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Similarly to extremal Reissner-Nordstrom black holes (BHs), D3-branes and their intersecting bound
states in lower dimensions enjoy a peculiar symmetry under conformal inversions that exchanges the
horizon with infinity and keeps the photon sphere fixed. We explore the implications of this symmetry for
the dynamics of massless and massive Bogomol’nyi-Prasad-Sommerfield (BPS) particles. In particular we
find a remarkable identity between the scattering angle of a probe impinging from infinity and the in-
spiralling angle of a probe with the very same energy and angular momentum falling into the horizon from
inside the photon sphere. We argue for the identity of the radial actions and Shapiro time delays of the two
processes, when some cutoff regulator is adopted. We spell out the detailed conditions for the inversion
symmetry to hold in the case of large BPS BHs in four dimensions. We address conformal inversions for
other BHs and Dp-branes with photon spheres in various dimensions. We briefly discuss the fate of the
symmetry at the quantum level as well as for nonspherically symmetric BHs and branes and sketch
potential implications for the holographic correspondence.
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I. INTRODUCTION

Direct detection of gravitational waves (GWs) emitted
by binary mergers of black holes (BHs) and neutron stars
has triggered increasing attention onto the detailed features
of the signals that can unveil the inner characteristics of
very compact gravitating objects [1-4].

In particular, astonishing progress has been achieved in
the determination of the corrections to the GW signal
emitted in the “in-spiral” phase, relying on the connection
with scattering amplitudes [5-8], as well as in the
“ring-down” phase, relying on the peculiar connection
between quasinormal modes (QNMs) and quantum
Seiberg-Witten curves for N = 2 supersymmetric Yang-
Mills theories [9-12].

Other important features, such as the presence of echoes
[1,13] for exotic compact objects, such as horizonless
microstates in the fuzzball proposal [14—19], and memory
effects [20-25], based on soft theorems [26-30] have
been investigated and precise characteristics have been
identified that should allow to distinguish BHs from stringy
fuzzballs [31-37].

A common and crucial feature of BHs, D-branes and
other compact gravitating objects is the “photon sphere” or
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light ring (light halo for rotating objects) formed by the
unstable bound orbits of massless particles such as photons
“surfing” the wall separating the asymptotically flat region
from the horizon (or the inner region for fuzzballs) [38—42].
The aim of the present investigation is to point out a
remarkable symmetry between these two regions for special
classes of BHs and D-branes. Indeed we will prove that

(1.1)

for impact parameters b = J/E above the critical value b,..
While A¢g.(J, E) denotes the deflection angle of a
massless probe with “energy” E and orbital angular momen-
tum J outside the photon sphere, A¢y (J/, E) denotes the
angle described by a massless object with the very same
energy E and angular momentum J falling into the horizon
from inside the photon sphere.

Our “inversion” formula bears some resemblance with
the equally remarkable “boundary to bound” (B2B) cor-
respondence in binary processes between periastron
advance A¢(J, E) and the scattering angle y(J, E) [7,8]

Adpan (J» E) = Ad)scatt(‘]’ E)

AP(J,E)=y(J,E)+y(-J,E) E<0. (1.2)
While the latter requires analytic continuation in the
binding energy E and angular momentum J but seems
valid to all orders in the post-Minkowskian (PM)
expansion for (nonrotating) compact objects in the
“conservative” sector [7,8], the former requires no analytic

continuation but seems valid only for massless or massive
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Bogomol’'nyi-Prasad-Sommerfield (BPS) probes in a
restricted number of cases, including extremal Reissner-
Nordstrom (RN) BHs, D3-branes, 2-charge small BHs in
d =5 and 4-charge “large” BHs in d = 4.

The geometric peculiarity of these special cases is not
only extremality but also their symmetry under conformal
inversions of the Couch-Torrence (CT) kind [43], which
have been recently revived and generalized [44—46] also in
connection with Freudenthal duality [47,48] and BH (in)
stability [49-53].

The plan of the paper is as follows. After briefly
reviewing the concepts of critical impact parameters and
photon spheres for null geodesics in Sec. II, we show that
the inversion formula holds true for extremal charged RN
BHs in d =4 in Sec. IIL

In Sec. IV we demonstrate the validity of the inversion
formula for D3-branes thanks to both a homological
argument based on contour deformation and a geometric
argument based on a generalized Couch-Torrence inversion
that keeps the photon sphere fixed. We then pass to analyze
intersecting D3-D3’ “small” BHs in Sec. V and for 4-charge
large BPS BHs in Sec. VI. While the former follow very
easily from the previous case any numbers of intersecting
D3-D3’, in the latter case we find restrictions on the four
charges for the inversion symmetry to hold.

We consider massive BPS probes in Sec. VII and find
similar subtle restrictions on the charges and masses for
4-charge large BPS BHs but no such issues for 2-charge
systems.

In Sec. VIII we find that extremal BPS 3-charge large
nonrotating BHs in d =5 do not seem to enjoy the
inversion formula. We also find similar difficulties for
other BHs and Dp-branes with photon spheres in various
dimensions with flat or AdS asymptotics. We briefly
address the issue for rotating black holes, which will be
discussed more thoroughly in [54].

In Sec. IX we discuss the fate of the inversion formula at
the quantum level, possibly including the regularization of
the “radial” action by introducing a cutoff or putting the
system in AdS. We also sketch potential implications for
the AdS/CFT.

Section X contains a summary of our results, our con-
clusions and directions for further investigation in the future.

II. CRITICAL NULL GEODESICS
AND PHOTON SPHERES

Scattering of (massless neutral) probes impinging
from (asymptotically flat) infinity off compact rotationally
invariant (nonspinning) gravitating objects,12 such as

'"The discussion can be easily generalized to (A)dS asymp-
totics with very little effort, as we will see, and with some effort to
rotating objects.

In the rotating case the critical radius varies in an interval
T = Tmin < Te < Fmax 138—41].

BHs or D-branes, typically exposes three different
regimes, depending on the value of the impact parameter
b=J/E [19,38]:

(1) b > b,.: above a critical value, the probe scatters off
with a deflection angle A¢p~GyM/b3 in d
dimensions (with G, the Newton constant and M
the mass);

(i) b = b,: at the critical value, the probe is (asymp-
totically) trapped in an unstable “circular” orbit
r=r,~b,~(GyM)"/43,

(iii) b < b,: below the critical value, the probe falls into
the horizon.

In Fig. 1, we plot the geodesics for D3-branes since these
will be studied in detail. The critical impact parameter b,
and the critical radius r,. are determined by the conditions

Veii(re) = E*> and  Vig(r.) =0, (2.1)
where V4 is the “effective” potential.

For a spherically symmetric compact object, described
by an asymptotically flat (or AdS) metric of the form

dr’
dS2 = —f r dtz +—+ rzdszn—z, 2.2
() + s o+ a3 22)
the null geodesic equation ds*> = 0 can be separated and
put in Hamiltonian form:

E2 J2
———+f(r)P; +t3

H=0=-%5

(2.3)
where

i .
P,=——. J=P,=r%.

E:—P,:f(l’)i, f(r>

(2.4)

Thanks to spherical symmetry, only the total orbital angular
momentum J and its conjugate angular variable, denoted
by ¢, play a role.

Extracting P, and computing the radial action

S,(J. Esriry) = / 7 P.(J.E)dr

'y J? dr
_ 2 _ (4
B / VE =102 50

in terms of the conserved energy E and angular momentum
J, as well as of the initial r; and final r/ radii, one can easily
compute the deflection angle’

(2.5)

*We are assuming that r;, rs are either independent of J or are
turning points of the radial motion so that P,(r;/;) = 0.
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oJ )P,.(J,E)

ry Jd
= / ! d (26)
r E\/r* = b2 f(r)
and Shapiro time delay*
E; r Ed
At:_asr(-], ’rl’r2):_ 2 5 r . (27)
OE r f(r)*P.(J,E)

For Dp-branes, their bound states and other extremal/
BPS objects it turns out to be convenient to use a different
radial variable such that u = 0O at the horizon r = ry. The
metric in isotropic form reads

dr?* — dx> 5

ds* = — ) + h(u)[du® + uPds, ). (2.8)

Setting to zero the p “longitudinal” momenta P, = 0, as
well as the Kaluza-Klein (KK) ones, if present, one has

2 1 2 ‘]2
H=0=~h(u)E + s | P+ (2.9)

h(u)

so that the radial action becomes

u J2
SM(J,E, up, Mz) = :l:/ ’ h(u)zEz——zdu (210)
u; V u

and the deflection angle and time delay turn out to be given
by

“This is valid when r;, ry are either independent of E or
turning points of the radial motion so that P,(r;;;) = 0.

(b) (©)

2
y y

b=+2

b=13
x
2

-2

Geodesics in D3-brane geometry (L = 1) for (a) b > b, (b) b = b, and (c) b < b,.

w Jd w Eh(u)?d
Aqﬁ:—/zzju, Az:—/z(”)”. (2.11)
w 12P,(J.E) w Pu(J.E)

III. INVERSION SYMMETRY
FOR EXTREMAL RN BHs

In Einstein-Maxwell theories, the most general spheri-
cally symmetric BH in d = 4 is the (nonextremal) RN BHs.
Setting G = 1, the metric is given by (2.2) with

M Q2

f(r):l—7+7. (3.1)

For zero charge QO = 0 one gets a Schwarzschild BH. For
|Q| = M one gets an extremal RN BH. The two horizons
are located at

rs =M+ /M? - Q2. (3.2)

Vett

= \ 2
oo oS
\ ST
\

FIG. 2. Nonextremal RN effective potential for M = 2,
0% =3.75.
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The effective potential is given by
Ploam @ i

See Fig. 2 for non extremal RN BHs and Fig. 3 for extremal

RN BHs. Imposing Vi = E* and V. ot = 0 one finds the
critical radius r. and the critical impact parameter b,

[40,41]:
Lam + Vom? —s0?) (34) LA | N

Extremal RN effective potential Q = M = 1. The

10

2
b — 2r
c r, -M FIG. 3.
horizon is a double zero of the metric
_[27M* =36M> Q% + 80" + M(9M? —80?): (35)
- 2(M?—Q?) ' ' dr? .
ds* = ) + h(u)(du® + u*d0* + u? sin Odg*)
For b > b, there are four solutions (“turning points”) of 5
Ve = E* with r| >r2>rH>rH>r3>O>r4 h(u) = <1+g> ) (3.8)
The scattering angle’ is given by (2.6) integrated from oo u
to the turning point r; (the largest root):
The zeros of P, are encoded in the algebraic equation
W+ MQ2F pu+ M =0, (3.9)

B=1= 1z
r (3.10)

A¢scatt(E J = _b/ \/W
2b C |arcsin 24 H1472 (3.6)
/T3 ria \ riara where we introduced the (adimensional) impact parameter
L. The four solutions are

— rjywithi, j=1,2,3,4

where rjj =r;—rjandri =r;
If b = b, it is easy to see that r; = r, and (3.6) diverge, so
the massless probe gets asymptotically trapped in a circular
unstable orbit. The union of such orbits for photons (or
other neutral massless probes) impinging from different
7 where [+] indicates the uncorrelated signs. All the solutions
are real for >4 = f. that corresponds to the critical
impact parameter. For # > 4 the ordering of the roots is the

directions generates the “photon sphere
In principle a massless probe with the very same energy

E and angular momentum J, such that b > b, can be
following:
=uZ. (3.11)

“emitted” from inside the photon sphere. Due to the strong
gravitational attraction it cannot escape to infinity but rather
falls into the horizon describing a “spiral.” We can compute >0 o
the in-spiralling angle which is given by integrating (2.6) "1~ “+ g e e
+.
f Since u, is the largest root of P, the scattering angle is
given by

from r, to the horizon r

Aqﬁfall(EJ __b/ m
{arcsm r AELPE /rzzrlq (3.7) Adsear(E.J) _b/ h(u Vut — b2’
”23’1+ 13724
[arcsm1 =34 /Usz (3.12)
Uig | V13024

913”24

NG
In general (3.6) and (3.7) are different for Q # M. In the
extremal case (Q = M) they coincide. In terms of the
where we set u; = Mv; fori =1, 2, 3, 4
Following the same procedure, we can derive the in-

coordinate u = r — Q, the metric reads
scattering angle is A = 7 — 2Adqcan spiralling angle:

5Actually the “standar
126007-4
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Adai(E,J) = =b / \/szz

13172 U23ly4
/C arcsin
U137/24 ”23”1 V13024
(3.13)

and observe that the expressions (3.12) and (3.13) are equal
if and only if

D D13% (3.14)

Uig U230y

that indeed holds true for Q = M, so much so that the angle
described by the massless probe from infinity to the turning
point and the in-spiralling angle are equal for extremal
RN BHs:
AGETRN(E, ) = AGESRY(E, ). (3.15)
We will have more to say about this remarkable relation
after discussing D3-branes and their bound states. Suffice
it to say here that the extremal RN metric admits a
conformal inversion u — Q?/u that preserves the light-
cone (ds*> =0 — ds>=0) up an overall Weyl factor
W =u?/Q?> and keeps the photon sphere u, = Q
(r. =20 > ry = Q) fixed. These kinds of transformations
were introduced by Couch and Torrence [43] and recently
revived by [44,45,47,48].
Before concluding this section, let us briefly consider the

fate of the inversion symmetry for spherically symmetric
charged BHs in AdS,.° whereby

Q2 r2

2M
f(r)=1—7+r—2+ﬁ. (316)

Computing the radial momentum P, one finds
f2(r)PZE™2 = r* = D22 f(r)
=rt (1 - %z) — b’r? +2Mb*r — Q%
(3.17)

Positivity of the leading term at infinity requires |»| < £. In
the asymptotically AdS case, for M = Q one finds

APAS(b = J/E) =

/\/r S — b2 f(r)
Agph | b= b/\/l—b—z

®In principle dS corresponds to 2 — —¢

(3.18)

2

Asaresult AgL3S (J, E) = ApRSS(J,E) for charged BHs in
AdS with M = Q as in flat space- -time.” Even though the
radial action is not invariant under r —ry — (r, — ry)?/
(r —ry), with r, = 2ry = 2M = 2|Q|, one expects Couch-
Torrence conformal inversions [43] to admit a generaliza-
tion in gauged (super)gravity [44,45,47,48].

Let us now pass to consider Dp-branes with metric (2.8)
where

L’-r
H(u) =1 + u7—p

(3.19)

In particular we will mostly focus on D3-branes and their
bound states.

IV. D3-BRANES

In the case of D3-branes, the turning points, i.e. the zeros
of h(u) satisfy

ut = bt + L4 =0 (4.1)
and are thus given by
b? 4L*

so that the critical “radius” and impact parameter are u, =
L and b, = v/2L [19,39-41]. Setting

VoL

3 (4.3)

y:

we can see from (4.2) that for 0 < y < 1 we have two real
positive solutions such that #, > u_ and two real negative
solutions —u, < —u_. The scattering angle is obtained
from (2.11) integrating from u = oo up to u,:

Uy du
A(.i)scatt =-b /x, P b T 14

Uy du
__blo Vi@ =) =)

(4.4)

Setting v = “* one can express the integral in terms of a
complete elliptic function of the first kind:

7Strictly speaking the solution with M = Q is a naked
singularity without a proper horizon [55]. Regular charged
BHs in AdS have nonzero angular momentum [56]. Yet a photon
sphere is present at r. = 2ry = 2M = , independent of 7, in
the nonrotating case.
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A¢ scatt —

] @

that admits a representation in terms of a Gaussian hyper-
geometric function
4
7/ ]
1—7%)?

2

A¢sca = ]C|:
tt 1_7/4 (1 +

(4.6)

For 0 < y < 1 the argument of the hypergeometric function
is smaller than 1 and this ensures convergence of the series.
Fory = 1(b = b,) the series (4.6) diverges and the massless
probe gets trapped in the photon sphere. Fory > 1 (b < b,.)
it falls into the horizon hovering the photon sphere.

The in-spiralling angle is (2.11) integrated from the
internal turning point u,, which exists for y < 1, to the
horizon uy = 0:

0 dr

- | ==

If we choose the new variable u = .-, we can express (4.7)

(4.7)

in terms of a complete elliptic integral of the first kind
obtaining exactly the same expression as in (4.5). In other
words in a D3-brane background, for impact parameters

larger the critical one (b > v/2L), the angle described by
the massless particle coming from radial infinity and
approaching the turning point is exactly equal to the in-
spiralling angle.

We would like to provide two arguments to explain this
peculiar and far-reaching property. The first one is a homo-
logical argument based on contour deformation for elliptic
integrals. The second one is a geometric argument based on
the hitherto un-noticed symmetry of the D3-brane metric
under conformal inversions, generalizing the ones in [43].

The homological argument runs as follows. The integral
At =Z(0,u_) can be extended to negative values
of u so that 2A¢ey = Z(—u_,u_), closing the contour
in the Im(u) < O half-plane one has 4A¢yg,; = §, @; ie.
it can be viewed as the a-period of the elliptic curve
(torus). Similarly extending beyond infinity 2A¢e..« =
Z(+u,,—u,), closing the contour in the Im(u) <0
half-plane one has 4A@p..« = fa, w; i.e. it can be viewed
as the a’-period of the elliptic curve (torus). But the
cycles a and a’' are homologous so that Agey = Adecu-
See Fig. 4.

n 2 F(l 1_1‘ el )
2 1+ r‘——"l_yé‘z 1 212’ (1+ ,-———»1_7/4)2 .

R

FIG. 4. The position of the branch cut in the complex u plane.

The geometric arguments runs as follows. Performing
the transformations u — L?/v the (relevant part of the)
D3-brane metric suffers a Weyl rescaling:

LY\~ LY\~
ds2:—<1—|——4> dr2+(1+—4> (du® +u*dg?)
u u

L2 L4 -1 L4 -1
—>—2[—(1+—4> dt2+<1+—4> (dvz+vzd¢2)}
v v v
(4.8)

Since massless geodesics are Weyl invariant and u_ =
L?/u. the integrals corresponding to the two angles get
exchanged under conformal inversion u — L2 /u, whose
fixed locus is the photon sphere u, = L. This is a
remarkable symmetry of D3-branes that—if not spoiled
by quantum corrections—can reveal new insights into the
holographic AdS/CFT correspondence. We will see that
the same property is enjoyed by intersecting D3-brane
systems with two and four charges. In the latter case this is
related to generalized Freudenthal duality [44,45,47,48].
After imposing suitable restrictions on the charges, it
amounts to a generalized Couch-Torrence inversion.

V. D3-D3’ SMALL BHs

Let us consider a massless probe in an intersecting
D3-D3’ background® compactified on T* x S!. We denote
by y the coordinate compactified on a (large) circle S!,
by X the coordinates along the four (1-4) noncompact
spatial with Dirichlet-Dirichlet (DD) boundary conditions
directions and by 7 the coordinates along the four with
Neuman-Dirichlet (DD) boundary conditions directions (6-9)
compactified on a (small) 7*. After smearing each D3’ along
the transverse 72 directions, the metric is given by

ds* = —(HyHy)2(d* — dy*) + (H;Hy )2dx>

H;\: Hy\1/2
ds? — ) ds3,
+ <H3/> ST§7 + <H3 sTé‘)

(5.1)
with

$This system is T-dual to the D1-D5 system. We work in the
D3-D3’ U-duality frame to keep a uniform notation.
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Hy(u) =1 +i—§, Hy(u) =1 +If; (5.2)
Setting
X; + ix, = u cos fe'V, X3+ ixg = u sin@e’®  (5.3)
the four-dimensional metric in the DD directions reads
dx? = du® + u*[d0* + sin® 0d¢? + cos® Ody?].  (5.4)

The zero mass shell condition Hamiltonian formalism reads

1 Py P P’
H=vH(P} P2)+[P2+ ! £

u?sin2@ = u*cos?6
Hy _
+IP, WH PP

where H = H3H5.

Thanks to spherical symmetry, without loss of generality,
one can consider motion in the equatorial plane (0 = z/2).
As a result J, =0 and J,=J is the total angular
momentum. For simplicity, for the time being, we also

(5.5)

take vanishing KK momenta 132 = 131/ =0 along the
compact directions. We will consider massive BPS probes
later on.

The only difference between D3 and intersecting D3-D3’
lies in the definition of the (harmonic) function H(u).
Indeed we expect D3-D3’ systems to enjoy the same
property that characterizes D3-branes. In the present case
the turning points satisfy

L% L%/ l/l4
(1+7> (1+u2 ﬁ—zﬂ:o (5.6)
whose solutions are
1
2 _ Y0 272
W = 2{b 3=/ - — 41313 }.
(5.7)

Analogously to the D3 case we can compute the
scattering angle, described by the probe from infinity to
the “external” turning point u = u_, as well as the in-
spiralling angle, from the “internal” turning point ¥ = u_ to
the horizon uy = 0. Taking into account the difference
between roots (4.1) and (5.6) the integrations can be
performed in an identical way and the formulas obtained
for the scattering and the spiralling angle are the same:

2
A(:bscatt(oo’ u+) = A¢fall(u—’ 0) = i, ’C |:u2_:| (58)
+

where u, in (5.8) are given by (5.6).

Once again the conformal inversion symmetry

LBLSI

u

u —

(5.9)

under which u, = L3Ly/u_ and the photon sphere u,. =
/L;Ly is fixed, is crucial to explain the geometric origin of
the result.

We do not repeat here the homological argument based
on contour deformation, because it runs exactly the same
way as for D3-branes.

VI. INTERSECTING D3-BRANES
AS LARGE BPS BHs

Intersecting four stacks of D3-branes, such that any pair
has four common N-D (internal) directions, one gets a large
BPS BH solution in STU supergravity (STU supergravity
with 3 complex scalars usually denoted by the symbols S, T
and U) with four charges Q,. Neglecting the internal 7%, to
which we will turn our attention later, the (4-d) metric is
given by

s2:—ﬁ<1+%>_%dt2
+H(

Our aim is to prove the property that the scattering angle
and the in-spiral angle holds true for all backgrounds of the
form (6.1). The case in which all the charges are equal
coincides with an extremal RN background that we already
dealt with in Sec. III. We first identify the most general set
of charges that lead to solutions admitting a conformal
inversion symmetry a la Couch-Torrence. Then we will
analyze the case Q; = Q, > Q3 = Q, that still admits an
analytical treatment and briefly discuss the unequal charge
case at the end.

) [du?® + u?(d6* + sin> 8d¢?)]. (6.1)

A. Couch-Torrence conformal inversion

In the case of 4-charge BHs obtained from intersecting
D3-branes the relevant inversion is

. \/Q1Q2Q3Q4‘

u

(6.2)

This is a conformal isometry of the metric if and only if’

ZQ;’ =/ 010,030, 0

(6.3)

This happens to be the case when all Q’s are equal or when
they are equal in pairs. Setting

°Otherwise one has to perform a (symplectic) transformation
on the charges as well [44,45,47,48].
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01=x0;,  0,=y0s  03=20, (64) . @
/ ; 1i b=13
the condition boils down to 7o H b=1088
o 14
1 1 1 :
1+x+y+z:\/m<1+;+;+;>. (6.5) — 4

In general setting z = A°xy one finds that the only three

solutions are

LS}

==, (6.6)

y

AZ 12 —

2 =1,

that in turn mean (assuming all charges to be positive)

7x (6.7)

=Xy, X = Yyz, y

or even more simply
(6.8)

010, = 0304

or permutations thereof. It is amusing to see that the
simplest nontrivial integer solution is (a permutation of)
0,=1,0,=2, 0O3=3, Q4 =6. In general we have a
three-parameter family of solutions admitting conformal

inversion as a symmetry. In all these cases the photon
sphere, located at

U, =/ 010,0304,

(6.9)

Y

\
Bl S LA
& °

FIG. 6. D3D3D3D3-brane effective potential for Q; =1,
0,=2,0;=3and Q4 =4.

the square root of (6.10) reads

(1+2)(qg+2z) =+pz (6.12)

which admits the following solutions:
—(a+1FPENVIg-1)’+F F2pq+1)
2 b
(6.13)

-

where the square parentheses mean the uncorrelated signs.
Let us notice that in the limit ¢ — 1 we recover the roots
(3.10) that allows us to order the roots in (6.13) as follows:

(6.14)

is fixed under inversion and u u, = u2 = \/0,0,0:0,.

As a consequence the identity A¢y..« = Ay, has a deep
geometric origin that allows to turn these 4-charge BHs

u=zi>0=3>0>nz=7>2Z=z

The position of the branch points in the z plane is

inside out their photon spheres.

B. Pairwise equal charges

For simplicity we set Q; = 0, = Q and Q3 = Q4 =
and we choose Q > Q. The turning points satisfy

M\ 2

<1+Q)2<1+Q> - b*u? =0. (6.10)

u u
Setting

u b 0

= == == <1,

=9 PTg 17g-

Sz}

_____

FIG. 5.

depicted in Fig. 5. The structure of the scattering and in-
spiralling angle is the same as in (3.12) and (3.13) and, as
for extremal RN, the roots (6.13) satisfy a relation analo-

Q
gous to (3.14).
C. All unequal charges
In general, for different charges the effective potential for
massless particles is given by
.12

e (6.15)

Veff(u) = I,[2 4

i=1
The effective potential for a special choice of different
charges is plotted in Fig. 6. Setting

_u _b _9
O ﬁ_Q4 on

without loss of generality one can take 0 < g; < g; <'1
with i < j =1, 2, 3. The effective potential has a minimum

z g i=12.3 (6.16)

The position of the branch cuts in the complex z plane
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in z = 0 and a maximum in z = z. > 0. The critical impact
parameter is identified by the following relations:

Ver(z = 2.) = E?, V:eff(z =2.)=0

\/(1 + Zc)(qZ + Zc)(q3 + Zc)(qél + Zc) )
e

pe =

(6.17)

We are interested in the regime in which f > f.. The
zeros of P, are encoded in the following algebraic
equation:

(1+2) (g + (g2 +2)(g3 +2) =22 (6.18)

The expressions for the scattering and in-spiralling angles

are the same as in (3.12) and (3.13), where now the z; are
the solutions of (6.18).

Although (6.18) can be solved by quadrature, the

expressions for the z; are quite cumbersome to manipulate.
In order to check that even in this case

4 4
AGEe = Mg (6.19)
holds true it turns out convenient to use numerical methods
that confirm indeed the validity of our inversion formula,
provided Q;0Q, = 030, or permutations thereof.

One may try and extend the analysis to 4-charge STU
BHs in AdS with metric [55]

4 1
ds*> = —f(u) | [ H;ar
i=1

4 2

1d
+[[#: % + u?(d6? + sin26’d¢2)} (6.20)
i=1 u
with H; =1+% and f =1 —|—§ 4 H;. It is easy to
check that

ApSs(b =J/E) = ApiS | b= (6.21)

for generic choice of the charges Q; so much so that

AP (L E) = Adpss " (JLE)  (6.22)
if 0,0, = 030, or permutations thereof. Yet, as already
mentioned in the case of singly charged BHs with M = Q
in AdS, strictly speaking (6.20) has a naked singularity and
no proper horizon [55], even though a photon sphere at the
same u = u, as in flat space-time is present that is fixed
under CT transformations u — u2/u, exchanging infinity
and the “putative” horizon at u = 0. Regular BHs with

arbitrary charge in AdS require nonzero angular momen-
tum [56].

VII. MASSIVE BPS PROBES

So far we have only considered massless probes. Let us
try and consider some massive probe. For simplicity we
will focus on massive BPS particles that owe their mass to
their (generalized) KK momentum along internal direc-
tions. Since in the case of D3-branes there are none, we will
consider intersecting D3-branes. For non-BPS particles
with arbitrary masses and couplings to the geometry we
do not expect the identity to hold.

A. D3-D3 with massive BPS probes

In the intersecting D3-brane configuration (5.1) with
Ly =Ly = L, one can consider the hyperplane 6 = z/2
without loss of generality. The relevant part of the metric
reads

ds? = H3(—d +dy?) + H"?(d® + u?d6?) +dz2, (7.1)

where H = HyHy = h> with h = 1 —I—I’;—:.

The mass shell condition H = ¢"Vpy,py =0 holds
exactly in ten dimensions, but we allow nonzero momenta
associated to the internal z coordinates. In the Hamiltonian
formalism, imposing the mass-shell condition yields

2

P2 =h*(u)E* —m*h(u) L

2 52:E2—P§’ m2:|pz|2'
u

(7.2)

The effective potential, the massive particle is subject to, is
given by

Vese(ut) u? ) b? m
= , =—. 7.3
e —ere\¢ Tere) rtE 09
The radial turning points are
/12
2 :7(1 + 1—y2) (7.4)
with
2L%\/1 — u? L
v a 1= (7.5)

TP AL - 2L B
Obviously u?> < 1 and we are interested in the regime in
which v < 1. The effective potential (7.3) is symmetric
under exchange u — —u and this fact is reflected in the
position of the roots on real axis:

(7.6)

uy >u_>0>—-u_>-u,.
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The expressions for scattering and in-spiralling angles are,
respectively,

Uy du

A¢scatt - _ﬂA \/(u2 — u%r)(uz = u%) (77)
0 du

AQﬁfall = _ﬂ N \/(142 — u%—)(uz — u%) d (78)

where = b/+/1 — p?. It is crucial to note that the roots
of (7.4) obey uju, = A% so starting from the scattering
angle and performing the coordinate transformation

v = “‘—;2 = % which leaves the photon sphere at
u.(L,pu) =2 fixed, it is very easy to demonstrate that
Ag(oo.uy) = Ad(u_.,0).

The generalization to L3 # Ly is straightforward. We
only write down the expression for the radial momentum

P% = H3H3f(‘:2 — m2H3 — m/2H3! -5
u

L2(1 _MZ) +Ll2(1 _'u/2) _ b2

— 21_ 2 _ 2 1
El-u ”)[+ (1 —p? = p*)u?

LZLIZ

7 7.9
+(1_#2_#/2)144} (7.9)
with m? = |p|> = u?£* and m”? = |p'|> = y/>E2. The angu-
lar deflection is given by

du

Aqﬁ:l;/uf _ (7.10)
i \/u4+(5{2—b2)u2—|—/14

with

B _ L21—/42 —|—L/21—ﬂ/2
b=b/1- -, @ =2 1_)ﬂ2_ﬂ§2 :
P =LL/\/1—u>—u>. (7.11)

The turning points are

W2 = %[52 _@ - -4 (1.12)
so that the critical impact parameter is given by
b=\at+2.2 (7.13)
while the photon sphere is located at
ﬁczﬂ:%. (7.14)

Using the homological argument or the conformal inver-
sion u — A%>/u one easily proves the identity

APl = AppfX (7.15)

for generic KK masses and D3 and D3’ charges.

B. D3-D3-D3-D3 with massive BPS probes

The generalization to 4-d BHs with four charges
associated to four stacks of intersecting D3-branes is
subtler. For six generic KK momenta p;; =p;; with
i#j,i,j=1,..4, such that m}; = |p;;|* = pj,E?, satisfy
the 10-d mass-shell condition, the radial momentum is

given by

4 6 2

J

P2 =g | |Hl~(u) - E miHH; —a
i=1

i<j

o 0__132 O O,
=821 -1+ 42 =,
( ,u){ u+ u? +u3+u4

(7.16)

where > = >, _;u?, b=1b//1—y* and
_ >:0i(1 = Ej;éi,uzzj) _ Zi<jQin(1 _ﬂ%j)

(] s (o)

1—u? 1 -2
(7.17)
oy = Zi<j1<k_QMiZQij’ oy — Q11Qi%32Q4' (7.18)

Conformal inversions of the Couch-Torrence kind cor-
respond to

u— @. (7.19)
u
This is a symmetry of the metric if and only if
01\/a1 = o5 (7.20)
which is a nontrivial constraint on Q; and m;;, whose
solution, up to permutations, is
Q1 =xQ4 0r =y0, 05 = PxyQy  (721)
with
P =@ A=\J1=p* u;=0 for(i,j)#(1,2)
(7.22)

or

126007-10



TURNING BLACK HOLES AND D-BRANES INSIDE OUT OF ...

PHYS. REV. D 105, 126007 (2022)

1
l—p

W =2 A= =0 for (i,j)#(3.4). (7.23)

In these cases (constrained charges and KK momentum)
the photon sphere is located at u, = /o, and it is easy to
check that

A scatt = Aq”tal] (724)

either by algebraic or numerical means.

However, for non-BPS particles with arbitrary masses
and couplings to the geometry we do not expect the identity
to hold.

VIII. HIGHER-DIMENSIONAL BHs AND BRANES

After the success obtained for D3-branes and intersect-
ing D3-brane systems, it seems quite natural to inquire
whether BHs and branes in higher dimensions that expose a
photon sphere admit a similar inversion symmetry. We
anticipate that the answer is negative. The basic reason is
the very different behavior of the geometry at infinity from
the geometry at the horizon.

Nevertheless we briefly analyze the five-dimensional
nonrotating case and even more briefly sketch the gener-
alization to higher dimensions and AdS asymptotics.

A. Nonrotating (BPS) BHs in five dimensions

In type IIB compactifications on 77, five-dimensional
nonrotating BHs with nonzero horizon area can be con-
structed by superposing Qs D5-branes, Q; D1-branes and
Kaluza-Klein momentum Q,. The Qs D5-branes are
wrapped on T°. The Q, D-strings are wrapped along
one of the directions of the torus and the KK momentum
P = N/R along the string. The solution is given in terms of
three harmonic functions H,, Hs and Hp:

Q1 Qs

H, —1+

(8.1)

with u? = )c1 + -+ +x3. The metric reduced to five
dimensions in sphencal coordinates is

dr*
ds? = ————— + (H,HsH,)}[du?
(H HsH, )}

+u?(d6® + sin® 0d¢? + cos® Ody?)].  (8.2)

In the hyperplane 6 = /2, setting H = H,HsH,,, the
Hamiltonian for massless probes can be written as

12
0=H=-|-HE>*+H'/3 <P2 + )] (8.3)
M

If, for simplicity, we consider Q; = Qs = Q, = O, the
zeros of P, satisfy
w+ (30 -b)ut +30%> +Q*=0.  (8.4)
Setting { = u?/Q, > = b*/Q, (8.4) becomes
C+GB-HE+3¢+1=0. (8.5)

This third degree equation has three real roots {;,i = 1,2, 3

only for f > 3v/3/2, which are such that
(>80 >0> ;. (8.6)

The angle described by the particle coming from infinity
and reaching the turning point u#; = \/Q¢; is given by

" rdr
oo,r|)=-b
#(oo.r1) L V=04 (= 05,) (W - 0F3)

i _é/ ot dx
2 /e V(x=0¢1)(x=08)(x = 083)

on/x=t b |=C, / ! d¢ ‘
“hloJee-nE-E-)

(8.7)

Since {,/{, > 1 > 0 > /{3, the last integral in (8.7) can
be written in terms of the complete elliptic integral of the

first kind:
_ b fe
VO3 Ci3|

The in-spiralling angle can be computed in a similar way:

¢(c0, uy)

(8.8)

0 udu
,0)=-b
WO = ) = ot - 0 = 05
"ix _ _é 0 dx
2 u? \/ x - le X = QCZ)(X - Q£3>
fx/”7

(8.9)

=

=)

Since ¢, /¢, > 1 > 0> {3/¢,, the last integral in (8.9)
can be written in terms of incomplete elliptic integral:

152513 [§%
(8.10)
STS5 \/;]

Notice that (8.8) and (8.10) are different in general and
cannot be rendered equal for any choice of . The deep

¢(uy,0) =

QC13
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reason of the inequality is the lack of symmetry between
horizon uy = 0 and infinity u — co. While the latter is a
branching point the former is a regular point. Moreover as
we discuss more extensively momentarily, generalized
Freudenthal duality in D =5 exchanges particles with
strings.

B. Other p-branes

The relevant formula (under square root in the denom-
inator) viz.
u*Pi = F(u) = u*H ,(u) — u*b* (8.11)
suggests absence of a photon sphere (critical geodesics) for
p > 5 and its presence for p < 4. We already discussed at
length the case p = 3. Let us consider the other cases with
p <4, for which

F(u) = u*H,(u) — u?b* = u* + L"-Pur=> - b?u® (8.12)
so that
5-p T—p
=VT-p\ 5L = (8.1
U 7 V4 2 P bL 5_ pl’tc (8 3)
and

Ad /\/u4—|—L7 PyuP=3 — p2y? (8.14)
More explicitly one has
u
p=ti8o= [t 815
bd
p=2: Ap= uyu (8.16)
Ve D b
=1t Aj— / budu
A /u +L6 b2 4
_ bd¢ (8.17)
2 53 + L6 _ b2§2 ’
bu*?du
P | G B

In all of the above integrals the behavior at the horizon
uy = 01is very different from the one at infinity # — oo and
no obvious inversion symmetry can be envisaged that
exchanges the two and keeps the photon sphere fixed.
At present we cannot exclude a symmetry under a gener-
alized inversion such as u — L'*%4~* with a not an integer,
that would however be noninvolutive.

One argument that should help explaining this problem
is the fact that Freudenthal duality would exchange point
particles with strings in D =35 [47,48]. Generalized
Freudenthal duality should exchange p-branes with
D — 4 — p-branes. This is why self-dual objects like
particles/BHs in D =4, D3 in D = 10 or strings in D = 6
enjoy this propeﬂy.lo

IX. EIKONAL PHASE AND RADIAL ACTION

Let us now discuss possible implications of our classical
geodetic analysis for scattering amplitudes in a putative
quantum theory of gravity, such as string theory. In the
eikonal limit, valid for large impact parameters b > b, the
scattering amplitude of a (massless) probe off a spherically
symmetric target is given by the exponential of the eikonal
phase [57-62]

A(b. E)

~ @20k (J=DE.E)
9
2F

S(b.E)=1+iT(hE)=1+i2"
9.1)

where A(b,E) is the scattering amplitude in impact
parameter space

2wm=/f;

with g the transferred (spacelike) momentum. In turn &,
can be written in terms of the radial action

45 A(G, E) (9.2)

&ML@%&UEmJﬂz/fRUEMr

/ £ J? dr

P fr)
Observables such as the deflection angle and the time delay
are then given as derivatives of d,;, Viz.

9.3)

8(Seik
oJ -’

85€ik

Ap(J.E) = oL

At(J,E) = -

(9.4)

When r; or r; are taken to infinity or to the horizon there
might be divergences that can be subtracted or regulated by
introducing a boundary/wall such as in AdS.

Indeed in asymptotically flat space-times P, ~+/E at
very large r and S, ~ v/ER is linearly divergent with the
cutoff R as expected for a nearly free particle. Yet, even in

'"The case of D2, which admits a photon sphere as we have
already seen, in D = 8 is subtler since no solution of the form
AdS, x §* x M with M some compact manifold (such as T2 for
strings or 73 for M-theory) seems to be known. The best one can
do is AdS, x CP? in type IIA or AdS, x §7/Z; in M-theory.
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this case, the deflection angle A¢ remains finite for b < b,
and diverges only for b = b, i.e. for critical geodesics.
This is not the case for Az that obviously diverges, unless
the process takes place in an asymptotically AdS (aAdS)
[60-62]. The raising term r*/£* in f(r) regulates the
integral for J < ZF, i.e. for b < ¢ as well as it derivatives.

Whether in aAdS or not, the (regulated) radial action is
the crucial ingredient in the semiclassical dynamics of
massless or massive probes in the presence of BHs,
D-branes or other gravitating objects. Thanks to the
identity A¢ya(J, E) = Agpg(J, E), which extends to
S, (J,E;r;,00) =S,(J,E;ry, ryy) When both are finite or
up to subtractions, one can explore near-horizon dynamics
by performing experiments in the asymptotically flat
region.

Let us stress once again that the identity relies on
generalized inversions a la Couch-Torrence [43], which
is a conformal symmetries of the metric for D3-branes,
D3-D3’ and for 4-d large BPS BHs with four charges,
which satisfy the condition Q;Q, = 050, or permutations
thereof, such that the photon sphere is the fixed locus of
conformal inversion. Moreover it extends mutatis mutandis
to massive (BPS) probes whose geodetic equations are not
conformal invariant.

Another story is the fate of the inversion symmetry at the
quantum level. Since it acts by conformal transformations
of the metric it is likely to be anomalous. Yet, being an
element of the U-duality group in special cases (when e.g.
SN0 =105 07 it may survive in a full quantum
theory of gravity as string theory. In this context, as already
mentioned, it may help bypassing issues of extrapolating
the results for large b > b to small b < b,. since physics at
the horizon may be captured by physics at flat infinity
thanks to the remarkable property we found.

X. SUMMARY AND CONCLUSIONS

Let us summarize the results of our investigation and
identify some lines for future study.

We have shown that many BPS systems admitting a
photon sphere enjoy a peculiar symmetry under conformal
inversions that keep the photon sphere fixed and exchange
horizon and flat infinity. Since the dynamics of “massless”
probes in backgrounds of this form is Weyl invariant, we
have found that the scattering angle A¢..(/, E) for a
probe impinging from infinity and scattering off the
compact gravitating center for b > b, exactly coincides
with the in-spiralling angle A¢r,y (J, E) for a probe emitted
from inside the photon sphere and falling into the horizon
with the very same energy E and angular momentum J.

Despite similarity with the B2B formula [7,8] relating
periastron advance to scattering angle, we should stress
once again that the latter requires an analytic continuation
to negative E, while in our case E is positive and thus
measurable.

Playing with numbers one can formally increase the
mass m of the probe but the validity of our analysis would
be jeopardized. Yet for extreme mass ratio in spirals where
m < M our analysis is reliable and may shed some light on
the highly nonlinear merging phase that can only be tackled
by numerical methods at present.

On astrophysical grounds, the obvious limitation is the
BPS nature of the systems we have analyzed. This reflects
in their charge(s) and the absence of angular momentum.
In higher dimensions, i.e. d > 5, rotating BHs are com-
patible with BPS conditions and we plan to further
investigate this issue despite the lack of a simple inversion
symmetry already for (BPS) nonrotating BHs in d > 5. Yet
the presence of a photon sphere or rather a photon halo
(with u, varying in some interval depending on b,.) sug-
gests that one should try and find a way to explore its
interior (up to the horizon) by some generalized inversion
that goes beyond Couch-Torrence inversions, whereby u —
u2(b)/u depends on E and J along the lines of [44].

Even more intriguing is fate of the identity for horizon-
less objects or fuzzballs such as 2-charge microstates or the
family of solutions found by Jejjala, Marsden, Ross and
Teschner in Ref. [63], including their BPS limit (the family
of solutions found by Giusto, Mathur and Saxena in
Ref. [64]). It is tempting to conjecture that the relevant
inversion keeping the photon sphere (or rather photon halo
in these cases) fixed should exchange infinity with the
“regular” origin or cap. Similar issues are raised by the
study of QNMs [9-12] that, needless to say, crucially
depend on the photon sphere. We plan to study the
inversion properties for waves, quantum particles and
strings in the near future.
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