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One of the central difficulties in the quantization of the gravitational interactions is that they are
described by a set of constraints. The standard strategy for dealing with the problem is the Dirac
quantization procedure, which leads to the Wheeler-DeWitt equation. However, solutions to the equation
are known only for specific symmetry-reduced systems, including models of quantum cosmology. Novel
methods, which enable solving the equation for complex gravitational configurations, are therefore worth
seeking. Here, we propose and investigate a new method of solving the Wheeler-DeWitt equation for
minisuperspace models (with a finite number of classical degrees of freedom). The approach employs
variational quantum algorithms and is possible to implement on quantum computers. For this purpose, the
gravitational system is regularized, by performing spherical compactification of the phase space. This
makes the system’s Hilbert space finite dimensional and allows to use SUð2Þ variables, which are easy to
handle in quantum computing. The validity of the method is examined in the case of the flat de Sitter
universe. Both an emulator of a quantum computer and the IBM superconducting quantum computer have
been used. The advantages and limitations of the approach are discussed.
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I. INTRODUCTION

The Hamiltonian of general relativity (GR) is a sum of
constraints. The constraints are usually grouped into two
sets: a single scalar (Hamiltonian) constraint S and a three-
component vector constraint V, so that the gravitational
Hamiltonian is

H½N; N⃗� ¼ S½N� þV½N⃗� ¼
Z
Σ
d3xNCþ

Z
Σ
d3xN⃗ · C⃗; ð1Þ

where Σ is a spatial hypersurface. The N and N⃗ are the
lapse function and the shift vector, respectively, which are
integrated with the smeared constraints C and C⃗. In triad
formulation of GR, due to additional local gauge symmetry,
the two constraints are supplemented by the Gauss con-
straint. By imposing the constraints on the kinematical
phase space Γkin, the physical phase space Γphys is obtained.
However, due to the complicated form of the constraints
(specifically the smeared scalar constraint C), extraction of
the physical phase space is, in general, a difficult task.
This difficulty propagates onto the quantum case where

the initial kinematical Hilbert space Hkin is a subject of

imposing the quantum constraints Ĉ and ˆC⃗ in order to
extract the physical states jΨphysi, belonging to the physical
Hilbert space Hphys ⊆ Hkin (the equality of sets Hphys ¼
Hkin corresponds to the trivial case of vanishing

constraints). Here, for simplicity, we assumed that the
kinematical Hilbert is separable (e.g., Fock space).
However, this is not necessarily the case in quantum
gravity. A seminal example is provided by loop quantum
gravity (LQG), where the Hilbert space of almost periodic
functions (spin networks) is considered [1,2]. In this case
an algebraic dual D� (space of distributions) of some dense
subspace ofD ofHkin is introduced, so thatD ⊂ Hkin ⊂ D�
(the so-called Gel’fand triple). Eventually, Hphys ⊆ D� and
Hphys ⊈ Hkin. In what follows, we will restrict our attention
to the case of separable kinematical Hilbert space, which is
satisfied for regularized minisuperspace models. Worth
noticing is also that, in LQG, the Hilbert space HG;V

kin ,
obtained by solving the quantum Gauss and vector con-
straints, is separable. Therefore, Hphys ⊆ HG;V

kin , where
Hphys is obtained by solving the quantum scalar constraint.
Therefore, our considerations can be referred to the case
HG;V

kin as the kinematical space.
There are various strategies for solving quantum con-

straints. Before we proceed to reviewing the most common
of them, let us restrict our considerations to the case of a
single quantum constraint Ĉ—the quantum Hamiltonian
constraint (scalar constraint). This assumption is to simplify
our considerations and make them more transparent.
However, extension to the case of multiple constraints is,
in principle, possible. Namely, a given method of solving
the single constraint has to be applied repeatedly. However,
additional technical difficulties may appear due to
differences in the nature and functional form of the*jakub.mielczarek@uj.edu.pl
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constraints (such as the problem with the vector/diffeo-
morphism constraint in LQG [1]). Furthermore, the case
with the single constraint Ĉ corresponds to homogeneous
minisuperspace models, which are relevant in (quantum)
cosmology.
Perhaps the most common approach to determine Hphys

is provided by the Dirac method of quantizing constrained
systems. Here, taking the Ĉ, which is a self-adjoint
operator, one is looking for states which are annihilated
by the operator, i.e.,

ĈjΨi ¼ 0; ð2Þ

which is satisfied for the states jΨi ∈ Hphys. Equation (2) is
the famous Wheeler-DeWitt (WDW) equation. Solutions to
the equation, which belong to the kernel of the operator Ĉ,
span the Hilbert space,Hphys ¼ ker Ĉ. The difficulty of the
method lies in finding the solution to the WDW equation.
The solutions are known, e.g., for certain quantum cos-
mological models [3,4]. Furthermore, in the general
case, the WDW equation is ill defined and must be
regularized [5,6].
Extraction of the physical states can alternatively be

performed employing the “group averaging” [7] approach,
which utilizes the projection operator P̂. The P̂ is a
nonunitary, but self-adjoint (P̂† ¼ P̂) and idempotent
(P̂2 ¼ P̂) operator, which for the case of a constraint Ĉ
with a zero eigenvalue takes the following form:

P̂ ¼ lim
T→∞

1

2T

Z
T

−T
dτ eiτĈ: ð3Þ

The expression performs Dirac deltalike action on the
kinematical states, projecting them onto the physical
subspace.
Another widely explored method of finding the physical

states is provided by the “reduced phase space”method [8],
in which one looks for a solution of the constraints already
at the classical level. For gravity, this is perhaps not
possible do, in general. However, utility of the approach
has been shown for certain minisuperspace models (see,
e.g., [9,10]). While the Γphys is extracted, the algebra of
observables is a subject of quantization, leading to the
physical Hilbert space Hphys.
The method we are going to study here is based on the

observation made in Ref. [11]. Namely, while a
Hamiltonian constraint C ≈ 0 is considered, the configu-
rations satisfying the constraint can be found by identifying
ground states of a new Hamiltonian C2. A possibility of
extracting Γphys for a prototype classical constraint C with
the use of adiabatic quantum computing has been discussed
in Ref. [11].
Here, we generalize the method to the quantum case and

investigate its implementation on a universal quantum

computer. The approach, utilizes a variational quantum
eigensolver (VQE) [12], which is a hybrid quantum
algorithm. The algorithm has been widely discussed in
the literature, in particular, in the context of quantum
chemistry [13,14]. While our VQE-based method is intro-
duced in a general fashion, which does not depend on the
particular form of Ĉ, over the article we will mostly refer to
a concrete Ĉ, corresponding to a quantum cosmological
model. The VQE will be implemented on both a simulator
of a quantum computer (employing PENNY LANE [15] and
QISKIT [16] tools) and on an actual superconducting
quantum computer provided by IBM [17].
Applying quantum computing methods unavoidably

requires dealing with the finite systems—having finite-
dimensional Hilbert spaces. Because standard canonical
quantization of gravitational systems does not lead to finite-
dimensional Hilbert space representation, a suitable regu-
larization has to be applied. There are various approaches to
the problem. In particular, in loop quantum gravity, finite-
dimensional Hilbert space can be obtained by fixing a spin
network state (fixing a graph and spin labels). Another
possibility, starting from GR, may be considered as a
sequence of the following three steps:
(1) UV regularization, which reduces gravitational field

theory to an infinite-dimensional mechanical system
(with a countable number of classical degrees of
freedom).

(2) IR regularization, which imposes an upper bound on
the number of classical degrees of freedom. This
leads us to the realm of minisuperspace models.

(3) Cutoff on the Hilbert space. Quantization of minis-
uperspace models, in general, leads to infinite-
dimensional Hilbert spaces. Even while the resulting
WDW equation is regular, the Hilbert space itself
requires further regularization, to deal with a finite
number of quantum degrees of freedom. This can be
done, e.g., by introducing cutoff in the Fock space
(see, e.g., [18]).

Here, we consider the case where the minisuperspace
model is already obtained (independent of the applied
method) and only the third step remains to be made. For
this purpose, we apply the recently introduced nonlinear
field space theory (NFST) [19–22], which provides a
systematic procedure of compactifying phase spaces of
the standard affine phase spaces. The compactification
leads to finite volume of the phase space and, in conse-
quence, finite dimension of the Hilbert space. In case of the
spherical compactification of R2 phase space, the control
parameter of the cutoff is the total spin S, associated with
the volume of the spherical phase space. In the large spin
limit (S → ∞), the standard case with an infinite-dimen-
sional Hilbert space is recovered. Depending on quantum
computational resources, the value of S can be fixed such
that the corresponding Hilbert space can be represented
with an available number of logical qubits.
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Additional advantage of the method introduced in this
article is that finding physical states employing variational
methods gives us an explicit form of the associated operator
(i.e., Ansatz with determined parameters), which can be
used to generate the physical states on a quantum computer.
The states can be used for further simulations on a quantum
processor. For example, transition amplitudes between the
states can be evaluated. On the other hand, when the
physical states are found using analytical methods or
classical numerics, the difficulty of constructing operator
preparing a given state remains.
The organization of the article is as follows. In Sec. II, the

method of regularizing the Hamiltonian constraint, employ-
ing compactification of the phase space is introduced. The
procedure is applied to the case of de Sitter cosmology.
Then, in Sec. III, general considerations concerning the VQE
applied to solving the Hamiltonian constraint are made. The
qubit representation of the Hamiltonian constraint intro-
duced in Sec. II is discussed in Sec. IV. In Sec. V, the
problem of determining the fixed spin subspace of the
physical Hilbert space is addressed. A quantum method
of evaluating gradients in the VQE procedure is presented in
Sec. VI. Examples of applying the procedure for the case of
spin s ¼ 1 is given in Sec. VII and in Sec. VIII for s ¼ 2.
The computational complexity considerations of the method
are made in Sec. IX. The results are summarized in Sec. X.

II. COMPACT PHASE SPACE REGULARIZATION
OF DE SITTER MODEL

The initial step toward quantum variational solving
of the Wheeler-DeWitt equation is making the system’s
Hilbert space finite. Actually, there are theoretical arguments
for gravitational Hilbert space being locally finite [23]. Some
of the approaches of quantum gravity aim to implement this
property while performing quantization of gravitational
degrees of freedom [24]. Here, we will follow a general
procedure of making gravitational Hilbert space finite, which
is based on compactification of the phase space. The approach
is considered here as a particular, convenient way of perform-
ing regularization of a quantum system. However, it may also
play a role in formulating quantum theory of gravitational
interaction. However, this second possibility is not explored
here, and the method is used purely for technical reasons.
Worth adding here is that the method based on com-

pactification of the phase space can be applied for quantum
simulations of other field theories. This, in particular,
concerns the case of a quantum scalar field [22].
Furthermore, compactification of the phase space has
recently been used for the lattice Uð1Þ gauge fields [25].
In this case, the cylindrical Uð1Þ ×R phase space per link
was compactified to S2, preserving the Uð1Þ symmetry.

A. Compact phase spaces

Let us recall that, for a system withm classical degrees of
freedom, dimension of the phase space Γ is dimΓ ¼ 2m.

Having the symplectic form ω, defined at the phase space
(which is a symplectic manifold), the volume of the space is
V ¼ R

Γ ω. Following the Heisenberg uncertainty principle,
one can now estimate the number of linearly independent
vectors in the corresponding Hilbert space as follows:

dim H ∼
V

ð2πℏÞm : ð4Þ

It should be noted that, because the Heisenberg uncertainty
may differ from the standard form while quantum gravi-
tational degrees of freedom are considered, the formula (4)
may be a subject of additional modifications. This should,
however, not affect the general observation that dimension
of the Hilbert space is monotonically dependent on the
volume of the system’s phase space. In consequence,
finiteness of both the Hilbert space and the phase space
are equivalent,

dim H < ∞ ⇔ V < ∞: ð5Þ

This allows us to conclude that, by performing compacti-
fication of the phase space, the resulting quantum system
will be characterized by a finite Hilbert space. The
observation has been recently pushed forward in NFST
[19], with the ambition to introduce compact phase space
generalizations, not only of mechanical systems, but also
field theories. The procedure has been so far been most
extensively studied in the case of a scalar field.
For our purpose, let us focus our attention on the case

with a finite number of classical degrees of freedom. This
applies to the so-called minisuperspace gravitational sys-
tems. Having the m classical degrees of freedom, the
standard symplectic form (in the Darboux basis) can be
written as

ω ¼
Xm
i¼1

ωi ¼
Xm
i¼1

dpi ∧ dqi; ð6Þ

which is defined on the Γ ¼ R2m phase space. There are
various ways of performing compactification of the
phase space.

B. Spherical phase space

A simple and convenient approach is to replace every
R2 subspace [corresponding to a given conjugated pair
ðqi; piÞ] with a two-sphere S2, so that the total phase space,
for the system having m classical degrees of freedom,
becomes Γ ¼ S2m. This replacement is possible because S2

is a symplectic manifold, and a product of symplectic
manifolds is also symplectic.
There are two main advantages of such a choice. First is

the fact that S2 is a phase space of angular momentum
(spin), which results in being easy to handle and a
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well-understood representation on both the classical and
quantum level. Second, a single new parameter S, asso-
ciated with the volume of the phase space V ¼ R

S2 ωS2 ¼
4πS, provides a natural control parameter of the regulari-
zation. The flat (affine) limit is recovered by taking the
S → ∞ limit. On the other hand, selecting a given value
of S precisely determines dimension of the Hilbert space.
This is because quantization of the spherical phase space
leads to the condition S ¼ ℏs, where s ¼ n

2
, and n ∈ N. For

a given quantum number s, the associated Hilbert spaceHs
has dimension dimHs ¼ 2sþ 1, which leads to concrete
realization of the relation (4),

dim Hs ¼ 2sþ 1 ¼ 2S
ℏ

þ 1 ¼ V
2πℏ

þ 1: ð7Þ

A natural symplectic form of the sphere is ωS2 ¼
S sin θdϕ ∧ dθ, where ϕ ∈ ð−π; π� and θ ∈ ½0; π� are
spherical angles. It has been shown in [26] that, by applying
the change of variables φ ¼ p

R1
and θ ¼ π

2
þ q

R2
, together

with condition R1R2 ¼ S, the symplectic form on the two-
sphere takes the form

ω ¼ cos

�
q
R2

�
dp ∧ dq: ð8Þ

The symplectic form reduces to the flat case in the S → ∞
(R1;2 → ∞) limit. Therefore, the symplectic form (8)
allows us to recover the flat case locally or in the large
S approximation (see Fig. 1).
Because variables p and q do not provide a continuous

parametrization of the sphere, it is convenient to work with
the spin variables. Here, they correspond to the following
Cartesian parametrization of the two-sphere,

Sx ¼ S cos

�
p
R1

�
cos

�
q
R2

�
; ð9Þ

Sy ¼ S sin

�
p
R1

�
cos

�
q
R2

�
; ð10Þ

Sz ¼ −S sin

�
q
R2

�
; ð11Þ

together with the condition S2x þ S2y þ S2z ¼ S2. Employing
the symplectic form (8), which defines the Poisson bracket,
one can verify that the spin components satisfy the suð2Þ
algebra fSi; Sjg ¼ ϵijkSk, where i; j; k ∈ fx; y; zg. The
algebra is quantized in a straightforward manner, leading
to the commutator algebra ½Ŝi; Ŝj� ¼ iℏϵijkŜk. Irreducible
representations of the algebra are labeled by the spin s, such
that

Ŝ2js; szi ¼ ℏsðsþ 1Þjs; szi; ð12Þ

Ŝzjs; szi ¼ ℏszjs; szi; ð13Þ

where sz ¼ −s;−sþ 1;…; s1; s. The eigenstates states
js; szi span the Hilbert space for a given representation,
i.e., Hs ¼ spanfjs;−si;…; js; sig, and dimHs ¼ 2sþ 1.
In what follows, for convenience, we set ℏ ¼ 1.
Let us notice that the parametrization (9)–(11) is not a

unique choice. In particular, in Ref. [27], polar paramet-
rization of a spherical phase space was considered.
Having defined the spherical compactification procedure

at the kinematical level, let us proceed to dynamics. The
task is now to replace the flat space variables present in
constraints with the spin variables, which are valid for the
spherical phase space. It has to be emphasized that the
procedure is not unique. However, various assumptions, all
satisfying the correspondence to the flat phase space,
should converge in the large S limit. A simple choice
introduced in [26] is

p →
Sy
R2

¼ R1 sin

�
p
R1

�
cos

�
q
R2

�
; ð14Þ

q → −
Sz
R1

¼ R2 sin

�
q
R2

�
; ð15Þ

so that the standard case is recovered in the R1;2 → ∞ limit.
For the system with N degrees of freedom, the same
procedure is applied for each ðqi; piÞ pair.

C. De Sitter cosmological model

In this article, we will examine application of the
compactification procedure to the flat de Sitter cosmologi-
cal model (which is a minisuperspace model). The gravi-
tational Hamiltonian constraint for the model can be written
as [26]

FIG. 1. Illustration of the spherical phase space and its local flat
approximation.

GRZEGORZ CZELUSTA and JAKUB MIELCZAREK PHYS. REV. D 105, 126005 (2022)

126005-4



C ¼ q

�
−
3

4
κp2 þ Λ

κ

�
≈ 0; ð16Þ

where κ ≔ 8πG and Λ is a positive cosmological constant.
Here, the q and p form a canonical pair, for which the
symplectic form is ω ¼ dp ∧ dq (and, in consequence, the
canonical Poisson bracket is fq; pg ¼ 1). The q is related to
a cubed scale factor, so that the Hubble factor isH ¼ 1

3
_q
q. By

solving the constraint, the Friedman equation is obtained,

H2 ¼ Λ
3
: ð17Þ

In Ref. [26], a compact phase space generalization of the
flat de Sitter cosmological model has been introduced.
Following the procedure introduced in the previous sub-
section, one finds that the compactified form of the
constraint (16) is

C ¼ S3
R1

�
3

4
κ
S22
R2
2

−
Λ
κ

�
; ð18Þ

where R1R2 ¼ S. By introducing the dimensionless
parameter

δ ≔
4

3

Λ
R2
1κ

2
∈ ½0; 1�; ð19Þ

and by a proper rescaling, the constraint (18) can be
rewritten into

C →
4S2

3κR1

C ¼ S3S22 − δS2S3: ð20Þ

Quantization of the constraint (20), which requires
promoting of the phase space functions Sx, Sy, and Sz
into operators and an appropriate symmetrization, leads to

Ĉ ¼ 1

3
ðŜzŜyŜy þ ŜyŜzŜy þ ŜyŜyŜzÞ − δŜ2Ŝz: ð21Þ

It has been shown in Ref. [26] that solutions to the WDW
equation associated with the constraint (21) can be found.
The solutions are, however, not in a direct form but are
expressed in terms of a recursive equation. Furthermore,
solutions to the WDW equation exist for the bosonic
representations (integer s) and, in general, do not exist
for the fermionic representations (half-integer s). The first
nontrivial solution to the constraint (21) is for s ¼ 1, for
which the constraint takes the following matrix form:

Ĉ ¼ 2

�
1

6
− δ

�0B@
1 0 0

0 0 0

0 0 −1

1
CA ¼ 2

�
1

6
− δ

�
Ŝz: ð22Þ

The corresponding solution (excluding the trivial case of
δ ¼ 1

6
) is given by the state

jΨi ¼

0
B@

0

1

0

1
CA¼ js¼ 1; sz ¼ 0i ¼ 1ffiffiffi

2
p ðj01i þ j10iÞ; ð23Þ

where, in the last equality, qubit representation of the state
is given. Therefore, for s ¼ 1, dimension of the kernel is
dim ker Ĉ ¼ 1. On the other hand, as discussed in
Ref. [26], for s ¼ 2 dimension of the kernel depends on
the value of δ. Namely, for δ ≠ 7

18
we have dim ker Ĉ ¼ 1

and for δ ¼ 7
18
we have dim ker Ĉ ¼ 3. Explicit form of the

basis states spanning the kernels can be found in Ref. [26].
It is, of course, tempting to compare the states annihi-

lated by the regularized constraint (21) with results of the
canonical quantization of the flat de Sitter model. For this
purpose, let us first notice that the canonical quantization
case is expected to be recovered in the large spin limit
(S → 0). Therefore, the considered s ¼ 1 state (23) pro-
vides only the lowest order approximation to the result of
canonical quantization.
The canonical quantization of the Poisson bracket

fq; pg ¼ 1 leads to the commutation relation ½q̂; p̂� ¼ iÎ,
for which the q representation is q̂jψi ¼ qjψi and
p̂jψi ¼ −i d

dq jψi. The wave function in the q representation
is ψðqÞ ¼ hqjψi, and the inner product hψ jϕi ≔R
R dqψðqÞϕ�ðqÞ. The canonical quantization of the
classical constraint (16) may employ various factor order-
ings. The following one, Ĉ ¼ q̂ð− 3

4
κp̂2 þ Î Λ

κÞ, is espe-
cially convenient (but not necessarily representative). In
this case, the WDWequation reduces to the harmonic form

ð d2

dq2 þ ω2ÞΨðqÞ ¼ 0, where ω ≔ 2
κ

ffiffiffi
Λ
3

q
. The solutions are

incoming and outgoing plane waves ΨðqÞ ∝ e�iωq, which
are non-normalizable.
On the other hand, the q representation of the state (23)

(where the spin s ¼ 1) is a normalized wave function,

ΨðqÞ ¼ Y0
1ðθ;φÞ ¼

ffiffiffiffiffiffi
3

4π

r
1

2i
ðeiq=R2 − e−iq=R2Þ; ð24Þ

which is a real superposition of the two plane waves
with frequencies 1=R2 ¼ ω

S
ffiffi
δ

p , where q=R2 ∈ ½−π=2; π=2�.
Therefore, the solution (24) agrees qualitatively with the
predictions of the canonical quantization [even for very
small spins (s ¼ 1)].
From Eq. (24) one can see that the probability density

jΨðqÞj2 vanishes at q ¼ 0. The same boundary condition
can be satisfied by the solutions obtained from the
canonical quantization, leading to ΨðqÞ ∝ sinðωqÞ.
Nevertheless, in contrast to the regularized case, the
obtained wave function is not square integrable.
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Further discussion of the semiclassical limit resulting
from the model (21) can be found in Ref. [28].

D. Qubit representation

The introduced compactification not only leads to finite-
dimensional Hilbert space, but is also suitable for simu-
lations on a quantum computer. Expressing constraint with
the use of spin operators gives a natural qubit representation
of the constraint. This is because arbitrary spin s can be
decomposed into spin-1=2 representations, which are
qubits. One needs n ¼ 2s qubits to implement the spin s
representation on a quantum register.
Moreover, eigenstates of the spin operator exhibit

symmetry, which can be used to simplify Ansatz in
variational methods. Eigenstates of the Ŝ2 operator are
invariant under transformation changing order of qubits,
i.e., for the operator P̂, defined as

P̂jb1b2…bni ¼ jbnbn−1…b1i; ð25Þ

and if

Ŝ2jψi ¼ sðsþ 1Þjψi; ð26Þ

we have

P̂jψi ¼ jψi: ð27Þ

One can simplify the variational Ansatz by imposing the P̂
symmetry. Using variational methods, we need to express
our constraint in terms of unitary operators. These operators
also exhibit the symmetry (i.e., ½Ĉ; P̂� ¼ 0), so we can also
reduce the number of terms for which the expectation value
must be evaluated. Furthermore, utilizing gradient methods
to minimize cost function, we can use the parameter shift
rule, which can also be optimized according to the
symmetry.

III. VARIATIONAL SOLVING OF A CONSTRAINT

Following the Dirac quantization method of constrained
systems, our task is to determine the kernel of the operator
Ĉ. The kernel will correspond to the physical Hilbert space
for the system Hphys and is spanned by the states
jψ0i ∈ Hphys, annihilated by the Hamiltonian constraint,
i.e., satisfying the WDW equation,

Ĉjψ0i ¼ 0: ð28Þ

For any linear operator Ĉ, the above condition is
equivalent to

hψ0jĈ†Ĉjψ0i ¼ 0: ð29Þ

Moreover, one can prove that

hψ jĈ†Ĉjψi ≥ 0; ð30Þ

for all jψi. In the case of self-adjoint operator Ĉ, the
corresponding conditions are

Ĉjψ0i ¼ 0 ⇔ hψ0jĈ2jψ0i ¼ 0; ð31Þ

hψ jĈ2jψi ≥ 0: ð32Þ

Following the VQE methods, let us now assume that
jψðαÞi is a state parametrized by a vector α ¼ fαigi¼1;…;p.
In order to find jψ0i, we have to find a minimum of the
non-negative cost function cðαÞ, which is defined as
follows:

cðαÞ ≔ hψðαÞjĈ†ĈjψðαÞi: ð33Þ

In the case of the self-adjoint operator Ĉ, the cost function
takes the form

cðαÞ ¼ hψðαÞjĈ2jψðαÞi: ð34Þ

To find the minimum of c, we use some classical
minimizing algorithm (on classical a computer), but the
value of c, i.e., expectation value of Ĉ† bC; is computed using
a quantum computer. The algorithm is initialized with some
random parameters α0. Then, by evaluating the quantum
circuit, we obtain cðαiÞ, and using the classical algorithm,
we find new parameters αiþ1, which are closer to minimum;
we repeat these steps (see Fig. 2). Eventually, the set of
values

αmin ≔ arg min
α

cðαÞ ð35Þ

FIG. 2. Schematic illustration of the algorithm of finding the
minimum of the cost function, evaluated by a quantum circuit.
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is found, such that

jψ0i ¼ jψðαminÞi: ð36Þ

Because, in general, the kernel space is more that one
dimensional, there are different jψ0i, which satisfy the
condition (35). From the perspective of the operator Ĉ†Ĉ,
this reflects the fact that its ground sate is degenerated.
Therefore, the algorithm must be designed such that the
whole degeneracy space is sampled.
There are basically two main methods of evaluating the

cost function of a quantum computer. The first approach
utilizes the so-called Hadamard test and the second follows
the method discussed in Ref. [29].
The expectation value of any unitary operator Û in state

jψi can be measured using the Hadamard test (Fig. 3),
where

V̂ψ j0i ¼ jψi: ð37Þ

The expectation value of Û is equal to the expectation value
of the operator 2σþ ¼ σx þ iσy on the first qubit. When Û
is self-adjoint and gives only real expectation values, we
can measure just hσxi.
In order to compute h2σþi ¼ hσxi þ ihσyi, we need to

compute hσxi and hσyi. For this purpose, we apply a gate,
which rotates the base from a computational one to the
eigenbasis of a given operator. In the case of hσxi, we apply
Hadamard operator Ĥ and take a measurement of σz in the
computational bases, then

hσxi ¼ hĤσzĤi ¼ Pð0Þ − Pð1Þ: ð38Þ

In the case of hσyi, we apply operator ĤŜ†, where

Ŝ ¼
�
1 0

0 i

�
and take a measurement of σz in the

computational bases, then

hσyi ¼ hŜ Ĥ σzĤŜ†i ¼ Pð0Þ − Pð1Þ: ð39Þ

Another method of evaluating the expectation value of a
unitary operator without additional qubit utilizes the
following formula:

hψ jÛjψi ¼ h0jV̂†
ψ ÛV̂ψ j0i: ð40Þ

So, when we apply the operators Vψ , U, and V†
ψ on the

initial state 0i and measure probability of a state j0i in the
final state, we obtain jhψ jÛjψij2 (see Fig. 4).
In both methods, the Û is a unitary operator. In the case

of nonunitary operators, one has to express the operator as a
sum of unitary operators and compute the expectation value
of each unitary term separately.

IV. COMPUTING EXPECTATION VALUES

Let us now proceed to the implementation of the
algorithm introduced in the previous section. For this
purpose, a method of evaluating the mean value of the
operator Ĉ2 has to be introduced.
Our strategy is to express Ĉ as a sum of tensor products

of Pauli operators (for the spin-1=2 representation),

Ĉ ¼
X
j

cj⨂‘
i
σ̂kij; ð41Þ

where k ¼ x, y, z indicates one of the Pauli matrices, i is
an index of a qubit, and j is an index of a term in the sum.
The cj are constants multiplying a given product of Pauli
operators contributing to the sum. Then each part of this
sum is a unitary operator and the expectation value can be
easily calculated,

hĈi ¼
X
j

cjh⨂
i
σ̂kiji: ð42Þ

Here, we apply the method to the constraint (21), which
is a function of the spin variables Ŝi, corresponding to a
spin number s. The operators can be expressed in terms of
the Pauli matrices as follows:

Ŝi ¼
1

2

Xn
j¼1

I1 ⊗ …Ij−1 ⊗ σ̂ji ⊗ Ijþ1 ⊗ …In; ð43Þ

where n ¼ 2s. It is easy to verify that the spin components
Ŝi obey the commutation relation

FIG. 3. The Hadamard test—a circuit measuring expectation
value of Û in state jψi.

FIG. 4. The circuit measuring expectation value of Û in
state jψi.
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½Ŝi; Ŝj� ¼
�
1

2

X
m

σ̂mi ;
1

2

X
n

σ̂nj

�
¼ 1

4

X
m;n

½σ̂mi ; σ̂nj �

¼ 1

4

X
n

½σ̂ni ; σ̂nj � ¼
1

2

X
n

iϵijkσ̂nk

¼ iϵijkŜk; ð44Þ

where the condition

½σ̂mi ; σ̂nj � ¼ 0 ð45Þ

for m ≠ n has been used. For convenience, we also define

PnðσiÞ ≔
X
j

I1 ⊗ …Ij−1 ⊗ σji ⊗ Ijþ1 ⊗ …In; ð46Þ

Pnðσi; σjÞ ≔
X
k;l;k≠l

I1 ⊗ …Ik−1 ⊗ σki ⊗ Ikþ1 ⊗ …Il−1

⊗ σlj ⊗ Ilþ1 ⊗ …In; ð47Þ

Pnðσi; σj; σpÞ ≔
X

k;l;q;k≠l;k≠q;l≠q
I1 ⊗ …σki ⊗ …σlj

⊗ …σqp ⊗ …In; ð48Þ

so that we can express

Ŝi ¼
1

2
PnðσiÞ; ð49Þ

ŜiŜj ¼
1

4
ðPnðσi; σjÞ þ iϵijkPnðσkÞ þ nδijI⊗nÞ; ð50Þ

8ŜiŜjŜl ¼ Pnðσi;σj;σlÞ þ iϵilkPnðσk;σjÞ;
þ iϵjlkPnðσk;σiÞ þ iϵijkPnðσk;σlÞ
þ δilðn− 1ÞPnðσjÞ þ δjlðn− 1ÞPnðσiÞ
− ϵijkϵklmPnðσmÞ þ δijnPnðσlÞ þ iϵijlnI⊗n: ð51Þ

Applying these expressions to Eq. (21), we find that

Ĉ ¼ 1

8

�
ð1 − δÞPnðσz; σy; σyÞ − δPnðσz; σx; σxÞ

− δPnðσz; σz; σzÞ þ
�
n −

2

3
− δð5n − 2Þ

�
PnðσzÞ

�
:

ð52Þ

For the purpose of constructing the cost function, the
square of the operator Ĉ has to be evaluated. Employing
methods of symbolic algebra, the expression for Ĉ2 can be
found explicitly,

Ĉ2 ¼ 1

64

�
Pnðσy; σy; σy; σy; σz; σzÞð1 − δÞ2 þ Pnðσy; σy; σy; σyÞðn − 4Þð1 − δÞ2 þ Pnðσy; σy; σz; σzÞ

×

�
4ðn − 4Þð1 − δÞ2 − 8δð1 − δÞ − 6ðn − 4Þδð1 − δÞ − 12δ2 þ 2

�
3n − 2

3
− δð5n − 2Þ

�
ð1 − δÞ

�
þ Pnðσy; σyÞ

×
�
4ðn − 2Þðn − 3Þð1 − δÞ2 − 8ðn − 2Þδ2 þ 2ðn − 2Þ

�
3n − 2

3
− δð5n − 2Þ

�
ð1 − δÞ

�
þ Pnðσz; σzÞð2ðn − 2Þðn − 3Þ

× ð1 − δÞ2 þ 20ðn − 2Þðn − 3Þδ2 þ
�
3n − 2

3
− δð5n − 2Þ

�
2

þ 4ðn − 2Þδð1 − δÞ − 6ðn − 2Þ
�
3n − 2

3
− δð5n − 2Þ

�
δÞ

þ I⊗n

�
2nðn − 1Þðn − 2Þð1 − δÞ2 þ 8nðn − 1Þðn − 2Þδ2 þ n

�
3n − 2

3
− δð5n − 2Þ

�
2
�
þ Pnðσx; σxÞ

×

�
4ðn − 2Þð1 − δÞ2 þ 4ðn − 2Þðn − 3Þδ2 þ 12ðn − 2Þδð1 − δÞ − 2ðn − 2Þ

�
3n − 2

3
− δð5n − 2Þ

�
δ

�

þ Pnðσx; σx; σx; σx; σz; σzÞδ2 þ Pnðσx; σx; σx; σxÞðn − 4Þδ2 þ Pnðσx; σx; σz; σzÞ
�
10ðn − 4Þδ2 − 8δð1 − δÞ

− 2

�
3n − 2

3
− δð5n − 2Þ

�
δþ 12δð1 − δÞ

�
þ Pnðσz; σz; σz; σz; σz; σzÞδ2 − 2Pnðσx; σx; σy; σy; σz; σzÞδð1 − δÞ

þ Pnðσz; σz; σz; σzÞ
�
9ðn − 4Þδ2 − 2

�
3n − 2

3
− δð5n − 2Þ

�
δþ 4δð1 − δÞ

�
þ Pnðσx; σx; σy; σyÞð−2δð1 − δÞðn − 4Þ

þ 2ð1 − δÞ2 þ 4δ2 þ 8δð1 − δÞÞ − 2Pnðσy; σy; σz; σz; σz; σzÞδð1 − δÞ þ 2Pnðσx; σx; σz; σz; σz; σzÞδ2
�
: ð53Þ
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V. FIXED SPIN SUBSPACE OF A
QUANTUM REGISTER

In order to find the kernel of Ĉ we have to generate states
jψðαÞi. In case of two qubits, we can use circuits allowing
us to generate any state, but in the case of the arbitrary
many qubits there are no such algorithms and we have
to use some Ansatz, for example, Ry or RyRz Ansatz.
Furthermore, often we want to look for the states only in
some subspace of all possible n-qubit states. This is the
case in the model under consideration, for which the
constraint (21) is defined in the spin-s subspace of
the quantum register of n-qubits. One possible approach
to this issue is generating only states obeying a given
condition. The possibility is, however, difficult to imple-
ment in general. Another solution is to generate arbitrary
states of the n-qubit register and add a second term to the
cost function, which fixes a given spin-s subspace.
Let us consider selection of a subspace, which is an

eigenspace of some operator D̂,

D̂jψdi ¼ djψdi: ð54Þ

Then, we have to extend the cost function by adding a term
that has minimum value (equal 0) for states from this
subspace, i.e.,

hψ jðD̂− dIÞ†ðD̂− dIÞjψi ¼ hD̂†D̂iψ − 2ℜðdhD̂†iψÞ þ jdj2:
ð55Þ

In consequence, the new cost function takes the form

cðαÞ¼hψðαÞjĈ†ĈjψðαÞiþhψðαÞjðD̂−dIÞ†ðD̂−dIÞjψðαÞi:
ð56Þ

Because of the numerical minimization issues, it is,
however, better to consider a normalized cost function. In
our case, we normalized both terms individually, so the
normalized first term is equal,

1

max jλij2
hψðαÞjĈ†ĈjψðαÞi; ð57Þ

where max jλij2 is the modulus square of the biggest
eigenvalue of Ĉ. The normalized second term is

1

max jdi − dj2 hψðαÞjðD̂ − dIÞ†ðD̂ − dIÞjψðαÞi; ð58Þ

where di are eigenvalues of D̂.
In case we a priori do not know these eigenvalues, we

can treat them as some parameter that has to be adjusted
during simulation, or we can try to maximize the cost
function and in this way estimate the value of max jλij2. At

the end, we normalize both terms dividing them by two (we
also can take these two terms with some weights different
than 1

2
in order to improve performance of algorithms in

some cases). In this way, the cost function takes values
from the interval [0, 1],

0 ≤ cðαÞ ≤ 1: ð59Þ

In case of the constraint (21), we want to look for
a kernel in the subspace of a given spin s. Therefore,

we need to take the cost function with D̂ ¼ ˆS⃗
2 ¼ D̂† and

d ¼ sðsþ 1Þ. However, in this case, we can choose a
simpler second term of the cost function,

sðsþ 1Þ − h ˆS⃗2i; ð60Þ

which after normalization is

1 −
h ˆS⃗2i

sðsþ 1Þ : ð61Þ

Because (assuming that we use only n ¼ 2s qubits) the
operator S⃗2 has maximal expectation value equal to
sðsþ 1Þ and minimal equal 0, so

0 ≤ 1 −
hS⃗2i

sðsþ 1Þ ≤ 1: ð62Þ

The zero value corresponds only to the states with spin s.
So the whole cost function has zero value only for states
that are simultaneously in the kernel of Ĉ and have spin s.
As a spin operator can be expressed in terms of qubits,
employing Eq. (49), we find that

S⃗2 ¼
X
i¼x;y;z

S2i ¼
3

4
nI⊗n þ 1

4
Pnðσx; σxÞ

þ 1

4
Pnðσy; σyÞ þ

1

4
Pnðσz; σzÞ; ð63Þ

and, consequently,

hS⃗2i ¼ 3

4
nþ 1

4
hPnðσx; σxÞi þ

1

4
hPnðσy; σyÞi

þ 1

4
hPnðσz; σzÞi: ð64Þ

A. Degenerate kernel

In the case of the degenerate kernel (i.e., there are more
than one eigenstate for eigenvalue 0), we have to first
find some eigenstate jψ1i using the presented cost function
and then, in order to find another eigenstate (orthogonal to
the first one), we have to add to the cost function the
following term:
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jhψ1jψðαÞij: ð65Þ

This term can easily be evaluated using h0jV̂ψ1
V̂†
ψðαÞj0i,

where V̂ψ generates state jψi. Using this new cost function,
we can find another state from kernel jψ2i and then, adding
to the cost function the new term

jhψ2jψðαÞij; ð66Þ

we can find the third state, and so on.
Another method is to find different vectors from the

kernel using an algorithm starting from different initial
parameters and then orthogonalize these vectors using the
Gram-Schmidt procedure. When Gram-Schmidt returns a
zero vector that means that we reached dimension of the
kernel (or that we generated a linearly dependent vector so
we have to repeat the procedure to have a high level of
confidence that there are no more linearly independent
vectors in kernel subspace).

VI. GRADIENT METHODS

In order to find the minimum of cost function, one needs
to use some classical optimizer. There are possible choices
of optimizers that do not need gradient of cost function, for
example, the COBYLA optimizer [30]. But one can get
better performance using a gradient descent optimizer, for
example, a basic gradient descent optimizer that in each
step computes the new values according to the rule

xðtþ1Þ ¼ xðtÞ − η∇fðxðtÞÞ: ð67Þ

Another possibility includes more sophisticated algorithms
like the Adam optimizer [31]. Using a gradient method, one
needs to compute the gradient of a cost function. One way to
do so is to calculate values of the cost function in two points
and compute the numerical derivative by finite differences.
Another way is to use the parameter-shift rule [32]. Let us
consider function f, which is an expectation value of some
operator Û in some, parametrized by θ, state jψðθÞi ¼ V̂θj0i,

fðθÞ ¼ hUiψθ
¼ h0V†

θUVθ0i ð68Þ

and assume that Vθ can be factorized (i.e., in circuit
representing Vθ there is 1-qubit gate Gθi),

Vθ ¼ Aθ0;…;θi−1GθiBθiþ1;…;θn ; ð69Þ

where

Gθi ¼ e−iθiG; ð70Þ

and G is a self-adjoint operator with two different eigenvalues
−r;þr. Then, the exact (not approximate) derivative of f
with respect to θi is

∂θif ¼ rðfðθi þ sÞ − fðθi − sÞÞ; ð71Þ

where s ¼ π
4r. In frequent cases of rotations around Pauli

matrices (as in popular Ansätze),G ¼ Ry; Rx; Rz, parameter r
equals 1. Evaluation of a difference between shifted functions
can be made with the use of the circuit shown in Fig. 5. Then,
the expectation value of 2hσþi is equal to the derivative of f,

2hσþi ¼ fðθi þ sÞ − fðθi − sÞ ¼ ∂θif: ð72Þ

VII. THE s= 1 CASE

As the first example of the introduced method, let us
consider the special case of s ¼ 1, for which the constraint
takes the form

Ĉ ¼
�
1

6
− δ

�
PnðσzÞ ¼

�
1

6
− δ

�
ðσz ⊗ I þ I ⊗ σzÞ; ð73Þ

and its square

Ĉ2 ¼ 2

�
1

6
− δ

�
2

ðI ⊗ I þ σz ⊗ σzÞ: ð74Þ

Therefore, we need to compute only one expectation value,

hĈ2i ¼ 2

�
1

6
− δ

�
2

ð1þ hσz ⊗ σziÞ: ð75Þ

The quantum circuit enabling measuring the expectation
value hσz ⊗ σzi is shown in Fig. 6.
As the V̂ψ operator we use the RYCZ Ansatz with two

angles θ1; θ2 ∈ ½0; 2πÞ (see the Appendix). The quantum
circuit for the Ansatz is shown in Fig. 7. We reduced the
number of parameters from 4 to 2 using symmetry of our
constraint, which induces symmetry of states from the

FIG. 5. A quantum circuit corresponding to the parameter-shift
rule in the case of 1-qubit states and operators.

FIG. 6. A quantum circuit measuring expectation value
hσz ⊗ σzi in state jψi.

GRZEGORZ CZELUSTA and JAKUB MIELCZAREK PHYS. REV. D 105, 126005 (2022)

126005-10



kernel. The states are, namely, invariant under changing
qubits order from q1; q2;…; qn to qn; qn−1;…; q1.
In this example, a basic gradient descent optimizer was

used with step size η ¼ 1 and convergence tolerance was
10−6. Parameter δ in the constraint was set to 1

2
.

Figure 8 shows the cost function in a function of steps of
the optimization procedure.
Figure 9 shows the cost function in the parameter space.

We see four minima, each corresponding to the same state
(up to a global phase). It is worth noticing that the
landscape of the cost function does not possess any local
minima, which simplifies the optimization procedure. This,
however, is not necessarily the case for higher spins,
including the spin-2 example discussed in the next section.
Obtained amplitudes of the basis states are shown later.

The algorithm returns correct states up to the global sign (in

what follows the signs are agreed). The states are very close
to the exact result, which is a state 1ffiffi

2
p ðj01i þ j10iÞ [see

Eq. (23)], with quantum fidelity equal 1, up to numerical
uncertainty. Because the RYCZ Ansatz corresponds to a
pure state, the quantum fidelity reduces to Fðρ̂1; ρ̂2Þ ¼
jhψ1jψ2ij2, where ρ̂1 ¼ jψ1ihψ1j and ρ̂2 ¼ jψ2ihψ2j.
For this simple case, we also did computation on the real

IBM superconducting quantum processor Yorktown [17].
The quantum processor has a topology of qubits as shown
in Fig. 10. In the simulations, 1024 of shots for each circuit
were made.
Figure 11 shows the cost function in a function of steps

of the optimization procedure.
Figure 12 shows the cost function in the parameter space.
In consequence of the applied optimization procedure,

the state, for which measured amplitudes are shown in
Fig. 13, has been found. Without error correction methods
and with automatic transpilation of circuit, we obtained
fidelity of the found state equal 0.9973� 0.0029.

VIII. THE s= 2 CASE

In this case, the constraint squared consists of more Pauli
terms, which have to be evaluated independently and then
summed up,

FIG. 7. A quantum circuit for the Ansatz for the spin-1 case.

FIG. 8. Evolution of the cost function during minimization, for
ten runs with randomly initialized parameters.

FIG. 10. Connectivity of qubits in the Yorktown processor.

FIG. 11. Evolution of the cost function during minimization,
for ten runs with randomly initialized parameters. Values com-
puted on simulator based on parameters obtained on the IBM
Yorktown quantum computer.

FIG. 9. Parameters of states for each step in the space of all
possible parameters for the case of a quantum simulator. The
colors of the curves correspond to those in Fig. 8. The heat map
represents value of the cost function.
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Ĉ2¼ 1

16

�
Pnðσy;σyÞ

�
16

3
−
76

3
δþ16δ2

�
þPnðσz;σzÞ

×

�
34

9
−40δþ144δ2

�
þPnðσx;σxÞ

�
2−

4

3
δþ16δ2

�

þ I⊗4

�
208

9
−144δþ384δ2

�
þPnðσx;σx;σy;σyÞ

þPnðσz;σz;σz;σzÞ
�
−
2

3
δþ8δ2

�
þPnðσy;σy;σz;σzÞ

×

�
5

3
−
38

3
δþ8δ2

�
þPnðσx;σx;σz;σzÞ

�
−
2

3
δþ8δ2

��
:

ð76Þ

Here, we use also the RYCZ Ansatz but for four qubits,
with two layers and six real parameters (see Fig. 14).
Figure 15 shows the cost function in a function of steps

of the optimization procedure employing the simulator of a
quantum computer.
In all cases (six out of ten) when the cost function

decreases under 0.004, we obtain states with fidelity above

0.98, in cases (two out of ten) with the cost function slightly
above 0.04, we obtain fidelity around 0.64. Interesting is
the case with high fidelity 0.93, but with cost function quite
high 0.009, which means that even if we stuck in some local
minimum, we have a chance to obtain a state close to the
correct one. The obtained fidelities are collected in Table I.
In the case of s ¼ 2 for δ ¼ 7

18
the kernel of Ĉ is

degenerated, dim ker Ĉ ¼ 3. A linearly independent set
of states spanning the kernel can be found using the
method discussed in Sec. V. In this case, we define fidelity
of the found states in the following way:

Fðψ ;ϕ1;ϕ2;ϕ3Þ ≔ jhψ jϕ1ij2 þ jhψ jϕ2ij2 þ jhψ jϕ3ij2:
ð77Þ

FIG. 12. Parameters of states for each step in the space of all
possible parameters for the case of the Yorktown quantum
processor. The colors of the curves correspond to those in Fig. 11.
The heat map represents values of the cost function.

FIG. 13. Averaged (over ten runs) amplitudes of the final state.
Here, the RYCZ Ansatz implies that the amplitudes are real
valued. The error bars correspond to standard deviation.

FIG. 14. Quantum circuit for the Ansatz for spin 2.

FIG. 15. Cost function during minimization for ten runs with
randomly initialized parameters. Here, the RYCZ Ansatz and
δ ¼ 1=2 have been used.

TABLE I. Fidelities of the obtained states and final values of
the cost function corresponding to these states for ten runs.

No. Fidelity Cost

1 0.99825 0.00014
2 0.99831 0.00013
3 0.92892 0.00915
4 0.63477 0.00434
5 0.00383 0.01019
6 0.64508 0.00430
7 0.99777 0.00006
8 0.99825 0.00014
9 0.98189 0.00226
10 0.99825 0.00014
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Here, jψi is the determined state and jϕii are the exact
states forming an orthonormal basis in the kernel subspace.
In Table II, fidelities of the obtained states are shown. The
results of the Gram-Schmidt procedure for five runs are
collected in Table III. In all case, there are three leading
contributions and the fourth one is marginal. This provides
evidence that the kernel space is three dimensional, in
accordance with the theoretical expectations for the case
with δ ¼ 7

18
. However, due to computational errors, the

answer is not fully conclusive.

IX. COMPUTATIONAL COMPLEXITY

As we see, the case s ¼ 2 has many more terms to
evaluate than the case s ¼ 1. Consequently, in the large
spin limit, a problem of an enormous number of terms may
arise. To analyze the number of Pauli terms for arbitrary
spin s, let us first notice that the number of different Pauli
terms in operator Pn is given by the combinatorial factor

n!
nx!ny!nz!ðn − nx − ny − nzÞ!

; ð78Þ

where nk is the number of Pauli operators σk, and n is the
number of qubits. Using formula (53) for C2 for arbitrary
spin, we obtain (for n ≥ 6) a number of Pauli terms, i.e.,
number of quantum circuits to evaluate is

151

720
nðn − 1Þðn − 2Þðn − 3Þðn − 4Þðn − 5Þ

þ 7

8
nðn − 1Þðn − 2Þðn − 3Þ þ 3

2
nðn − 1Þ ∼ n6; ð79Þ

which, fortunately, has polynomial computational com-
plexity Oðn6Þ. Here, symmetries of the constraint (which
may slightly reduce the number of combinations) were not
taken into account.
Another aspect of computational complexity of the

method relates to the fact that in the proposed method a
subspace of the total Hilbert space of the quantum register
is used. For a register composed of n qubits, the Hilbert
space has dimension 2n. However, the constraint (with
fixed spin s) subspace forms a 2sþ 1 ¼ nþ 1-dimensional
subspace. The remaining 2n − ðnþ 1Þ states of the register
are not used. This is unavoidably a waste of quantum
resources and the weak side of the approach. Please notice
that the spin s scales linearly with the number of qubits. So,
for instance, with 16 qubits we can simulate only a system
with spin s ¼ 8.
The ideal situation would be to utilize the whole Hilbert

space of the quantum register, so that 2sþ 1 ¼ 2n. In such
case, having n ¼ 16 qubits allows one to simulate with
s ∼ 3 × 104. Finding a method of representing spin oper-
ators and constraints in this case is an open problem, which
will be addressed elsewhere.
It should be noted that, in principle, we can always

express our constraints, considered as a matrices, in terms
of Pauli strings acting on all qubits, so that the number of
qubits is n ¼ ⌈ log2ð2sþ 1Þ⌉. However, it is generally
difficult to find this decomposition, and our approach
is easier to implement and generalize. For example,
Eq. (53) gives this expansion of our constraint for
arbitrary spin.
The advantage of the method presented here becomes,

however, sound, while systems with sufficiently high
numbers (m) of the classical degrees of freedom are
considered. Then, assuming that for every degree of free-
dom the spin representation is s, the dimension of the
Hilbert space of the composite system is ð2sþ 1Þm. Every
spin consumes n ¼ 2s qubits of the quantum register, so in
total nm ¼ 2sm qubits are needed. So, the smaller the s,
the less of the quantum resources are wasted, i.e.,
22sm − ð2sþ 1Þm. In the limiting case of s ¼ 1=2, all
the quantum resources are utilized 22

1
2
m − ð2 1

2
þ 1Þm ¼ 0.

In this range, application of quantum methods promises to
be advantageous over the classical method, since the
amount of utilized computational resources grows expo-
nentially with m.

X. SUMMARY

In this article, we have introduced and tested a method of
solving of the minisuperspace Wheeler-DeWitt equation
employing variational quantum methods. For a single
constraint C, with m classical degrees of freedom, the
methods consist of the following main steps:
(1) Replace the kinematical phase space Γ ¼ R2m

with Γ ¼ S2m.

TABLE II. Fidelity (77) of each state obtained for five runs of
the optimization procedure for the case with s ¼ 2 and δ ¼ 7

18
.

No. State 1 State 2 State 3 State 4

0 0.99982 0.99984 0.99991 0.99989
1 0.99984 0.99999 0.99989 0.99993
2 0.99992 0.99995 0.99989 0.99983
3 0.99984 0.99988 0.99985 0.99995
4 0.99984 0.99990 0.99985 0.99999

TABLE III. Norms of states obtained in each step of the Gram-
Schmidt procedure (before normalization of the sates) for five
runs of the optimization procedure for the case with s ¼ 2 and
δ ¼ 7

18
.

No. Step 1 Step 2 Step 3 Step 4

1 1.0000 0.9998 0.0764 0.0006
2 1.0000 0.9038 0.6065 0.0002
3 1.0000 0.1097 0.4148 0.0040
4 1.0000 0.9984 0.0003 0.2669
5 1.0000 0.7227 0.0000 0.8264
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(2) Express the constraint C in terms of spin variables
CðS⃗1;…; S⃗mÞ. This can be done by applying the
replacement

p →
Sy
R2

; q → −
Sz
R1

;

where R1R2 ¼ S, for every canonical pair ðqi; piÞ.
(3) Perform canonical quantization and symmetrization

of the constraint, obtaining Ĉð ˆS⃗1;…; ˆS⃗mÞ. Fix a
particular representation s for the spins.

(4) Represent the spin operators in terms of qubits,
employing the formula

Ŝi ¼
1

2

Xn
j¼1

I1 ⊗ …Ij−1 ⊗ σ̂ji ⊗ Ijþ1 ⊗ …In;

where n ¼ 2s.
(5) Apply the VQE method with the cost function

cðαÞ ¼ a
max jλij2

hψðαÞjĈ†ĈjψðαÞi

þ b

�
1 −

h ˆS⃗2i
sðsþ 1Þ

�
;

where aþ b ¼ 1, and a; b ∈ ð0; 1Þ (e.g., a ¼ 1
2
¼ b).

(6) Explore degeneracy of the kernel space by either
adding terms jhψ ijψðαÞij to the cost function or by
applying the Gram-Schmidt procedure.

(7) Study the large s limit to recover results for the flat
(affine) phase space.

The procedure utilizes compactification of the system’s
phase space for the purpose of making its Hilbert space
finite. The dimension of the Hilbert space is controlled by a
single parameter s, which labels irreducible representations
of the SUð2Þ group. The flat phase space case is recovered
in the large spin s limit. In the article, the procedure has
been tested on the example of the de Sitter cosmological
model, which has a single classical degree of freedom (the
scale factor) and, consequently, a two-dimensional phase
space. In the quantum case, kinematics is described by the

spin operator ˆS⃗. The quantum constraint of the system has
been expressed in terms of the qubits of the quantum
register for an arbitrary spin s. This allowed us to apply the
VQE method to extract physical states of the model under
consideration.
As an example, the procedure has been executed for

s ¼ 1 and s ¼ 2. In the case of s ¼ 1, the quantum circuits
were evaluated on both a simulator of the quantum
computer and the superconducting quantum computer
Yorktown. In the case s ¼ 2, computations have been
performed on a simulator only due to high quantum errors.

Both the cases of nondegenerate and degenerate kernels
were explored, confirming the correctness of the method.
It has been emphasized that the introduced method does

not provide an advantage over classical computations for
the case with a single degree of freedom (e.g., homo-
geneous and isotropic cosmology). However, the advantage
is expected while a large number of quantum-gravitational
degrees of freedom are considered. Investigation of such a
case will be a subject of our further studies.
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APPENDIX: RYCZ ANSATZ

RYCZ Ansatz consists of Ry (RY)

RyðθÞ ¼ exp

�
−i

θ

2
σy

�
¼

�
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

�
; ðA1Þ

and controlled-σz (CZ) gates.
We apply gates RyðθiÞ, parametrized by different para-

meters θi, on every qubit, and then we apply CZ gates on all
pairs of qubits (Fig. 16) or only on some pairs (Fig. 17).
This block of gates can be repeated many times (Fig. 18).

FIG. 16. Quantum circuit for the RY Ansatz with full entan-
glement, and depth ¼ 1.

FIG. 17. Quantum circuit for the RY Ansatz with linear
entanglement, and depth ¼ 1.
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This Ansatz generates states with real coefficients,
but since Ĉ is self-adjoint, we can always choose
the eigenvectors to be real. Let jvi be an eigen-
vector with complex coefficients for the λ eigenvalue
(which is real),

Ĉjvi ¼ λjvi: ðA2Þ
Then jv̄i ¼ jvi� is also an eigenvector for the same
eigenvalue,

Ĉjv̄i ¼ λjv̄i: ðA3Þ

As a consequence, we can take a linear combination of
these vectors,

jai ¼ 1

2
ðjvi þ jv̄iÞ; ðA4Þ

jbi ¼ 1

2i
ðjvi − jv̄iÞ; ðA5Þ

which are real eigenvectors with eigenvalue λ.
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