, nor simply
A ¼ 0, are fixed points of the renormalization group and
their contributions to the final anomaly must be accounted
for.1 In fact, this highlights that the conformal anomaly of
(27) must include tensor structures such as those of Aμνρ

and Tμνρθ in (27), besides the usual ones associated to the c-
and a-anomalies. More generally, we stress again that the
anomaly should also contain all the tensor structures
appearing in the full action (19). From a different, but
complementary, point of view, the renormalization group of
a generalized nonlinear sigma model is defined up to a
diffeomorphism of the embedding space, which implies
that the anomaly accounts for both classical contributions
coming from (27) and quantum contributions coming from
(31) and the other beta functions that must be evaluated on-
shell using (26).
For all the above reasons, we do not give further beta

functions as they are not particularly illuminating, but
rather try to directly give an estimate of the conformal
anomaly. The complete computation of the anomaly is
rather complicated, since it would require the knowledge of
the complete renormalization group behavior of the open
brane’s action (19), as well as that of the α0 corrections
(some of which have appeared in (27)). All the computa-
tions should also take into account the integration in the
path-integral of the conformal degrees of freedom of the

brane’s metric gμν, which is not known in general even for
the simpler case of a quadratic scalar field conformally
coupled with the operator (25).
To provide the estimate of the anomaly, we include in it

the contribution from conformal higher derivative gravity
[34,35], which should be an appropriate approximation for
the conformal degrees of freedom of gμν, though it should
be clear that we are missing the off-diagonal contributions
coming from the mixing of the metric’s and coordinates
fields. We incorporate the renormalization group behavior
of the dilatonic term Φa, that corresponds to the so-called
a-anomaly, because in four dimensions it plays a role
analog to the string’sΦ, and is found in [36]. For simplicity,
we assume that the known ambiguity of the a0 anomaly is
resolved through the condition occasionally stated as
“a ¼ a0” [37,38], which is achieved by combining the
scalar fields Φa and Φa0 in such a way that they couple to
the brane’s curvature Q4 ¼ E4 − 2

3
□R [22,39]. This com-

bination of curvatures is chosen because it has a convenient
transformation under Weyl rescalings

ffiffiffi
g

p
Q4 →

ffiffiffi
g

p
Q4 →ffiffiffi

g
p ðQ4 þ Δ4σÞ, which is analog in form the transformation
of

ffiffiffi
g

p
R for the two dimensional case.2

Finally, we go on-shell with (26) and approximate the
final result by neglecting all possible anomalies besides
Oμν

2 , C2 and E4. We obtain

8π2hΘμ
μi ¼ Oμν

2 BðGÞ
μν þ E4BðΦaÞ þ C2BðΦcÞ; ð32Þ

where we defined the anomaly coefficients that contain
both classical and quantum parts

BðGÞ
μν ¼ α0ðRμν − 2∇μ∂νΦaÞ;

BðΦaÞ ¼ 7D
90

−
87

20
− α0

�
1

2
∇2Φa þ ∂μΦa∂

μΦa

�
;

BðΦcÞ ¼ α0
�
199

30
−

D
15

�
; ð33Þ

and we observe consistency with the case of a single
complex scalar field shown in [41] (see also [39,42]).
We stress once more that in the above estimate of hΘμ

μi
we have omitted all the operators O, besides the one
associated with the metric and the scalar ones associated
with the famous a- and c-anomalies. Nevertheless, it might
be possible that all the anomaly terms that we do not
display can be eliminated by appropriately choosing the
calligraphic tensors shown in (19) as functions of the
spacetime curvature Rμν

ρ
θ and its covariant derivatives.

1The possibility that the geometric condition onRμν that leads
to βAμνρ

¼ 0 in (31) has a geometrical meaning has been indulged
upon in [4,5]. However, in anticipation of the following, we
believe that the quantum βAμνρ

contribution to the anomaly cancels
out exactly with a classical term with the same structure.

2The pertinent curvature that should be considered here is
known as four-dimensional Q-curvature and is a geometric entity
obtained as the nonderivative part of a conformally covariant
differential operator that generalizes Δ4 of (25) [21,40]. We do
not use the standard form of the Q-curvature here because it
would require a further redefinition of Φc too.
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In fact, preliminary computations in this direction, that we
have already performed, agree with this statement; for
example, we see explicit cancellations of the Aμνρ anomaly
in special limits. The reason why we cannot make a
stronger statement is because we still do not have access
to the full computation, but are limited to the boundaryless
effective action (27), which implies that some relative
contributions to the anomaly are “hidden” by relations
such as (24). From now on we work on the assumption that
it is possible to cancel the conformal anomaly.
All anomalies displayed in (33) are expected to receive

further contributions of order α0 at two loops, just like in the
case of the string. This happens because the loop expansion
and the α0 expansion do not exactly match. This is
particularly relevant for the c-anomaly, which starts at
order α0 but is clearly missing further terms in order to set it
to zero. In fact, at this stage it is not clear if it will be
possible to set BðΦcÞ ¼ 0 in general, but we now assume
that it will. On a slightly more positive note, we see that
setting to zero the leading order of the a-anomaly lets us
deduce a critical dimension for spacetime

Dcr ¼
783

14
≃ 55.9; ð34Þ

which disappointingly is not an integer. Even so, this
estimate is incomplete since, as previously stated, we have
neglected the off-diagonal contributions between the non-
conformal modes of the brane metric and the fluctuations of
Xμ when computing the functional trace. Nevertheless, we
assume that this value ofDcr is close to the true one and there
is the possibility the full computation will reveal an integer.3

The order α0 the a- and the metric’s anomalies can be
understood as equations of motion of the low-energy
effective action of the critical brane. For diagrammatic
and dimensional reasons, we believe that they are not going
to structurally change significantly with further and more

complete computations. We find that BðGÞ
μν ¼ BðΦaÞ ¼ 0 are

equations of motion of the low energy effective action

S ¼ 1

κ0

Z
dDX

ffiffiffiffi
G

p
e2ΦafRþ 4Gμν

∂μΦa∂νΦag þOðα0Þ;

ð35Þ

which in form is rather similar to (6), but has the string’s
dilaton Φ replaced by its brane’s analog Φa. There is also
the significant difference that the sign of the exponential
factor that couples the dilaton to the curvature term is
opposite. This implies that the Einstein frame is obtained by
defining the new metric

G0
μν ¼ e

4Φa
D−2Gμν; ð36Þ

though, obviously, a large number of dimensions should be
compactified to obtain four-dimensional gravity. Assuming
that a generalization of the Curci-Paffuti relation holds for
the brane too [13], or, more naively, that Φa has a constant
semiclassical expectation value, we deduce that in the
Einstein frame the gravitational coupling scales as

κ2 ∼ κ20e
−2hΦai: ð37Þ

Contrarily to the string’s case, the coupling decreases for
increasing size of the dilaton. Physical implications of the
above results deserve to be discussed more thoroughly in
the future.

VII. WESS-ZUMINO TERM

There is an important extension of (19) that we want to
discuss before moving on to the rest of this presentation.
When constructing (19), we have omitted the inclusion of
the operator Owz shown in (14). We can extend (19)
through the inclusion of a topological Wess-Zumino-
Novikov-Witten term as

Z
d4xϵαβγδBμνρθ∂αXμ

∂βXν
∂γXρ

∂δXθ; ð38Þ

where we introduced the totally antisymmetric spacetime
tensor Bμνρθ generalizing well-known sigma model results
with special target spaces [46]. It should be evident that the
interaction involving Bμνρθ is also a generalization to four
dimensions of the one involving theKalb-Ramond fieldBμν,
which couples to the two-dimensional bosonic string (2) as

Z
d2xϵαβBμν∂αXμ

∂βXν: ð39Þ

The analogy between the two terms goes further if one
notices that Bμνρθ are the components of a spacetime 4-form
B and that its renormalization group beta function is
βBμνρθ

¼ α0∇λHλμνρθ, where Hλμνρθ ¼ ∇½λHμνρθ� are the
components of the spacetime 5-form H coming from

3To very partially substantiate this possibility, notice first that
in (33) we have given the estimate of the anomaly contribution
using conformal higher derivative gravity, which is based on the
analogy that the −26 contribution to the string’s anomaly in (5)
comes from integrating the nonconformal degrees of freedom of
the 2d metric. Alternatively, we could interpret the string’s
anomaly as −26 ¼ −25 − 1, where −25 is the full 2d gravita-
tional contribution [43] and −1 is the subtracted 2d dilaton’s
contribution. If we choose to estimate (33) in analogy to the
alternative interpretation, we should use the full higher derivative
gravity’s contributions of [44], which replaces − 87

20
→ − 196

45
in

BðΦaÞ of (33), but also subtract the one of a 4d conformal scalar,
which replaces 7D

90
→ 7ðD−1Þ

90
in BðΦaÞ. In this case the final result

for the critical dimension is an integer, Dcr ¼ 57, though we
should deal with additional contributions in (32). The two results
differ by the contributions of two standard scalar fields in 4d [45].
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covariant exterior differentiatingB itself [4,5]. Among other
things, the Kalb-Ramond field is known to provide a torsion
to the spacetime degrees of freedom. The four formB plays a
similar role in the case of the four-dimensional brane,
leading to a natural generalization of the connection (7),
which includes these effects in the covariant expansion.

VIII. RELATION WITH 3-BRANE

Now it is important to discuss how the four-dimensional
higher derivative brane differs from and might relate to
similar geometrical objects that have appeared in the string
theory literature before. The natural comparison of the four
brane is with the p-brane, which is a (pþ 1)-dimensional
object subject to Dirichlet boundary conditions [47]. The
physics of the p-brane is governed by a Nambu-Goto action
of the form

Sp ¼ Mp

Z
dpþ1x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðγαβÞ

q
; ð40Þ

where γαβ ¼ ∂αXμ
∂βXνGμν is the pull-back of the metric

Gμν of the bulk spacetime under the embedding map with
coordinates Xμ. Of course, the pull-back is also the induced
metric on the (pþ 1)-dimensional brane. For simplicity
and for consistency with the rest of the paper we are using
the Euclidean formulation of the theory, but it is trivial to
switch to Minkowskian signature using the absolute value
of the determinant of any metric. The constant Mp has the
dimension of a mass to the power pþ 1 and plays the role
of tension for the brane. Notice that (40) is the action of a
p-brane, i.e., a purely higher dimensional generalization of
the Nambu-Goto action. It is not the Dirac-Born-Infeld
(DBI) action [48], which would be the proper brane’s
action that interacts with critical strings in the critical bulk
dimensions.
Introducing the metric gαβ on the p-brane as an auxiliary

field in (40), we can recast the Nambu-Goto action in the
Polyakov form

Sp ¼ Mp

2

Z
dpþ1x

ffiffiffi
g

p fGμν∂αXμ
∂
αXν − ðp − 1Þg; ð41Þ

from which it is evident that the limit p ¼ 1 coincides with
the case of the string shown in (2), allowing for the
identification of α0. If we neglect the dynamics, the case
p ¼ 3 is a four-dimensional object that can naturally be
compared with our four-dimensional brane (23), in the
sense that they are both classically described by the image
of four-dimensional embedding maps Xμ.
For our discussion we only need the simplest form of the

action (41) without any other assumption on symmetry, but
it is worth to briefly mention some development spawning
from the basic object. The simplest generalization of the
Polyakov action is the 11-dimensional supermembrane
theory, which is an anomaly-free source of 11D

supergravity, though not renormalizable [49]. The theory
is known to have good quantum properties, at least when
concentrating on some of its sectors [50]. Furthermore,
recently, new ideas have emerged on how to perturbatively
quantize it [51]. The core of these developments rests upon
the natural inclusion of supersymmetry.
Let us concentrate temporarily on the simplest case

p ¼ 1 of (41). In this case, it is possible to quantize either
action (40) or (41): on the Nambu-Goto side there is the
traditional textbook procedure based on the light cone
quantization over a bulk Minkowski spacetime, in which
the critical dimension, previously seen in (5), emerges as a
condition to preserve Lorentz symmetry, that would other-
wise be anomalous. On the Polyakov side we can follow the
discussion summarized in Sec. II. The reason why the two
procedures are consistent for p ¼ 1 is because the
Polyakov action (41) is Weyl invariant, so the auxiliary
field does not introduce new degrees of freedom, neither
classically as in (41), nor quantum mechanically, given that
we eliminate the conformal anomaly. A nonzero anomaly
would otherwise provide a dynamics to the conformal
mode of gαβ.
Instead, if p > 1, there is no consistent quantization of

either (40) or (41) as long as we do not invoke any further
requirement like supersymmetry. On the Nambu-Goto side,
one sees that further geometric terms based on the extrinsic
properties of the brane, e.g., the extrinsic curvatures, are
generated quantummechanically [52–55]. On the Polyakov
side, one finds that the metric introduces new degrees of
freedom that propagate and thus differentiate the two
formulations. One intuitive discussion of this problem is
given in [56], where it is noticed that objects with p > 1
can classically develop spike/tubelike singularities in their
geometry without a balancing energy cost in the action.
This is of course related to the fact that the conformal factor
is propagating, but not bounded in the action, which is a
well-known and longstanding problem in quantum gravity
in d ≥ 2 [57,58]. Quantum mechanically, however, the
bosonic spectrum of the Polyakov action for p-branes has
good quantum properties [59], but they still must face the
problem of canceling the vacuum energy, for which the
natural solution is the inclusion of supersymmetry.
For the above reasons, especially when looking at the

problem from the Polyakov side, it may be worthwhile to
try to construct a higher dimensional object enforcing the
requirement of Weyl invariance from the very start, while
otherwise relaxing the requirement that its geometrical
origin is based on a Nambu-Goto-like description. In this
framework, the analysis of conformally invariant terms for
a four-dimensional object is the one that we have given in
Sec. III, which naturally results in the actions (19) and (23)
depending on the boundary conditions.
One important point to make is that our attempt to the

quantization of the four-dimensional brane and to the
cancellation of the conformal anomaly is still partial,
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due to the complexity of the problem. For all that we know
at the moment, the four-dimensional brane could reveal
itself as an anomaly free object and thus describe a
complete and consistent brane, but it could also be
impossible to cancel the anomaly in general. If the latter
were to be the case, then (19) and (23) could only be
regarded as effective models, much like the p-brane (41).
Consistent or not, the four-dimensional brane (19)

should still interpolate with (41) in the infrared, according
to standard renormalization group arguments for effective
theories. We perform this analysis in the limit of small α0
for the action (19) following its relevant deformations,
which would thus be the infrared limit as relative to (19),
where the original conformal invariance is necessarily
broken by the relevant terms to the renormalization
group (an analog discussion for the DBI brane would
require a more in-depth discussion of the breaking of
conformal invariance and the small tension limit for the
latter). To elaborate on this, imagine that we deform the
action (27) by including the renormalization group relevant
terms

Srel ¼
1

ð4πÞ2α0
Z

d4x
ffiffiffi
g

p fHμν∂αXμ
∂
αXν þΦRþ Λg: ð42Þ

In the relevant deformation we have yet another symmetric
tensor Hμν and another “dilaton” ΦðXÞ, both dimension
two deformations, as well as a dimension four deformation
ΛðXÞ. The latter is generally known as the tachyon operator
in the case of the string. The relevant deformations are in
form the same operators of the string’s Polyakov effective
action (3) and the Polyakov’s p-brane. We have computed
the renormalization group flow of the operators in (42),
which can be expressed in terms of gamma-function,
βO ¼ γO ·O where O ¼ fHμν;Φ;Λg. The complete rel-
evant flow is

βðHÞ
μν ¼ α0

�
ðTρðμνÞσ þ 2Tμν

ρσ − 2RρðμνÞσÞHρσ

þ
�
HρðμRνÞμ −

1

2
□Hμν

��
;

βðΦÞ ¼ α0
�
−
1

6
Hμ

μ þ Q̃μνHμν þ 1

4
P̃μνHμν −

1

2
□Φ

�
;

βðΛÞ ¼ α0
�
1

2
HμνHμν −

1

2
□Λ

�
; ð43Þ

where in βðΛÞ we have included the term proportional toH2

that appears at the next-to-leading order in the renormal-
ization of the composite tachyon operator, simply because
it was directly accessible through our computation. Notice
that the flows of Hμν and Φ mix under renormalization
at the leading linear order, because they have the same
canonical dimension.

Being the new operators relevant, any small deformation
is driven to increasing size toward the infrared, so Srel will
dominate over Seff at some infrared scale under very
general arguments. One quirk of the flow is that if the
tensors Pμν andQμν of (27) are zero, then P̃μν ¼ −2Gμν and
Q̃μν ¼ 2

3
Gμν are the conditions of conformal invariance [see

also the comments in relation to Eq. (30)], which implies
that βðΦÞ ∝ □Φ, as one would expect from a proper dilaton
at this order. Therefore, βO is diagonal at the leading order
in the set of relevant operators and the gamma-functions
can be read directly.
Ideally, at some infrared scale determined by the ratio of

α0 and the intrinsic scale of the dimension two tensor Hμν,
the relevant contribution will dominate over the conformal
action (23) and Hμν can play the role of the new bulk
metric. Assume for simplicity that Hμν is nondegenerate
and related by a rigid scale transformation to Gμν,
Hμν ¼ λGμν. We know that λ ∼ μ2, where μ is the renorm-
alization group scale. Neglecting the T contribution, that
we have not yet fixed on the basis of conformal invariance,
we have

βðHÞ
μν ¼ 3

α0

λ
RH

μν; ð44Þ

which suggests that in the infrared limit the action is
effectively the one of a D3-brane with the new expansion
parameter α0=λ (RH is the curvature tensor of the new bulk
metric). The above approximations should be relaxed to
have a clearer picture of the low energy limit of the four
brane. In particular, the relation between the two metrics
can generally be nonrigid and Hμν be degenerate, but also
the tensor T can play a role. However, an educated guess for
the conformal fixed point of T would be Tμναβ ∼RμðαβÞν,
based on dimensional analysis and symmetry, which would
not alter the final conclusion.

IX. CONCLUSIONS

We have undertaken the first steps toward the construc-
tion and quantization of a conformally invariant four-
dimensional brane, which is described as a higher deriva-
tive generalization of the Polyakov’s string. The classical
action of such brane couples to several spacetime tensors,
which are much richer than the usual three of the string.
Among these tensors there are, most importantly, the metric
of spacetime Gμν; two dilatons, which are associated to the
standard anomalies of four-dimensional conformal field
theories; three tensors with three indices of various sym-
metries; and two tensors with four indices, of which one
generalizes the Kalb-Ramond field.
The four-dimensional brane is quite clearly much more

complex than the string because it is rich of structures. In
this respect, our analysis barely tapped at the surface of
its geometric content. The complexity of the brane is
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decreased, to some extent, if the brane is closed and, thus,
without a boundary, in which case many of the aforemen-
tioned tensors decouple from the spectrum. This hints at the
fact that boundary conditions for the open case can be
significantly important when coupling the brane to lower
dimensional objects or including local degrees of freedom
on the boundary.
In order to discuss the quantum status of conformal

symmetry of the model, we have discussed three natural
first steps toward the covariant quantization: the renorm-
alization group scale invariance of the theory, the expect-
ation value of the conformal anomaly, and the resulting
low-energy effective action. We have approached these
steps with increasing number of simplifications and we
have outlined the next steps that should be taken to
circumvent such simplifications. We believe that the final
conditions that ensure the full cancellation of the anomaly
should include a precise determination of most of the
aforementioned spacetime tensors in terms of the curvature
of spacetime itself. The curvatures might even account for
extrinsic terms [60]. The final result hints at a critical
dimension for the brane, which, unfortunately, we cannot
yet estimate precisely, but that should be computable with
modern covariant techniques, and at a low-energy effective
action that sharesmany similarities with the one of the string.
In fact, our original motivation was precisely the one of

assessing the uniqueness of the Polyakov’s string in
producing a low-energy effective action for spacetime
which includes general relativity and the metric Gμν.
From this point of view, it is fair to say that the string
might not be unique, but it is certainly the simpler object to
study and develop covariantly.
In regards to the fact that all the additional tensors,

besides the spacetime metric Gμν, that are present in the
four-dimensional brane’s action should be determined as
function of the spacetime curvature Rμν

ρ
θ to eliminate the

conformal anomaly, we have some interesting speculation.
It might well be that, once all tensors present in (19) are
determined, the final low-energy effective action is not the
Einsten-Hilbert action with a dilaton, as we presented in
(35), but instead a higher derivative curvature action
coupled to two dilatons, similar in form to Stelle’s gravity
[61]. This possibility would institute an interesting paral-
lellism between the Polyakov’s actions and the gravita-
tional actions at low-energies, since the standard string

action produces the standard Einstein-Hilbert action at
low-energies, while the higher derivative brane’s action
could produce the higher derivative Stelle’s one in the same
limit. Higher derivative gravity has attracted interest over
the years because it is perturbatively renormalizable in four
dimensions and it is asymptotically free in some couplings,
although nonunitary [44,62]. This possibility is still open to
investigation.
An important concern of our higher derivative action,

shared in fact by any higher derivative action, is that it is
perturbatively nonunitary because of the presence of ghost
states in the spectrum [19]. Several proposals have been
made, both in the past [63] and more recently [64,65], on
which is the correct way to circumvent the negative norm
states. It is also not entirely clear what are the implications
of a nonunitary brane for the unitarity of the underlying
“brane” field theory. Assuming that the four-dimensional
brane can be consistently quantized, and that all our
approximations in the computation of the anomaly can
be relaxed, it is entirely possible that the four-dimensional
brane may play a role in the grander arena of higher
dimensional objects for string theory and generalized
Galileons [66]. One possibility could be to use the
dimensional continuation of the four-dimensional brane
in d ¼ 4 − ϵ down to ϵ ¼ 2 to describe some sort of
nonperturbative “exotic” string. Another possibility,
restricted to the case d ¼ 4, emerges from the steps that
we have undertaken to include the traditional operators of
the Polyakov’s string and the tachyon operator as renorm-
alization group relevant deformations of the brane in
Sec. VIII (see also [7,25]). Our arguments point at the
conclusion that relevant deformations drive the four brane
to a large scale limit in which it effectively behaves as a
traditional D3-brane.
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