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We obtained the formal solution of the auxiliary system of nonlinear sigma models (NLSMs), whose
target space is a rank 1 symmetric space based on the indefinite orthogonal group Oðp; qÞ, corresponding
to an arbitrary solution of the NLSM. This class includes anti-de Sitter, de Sitter, and hyperbolic spaces,
which are of interest in view of the AdS=CFT correspondence. The formal solution is related to the
Pohlmeyer reduction of the NLSM, constituting another link between the NLSM and the reduced theory.
Besides deriving the solution, we also review the Pohlmeyer reduction of such models. Finally, we
comment on the implications for the monodromy matrix and its eigenvalues.
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I. INTRODUCTION

In the last 50 years there have been a tremendous number
of studies, which point out that integrability is intertwined
with high energy physics. This work concerns the integra-
bility of nonlinear sigma models (NLSMs) on symmetric
spaces. The general framework related to two-dimensional
integrable models was laid down in the 1970s and is still
very important even for ongoing research.
A particular class of such models is the principal chiral

model (PCM) [1]. The equations of motion of the PCM
along with the flatness of the current are reproduced by the
Lax connection

L� ¼ ð∂�gÞg−1
1� λ

; ð1Þ

where λ ∈ C is the spectral parameter and g is in general an
element of some coset. The flatness of the latter is
equivalent to the compatibility condition of the so-called
auxiliary system, also known as the fundamental linear
problem, which reads

∂�ΨðλÞ ¼ L�ΨðλÞ: ð2Þ

Classical integrability amounts to the existence of an
infinite tower of conserved charges. This tower can be

constructed for any Lax connection using the solution of
the auxiliary system (2). Defining the monodromy matrix
Tðσf; σi; λÞ as

Tðσf; σi; λÞ ¼ Ψðτ; σf; λÞΨ−1ðτ; σi; λÞ; ð3Þ

it follows that its time derivative reads

∂τTðσf; σi; λÞ ¼ Lτðτ; σfÞTðσf; σi; λÞ
− Tðσf; σi; λÞLτðτ; σiÞ; ð4Þ

where Lτ is the component of the Lax connection when it is
expressed in terms of the world-sheet coordinates σ and τ.
In this case the relevant equation of the auxiliary system is
∂τΨðτ; σ; λÞ ¼ LτΨðτ; σ; λÞ. The constants σi and σf are
determined by the specific solution and its boundary
conditions. Depending on the latter, it is either the trace
of the monodromy matrix that is conserved, which is the
case for periodic boundary conditions, or the matrix itself if
Lτ vanishes both at σi and σf. For open string boundary
conditions one has to define a boundary monodromymatrix
[2,3], which is again related to the solution of the auxiliary
system. Expanding the monodromy matrix or its trace with
respect to the spectral parameter one obtains the afore-
mentioned infinite tower of conserved charges. The exist-
ence of all these conserved charges is such a strong
constraint even on the quantized theory so that no particle
production is allowed and the S-matrix of the theory is
factorized into two particle S-matrices [4].
There is a far wider class of theories, which obviously

includes the PCM, the so-called NLSMs. The action of
such theories reads
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S ¼
Z

d2σGμνðXÞ∂þXμ∂−Xν ð5Þ

and their fields, i.e. Xμ, are mappings from the two-
dimensional world sheet to a manifold M. It turns out
that if M is a symmetric space, the NLSM is integrable
[5,6].1 For further information about the integrability of
NLSMs see Refs. [7,8] and references therein. Finally, let
us mention that integrability is not restricted to symmetric
spaces. Recently there has been a lot of activity in the
construction of integrable NLSMs [9–13], see also
Refs. [14,15] and references therein.
An interesting aspect of NLSMs on symmetric spaces is

that besides being integrable, they are also reducible to
integrable systems, which are multicomponent generaliza-
tions of the sine-Gordon equation. The original examples
are the Oð3Þ and Oð4Þ NLSMs, corresponding to the
spheres S2 and S3, which are related to the sine-Gordon and
the complex sine-Gordon equations, respectively, via the
Pohlmeyer reduction [16–18]. Subsequently many more
symmetric spaces were studied including the N-sphere SN ,
i.e. the OðN þ 1Þ model [19], and CPN [20], as well as
(anti-)de Sitter space [21–23].
Essentially, the reduction amounts to introducing some

degrees of freedom, which are connected nonlocally to the
fields of the NLSM, and setting the nonvanishing compo-
nents of the stress-energy tensor to constants. This is
always possible as the NLSM is conformally invariant at
the classical level. When the symmetric space M is of
positive definite signature, which, for instance, is the case
for SN andCPN , it follows that the constants are necessarily
positive, thus T�� reads

T�� ¼ Gμν∂�Xμ∂�Xν ¼ m2
� ð7Þ

in appropriate coordinates. One should keep in mind that
the Pohlmeyer reduction is a many-to-one mapping. In
particular, the reduced theory depends on mþ and m− only
via their productmþm− and not on their ratio. We are going
to refine this statement, but it is sufficiently accurate for
now. Evidently, even though integrability is preserved,
for mþm− ≠ 0 the conformal invariance is broken by the
reduction. Finally, it is worth pointing out that when the
action of the NLSM on the symmetric space is equivalent
to free fields on a higher-dimensional space subject to a
quadratic constraint, the equations of motion of the NLSM
become linear for a given solution of the reduced theory.

Using a group theoretical approach, the reducibility of the
NLSMonsymmetric spaceswasestablished in [24–26].This
approach is extremely powerful leading to many interesting
developments. These reduced theories are known as sym-
metric space sine-Gordon models (SSSGs). For a long time
their Langrangian formulation was an open problem, until it
was solved for symmetric spaces of rank 1 in [27], see also
Refs. [28–30].2 Specifically, it was shown that SSSGs are
gauged Wess-Zumino-Witten (WZW) models perturbed by
an appropriate potential, which preserves integrability. For a
recent reviewonthegrouptheoreticalapproachofPohlmeyer
reduction, as well as for an exhaustive analysis of the
Lagrangian formulation of SSSGs, see Ref. [31].
Another intriguing characteristic of integrable NLSMs

regards the construction of new solutions when a solution is
already known. This is achieved with the application of the
dressing method [1,32,33]. In order to do so one has to
solve the auxiliary system (2), where g corresponds to the
known NLSM solution, which in this context is referred to
as the seed solution. Given the solution of the auxiliary
system one can systematically construct an infinite tower of
new NLSM solutions.
There is an analogous story for the reduced systems.

There are the so-called Bäcklund transformations for these
systems, which are sets of first order nonlinear equations
and allow the derivation of new solutions given a known
one. In the case of the sine-Gordon equation these trans-
formations essentially insert solitons on the background of
the known solution. Multiple solutions corresponding to
the same known solution can be combined using addition
formulas, for example see Ref. [34]. The Bäcklund trans-
formations are the counterpart of the dressing transforma-
tions. In particular, it has been shown that a dressing
transformation of the NLSM solution, automatically per-
forms a Bäcklund transformation to its avatar in the reduced
theory [35]. It is also important that the Bäcklund trans-
formations generate an infinite tower of conserved charges
[16]. These charges are related to the ones constructed via
the expansion of the monodromy matrix [36,37].
In view of the AdS=CFT correspondence [38–40], which

relates planar strongly coupledN ¼ 4 super-Yang-Mills to
classical free IIB string theory in AdS5 × S5, the interest on
the reduced models was revived. In this setup the dynamics
of the superstrings is determined by the Metsaev-Tseytlin
action [41]. The theory is formulated as the supercoset
PSUð2;2j4Þ

SOð1;4Þ×SOð5Þ and is classically integrable [42]. As this coset

is a symmetric space having a Z4 grading, the theory is
reducible and the corresponding models were constructed
in [43–46]. Moreover the reduced theory is finite in the UV
[47] and the properties of the classical charges indicate that
the theory is supersymmetric [48,49]. The world-sheet

1We remind the reader that a symmetric space M ¼ F=G is
defined as follows. Consider a group F having a subgroup G,
which correspond to the Lie algebras f and g respectively, so that f
admits the canonical decomposition f ¼ g ⊕ p. Then, M is a
symmetric space if the following commutation relations hold:

½g; g� ⊂ g; ½g;p� ⊂ p; ½p; p� ⊂ g: ð6Þ

2Recall that the rank of a symmetric space F=G is the
dimension of the maximal Abelian subspaces in the orthogonal
complement of g in f.
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supersymmetry is nonlocal [50,51]. Similarly, the bosonic
reduced model corresponding to AdS4 × CP3, which is
dual to the Aharony-Bergman-Jafferis-Maldacena (ABJM)

theory [52] and is formulated as the OSPð2;2j6Þ
SOð1;3Þ×Uð3Þ supercoset

[53,54], was constructed in [55]. The supersymmetric one
was presented in [56]. The reduced models, maintaining
two-dimensional Lorentz invariance, provide an alternative
approach to the standard light-cone description of the on-
shell degrees of freedom.
Let us be more specific about the reduced models in this

context. Equation (7) may be interpreted as the Virasoro
constraint for strings propagating in Rt ×M, where a
linear gauge for the time coordinate t of the target space has
been employed, namely

t ¼ mþσþ þm−σ
−: ð8Þ

This gauge, which is a generalization of the usual static
one, i.e. t ¼ mτ, facilitates the rest of our work. A world-
sheet boost with appropriate velocity turns the linear gauge
to the static one. At the level of Eqs. (7) setting m� →
c�1m�, the parameter c can be absorbed via a boosted form
of the embedding functions, i.e. by Xμðσþ; σ−;mþ; m−Þ →
Xμðcσþ; c−1σ−;mþ; m−Þ. Notice that the product mþm−
remains invariant. Of course the counterpart in the reduced
theory depends on the boost too. As the boost to the static
gauge depends also on the ratio of mþ and m− the
Pohlmeyer avatar no longer depends solely on the product
mþm−. So, to be more precise the reduced theory depends
only on this product in an appropriate frame.
Manypropertiesofclassical stringsolutionsarecapturedby

the reduced models. Strings, whose world sheet is infinite
correspond to solitonic solutions of the reduced system. For
instance, the giant magnon [57] (Rt × S2), the dyonic giant
magnon [58] (Rt × S3) and the single spike [59] (Rt × S2 and
Rt × S3) correspond to solitonic solutions of the sine-Gordon
andcomplex sine-Gordonequations. In an analogousway, the
Berenstein-Maldacena-Nastase (BMN) particle [60], which
moves at the speedof light on theequatorofS5, corresponds to
the (stable) vacuum solution of the sine-Gordon equation.
Similar identifications exist for for kink-train solutions of the
sine-Gordon and complex sine-Gordon equations [61,62].
See also Refs. [63] for a complete classification of elliptic
string solutions inRt × S2. Similar conclusions also hold for
strings in AdS and dS [22,23,64–66], as well as for dressed
elliptic strings in Rt × S2 [67,68].
Besides the relation between the string solutions and

their counterparts in the reduced theory, AdS=CFT corre-
spondence is intimately related to integrability in many
more aspects, such as the spectrum of dual theories and the
calculation of correlation functions and Wilson loops, see
Ref. [69] for a review. Of particular interest is the spectral
problem. Today there are methods that determine the
(quantum mechanically) exact spectrum of N ¼ 4 super-
Yang-Mills theory, see Ref. [70] and references therein, but

making contact with them is beyond the scope of this work.
The NLSM and all the aspects of integrability that we
mentioned, i.e. the Pohlmeyer reduction, dressing method,
Bäcklund transformations, regard only the classical geom-
etry. In a series of papers [71–75] it was shown that the
single trace operators of planar N ¼ 4 super-Yang-Mills
theory in the thermodynamic limit, i.e. in the case of
infinitely many insertion of fields, and the NLSM on
AdS5 × S5 share a spectral curve.3 Similarly, the spectral

curve corresponding to the supercoset OSPð2;2j6Þ
SOð1;3Þ×Uð3Þ was

constructed in [79]. We remind the reader that the spectral
curve is directly related to the eigenvalues of the mono-
dromy matrix T. This result establishes that both dual
theories, in this specific limit, share their conserved
charges. However, even though this result is powerful,
the identification of a specific string solution, which is dual
to a particular operator is not straightforward. A systematic
approach for this problems is elusive.
In the framework of AdS=CFT, the expectation values of

Wilson loops at strong coupling are calculated by the area
of minimal surfaces whose boundary is the loop in question
[80,81]. Interestingly enough, null polygonal Wilson loops
are related to gluon scattering amplitudes at strong coupling
[82,83], see also Refs. [84,85]. Moreover, by introducing
an appropriate contour in the internal space, the Wilson
loop can be made supersymmetric [86,87]. Implementing
localization, the supersymmetric Wilson loops can by
calculated without the use of holography, directly in field
theory, exactly (sometimes even for finite N) [88,89]. The
comparison of the results of both calculations is a highly
nontrivial test of AdS=CFT. Finally, minimal surfaces are
also relevant for the calculation of holographic entangle-
ment entropy (HEE) [90,91]. The HEE corresponding to a
region defined by some entangling surface equals the area
of codimension two minimal surface, which extends in the
bulk and whose boundary is the entangling surface. In the
case of AdS4 the minimal surfaces are two dimensional,
thus described by a NLSM. All the aforementioned space-
like minimal surfaces in AdS or in the hyperbolic space are
described by NLSMs and also admit a Pohlmeyer reduction
[77,78,92–99].

3As a side note let us mention that the general solution of the
NLSMs in spaces of constant curvature is expressed in terms of
hyperelliptic theta and related functions. These functions are
defined in terms of a spectral curve, which determines their
periodicities. Essentially this construction, known as finite gap
integration, generalizes the mode expansion of flat space to an
expansion in terms of the genus of the spectral curve in the case of
curved spaces, see the introduction of [74]. Using either the
spectral curve directly, or the general solution of the Pohlmeyer
reduced theory expressed in terms of theta functions along with
properties of these functions, one can construct the general
solution of the NLSM. Nevertheless, we should point out that
explicit solutions are known only in the case of theR × S3 NLSM
[76] (using the first method) or the Euclidean NLSM on H3 (using
the second method) [77,78].

NOVEL ASPECTS OF INTEGRABILITY FOR NONLINEAR … PHYS. REV. D 105, 126008 (2022)

126008-3



The above analysis demonstrates that the auxiliary
system (2) is significant for many reasons. In our previous
works we applied the dressing method for elliptic strings in
Rt × S2 [67], see also Ref. [36], and elliptic minimal
surfaces in H3 [100]. One could proceed in a systematic
manner and the only equations that had to be solved were
essentially solved by the seed solution upon altering some
parameters. Motivated by this observation in [101] we
obtained the formal solution of the auxiliary system of the
Oð3Þ NLSM corresponding to an arbitrary seed. The
solution is constructed by combining appropriately the
seed solution with a “virtual” one. The latter is obtained
from the seed solution by the substitution

m� →
1 ∓ λ

1� λ
m�; ð9Þ

where λ is the spectral parameter. Thus, the virtual solution
solves the equation of motion of the NLSM, has the same
avatar in the reduced theory as the seed one, but as λ ∈ C it
belongs to the complexification of the coset. We should
also point out that the rescaling spoils the boundary
conditions of the seed solution, which is important for
our results.4 A direct consequence of this result is the
existence of a nonlinear superposition rule at least for the
specific NLSM. Regarding the dressing method the concept
of superposition is already there as one can construct an
infinite tower of NLSM solution by solving the auxiliary
system once. Nevertheless, it turns out that no differential
equation has to be solved. The dressing method is the
implementation of a nonlinear superposition in the first
place. At the level of the reduced theory this result implies
that there is no need to solve the Bäcklund transformations
and that solitons are inserted for free. These conclusions
present a novel aspect of NLSMs integrability, which
expands the framework built in the 1970s and later on.
As the derivation of [101] is model specific, the generali-
zation of these conclusions could be questionable and the
structure of the superposition obscure.
In our recent work [102] wewere able to obtain the formal

solution the auxiliary system for the whole class of OðnÞ
NLSMs. The solution relies on the Pohlmeyer reduction.
Even though we presented the group theoretical approach
for the study of the reduced models, there exists a geometric
one, which treats the reduction as an embedding problem,
introduced in [17,18], see also Refs. [21,103,104]. One
considers the target space as a submanifold of an enhanced

flat space and analyzes the embedding of the NLSM solution
in the enhanced space. In order to do so one introduces a
basis in the enhanced space. It turns out that the solution of
the auxiliary system is related to this basis, as well as on the
redefinition of the parametersm� given by (9). Moreover, in
the case of periodic boundary conditions, the monodromy
matrix is nontrivial just because the virtual solution is not
periodic, since the rescaling spoils the periodic boundary
conditions.
The purpose of this work is twofold. In view of

AdS=CFT correspondence the solution of the auxiliary
system in the case of AdS space presents a lot of interest.
Of course, it is appealing to find the formal solution of
the auxiliary system for more symmetric spaces. In order
to handle two tasks at once, we study the rank 1 symmetric
spaces corresponding to the indefinite orthogonal group
Oðp; qÞ.
The structure of the paper is as follows. In Sec. II we

perform the Pohlmeyer reduction of rank 1 symmetric
spaces corresponding to the indefinite orthogonal group
Oðp; qÞ. In Sec. III we solve the auxiliary system. Finally,
in Sec. IV we analyze the structure of the monodromy
matrix and as an indicative example we derive its eigen-
values in the case of elliptic strings in Rt × S2. There are
two appendixes. In Appendix A we provide additional
information for the Pohlmeyer reduction of AdS.
Appendix B contains some details relevant for the deriva-
tion of Sec. III.

II. POHLMEYER REDUCTION

It is well known that strings propagating in symmetric
spaces such as AdS and dS are related to integrable models,
namely sinh-Gordon or cosh-Gordon and multicomponent
generalizations of them, via the Pohlmeyer reduction
[16–18]. There is extensive work on this subject in the
literature [21–23]. In this section, we generalize these
works, while introducing our own convention, which will
facilitate the second part of the paper. Since the afore-
mentioned spaces are of indefinite signature, one should
distinguish between different types of reductions. The
tangent vectors of the world sheet can be spacelike,
lightlike, or timelike and consequently the T�� compo-
nents of the stress tensor positive, negative, or vanishing,
see (7). The reduction is characterized accordingly.
In the context of string theory the various types of

reduction correspond to different geometric setups.
Lightlike reduction can be interpreted as stings on the
noncompact manifold M. If the reduction is timelike the
geometry is M ×Mc, where Mc is a compact manifold
having positive definite metric. In the case of spacelike
reduction the theory is defined inMnc ×M, whereMnc is
another noncompact manifold. The case Rt ×M analyzed
in the Introduction is a just an example. Finally, let
us mention that the geometry of the last case admits a
timelike reduction too. In the context of the AdS=CFT

4Considering seed solutions satisfying periodic boundary
conditions, the virtual solution is periodic for specific values
of the spectral parameter. In the context of the dressing method
this translates to specific locations of the poles of the so-called
dressing factor. It turns out that dressed solutions corresponding
to such poles are either stable or unstable perturbations of the
seed solution. This is shown explicitly for dressed elliptic strings
in R × S2 [68], but it is expected to be true for any seed solution.

DIMITRIOS KATSINIS PHYS. REV. D 105, 126008 (2022)

126008-4



correspondence lightlike and timelike reduction of non-
compact spaces are more natural. Having analyzed all
options, let us introduce our conventions.
It is well known that AdSnþ1 and dSnþ1 are submanifolds

of Rð2;nÞ and Rð1;nþ1Þ, respectively. They are both sym-
metric spaces realized as the SOð2; nÞ=SOð1; nÞ and
SOð1; nþ 1Þ=SOð1; nÞ cosets respectively. We can deal
with both spaces simultaneously by introducing the metric
tensor ημν ¼ diagð−1; 1;…; 1; sÞ, where s ¼ −1 corre-
sponds to AdSnþ1 and s ¼ 1 to dSnþ1. Denoting the
vectors of the enhanced space as Yμ, where Yμ ¼
ðY−1; Y0; Y1;…YnÞ, the spaces of interest correspond to
the submanifolds

Y · Y ¼ sΛ2: ð10Þ

It goes without saying that the inner product is defined
as A · B ¼ ημνAμBν.
As the purpose of this work is to study the relation

between the solution of the auxiliary system and the
Pohlmeyer reduction beyond the n-sphere [102], we will
consider more general geometries. Rather than restricting
our analysis only on AdS and dS spaces, we will go one
step further and study rank 1 cosets based on the indefinite
orthogonal group. In order to do so we introduce the metric

ημν ¼
�
Ip;q 0

0 s

�
; Ip;q ¼

�−Ip 0

0 Iq

�
; ð11Þ

where Ik denotes the k × k identity matrix and
pþ q ¼ nþ 1. It the following we use the notation Iq;p
for matrices of this specific form. For s ¼ þ1 the space is a
submanifold of Rp;qþ1, it has positive constant curvature,
and corresponds to the coset SOðp; qþ 1Þ=SOðp; qÞ.
Similarly, for s ¼ −1 the space is a submanifold of
Rpþ1;q, it has negative constant curvature, and corresponds
to the coset SOðpþ 1; qÞ=SOðp; qÞ. Of course both spaces
are related by the duality s → −s and p ↔ q [105]. Finally
we remind the reader that for s ¼ −1, p ¼ 0, and q ¼
nþ 1 we obtain the hyperbolic space Hnþ1.

A. The NLSM action

Having set the groundwork, we can discuss the NLSM.
The corresponding action reads

S ¼
Z

dσþdσ− ½∂þY · ∂−Y þ λðY · Y − sΛ2Þ�; ð12Þ

where λ is a Lagrange multiplier. The fields Y are vectors
of the enhanced space Rp;qþ1 or Rpþ1;q, depending on the
value of s, which are restricted on the submanifold (10) via
the Lagrange multiplier. The equations of motion read

∂þ∂−Y ¼ λY: ð13Þ

It is straightforward to calculate the Lagrange multiplier,
which is given by

λ ¼ −
s
Λ2

∂þY · ∂−Y; ð14Þ

implying that the equations of motion assume the form

∂þ∂−Y ¼ −
s
Λ2

ð∂þY · ∂−YÞY: ð15Þ

The equations of motion are accompanied by the con-
servation of the stress-energy tensor. The precise form of
the components of the latter depends on the theory under
consideration and more specifically on whether one con-
siders the target space consisting solely of the aforemen-
tioned manifolds, or if the target space is the direct product
of these spaces with another manifold. For instance, in view
of the AdS=CFT correspondence, its very usual to consider
the target spaces AdS5 × S5 or AdS4 × CP3. Keeping an
open mind and adopting a mathematical perspective, we
consider the nonvanishing components of the stress tensor
to be

T�� ¼ ∂�Y · ∂�Y ¼ tm2
�: ð16Þ

The case t ¼ 0 gives rise to lightlike reduction, while t ¼ 1
to spacelike and t ¼ −1 to timelike. In the last two cases,
string theory interpretation requires the introduction of
another manifold so that the Virasoro constraints corre-
sponding to the whole target space are satisfied.

B. The embedding problem

In order to perform the Pohlmeyer reduction, we con-
sider the embedding problem of the NLSM solution Y in
the enhanced space. To do so, we introduce a basis in the
enhanced space. Of course, this basis includes the vectors
Y, ∂�Y, which span the tangent space of the string world
sheet, and n − 1 linearly independent vectors. Essentially,
we consider the enhanced space as the direct product of
the three-dimensional space M3, spanned by Y and ∂�Y
and the (n − 1)-dimensional space Mn−1, spanned some
vectors vi, where i ¼ 1;…; ðn − 1Þ.5 We normalize these
vectors as

vi · vj ¼ siδi;j; ð17Þ

where si ¼ �1. The careful reader will realize that this
definition is sloppy. For the moment let us comment that
since the basis spans either Rp;qþ1 or Rpþ1;q the total
number of si having the value þ1 and of the ones having
the value −1 is constrained. To make the notation more
uniform, we also set

5Lowercase Latin letters run from 1 to n − 1, while lowercase
Greek letters run from 1 to nþ 2.
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vnþ2 ¼ Y; vnþ1 ¼ ∂þY; vn ¼ ∂−Y: ð18Þ

Thus, we have the following basis V ¼ fv1;…; vnþ2g.
Considering theM3 subspace, the norm of vnþ2 is fixed by
(10), while the norms of vn and vnþ1 are fixed by Eqs. (16).
The geometric constraint also implies that vn and vnþ1 are
perpendicular to vnþ2. The only unconstrained degree of
freedom is the angle between the vectors vn and vnþ1. Thus,
the vectors of the basis obey the following relations:

vi · vj ¼ siδi;j; vn · vn ¼ tm2
−; vnþ1 · vnþ1 ¼ tm2þ;

vnþ2 · vnþ2 ¼ sΛ2; vi · vn ¼ 0; vi · vnþ1 ¼ 0;

vi · vnþ2 ¼ 0; vn · vnþ2 ¼ 0; vnþ1 · vnþ2 ¼ 0:

ð19Þ

To deal with the inner product vnþ1 · vnþ2 we have to be
more careful and take into account the setup of the problem.
In other words, we should make sure that the basis indeed
spans the enhanced space. To treat all cases simultaneously,
we define the primary Pohlmeyer field φ via the equation

∂þY · ∂−Y ¼ mþm−fðφÞ: ð20Þ

In Appendix A we provide details on the construction of
the basis in the enhanced space and how this affects the
definition of the primary Pohlmeyer field. There are three
different options for the function f, namely

fðφÞ ¼
8<
:

cos φ

cosh φ

exp φ

: ð21Þ

In order to perform the Pohlmeyer reduction, we
calculate the derivatives of the vectors constituting the
basis and expand them on the basis itself, i.e.

∂�vα ¼ ðA�Þαβvβ: ð22Þ

This equation can be expressed in matrix form as

∂�V ¼ A�V; ð23Þ

where V is the matrix having the vectors of the basis as its
rows, i.e. its matrix elements are Vαβ ¼ ðvαÞβ, see also
Eq. (B1). Using the definitions of vn and vnþ1, along with the
equations of motion (15), it is straightforward to calculate that

∂þvnþ2 ¼ vnþ1; ∂−vnþ2 ¼ vn;

∂þvn ¼ ∂−vnþ1 ¼ −s
mþm−

Λ2
fðφÞvnþ2: ð24Þ

The other derivatives of vn and vnþ1 are obtained using the
geometric constraint (10), the nonvanishing components of

the stress-energy tensor (16), and the equations of motion
(15). In particular, these relations imply that

Y · ð∂2
�YÞ ¼ −tm2

�; ð25Þ

ð∂�YÞ · ð∂2
�YÞ ¼ 0; ð26Þ

ð∂∓YÞ · ð∂2
�YÞ ¼ mþm−f0ðφÞ∂�φ: ð27Þ

Thus, the expansion of the derivatives ∂2
�Y on the basis is

∂2
�Y ¼ −st

m2
�

Λ2
Y þ fðφÞf0ðφÞ

f2ðφÞ − t2
∂�φ∂�Y

− t
m�
m∓

f0ðφÞ
f2ðφÞ − t2

∂�φ∂∓Y þm�a�i vi; ð28Þ

where a�i are 2ðn − 1Þ unknown parameters. In the follow-
ing, these parameters are grouped as the two ðn − 1Þ × 1
matrices a�. Similarly, we can calculate

∂�vi ¼
sia�i

f2ðφÞ − t2

�
t

m�
∂�Y −

fðφÞ
m∓

∂∓Y
�
þ ðA�Þijsjvj;

ð29Þ

where A� are ðn − 1Þ × ðn − 1Þ antisymmetric matrices,
whose elements are given by ðA�Þij ¼ vj · ∂�vi. Defining
the matrix S as

S ¼ diagðs1;…; sn−1Þ ð30Þ

and putting everything together, the matrices A�
αβ are the

following:

Aþ ¼

0
BBBBB@

AþS
f

t2−f2
Saþ
m−

t
f2−t2

Saþ
mþ

0

0T 0 0 −s mþm−
Λ2 f

mþaTþ
mþ
m−

tf0
t2−f2 ∂þφ

ff0
f2−t2 ∂þφ −st m

2
þ

Λ2

0T 0 1 0

1
CCCCCA;

ð31Þ

A− ¼

0
BBBBB@

A−S t
f2−t2

Sa−
m−

f
t2−f2

Sa−
mþ

0

m−aT−
ff0

f2−t2 ∂−φ
m−
mþ

tf0

t2−f2 ∂−φ −st m
2
−

Λ2

0T 0 0 −s mþm−
Λ2 f

0T 1 0 0

1
CCCCCA;

ð32Þ

where column matrices are denoted with bold symbols. We
also dropped the argument of fðφÞ. The compatibility
condition ∂þ∂−vi ¼ ∂−∂þvi implies that the matrices A�
obey the zero curvature condition
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∂−Aþ − ∂þA− þ ½Aþ; A−� ¼ 0: ð33Þ

Explicitly, the equations of motion of the Pohlmeyer fields φ,
a�, and A� read

Fþ− ¼ −
fðφÞ

f2ðφÞ − t2
½a−aTþ − aþaT−�S; ð34Þ

D�a∓ ¼ t
f0ðφÞ∂∓φ
f2ðφÞ − t2

a�; ð35Þ

∂þ∂−φ ¼ aT−Saþ
f0ðφÞ − s

mþm−

Λ2

f2ðφÞ − t2

f0ðφÞ

−
∂
∂φ

�
ln
�

f0ðφÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2ðφÞ − t2

p ��
∂þφ∂−φ; ð36Þ

where the covariant derivatives are defined as D� ¼
In−1∂� − SA� and the field strength as Fþ− ¼ ½Dþ;D−�.
Notice that the reduced theory depends only on the product
mþm−. For our purposes, the function f is given by (21).
Thus, regarding (36), there are two options t2 ¼ 1 and either
fðφÞ ¼ coshφ or fðφÞ ¼ cosφ, or t ¼ 0 and fðφÞ ¼
expφ. In both cases the coefficient of ∂þφ∂−φ vanishes.
Also notice that ðSA�ÞT ¼ −SðSA�ÞS, implying that SA�
are valued in the Lie algebra of an indefinite orthogonal group
G. The Killing metric of this group is S.
In this form, the Pohlmeyer reduced theory has the gauge

redundancy

a� → Oa�; SA� → OSA�O−1 þ ð∂�OÞO−1; ð37Þ

where O−1 ¼ SOTS, i.e. the matrix O is an element of the
indefinite orthogonal group G. So far, for sufficiently large
n, we have introduced many more fields than the ones of
the NLSM.6 Seemingly we are facing a more complicated
problem than the original NLSM, but this is not the case.
Finally, let us comment that so far by using the symbols

σ� for the world-sheet coordinates, along with ∂� for the
derivatives, we have implicitly assumed that the world
sheet is Minkowksi. Nevertheless, the above analysis is
valid also for the Euclidean world sheet. The main differ-
ence is that for the Euclidean world sheet A� and are
complex and related by complex conjugation. This is also
the case for a�. Also, the group of transformations in
Eq. (37) is defined in the field of complex numbers, i.e. it is
of the form SOðp; q;CÞ.
In the following we consider that the world sheet is

Minkwoskian and reformulate the theory, so that it depends

only on the physical degrees of freedom. As the lightlike
reduced theory is still conformal, whereas conformal
invariance is explicitly broken for timelike and spacelike
reductions, the reformulation is different for these two
cases. Thus, we have to treat these cases separately.

C. Timelike and spacelike reductions

For t2 ¼ 1 the Pohlmeyer reduction is very similar to the
one of the sphere [19,102]. The idea is to introduce n × n
matrices Ã�, which constitute the components of a flat
connection. So, we define Ã� as follows:

Ãþ ¼ S̃

0
B@ Aþ

f
f2−t2

Saþ
FðfÞ

− f
f2−t2

aTþS
FðfÞ 0

1
CA; ð38Þ

Ã− ¼ S̃

�
A− s̃FðfÞSa−

−s̃FðfÞaT−S 0

�
; ð39Þ

where the matrix S̃ is defined as

S̃ ¼
�
S 0

0 s̃

�
; s̃ ¼ �1: ð40Þ

Henceforth we drop the argument of fðφÞ. Notice that by
definition Ã� obey ÃT

� ¼ −S̃Ã�S̃, thus they are valued in
the Lie algebra of an indefinite orthogonal. The matrix S̃ is
the Killing metric of this Lie group. We also define ã� and
Z̃ via the equations

ã� ¼
�
a�
0

�
; Z̃ ¼

�
0

1

�
: ð41Þ

It is a matter of algebra to show that ã� obey

D̃þã− ¼ t
f0∂−φ

f2 − t2
aþ þ s̃

FðfÞ
f

f2 − t2
ðãT−S̃ãþÞZ̃; ð42Þ

D̃−ãþ ¼ t
f0∂þφ
f2 − t2

a− þ FðfÞðãT−S̃ãþÞZ̃; ð43Þ

where D̃� ¼ In∂� − Ã�, while (36) assumes the form

∂þ∂−φ ¼ ãT−S̃aþ
f0

− s
mþm−

Λ2

f2 − t2

f0
: ð44Þ

One can show that the matrices Ã� indeed obey the zero
curvature condition

∂−Ãþ − ∂þÃ− þ ½Ãþ; Ã−� ¼ 0; ð45Þ

provided that the function F is given by

6At this point, the Pohlmeyer reduced theory depends on the
primary Pohlmeyer field −1, on a� − 2ðn − 1Þ fields, and on
A� − ðn − 1Þðn − 2Þ fields, for a total of nðn − 1Þ þ 1 fields. The
gauge redundancy implies that ðn − 1Þðn − 2Þ=2 fields are
unphysical, leaving nðnþ 1Þ=2 degrees of freedom. The NLSM
depends on (nþ 1) fields.
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FðfÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃tð1 − f2Þ

p or FðfÞ ¼ � fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s̃tð1 − f2Þ

p :

ð46Þ

For a given choice of f, which is defined in (21), and t, the
value of s̃ should be appropriate so that the square roots are
well defined. As the � signs can be absorbed by redefining
a�, one can select

FðfÞ ¼ 1

sinϕ
; FðfÞ ¼ − cotϕ ð47Þ

for f ¼ cosφ, which requires s̃t ¼ 1, and

FðfÞ ¼ 1

sinhϕ
; FðfÞ ¼ − cothϕ; ð48Þ

for f ¼ coshφ, which requires s̃t ¼ −1. Notice that in both
cases for either choices of F, appearing directly in Ã−, the
other one appears on the matrix Ãþ. Thus, the existence of
two solutions restores the þ ↔ − symmetry.
Finally, let us comment that by promoting Z̃ to a

dynamical field, the reduced system, as described by
(42)–(45), has the following gauge redundancy:

ã� → Õã�; Z̃ → Õ Z̃

S̃Ã� → Õ S̃ Ã�ÕT þ ð∂�ÕÞÕT; ð49Þ

where Õ belongs to the indefinite orthogonal Lie group
having S̃ as a Killing metric. Nevertheless, since Z̃ in not
dynamical, we can interpret the theory as a gauge-fixed
version of a theory originally having this symmetry. This
is expected by the Lagrangian formulation of SSSGs as
gauge fixed WZW models defined on an appropriate coset,
which are perturbed by an integrable potential [27,31].
The group of the aforementioned symmetry coincides with
the subgroup used to define the coset of the Lagrangian
formulation.
In order to continue the derivation, we use Eq. (45) to

solve for ã�. More specifically, if follows that Ã� ¼
ð∂�ÕÞS̃ÕTS̃, which implies that ã� are given by

ãþ ¼ FðfÞ 1 − f2

f
O∂þZ; ã− ¼ −

s̃
FðfÞO∂−Z; ð50Þ

where Z is defined as

Z ¼ S̃OTS̃ Z̃ ð51Þ

and its norm is ZTS̃Z ¼ s̃. The equations of the reduced
theory, taking (46) into account, assume the forms

∂þ∂−φ ¼ s̃
f2 − 1

ff0
∂−ZT S̃∂þZ − s

mþm−

Λ2

f2 − 1

f0
; ð52Þ

∂þ∂−Z ¼ f0

1 − f2

�
f

F̃2
∂þφ∂−Zþ F̃2

f
∂−φ∂þZ

�
− s̃ð∂−ZT S̃∂þZÞZ; ð53Þ

where F̃ ¼ 1 or F̃ ¼ f and S̃ is defined in (40). The two
choices for F, which are given in (46), and equivalently of F̃,
restore the symmetry σþ ↔ σ−. In the Lagrangian formu-
lation of the theory these correspond to vector and axial
gauging of the WZW model, see Ref. [31]. We remind the
reader that the choice of f, s̃, and t are correlated so that F is
real. As the norm of Z is constraint, the reduced theory
depends on n fields. Thus, the reduction eliminates one field
from the NLSM.Moreover, as advertised, the reduced theory
depends only on the product mþm−. Finally, notice that
unless the enhanced space is three dimensional, so that the
reduced theory consists only of the primary Pohlmeyer field,
the equations we derived are non-Lagrangian. Nonlocal field
redefinitions are required to give a Lagrangian description to
the reduced theory, see Ref. [43] and references therein. This
topic is also discussed in the Appendix A.

D. Lightlike reduction

Let us proceed to the study of the lightlike reduction. Our
approach is motivated by [46,92]. The lightlike Pohlmeyer
reduction is fundamentally different than the timelike and
spacelike ones. The basic difference is that Eqs. (35) are
source free. This prevents us from using the approach of the
previous subsection. Equations (46) are not defined for
t ¼ 0. As S2 ¼ In−1 and AT

� ¼ −A� it follows that

∂�ðaT∓Sa∓Þ ¼ 0; ð54Þ

thus the norms of a� depend on a sole world-sheet
coordinate, i.e.

aT�S̃a� ¼ f�ðσ�Þ: ð55Þ

Implementing the gauge transformation (37) we can
simplify the problem choosing the light-cone gauge, i.e.
A− ¼ 0. Then, Eqs. (34) and (35) assume the form

S∂−Aþ ¼ − expð−φÞ½a−aTþ − aþaT−�S ð56Þ

and

∂þa− ¼ SAþa−; ∂−aþ ¼ 0: ð57Þ

These equations have the residual chiral gauge redundancy
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a� → Oþa�; SA� → OþSA�O−1þ þ ð∂�OþÞO−1þ ;

ð58Þ

where Oþ ¼ OþðσþÞ and O−1þ ¼ SOþS, implying
Oþ ∈ G. As aþ ¼ aþðσþÞ, we can always use an appro-
priate transformation in order to set ðaþÞi ¼ uþðσþÞδi;ðn−1Þ
if its norm is positive or negative. In the degenerate case of
aþ being null, we can set ðaþÞi ¼ uþðσþÞðδi;1 þ δi;ðn−1ÞÞ,
where s1sn−1 ¼ −1, see (30). From now on we assume that
the norm is nonvanishing, thus we define

aþ ¼
�

0

uþ

�
; uþ ¼ uþðσþÞ; ð59Þ

where 0 is a ðn − 2Þ × 1 column matrix consisting of zeros.
For notational convenience, we also drop the argument of
uþðσþÞ. As Eq. (59) breaks the symmetry group G to its
maximal subgroup, we decompose a− and S, which is
defined in Eq. (30), in a similar manner as

a− ¼
�
v

v

�
; S ¼

�
S̄ 0

0T sn−1

�
; ð60Þ

where v is a ðn − 2Þ × 1 column matrix and S̄ is a
ðn − 2Þ × ðn − 2Þ matrix. Then, Eq. (56) implies that Aþ
has the structure

Aþ ¼
�
0n−2 Λ
−ΛT 0

�
; ð61Þ

where 0n−2 is a ðn − 2Þ × ðn − 2Þ matrix consisting of
zeros. Moreover, it follows that Λ satisfies the equation

∂−Λ ¼ − exp ð−φÞsn−1uþS̄v: ð62Þ

Finally, Eq. (57) implies

Λ ¼ 1

v
S̄∂þv; ∂þv ¼ −sn−1ΛTv: ð63Þ

The second equation is equivalent to the fact that
aT−S̃a− ¼ f−ðσ−Þ. Putting everything together, the equa-
tions of the reduced theory read

∂−

�
1

v
∂þv

�
¼ −uþu− expð−φÞv; ð64Þ

∂þ∂−φ ¼ uþu−v expð−φÞ − s
mþm−

Λ2
expðφÞ; ð65Þ

where we discarded the sign sn−1 (it can be absorbed into
the definition of v) and rescaled v and vwith u−ðσ−Þ so that

a− ¼ u−

�
v

v

�
; u− ¼ u−ðσ−Þ; ð66Þ

where vT S̄v þ sn−1v2 ¼ s̄ and s̄ ¼ �1. Notice that for
t ¼ 0 Eq. (28) implies that

ð∂2
�YÞ · ð∂2

�YÞ ¼ m2
�a

T
�S̃a�; ð67Þ

thus

ð∂2þYÞ · ð∂2þYÞ ¼ sn−1m2þu2þ; ð68Þ

ð∂2
−YÞ · ð∂2

−YÞ ¼ s̄m2
−u2−: ð69Þ

Using a diffeomorphism of the world-sheet coordinates,
which acts as σ� → f�ðσ�Þ so that f02u4� ¼ 1, we set
ð∂2

�YÞ · ð∂2
�YÞ to constants.7 Finally, Eqs. (64) and (65)

assume the form

∂−

�
1

v
∂þv

�
¼ μ expð−φÞv; ð70Þ

∂þ∂−φ ¼ μ½v exp ð−φÞ − sμ expðφÞ�; ð71Þ

where we set φ → φþ ln
ffiffiffiffiffiffiffiffiffiffiffiffi
juþjju−j

p
μ , μ ¼ j mþm−

Λ2 j1=2, and

sμ ¼ s mþm−
μ2Λ2 . We also discarded the factors uþu−

juþjju−j since
the theory is invariant under v → −v.

III. THE SOLUTIONOF THE AUXILIARY SYSTEM

As we presented the Pohlmeyer reduction of the rank 1
cosets related to the indefinite orthogonal group, we
proceed to the solution of the auxiliary system. Initially
we discuss the mapping connecting the vectors of enhanced
space with the elements of coset. Then, we derive the
formal solution of the auxiliary system.

A. The mapping

In order to assign an element of the coset to each vector
of the enhanced space we use the mapping

g ¼ θ

�
Inþ2 − 2s

YYTη

Λ2

�
; θ ¼

�
Inþ2 − 2s

Y0YT
0 η

Λ2

�
;

ð72Þ

where In denotes the n × n identity matrix and η is the
metric of the enhanced space, see (11). Recall that the
parameter s is defined via the equation YTηY ¼ sΛ2 and
gets the values �1. Finally, Y0 is a constant vector of
the enhanced space, which implies that it also obeys

7Notice that no cross terms are introduced as ð∂�YÞ ·ð∂�YÞ¼0
and ð∂�YÞ · ð∂2

�YÞ ¼ 0.
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YT
0 ηY0 ¼ sΛ2. It is straightforward to show that θ obeys

θ2 ¼ Inþ2, as well as θTηθ ¼ η. Similarly, g has the
following properties:

ḡ ¼ g; gTηg ¼ η; gθgθ ¼ Inþ2: ð73Þ

Thus g is an element of the desired coset.

B. The formal solution of the auxiliary system

Having set the ground, in this section we derive the
solution of the auxiliary system (2). Initially, we define
Ψ ¼ gΨ̂, so that the auxiliary system assumes the form

∂�Ψ̂ ¼ � 2λ

1� λ
ĵ�Ψ̂; ð74Þ

where the currents ĵ� are defined as ĵ� ¼ − 1
2
g−1∂�g.

Their explicit form is

ĵ� ¼ s
Λ2

½ð∂�YÞYT − Y∂�YT �η: ð75Þ

Interestingly enough, Eq. (74) implies that Ψ̂ð0Þ is constant.
This is a crucial remark in order to gain intuition about the
form of the structure of the solution of the auxiliary system.
The only linear system of equation that is somehow related
to the problem is (23). It is natural to guess that the solution
depends linearly on V, which is λ independent, and the rest
of the solution reduced to V−1 for λ ¼ 0. This is close, but it
is not correct. It turns out the correct ansatz is

Ψ̂ ¼ V−1Δ−1Ψ̃; ð76Þ

where the matrix Δ is defined as

Δ ¼

0
BBB@

In−1 0 0 0

0 1þλ
1−λ 0 0

0 0 1−λ
1þλ 0

0 0 0 1

1
CCCA; ð77Þ

while the matrix V is constructed by the vectors of the basis
used in the Pohlmeyer reduction, see (23). Taking Eqs. (22)
into account, the auxiliary system assumes the form

∂�Ψ̃ ¼ Δ
�
A� � 2λ

1� λ
Vĵ�V−1

�
Δ−1Ψ̃: ð78Þ

It is a matter of algebra to show that the above pair of
equations assumes the form

∂�Ψ̃ ¼
h
A�jm�→

1∓λ
1�λm�

i
Ψ̃: ð79Þ

For completeness we provide some details of this calculation
in Appendix B. Comparing Eqs. (79) and (23) it follows that

Ψ̃ ¼ Vjm�→
1∓λ
1�λm�

: ð80Þ

Putting everything together, the solution of the auxiliary
system reads

ΨðλÞ ¼ gV−1Δ−1
�
Vjm�→

1∓λ
1�λm�

�
ð81Þ

and coincides with the result of [102], which is expected as
the OðnÞ NLSM is a special case of the models under
consideration. Let us also mention that the structure of the
solution was actually guessed using the result of the Oð3Þ
NLSM [101], which was expressed in terms of the embed-
ding functions.

C. Properties of the solution

Having solved the auxiliary system, we present some
basic properties of the solution. To begin with, it is
straightforward to show that the solution is normalized
so that

Ψð0Þ ¼ g: ð82Þ

Of course, the set of solutions of the auxiliary system is of
the form ΨðλÞCðλÞ where CðλÞ is a constant matrix, which
may depend on λ.
As g, belonging to a coset, obeys the relations in (72), it

turns out that there are some consistency conditions for the
solution of the auxiliary system (2). Since g is real it follows
that for a Minkowski world sheet ΨðλÞ has to satisfy

Ψ̄ðλ̄Þ ¼ ΨðλÞ: ð83Þ

Given that the NLSM solution Y is a real function of the
real parameters m�, the solution (81) satisfies this con-
straint. In the case of a Euclidean world sheet, since ∂� are
interchanged by complex conjugation, the analogous equa-
tion is

Ψ̄ðλ̄Þ ¼ Ψð−λÞ: ð84Þ

The NLSM solution Y is a function of the complex
parameters m�. Notice that m� are related by complex
conjugation, thus the constraint is indeed satisfied.
Since gTηg ¼ η it follows that

ΨηΨT ¼ ΨTηΨ ¼ η: ð85Þ

Using Eqs. (B1) and (B2), along with Eqs. (B7)–(B9) and
the properties of the vectors vα, which constitute the basis,
it is straightforward to show that

Δ−1
�
Vjm�→

1∓λ
1�λm�

�
η
�
VT jm�→

1∓λ
1�λm�

�
· Δ−1ðV−1ÞT ¼ Vη;

ð86Þ
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which proves that ΨηΨT ¼ η. One can prove the other
equality in a similar manner.
Finally, as θgθg ¼ Inþ2 it follows that gθΨð1=λÞθ

belongs to the set of solutions of the auxiliary system.
Thus, one has to impose the constraint

gθΨð1=λÞθ ¼ ΨðλÞMðλÞ; ð87Þ

where MðλÞ is a constant, in general λ-dependent, matrix.
Using Eq. (76) along with Ψ ¼ gΨ̂ we obtain

IΨ̃ð1=λÞθ ¼ Ψ̃ðλÞMðλÞ; I ¼
�
In−1 0

0 −I3

�
: ð88Þ

Equation (80) implies that the above constraint is equiv-
alent to the fact that the following equation

IVjm�→−m� ¼ VMðλÞ ð89Þ

is true for any m� for some constant matrix M.

IV. ON THE CONSERVED CHARGES

Having obtained the formal solution of the auxiliary
system, let us calculate the eigenvalues of the monodromy
matrix. Equation (3) implies that the monodromy matrix
reads

Tðσf; σi; λÞ ¼ gðτ; σfÞV−1ðτ; σfÞΔ−1ðλÞ
·
�
Vðτ; σfÞjm�→

1∓λ
1�λm�

��
V−1ðτ; σiÞjm�→

1∓λ
1�λm�

�
· ΔðλÞVðτ; σiÞg−1ðτ; σiÞ: ð90Þ

Recall that Eq. (3), and consequently this equation, is valid
for either periodic boundary conditions i.e. Yðτ;σiÞ¼
Yðτ;σfÞ, or for Lτðτ;σiÞ¼Lτðτ;σfÞ¼0, implying gðτ; σiÞ
and gðτ; σfÞ are constants and equivalently Yðτ; σÞ obeys
Dirichlet boundary conditions.
Notice that τ is the world-sheet temporal coordinate,

which for a general manifold is nontrivially connected to
the target space temporal coordinate t. Considering the
OðnÞmodel, i.e. stings onRt × Sn−1, the target space time t
is given by t ¼ mþσþ þm−σ

−. In this case one can boost
the solution in order to achieve t ∼ τ.
Leaving this subtlety aside and assuming periodic

boundary conditions, the eigenvalues of the monodromy
matrix coincide with the eigenvalues of the matrix

T ¼ ðVðτ; σfÞV−1ðτ; σiÞÞjm�→
1∓λ
1�λm�

: ð91Þ

Notice that the solution is periodic for some specific mþ
and m−, thus gðτ; σfÞ ¼ gðτ; σiÞ and Vðτ; σfÞ ¼ Vðτ; σiÞ.
The rescaling (9) spoils the periodic boundary conditions.
This is the origin of the nontrivial monodromy matrix.

Notice that in Eq. (91), one should first rescalem� and then
substitute the value of σ.

A. The example of elliptic strings in Rt × S2

As an indicative example let us present the case of Oð3Þ
NLSM. For this model the matrix V is given by V ¼
ð∂−X ∂þXXÞ or explicitly

V ¼

0
B@

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CA
0
B@

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1
CA

·

0
B@

∂−θ ∂þθ 0

sin θ∂−ϕ sin θ∂þϕ 0

0 0 1

1
CA: ð92Þ

Considering the case of elliptic strings in Rt × S2,
constructed in [63],8 the solution reads

t ¼ mþξþ þm−ξ
−; ð93Þ

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
℘ðξ1 þ iω2Þ − ℘ðaÞ

x1 − ℘ðaÞ

s
; ð94Þ

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − ℘ðξ1 þ iω2Þ

x1 − ℘ðaÞ

s
; ð95Þ

ϕ ¼ lξ0 −Φðξ1;aÞ; ð96Þ

where l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − ℘ðaÞp

and ℘ðz; g2; g3Þ is the Weierstrass
elliptic function, ω2 is the imaginary half-period, and
Φðξ1; aÞ is the Bloch phase of the Láme eigenfunctions,
which obeys

Φ0ðξ1; aÞ ¼ i
2

℘0ðaÞ
℘ðξ1 þ iω2Þ − ℘ðaÞ : ð97Þ

The periodic properties of ℘ðξÞ are inherited from the
Pohlmeyer reduced theory, thus they remain invariant under
the rescaling (9). Specifically, the invariants g2 and g3 read

g2 ¼
E2

3
þm2þm2

−; g3 ¼
E
3

��
E
3

�
2

−m2þm2
−

�
; ð98Þ

where E ≥ mþm− and mþm− < 0. For completeness let us
also mention that the roots of the cubic polynomialQðxÞ ¼
4x3 − g2x − g3 are

8In order to follow the conventions of this work, we use the
coordinates ξ� ¼ 1

2
ðξ1 � ξ0Þ implying ∂� ¼ ∂1 � ∂0. This sec-

tion is self-contained, but the reader may consult [63] for
additional details.
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x1 ¼
E
3
; x2 ¼ −

E
6
−
mþm−

2
; x3 ¼ −

E
6
þmþm−

2
:

ð99Þ

The parameter a is defined via the equations

℘ðaÞ ¼ −
E
6
−
m2þ þm2

−

4
; ð100Þ

℘0ðaÞ
l

¼ i
m2þ −m2

−

2
: ð101Þ

In the terminology of [63], the above solution is charac-
terized as static. Translationally invariant solutions are
obtained by applying the ξ0 ↔ ξ1 duality at the coordinates
θ and ϕ. Without loss of generality we will analyze only
static solutions. The treatment of translationally invariant
ones is similar. For the purposes of this work it is sufficient
to know that ℘ðξÞ and ℘0ðξÞ are periodic under
ξ → ξþ 2ω1, where ω1 is the real half-period. Notice that
Φðξ; aÞ is quasiperiodic [but its derivative is periodic; see
Eq. (97)] satisfying

δΦ ¼ Φðξþ 2ω1; aÞ −Φðξ; aÞ ¼ 2iðζðaÞω1 − ζðω1ÞaÞ:
ð102Þ

In order to introduce the target space time coordinate we
substitute

ξ0 ¼ γðτ − βσÞ; ξ1 ¼ γðσ − βτÞ ð103Þ

where

β ¼ mþ þm−

mþ −m−
; γ ¼ jmþ −m−j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−mþm−

p : ð104Þ

For mþ > m− it follows that t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−mþm−
p

τ. In the

boosted coordinates, the solution is periodic for σ → σ þ
2ω1

γ for E > −mþm− (rotating solutions) and σ → σ þ 4ω1

γ

for −mþm− > E > mþm− (oscillating solutions). In order
to satisfy periodic boundary conditions it is required that
σf − σi ¼ 2nω1

γ , where n ∈ N (notice that n is even for
oscillating solutions), while a gets discrete values so that

δϕ ¼ nδϕ1ðaÞ ¼ 2mπ; m ∈ N; ð105Þ

where

δϕ1ðaÞ¼2i½ζðω1Þa−ζðaÞω1�−2ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−℘ðaÞ

p
β: ð106Þ

This is the angular opening of the elliptic strings, see
section 6 of [63]. In order to derive the above equation, one
uses the quasiperiodicity property (102).

In order to calculate T we first rescale m� and then we
boost the solution to the static gauge. Rescaling m�
amounts to a → ã, where ã is defined via the equations

℘ðãÞ ¼ −
E
6
−
m2þ
4

�
1 − λ

1þ λ

�
2

−
m2

−

4

�
1þ λ

1 − λ

�
2

; ð107Þ

℘0ðãÞffiffiffiffi
Δ

p ¼ i

�
m2þ
2

�
1 − λ

1þ λ

�
2

−
m2

−

2

�
1þ λ

1 − λ

�
2
�
: ð108Þ

The parameter Δ ¼ x1 − ℘ðãÞ generalizes l2, but it is no
longer positive definite. As θ and ∂�ϕ are periodic even for
the rescaled m�, using (92) we obtain

T ¼

0
B@

cos δϕ − sin δϕ 0

sin δϕ cos δϕ 0

0 0 1

1
CA; ð109Þ

where δϕ ¼ ϕðσfÞ − ϕðσiÞ. Taking (106) into account, it
turns out that

δϕ ¼ 2nδϕ1ðãÞ: ð110Þ

Thus, δϕ is the analytic continuation of the angular opening
of the elliptic strings. Notice that even though β is a
function of a, namely

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x3 − ℘ðaÞ
x2 − ℘ðaÞ

s
; ð111Þ

it is not to be analytically continuated. The origin of this
term is the boost (103), which concerns the original NLSM
solution. Finally, the eigenvalues of T are 1 and e�iδϕ.
In order to verify the above calculation we can use the

results of [67]. In this work the solution of the auxiliary
system corresponding to the elliptic strings in Rt × S2 was
obtained explicitly. Keeping the presentation to the abso-
lutely necessary, the solution of the auxiliary system is

Ψ ¼ θUθẼ

0
B@

cos ϕ̃ sin ϕ̃ 0

sin ϕ̃ − cos ϕ̃ 0

0 0 1

1
CA; ð112Þ

where the matrix Ẽ is defined as

Ẽ ¼ ð e1 e2 e3 Þ; ð113Þ

the columns ei constitute an orthonormal basis, θ is a
constant matrix defined as θ ¼ diagð1; 1;−1Þ, the angle ϕ̃
is ϕ̃ ¼ ffiffiffiffi

Δ
p

ξ0 −Φðξ1; ãÞ and U ¼ U2U1. The matrices U1

and U2 are defined as
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U1 ¼

0
B@

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1
CA;

U2 ¼

0
B@

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1
CA; ð114Þ

where the angles θ and ϕ, along with the target space time,
are defined in Eqs. (93)–(96). The parameter ã is defined
via (107) and (108), and Δ ¼ x1 − ℘ðãÞ. In addition, the
elements of the matrix Ẽ depend only on ξ1 and are periodic
under ξ1 → ξ1 þ 2ω1, where ω1 is the real half-period
corresponding to the invariants (98).
Boosting the solution to the static gauge via (103) and

using Eq. (3) we obtain

T ¼ θUðσfÞθẼðσfÞT Ẽ−1ðσiÞθU−1ðσiÞθ; ð115Þ

where T is given by (109). As both matrices U and Ẽ are
periodic, it is evident that the eigenvalues of T coincide
with the eigenvalues of T . Thus, as expected the conserved
charges calculated using the methods of this work coincide
with the ones calculated using the explicit results of [67].

V. DISCUSSION

In this work we demonstrated that all rank 1 symmetric
spaces related to indefinite orthogonal groups have a
property that has been unnoticed for more than four
decades. One can obtain the formal solution of the auxiliary
system, which imprints the integrability of the models,
corresponding to an arbitrary NLSM solution. The solution
of the auxiliary system is closely related to the Pohlmeyer
reduction, revealing another link between the NLSM
and its reduced theory. In view of this result the dressing
method is essentially the implementation of a nonlinear
superposition principle. The seed solution is combined
appropriately with a “virtual” one in order to obtain a new
solution. The virtual solution is constructed systematically
from the seed one by the substitution (9). This implies that
the virtual solution solves the equations of motion, shares
the same Pohlmeyer counterpart with the seed solution, but
belongs to the complexification of the coset. Even though
we focus on theories having a Minkowski world sheet, our
results apply for a Euclidean world sheet too.
Since the relation between the NLSM and the reduced

theory, along with their relevance for AdS=CFT corre-
spondence, is analyzed extensively in the Introduction, in
the following we mostly present some future directions and
ideas, which to our opinion are worth exploring.
First of all, it would be interesting to study more

extensively the Pohlmeyer reduced. The study of the
Bäcklund transformations of the reduced theory following
the approach of [101] is of particular interest. More

specifically, one could show explicitly that the Pohlmeyer
reduced theory corresponding to the dressed solution, which
is constructed using the simplest dressing factor, is related
with a Bäcklund transformation to the Pohlmeyer reduced
theory of the seed solution. As a byproduct, the relation
between the location of the poles of the dressing factor will
be related to the parameter of the Bäcklund transformation.
Finally, a more extended study of the reduced theories in the
case of a Euclidean world sheet would be compelling.
Our results introduce a new perspective on long strings,

i.e. strings in the decompactification limit of their world
sheet. Considering them as dressed versions of short strings,
this work implies that the dressed strings are superpositions
of the short strings. Thus, their properties are inherited from
the short strings. This point of view is closely related to the
study of properties of dressed strings along the lines of
[68,106]. These works relate the stability of classical strings
to the dressed version of these strings. It turns out that the
configurations are unstable whenever superluminal solitons
can propagate on the background of the Pohlmeyer counter-
part of them. Nevertheless, one should notice that the
boundary conditions are crucial for such investigations;
therefore, an abstract study may be very challenging. On
the contrary our results make the stability analysis of specific
string solutions pretty straightforward.
As this work indicates that the nonlinear superposition

concerns a wide class of symmetric spaces, it is natural to
wonder whether this could be the case for even more
theories. Before considering a generic symmetric space, a
prime candidate for such a study would be the CPn NLSM.
In view of recent developments regarding the construction
of integrable two-dimensional theories, the study of λ [12],
Yang-Baxter / η [9–11], bi-Yang-Baxter [13] deformations,
and generalizations of them is definitely interesting.
Regarding the λ deformations, the Pohlmeyer reductions
were presented in [107], providing a starting point for the
aforementioned study.
The original and the reduced theory are closely related at

a classical level. It is natural to wonder what happens when
quantum corrections are taken into account. In the case of
Oð3Þ NLSM and the sine-Gordon equations, the quantum
theories are very different. As the conformal symmetry of
the NLSM is anomalous, the discrepancy is not surprising.
Turning this argument on its head, it could be the case that
a theory, which is conformal at the quantum level, such
as superstrings on AdS5 × S5 is somehow related to the
quantized reduced theory. The natural regime for such an
investigation is the BMN particle [60], which is related to
the vacuum of the reduced theory. One can show that the
S-matrices of both theories are related [108–110]. The same
is true for the partition functions too [111–113].
These results motivate various studies related to this

work. As supersymmetry seems to bind together the NLSM
and the reduced theory, generalizing the presented con-
struction in the case of symmetric spaces related to
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supercosets would certainly be interesting. First of all,
supercosets have only been studied group theoretically.
Even establishing such a reduction as an embedding
problem is intriguing. The supersymmetric extension of
the nonlinear superposition could be used to further probe
the spectral problem of AdS=CFT at the classical level by
constructing explicitly the quasimomenta and the spectral
curve of [74].
Given a seed solution, the superposition creates an

infinite tower of classical vacua of the theory. Of course,
perturbation theory around the seed solution fails to
describe these vacua, thus the presented construction is
essential in order to describe them. In the spirit of the
previous paragraph one could study the semiclassical
quantization of the theory around different vacua, which
essentially correspond to different instanton charges. This
could also shed light on the relation between the NLSM and
the reduced theory in the quantum regime. A related subject
concerns the study of admissible configuations of the path
integral [114].
Finally, although we mentioned the spectral curve [74]

in order to motivate the introduction of supersymmetry,
even without supersymmetry the spectral curve deserves a
thorough study. A direct consequence of the construction
we presented is that we can calculate explicitly the
monodromy matrix. As a first step, it would be interesting
to calculate explicitly the quasimomenta corresponding to a
specific solution. As we analyzed in Sec. IV, in the case of
periodic boundary conditions the eigenvalues of the mono-
dromy matrix coincide with the eigenvalues of the matrix

T ¼ ðVðτ; σfÞV−1ðτ; σiÞÞjm�→
1∓λ
1�λm�

: ð116Þ

The point to make is that even though the NLSM solution
and correspondingly the coset element g and the matrix V
satisfy periodic boundary conditions for m�; the rescaling
of these parameters spoils the periodic boundary condi-
tions. The nontrivial monodromy emerges because the
NLSM solution is periodic for specific m�. Of course,
one should perceive the notation of (91) as rescaling m�
first and then multiplying the two terms. In any case, the
quasimomenta are directly linked to the embedding of
the NLSM solution in the enhanced space. It would be
interesting to calculate them explicitly in terms of the
embedding functions or relate them with the reduced
theory. For instance, in the case of Oð3Þ NLSM, based
on the analysis in the case of elliptic strings, it is natural to
assume that the eigenvalues are 1 and e�iδϕ, where δϕ ¼
ϕðσfÞ − ϕðσiÞ and ϕ is the angular angle corresponding to
the rescaled parameters m�.
Naturally, identifying in field theory the analog of the

construction we presented is very interesting. Even though
it seems unlikely, AdS=CFT correspondence motivates
the existence of a similar structure as the one that was
presented in the work.
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APPENDIX A: ON THE DEFINITION OF THE
BASIS IN THE ENHANCED SPACE

In this appendix we apply the formalism developed in
Sec. II. We restrict our analysis to setups which are relevant
for AdS=CFT. First of all we have to clarify the definition
of the primary Pohlmeyer field along with the construction
of the basis in the enhanced space. In order to do so we have
to distinguish between timelike world sheets and spacelike
ones, for instance see Refs. [92], which depends on the
world-sheet metric. The situation is more complicated
when the space is of indefinite signature.
As mentioned the type of reduction affects the construc-

tion of the basis in the enhanced space. One should make
sure that the basis indeed spans the enhanced space and that
the inner product of ∂þY and ∂−Y is appropriately defined.
The basis naturally splits the enhanced space as the direct
productM3 ×Mn−1, whereM3 is spanned by Y and ∂�Y.
In the case of AdS the enhanced space is Rð2;nÞ, while in the
case of dS it is Rð1;nþ1Þ. Thus, in the former case the basis
should consist of two timelike vectors and n spacelike, while
in the latter of one timelike and nþ 1 spacelike ones. In
the following we analyze the definition of the primary
Pohlmeyer field for each type of reduction in the case of
AdS. Similar analysis also applies to dS space, as well as
on all other rank 1 symmetric spaces based on indefinite
orthogonal groups. As a warmup we first analyze the case of
sphere for both choices of world-sheet signatures.
For Minkowski world sheets we use the following

conventions:

σ� ¼ 1

2
ðσ � τÞ; ∂� ¼ ∂σ � ∂τ; ðA1Þ

while for Euclidean ones

σ� ¼ 1

2
ðσ � iτÞ; ∂� ¼ ∂σ ∓ i∂τ: ðA2Þ

1. Sphere with Minkowski world sheet

We begin our presentation by discussing the basis in the
case the target space is a sphere and the world sheet is
Minkowski. The inner product ∂þX · ∂−X satisfies the
Cauchy-Schwartz inequality

∂þX · ∂−X ≤ j∂þXjj∂−Xj ¼ jmþm−j: ðA3Þ
Thus, the only consistent definition of the Pohlmeyer field is

∂þX · ∂−X ¼ mþm− cosφ: ðA4Þ
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Of course, the norms of all vectors spanning Mn−1 are
positive. It is straightforward to calculate that

∂σX · ∂σX ¼ m2þ þm2
−

4
þmþm−

2
cosφ; ðA5Þ

∂τX · ∂τX ¼ m2þ þm2
−

4
−
mþm−

2
cosφ; ðA6Þ

∂σX · ∂τX ¼ m2þ −m2
−

4
: ðA7Þ

Both vectors ∂σX and ∂τX have positive definite norm as
required.

2. Sphere with Euclidean world sheet

Even though we will not discuss Euclidean world sheets
further, we present the basis used in the reduction when the
target space is a sphere. In this case it follows that

∂þX · ∂−X ¼ ∂σX · ∂σX þ ∂τX · ∂τX ≥ 0: ðA8Þ

We define the Pohlmeyer field as

∂þX · ∂−X ¼ mþm− coshφ: ðA9Þ

The right-hand side is positive definite since the parameters
m� are related by complex conjugation, i.e.m�¼mR�imI ,
where mR and mI are real. Again, it is straightforward to
calculate that

∂σX · ∂σX ¼ mþm−

2
coshφþm2þ þm2

−

4
ðA10Þ

¼ m2
R cosh

2
φ

2
þm2

I sinh
2
φ

2
; ðA11Þ

∂τX · ∂τX ¼ mþm−

2
coshφ −

m2þ þm2
−

4
ðA12Þ

¼ m2
R sinh

2
φ

2
þm2

I cosh
2
φ

2
; ðA13Þ

∂σX · ∂τX ¼ m2
− −m2þ
4i

¼ −mRmI: ðA14Þ

Both vectors ∂σX and ∂τX have positive definite norm as
required.

3. AdS timelike reduction and Minkowski world sheet

In this section we analyze the timelike reduction of AdS
spaces. We remind the reader that this case corresponds
to t ¼ −1, i.e. ∂�Y · ∂�Y ¼ −m2

�. Consider an arbitrary
vector X in the submanifold spanned by ∂�Y. It will be of
the form

X ¼ a∂þY þ b∂−Y: ðA15Þ

It follows that

X · X ¼ −ðjamþj − jbm−jÞ2

− 2jamþjjbm−j
�
1 −

ab∂þY · ∂−Y
jamþjjbm−j

�
: ðA16Þ

If the last term in parentheses is positive, all vectors inM3

are of negative norm, implying that for f ¼ cosφ it follows
that M3 ¼ Rð3;0Þ. Thus, for f ¼ cosφ the basis would not
span the enhanced space Rð2;nÞ. In this case it is necessary
to use f ¼ coshφ, i.e.

∂þY · ∂−Y ¼ mþm− coshφ; ðA17Þ

so thatM3 can beRð2;1Þ. We could have introduced another
sign, such as t in this definition, but we opt to take
advantage of the transformation α → αþ iπ in order to
deal with this sign. Also notice that

∂σY · ∂σY ¼ −
m2þ þm2

−

4
þmþm−

2
coshφ; ðA18Þ

∂τY · ∂τY ¼ −
m2þ þm2

−

4
−
mþm−

2
coshφ; ðA19Þ

∂σY · ∂τY ¼ −
m2þ −m2

−

4
: ðA20Þ

The consistency of the basis requires

coshφ ≥
m2þ þm2

−

2jmþm−j
; ðA21Þ

so that one of the vectors ∂σY and ∂τY is timelike, while the
other one is spacelike.
In this case, it follows that S ¼ In−1, i.e. the Killing

metric of SOðn − 1Þ. As f ¼ coshφ, it it required that
s̃t ¼ −1. For the timelike reduction t ¼ −1, thus s̃ ¼ 1. As
a result S̃ ¼ In, which is the Killing metric of SOðnÞ. The
reduced theory is formulated as the SOð1; nÞ=SOðnÞ
perturbed WZW model, see section 5.2 of [31].
For completeness, we also present the equations of the

reduced theory, which read

∂þ∂−φ ¼ tanhφ∂−ZT S̃∂þZþmþm−

Λ2
sinhφ; ðA22Þ

∂þ∂−Z ¼ −
∂þφ∂−Z
tanhφ

−
∂−φ∂þZ

sinhφ coshφ
− ∂−ZT S̃∂þZZ:

ðA23Þ

The complementary form of Eq. (A23) reads
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∂þ∂−Z ¼ −
∂þφ∂−Z

sinhφ coshφ
−
∂−φ∂þZ
tanhφ

− ∂−ZT S̃∂þZZ:

ðA24Þ

Equations (A22) and (A23) appear in the exact same form
in [43,55]. Regarding [31], in the case of AdS2 the
equations obviously coincide, nevertheless this is not the
case for AdS3. The different form of the equations is due to
the parametrization.
Let us show how the different parametrizations are

related in the case of (A23). We parametrize Z as
Z ¼ ðcos usin uÞ, while S̃ ¼ I2. It is a matter of algebra to show
that the equations of motion read

∂þ∂−φ ¼ tanhφ∂−u∂þuþmþm−

Λ2
sinhφ; ðA25Þ

∂þ½ðcþ sechφÞ∂−u� − ∂−½ðcþ coshφÞ∂þu� ¼ 0; ðA26Þ

where c is a free parameter. Implementing the nonlocal
field redefinition

∂−u ¼ 2
tanh2 ϕ

2

cþ sechφ
∂−θ; ∂þu ¼ −2

tanh2 ϕ
2

cþ coshφ
∂þθ

ðA27Þ

and setting c ¼ −1, the equations of motion assume the
form

∂þ∂−φ ¼ sinhφ

cosh4 ϕ
2

∂−θ∂þθ þ
mþm−

Λ2
sinhφ; ðA28Þ

∂þ

�
tanh2

ϕ

2
∂−θ

�
þ ∂−

�
tanh2

ϕ

2
∂þθ

�
¼ 0; ðA29Þ

which is the one appearing in [31]. Finally, let us mention
that these equations of motion follow from the Lagrangian
density

L¼ 1

4
∂þφ∂−φþ tanh2

ϕ

2
∂−θ∂þθþmþm−sinh2

φ

2
: ðA30Þ

Regarding the case of (A24), using the same para-
metrization and the nonlocal field redefinition

∂−u ¼ −2
coth2 ϕ

2

cþ coshφ
∂−θ; ∂þu ¼ 2

coth2 ϕ
2

cþ sechφ
∂þθ

ðA31Þ

for c ¼ 1 it follows that the equations of motion assume the
form

∂þ∂−φ ¼ −
sinhφ

sinh4 ϕ
2

∂−θ∂þθ þ
mþm−

Λ2
sinhφ; ðA32Þ

∂þ

�
coth2

ϕ

2
∂−θ

�
þ ∂−

�
coth2

ϕ

2
∂þθ

�
¼ 0: ðA33Þ

These equations of motion follow from the Lagrangian
density

L¼1

4
∂þφ∂−φþcoth2

ϕ

2
∂−θ∂þθþmþm−sinh2

φ

2
: ðA34Þ

Finally, in order to point out the relation between the
reduced systems corresponding to timelike and spacelike
reduction for any n, let us mention that for any n the column
Z can be parametrized as

Z ¼
�

cos u

sin un̂

�
; ðA35Þ

where n̂ is a ðn − 1Þ × 1 column matrix of unit norm.

4. AdS lightlike reduction and Minkowski world sheet

In this section we analyze lightlike reduction of AdS
spaces. We remind the reader that this case corresponds to
t ¼ 0, i.e. ∂�Y · ∂�Y ¼ 0. It is customary to define the
Pohlmeyer field via the equation

∂þY · ∂−Y ¼ mþm− expφ: ðA36Þ

In this case, given two lightlike vectors we can always
define a timelike and a spacelike one. Thus, M3 ¼ Rð2;1Þ,
which implies that Mn−1 ¼ Rð0;n−1Þ. It is a matter of
algebra to show that

∂σY · ∂σY ¼ þmþm−

2
expφ; ðA37Þ

∂τY · ∂τY ¼ −
mþm−

2
expφ; ðA38Þ

∂σY · ∂τY ¼ 0: ðA39Þ

Obviously, one of the vectors ∂σY and ∂τY is spacelike,
while the other vector one is timelike, as required.
Let is also comment on the reduced system. In the case of

AdS3, Eq. (70) is satisfied identically as v ¼ 0, and (71)
reduces to sinh- or cosh-Gordon. In the degenerate case of
a− being null, which was omitted, the equation reduces to
the Liouville equation and the configuration actually lives
in AdS2. For AdS4 parametrizing v ¼ cos β and v¼ðsinβÞ,
the reduced system reads

∂−∂þβ ¼ μ exp ð−φÞ sin β; ðA40Þ
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∂þ∂−φ ¼ μ½cos β exp ð−φÞ − sμ expðφÞ�; ðA41Þ

which matches the results of [55].

5. AdS spacelike reduction and Minkowski world sheet

In this section we analyze the spacelike reduction of AdS
spaces. We remind the reader that this case corresponds to
t ¼ 1, i.e. ∂�Y · ∂�Y ¼ m2

�. Contrary to the timelike case,
we define the inner product as

∂þY · ∂−Y ¼ mþm− cosφ; ðA42Þ

it follows thatM3 ¼ Rð1;2Þ. It is a matter of algebra to show
that

∂σY · ∂σY ¼ m2þ þm2
−

4
þmþm−

2
cosφ; ðA43Þ

∂τY · ∂τY ¼ m2þ þm2
−

4
−
mþm−

2
cosφ; ðA44Þ

∂σY · ∂τY ¼ m2þ −m2
−

4
: ðA45Þ

Thus, both vectors ∂σY and ∂τY are spacelike as required.
In this case, it follows that S ¼ I1;n−2, i.e. the Killing

metric of SOð1; n − 2Þ. As fðφÞ ¼ cosφ, it is required
that s̃t ¼ 1. For the spacelike reduction t ¼ 1, thus s̃ ¼ 1.
As a result S̃ ¼ I1;n−1, which is the Killing metric of
SOð1; n − 1Þ. Again, the reduced theory is formulated as
the SOð1; nÞ=SOð1; n − 1Þ perturbed WZW model, see
Sec. 5.1 of [31]. In order to make contact with the results of
this work, once more we need to implement nonlocal field
redefinitions.
For completeness, we also present the equation of the

reduced theory, which read

∂þ∂−φ ¼ tanφ∂−ZT S̃∂þZþmþm−

Λ2
sinhφ; ðA46Þ

∂þ∂−Z ¼ −
∂þφ∂−Z
tanφ

−
∂−φ∂þZ
sinφ cosφ

− ð∂−ZT S̃∂þZÞZ:

ðA47Þ

The complementary form of Eq. (A47) reads

∂þ∂−Z ¼ −
∂þφ∂−Z
sinφ cosφ

−
∂−φ∂þZ
tanφ

− ð∂−ZT S̃∂þZÞZ:

ðA48Þ

We parametrize Z as Z ¼ ðn̂ cosh u
sinh u Þ, where n̂ is a

ðn − 1Þ × 1 column matrix of unit norm. Consequently,
the metric S̃ reads S̃ ¼ ðIn−1

0
0
−1Þ. It is evident that

Eqs. (A46)–(A48) are obtained from Eqs. (A22)–(A24)

via the double analytic continuation u → iuþ π=2
and φ → iφ.
There is also an alternative choice for the inner product.

We can define it as

∂þY · ∂−Y ¼ mþm− coshφ; ðA49Þ

so thatM3 can beRð2;1Þ. It is a matter of algebra to show that

∂σY · ∂σY ¼ m2þ þm2
−

4
þmþm−

2
coshφ; ðA50Þ

∂τY · ∂τY ¼ m2þ þm2
−

4
−
mþm−

2
coshφ; ðA51Þ

∂σY · ∂τY ¼ m2þ −m2
−

4
: ðA52Þ

The consistency of the basis requires

coshφ ≥
m2þ þm2

−

2jmþm−j
; ðA53Þ

so that one of the vectors ∂σY and ∂τY is timelike and the
other one spacelike.
In this case, it follows that S ¼ In−1, i.e. the Killing metric

of SOðn − 1Þ. As fðφÞ ¼ coshφ, it is required that s̃t ¼ −1.
For the spacelike reduction t ¼ 1, thus s̃ ¼ −1. As a result
S̃ ¼ I1;n−1, which is the Killing metric of SOð1; n − 1Þ. The
reduced theory is formulated as the SOð1; nÞ=SOð1; n − 1Þ
perturbed WZW model, see Sec. 5.1 of [31].
For completeness, we also present the equations of the

reduced theory, which read

∂þ∂−φ ¼ − tanhφ∂−ZT S̃∂þZþmþm−

Λ2
sinhφ; ðA54Þ

∂þ∂−Z ¼ −
∂þφ∂−Z
tanhφ

−
∂−φ∂þZ

sinhφ coshφ
þ ∂−ZT S̃∂þZZ:

ðA55Þ

The complementary form of Eq. (A55) reads

∂þ∂−Z ¼ −
∂þφ∂−Z

sinhφ coshφ
−
∂−φ∂þZ
tanhφ

þ ∂−ZT S̃∂þZZ:

ðA56Þ

Notice that the sign of the terms involving ∂−ZT S̃∂þZ as
well as the metric S̃ are different with respect to the
timelike case. We parametrize Z as Z ¼ ð cosh u

n̂ sinh uÞ, where n̂
is a ðn − 1Þ × 1 column matrix of unit norm. Consequently,
the metric S̃ reads S̃ ¼ ð−1

0
0

In−1
Þ. It is evident that

Eqs. (A54)–(A56) are obtained from Eqs. (A22)–(A24)
via the analytic continuation u → iu.
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APPENDIX B: DETAILS OF THE SOLUTION OF
THE AUXILIARY SYSTEM

In this section we provide some details on the final part
of the derivation of Sec. III B. To begin with the matrix V,
which appears in (23), has the structure

VT ¼ ð vT1…vTnþ2 Þ; ðB1Þ

while the inverse matrix has the structure

V−1 ¼ ð v01…v0nþ2 Þ; ðB2Þ

where, obviously, the vectors v0α obey vTαv0β ¼ δαβ. On a

similar token the currents ĵ� have the following form:

ĵþ ¼ s
Λ2

½vnþ1vTnþ2 − vnþ2vTnþ1�; ðB3Þ

ĵ− ¼ s
Λ2

½vnvTnþ2 − vnþ2vTn �: ðB4Þ

It is a matter of algebra to show that

VĵþV−1 ¼

0
BBBBB@

0n−1 0 0 0

0T 0 0 s mþm−
Λ2 fðφÞ

0T 0 0 st m
2
þ

Λ2

0T 0 −1 0

1
CCCCCA; ðB5Þ

Vĵ−V−1 ¼

0
BBBBB@

0n−1 0 0 0

0T 0 0 st m
2
þ

Λ2

0T 0 0 s mþm−
Λ2 fðφÞ

0T −1 0 0

1
CCCCCA; ðB6Þ

where 0n−1 is the ðn − 1Þ × ðn − 1Þ zero matrix and 0 is the
ðn − 1Þ × 1 zero matrix.
The explicit form of the vectors v0α is

v0i ¼ siηvi; v0nþ2 ¼
s
Λ2

ηvnþ2 ðB7Þ

where i ¼ 1;…; n − 1 and η is the metric of the enhanced
space. The rest of the columns read

v0n ¼
1

m2
−ðt2 − f2Þ η

�
tvn −

m−

mþ
fvnþ1

�
; ðB8Þ

v0nþ1 ¼
1

m2þðt2 − f2Þ η
�
tvnþ1 −

mþ
m−

fvn

�
: ðB9Þ
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