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The emergence of nontrivial symmetries for black holes minisuperspaces has been recently pointed out.
These Noether symmetries possess non-null charges and hence map physical solutions to different ones.
The symmetry group is isomorphic to the finite-dimensional Poincaré group ISOð2; 1Þ, whose irreducible
representations are well known. This structure is used to build a consistent quantum theory of black hole
minisuperspace. This has, among other consequences, the striking consequence of implying a continuous
spectrum for the mass operator. Following loop quantum cosmology, we obtain a regularization scheme
compatible with the symmetry structure. It is possible to study the evolution of coherent states following the
classical trajectories in the low curvature regime. We show that this produces an effective metric where the
singularity is replaced by a Killing horizon merging two asymptotically flat regions. The quantum
correction comes from a fundamental discreteness of spacetime, and the uncertainty on the energy of the
system. Remarkably, the effective evolution of semiclassical states is described by an effective
Hamiltonian, related to the original one through a canonical transformation.
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I. INTRODUCTION

Black holes are one of the most fascinating predictions of
general relativity, and the interest in their properties has been
growing since the rise of experimental ability, thanks to
gravitational wave detection and very recent black hole
imagery. But black holes in classical general relativity are
inevitably associated with singularities, signals of the
breakdown of the classical theory. It is widely expected
that approaching the classical singularity, where the curva-
ture becomes Planckian, quantum effects become important.
In a full quantum theory of spacetime, singularitieswould be
replaced by a unitary evolution through a fuzzy geometry.
Unfortunately, extracting information about the fate of

black hole singularity from a specific quantum theory of
spacetime remains an outstanding challenge. For any
known quantum gravity theory, there is indeed no straight-
forward way to determine the physical quantum states
representing black holes, even for the simplest case of
spherically symmetric geometries.
It is nonetheless possible to incorporate some features of

the full theories into minisuperspace models with a finite
number of degrees of freedom. Consistent efforts have been
done in this direction, starting from the nonperturbative and
background independent theory of Loop Quantum Gravity
(LQG) and related approaches [1–4].
Concerning black hole quantization, the majority of the

works are built on the isometry between black hole interior

and Kantowski-Sachs cosmology [5–25], allowing one to
import techniques originally developed in the cosmological
setting. In Loop Quantum Cosmology (LQC), the quantum
effects are claimed to be captured by a phase space
regularization, so-called polymerization, that encodes the
fundamental discreteness of spacetime at small scales. In
the first place, the symmetries of spacetime (e.g., homo-
geneity or spherical symmetry) are imposed classically;
then, quantization is done on a latticelike regularization of
the minisuperspace model, where the essential operators
are holonomies of connection and areas. See e.g., Ref. [26]
for a review on LQC.
In flat Friedmann-Lemaître-Robertson-Walker (FLRW)

cosmology, the calculation of expectation values on suit-
able semiclassical states provides an effective evolution
where the big bang singularity is replaced by a bounce [27–
29]. The effective evolution can be seen as generated by a
regularized classical Hamiltonian, where the canonical
momenta (say p) are replaced by the polymerized version
sinðλpÞ=λ, where λ is a UV cutoff, typically related to the
Planck length, that could be phase space dependent.
Aswith any canonical quantization, this procedure suffers

from ambiguities. On top of the usual ordering issues,
polymerization adds another level of ambiguity. To define
the size of the lattice,we should indeed specify a phase space
(in)dependence of the regularization parameter(s). Different
choices of UV regularizations lead to drastically different
dynamics [30–32]. In FLRW models, there is a solid
consensus in favor of the choice know as μ̄-scheme, even
if some ambiguities still remain [33–36].*francesco.sartini@ens-lyon.fr
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Despite the large effort, for the black hole dynamics, no
agreement has been found yet [17–25,37–43]. Moreover,
the majority of the works about black hole dynamics start
directly by the heuristic effective dynamics introducing by
hand the polymer correction. In the absence of fully
controlled quantum dynamics, the question of the equiv-
alence between the effective evolution and the expectation
values of quantum states is rarely addressed.
Nevertheless, it is worth noting that, despite the technical

differences between the various approaches, the effective
models share common features, like the replacement of the
singularity with a transition surface from a black hole to a
white hole interior.
An important question that is raised by the effective

dynamics approach is whether the resulting spacetime
posses covariance. In a more general setting (inhomo-
geneous), this consistency check is provided by the require-
ment that the constraints algebra remains anomaly free after
regularization [44,45]. In the homogeneous minisuperspace
model, this criterion is useless, as we are left only with a
sole scalar constraint, trivially commuting with itself.
In a recent work [46], it has been unraveled that the black

hole interior homogeneous model actually posses a non-
trivial and finite-dimensional symmetry algebra, isomor-
phic to the isoð2; 1Þ Poincaré algebra, that fully encodes
the dynamics on the phase space. This is a generalization of
what happens in flat FLRW cosmology coupled with a
scalar field, in the isotropic case and for the Bianchi I model
[47–54], and it has very recently extended to (anti-)de Sitter
Schwarzschild solutions [55].
This invariance has been used as a guiding principle to

build a polymerization scheme in which the symmetry is
protected, replacing the argument of preservation of the
constraint algebra in the full theory. The new symmetry
also opens the door to a group quantization of the model, in
the spirit of what has been developed for the cosmological
model [48,49]. The present work aims to exploit the
representation theory of the 2þ 1 Poincaré group to build
a quantum theory of the black hole interior.
The outline of the paper is as follows. I start by reviewing

the classical setup for black holes minisuperspace in Sec. II.
I recall there the construction of Ref. [46], embedding a
massless and zero spin realization of the isoð2; 1Þ algebra
into the mechanical phase space. This algebra corresponds
to the evolving version of the Noether charges of the
ISOð2; 1Þ symmetry [46]. Arguing that such asymmetry
could be used as a guiding principle for quantization, we
build a quantum theory of black hole minisuperspace in
Sec. III. Thanks to the knowledge of the energy eigenstates,
we can impose the dynamics (Sec. III B) on the Hilbert
space. This is done in two different ways by respectively
strongly and weakly fixing the energy level of the system,
and the resulting evolution of the coherent states leads to
substantially different effective metrics. The group quan-
tization also gives a very strong prediction about the

continuity of the mass spectrum (III C). I end this work
with a last section, Sec. IV, with an analysis of the possible
LQC-like deformation of the phase space, such that the
symmetry is preserved.

II. CLASSICAL SYMMETRIES OF BLACK HOLE
MINISUPERSPACE

I start by recalling the notations introduced in the
precedent work [46]. To study the dynamics of the spheri-
cally symmetric homogeneous Kantowski-Sachs cosmol-
ogy, describing the Schwarzschild interior, we consider the
line element

ds2¼−NðtÞ2 V1ðtÞ
2V2ðtÞ

dt2þ8V2ðtÞ
V1ðtÞ

dx2þL2
sV1ðtÞdΩ2; ð2:1Þ

where x runs over the real line and dΩ2 is the metric on the
unit sphere at constant x and t, meaning that the spatial
slices have the topology R × S2. To get dimensionless
fields Vi’s, we need to introduce a fiducial radius of the
two-sphere Ls. The system is homogeneous in the sense
that the dynamical fields N, Vi depend only on time.
Considering the case of gravity, without matter, and a

vanishing cosmological constant, the dynamics is described
by Einstein-Hilbert action, integrating the Ricci scalar of
(2.1) over a finite slice at constant t. For this, we must
introduce another fiducial scale L0 in the noncompact x
direction. It plays the role of an infrared cutoff that
regulates the integration. Because of homogeneity, the
finite slice contains information about the whole spacetime,
and the action now describes the dynamics of a mechanical
system evolving in time,

SðtÞ
EH½N;Vi� ¼

1

16πL2
P

Z
d4x

ffiffiffiffiffi
jgj

p
R

¼ L0

L2
P

Z
dt

�
N þ L2

s
V 0
1ðV2V 0

1 − 2V1V 0
2Þ

2NV2
1

þ d
dt

�
L2
s

2NV1

ðV1V2Þ0
��

; ð2:2Þ

where LP is the Planck length and the prime denotes the
derivative with respect to coordinate time t. The total
derivative at the end is exactly compensate by the con-
tribution of the Gibbons-Hawking term associated to
constant time hypersurfaces. We will drop it in the
following, leaving only the first order Lagrangian to
describe the classical dynamics of the system. For the
following, we will also consider the dimensionless quantity

κ ¼ L0L2
s

L3
P

; ð2:3Þ

which encodes the ratio between IR fiducial length and UV
scale of the theory, represented by the Planck length. The
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diffeomorphism invariance of general relativity has been
completely fixed, except for the time reparametrization. We
face now two possibilities concerning the role of the lapse
and the gauge freedom of the time coordinate [46]. On the
one hand, we can work in coordinate time t, and the
equation of motion obtained varying the action with respect
to the lapse N will correspond the so-called Hamiltonian
constraint. This is explicitly given by

δSðtÞ
EH

δN
¼ 0⇔ 0≈CH¼−

κLP

L2
s
þ κLP

N2

�
V2V 02

1

2V2
1

−
V 0
1V

0
2

V1

�
: ð2:4Þ

On the other hand, this is completely equivalent to
introducing a proper time gauge dτ ¼ Ndt. With this
redefinition, the lapse completely disappears from the action.
Moreover, the potential term coming from the intrinsic
curvature of the slice becomes a boundary term, and as such
can be simply discarded from the action. The latter becomes

S0½Vi�≡ κLP

Z
dτ

_V1ðV2
_V1 − 2V1

_V2Þ
2V2

1

; ð2:5Þ

where now the dot represents the derivative with respect to τ.
The scalar constraint CH ≈ 0 is now translated into a relation-
ship between the on-shell value of the physical Hamiltonian
ofS0, the fundamental scale, and the IR cutoff. This relation is
crucial when inserting the on-shell fields into the line element
to recover the right solution. In order to better see the
equivalence between the two approaches, we perform
the canonical analysis of the two actions. In both cases,
the conjugate momenta are given by

�����
P1 ¼ κLP

V2
_V1−V1

_V2

V2
1

¼ κLP
V2V 0

1
−V1V 0

2

NV2
1

;

P2 ¼ −κLP
_V1

V1
¼ −κLP

V 0
1

NV1
;

ð2:6Þ

and the Legendre transform gives the form of the
Hamiltonian:

S0 ¼
Z

dτðPi
_Vi −HÞ;

H ¼ −
1

κLP

�
P1P2V1 þ

P2
2V2

2

�
: ð2:7Þ

The canonical Poisson structure is fVi; Pjg ¼ δij. The
dynamics in the two descriptions is described respectively
by an Hamiltonian constraint CH for the t dependent theory
and a true Hamiltonian H for the evolution with respect to
the gauge fixed proper time. They satisfy the equality

CH ≡ N

�
H −

κLP

L2
s

�

¼ −
N
κLP

�
κ2L2

P

L2
s

þ V1P1P2 þ
1

2
V2P2

2

�
: ð2:8Þ

For an arbitrary phase space observable O, we could
equivalently describe the dynamics in terms of t or τ, by
computing the Poisson brackets of the observable with the
respective Hamiltonian density:O0 ¼fO;CHg, _O¼fO;Hg.
The on-shell equivalence between the two dynamics is
ensured by the vanishing of the scalar constraint, even for
lapse choices that are field dependent1:

O0 ¼ fO; CHg ¼ N

�
O; H −

κLP

L2
s

	
þ
�
H −

κLP

L2
s

�
fO; Ng

≈ NfO; Hg ¼ dτ
dt

_O: ð2:9Þ

In the following,wewill work in proper time and consider
the one-dimensional action S0, without any lapse or poten-
tial term, but we shall remember to relate the latter to the
value of the Hamiltonian. Doing so, the equations of motion
of the reduced action (2.5) are equivalent to the Einstein
equations for the metric (2.1) (with N ¼ 1). A straightfor-
ward calculation leads to the classical solutions [46]

V1 ¼
A

2L2
Pκ

2
ðτ − τ0Þ2; ð2:10aÞ

P1 ¼
2BL2

Pκ
2

Aðτ − τ0Þ2
; ð2:10bÞ

V2 ¼
B
LPκ

ðτ − τ0Þ −
1

2L2
s
ðτ − τ0Þ2; ð2:10cÞ

P2 ¼ −
2LPκ

τ − τ0
; ð2:10dÞ

where the constraint on the value of the Hamiltonian
H ¼ κLP=L2

s has already been imposed. The other quan-
tities A;B; τ0 are integration constants. If we insert these
solutions back into the line element (2.1), and perform the
change of coordinates

τ − τ0 ¼
ffiffiffiffi
2

A

r
LPκ

Ls
T; x ¼ Ls

2LPκ

ffiffiffiffi
A
2

r
r; ð2:11Þ

we find the standard Schwarzschild black hole interior
metric, where the mass is given by

M ¼ B
ffiffiffiffi
A

p
L3
sffiffiffi

2
p

L2
Pκ

2
¼ B

ffiffiffiffi
A

p
L4
Pffiffiffi

2
p

L2
0Ls

: ð2:12Þ

Notice that the singularity is located at τ ¼ τ0, when both the
classical solutions forV1 andV2 vanish, while the horizon is

at τ − τ0 ¼ 2BL2
s

LPκ
, where only V2 is zero. Although the action

S0 has been introduced starting from the black hole interior

1For the two theories to be equivalent and self-consistent, the
fiducial scales must be constant.
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and should be in principle limited to the range where τ is
timelike, the classical solutions for the fields Vi are regular
on the whole real line, smoothly crossing the singularity
at τ ¼ τ0.
In Ref. [46], it is shown that all the dynamical informa-

tion of the metric fields is encapsulated into a phase space
structure isomorphic to the isoð2; 1Þ Poincaré algebra. This
is provided by the evolving generators associated with the
ISOð2; 1Þ invariance of the mechanical system described by
the action (2.5). The main idea behind the construction in
Ref. [46] is that solving the Hamilton equations is the same
as exponentiating the flow of the Hamiltonian vector field,
by iteratively computing the Poisson’s bracket with the
Hamiltonian f::fVi;Hg; ::g; Hg. One can check if at some
point the iteration closes and forms a Lie algebra. For both
the fields, the algorithm stops at the second step

C ≔ κLPfV2; Hg ¼ −P1V1 − P2V2;

ffV2; Hg; Hg ¼ −
H
κLP

; ð2:13aÞ

D ≔ −κLPfV1; Hg ¼ P2V1;

A ≔ ðκLPÞ2ffV1; Hg; Hg ¼ V1P2
2

2
; ð2:13bÞ

where A is a first integral of motion, commuting withH. As
the Hamiltonian trivially commutes with itself, for both the
fields, the third iteration (i.e the third derivative in proper
time τ) vanishes. The generators can be rearranged into the
usual isoð2; 1Þ basis

Jz¼
V2

2λ
−λκLPH; Kx¼λκLPHþV2

2λ
; Ky¼C; ð2:14aÞ

Π0¼
V1

2λ
þ λA; Πx ¼D; Πy ¼

V1

2λ
−λA; ð2:14bÞ

where λ is a real dimensionless constant. Computing the
Poisson brackets between the six generators gives the
isoð2; 1Þ algebra

fJz;Kig ¼ ϵijKj; fKx;Kyg ¼ −Jz;

fJz;Πig ¼ ϵijΠj; fKi;Π0g ¼ Πi; fKi;Πjg ¼ δijΠ0:

ð2:15Þ

The two Poincaré Casimirs, representing respectively the
mass and spin of the corresponding irreducible representa-
tion, are

C1¼−Π2
0þΠ2

xþΠ2
y; C2¼JzΠ0þKxΠy−KyΠx: ð2:16Þ

Rewriting the generators in terms of canonical variables, we
find that the two Casimirs identically vanish Ci ¼ 0. This
condition is necessary to reduce the six-dimensional

Lie algebra back to the original four-dimensional phase
space. We have already included one of the first integrals of
motion (A) into the algebra. The other one is related to the
Casimir operator of the slð2;RÞ sector as

Cslð2;RÞ ¼ −J2z þ K2
x þ K2

y ≔ B2; B ≔ V1P1; ð2:17Þ

that by construction commutes with the Hamiltonian. We
shall nonetheless remark that it is not a Casimir operator of
the whole algebra and does not select the representation of
the algebra, unlike what happens in cosmology [49,50] and
conformal mechanics [56].
The intriguing property of this structure is that it can be

exponentiated to an actual symmetry of the Lagrangian,
generated by the Noether charges corresponding to the
initial conditions of the isoð2; 1Þ generators (see Ref. [46]
for further development and Ref. [50] for the corresponding
construction in the isotropic setting).
It is interesting and useful for what follows to rewrite the

(squared) mass in terms of Poincaré generators:

M2 ¼ B2A
L8
P

2L4
0L

2
s
≔ L2

Mð−J2z þ K2
x þ K2

yÞ
Π0 − Πy

4λ
;

LM ≔
L4
P

L2
0Ls

: ð2:18Þ

For the sake of simplicity, I introduce LM, which is a
constant length indicating how the UV fundamental length
and the fiducial scales couple into the definition of the mass
observable. We shall remark that, despite the apparent
dependence on the fiducial scale, the mass is unchanged by
a rescaling of the IR length, because also A and B change
under the rescaling [46].
The quantization of the mechanical system representing

the black hole interior will be the subject of the next
session, but we can already see from here that the vanishing
of the Casimir Ci implies that we will deal with massless
and spin zero representations of the 2þ 1 Poincaré group.
Before moving to the quantum theory, we would like to

spend some words on the role of the IR regulator and the
presence of boundaries. First of all, we needed to introduce
L0 for the action principle of (2.2) to be well defined. The
presence of the second length scale Ls is just a matter of
convenience to deal with dimensionless quantities and
allows translating from L0 to κ. These length scales appear
in the energy level for the Hamiltonian, but once we put the
solution into the line element (2.1), we recover the one-
parameter family of black holes with a general mass M, as
expected from the no-hair theorem.
We have then an apparent clash between the general

relativity (GR) point of view (with a one-parameter family
of solutions due to no-hair theorem) and the mechanical
point of view with a four-dimensional phase space.
Furthermore, the symmetries of the mechanical models
presented in Ref. [46] interplay with the fiducial scales.
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This is because the symmetry changes the energy value of
the solution, and so we must rescale the length in order to
restore the constraint (2.4). This is actually a quite common
situation in gravity, where the boundary seems to carry
some physical information, making some gauge redun-
dancy to become physical. Nonetheless, the precise mean-
ing of the physical relevance of the boundary is yet to be
determined. For example, some recent work [57] has
pointed out a possible relationship between the conformal
properties of the Schwarzschild background and its static
perturbation. We will see in the following how the fiducial
lengths control the quantum modification of the classical
line element.

III. ISO(2, 1) GROUP QUANTIZATION

It is a common expectation that the quantum theory of
general relativity should provide an anomaly free repre-
sentation of the constraint algebra. Going into the study of
minisuperspaces, such a requirement is meaningless
because we are left with the scalar constraint alone, trivially
commuting with itself. The unveiling of the conformal
symmetry for cosmology and its extension to black holes
suggest that for minisuperspaces we can replace the
constraint algebra with the new symmetry algebra. In the
case considered in this article, this means that the quantum
Hilbert space must contain an irreducible representation of
Poincaré algebra. It is then smart to directly start by
exploiting the well-known irreducible representation of
(the universal cover of) ISOð2; 1Þ. For this, the reader
shall refer to an exhaustive discussion in Ref. [58], of which
I recall here some key features in the Appendix A. We
consider the realization of the algebra (2.15) as self-adjoint
operators, acting on wave functions on R2 in polar
coordinates, with the scalar product

hψ jχi ¼
Z

∞

0

dρ
Z

2π

0

dϕψ�ðρ;ϕÞχðρ;ϕÞ: ð3:1Þ

The isoð2; 1Þ generators are realized as a one-parameter
family, with s ∈ Rðmod 2Þ

ðcΠ0
ðsÞψÞðρ;ϕÞ ¼ ρψðρ;ϕÞ; ð3:2aÞ

ðcΠx
ðsÞψÞðρ;ϕÞ ¼ ρ sinϕψðρ;ϕÞ; ð3:2bÞ

ðcΠy
ðsÞψÞðρ;ϕÞ ¼ ρ cosϕψðρ;ϕÞ; ð3:2cÞ

ðbJzðsÞψÞðρ;ϕÞ ¼
�
i
∂
∂ϕ −

s
2

�
ψðρ;ϕÞ; ð3:2dÞ

ðcKx
ðsÞψÞðρ;ϕÞ ¼

�
iρ

�
sinϕ

∂
∂ρþ

cosϕ
ρ

∂
∂ϕ

�
−
s
2
cosϕ

�
× ψðρ;ϕÞ; ð3:2eÞ

ðcKy
ðsÞψÞðρ;ϕÞ ¼

�
iρ

�
cosϕ

∂
∂ρ −

sinϕ
ρ

∂
∂ϕ

�
þ s
2
sinϕ

�
× ψðρ;ϕÞ: ð3:2fÞ

By a straightforward calculation, we can verify that they
satisfy the quantum version of the algebra (2.15), replacing
the Poisson bracket by the commutator between operators.
This realization satisfies the condition that both the
Casimirs are zero,

cC1 ≔ −cΠ0
2 þ cΠx

2 þ cΠy
2; ð3:3aÞ

cC2 ≔
1

2
ðbJz cΠ0þcΠ0

bJzþcKx
cΠy þcΠy

cKx −cKy
cΠx −cΠx

cKyÞ;
cC2ψðρ;ϕÞ ¼ 0 ¼ cC1ψðρ;ϕÞ: ð3:3bÞ

We could explicitly calculate the action of the slð2;RÞ
Casimir and see that it does not depend on s,

ðĈðsÞ
slð2;RÞψÞðρ;ϕÞ ¼ ð−bJz2 þ cKx

2 þ cKy
2Þψðρ;ϕÞ

¼ −ρ
�
2
∂
∂ρþ ρ

∂2

∂ρ2
�
ψðρ;ϕÞ: ð3:4Þ

Let us finally remark that we can also define the square
root of this operator, which corresponds to the classical
integral B:

ðB̂ψÞðρ;ϕÞ ≔ i

�
ρ
∂
∂ρþ

1

2

�
ψðρ;ϕÞ;

Ĉslð2;RÞ ¼ B̂2 þ 1

4
: ð3:5Þ

The factor 1=4 represents a quantum correction to the
Casimir with respect to its value in terms of the classical
integration constant B.
An important remark should be done at this point. The

Hilbert space presented here is unitarily equivalent to the so-
called Wheeler-DeWitt (WdW) quantization of our system,
where we simply promote the fields Vi to multiplicative
operators and P̂i ¼ −i∂Vi

(see Appendix B for the proof of
this statement). Whenever we would like to introduce a
quantum phase space inequivalent to Wheeler-DeWitt (via
e.g., a polymerization), we expect to brake this unitary
equivalence, and at first glance, it could seem impossible to
preserve the realization of isoð2; 1Þ on the polymerized
space.Wewill see in Sec. IV that the solution is provided by
mapping the regularized metric coefficients to operators on
the sameHilbert space, that are not unitary equivalent to the
Wheeler-DeWitt operators. For the time being, we stick to
the classical mapping between gravitational reduced phase
space and Poincaré algebra (2.14) and further study the
Hilbert space and how to impose the dynamics at the
quantum level.
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A. Hilbert space and energy eigenstates

First of all, we search for eigenstate of the rotation
generator Jz and the Casimir B. These provide a complete
basis of the Hilbert space and are labeled by a real number
B and an integer m,

bJzjB;mi ¼ mjB;mi; m ∈ Z; ð3:6aÞ

B̂jB;mi ¼ BjB;mi; ð3:6bÞ

cK�jB;mi ¼
�
m�

�
1

2
þ iB

������B;m� 1i; ð3:6cÞ

cΠ0jB;mi ¼ jBþ i; mi; ð3:6dÞ

cΠ�jB;mi ¼ jBþ i; m� 1i; ð3:6eÞ

where K� ¼ Kx � iKy, and Π� ¼ Πy ∓ iΠx.
2

The formulas above can be verified by direct computa-
tion of the realization (3.2) on the normalized wave
functions

hρ;ϕjB;mi ¼ 1

2π

1ffiffiffi
ρ

p e−iB logðρÞe−1
2
ið2mþsÞϕ;

hB0; m0jB;mi ¼ δm;m0δðB − B0Þ: ð3:7Þ

We shall remark that the firsts lines in (3.6) provide a
representation of the slð2;RÞ algebra at fixed Casimir, but
the presence of the Abelian sector, represented by trans-
lations of the Poincaré group, allows us to move between
different values of B.
An interesting role is played by the parameter s; it is very

similar to the one played by the superselection parameter in
LQC [26]. With respect to the scalar product (3.1), two
states with different s are always orthogonal and belong to
different irreducible representations of the Poincaré group,
exactly as two superselected lattices in LQC with respect to
the polymer representation of Weyl algebra [59,60].
Hereafter, without loss of generality, I will set s ¼ 0.
If we want to impose some dynamics on the Hilbert

space, we must recall that the classical evolution is
generated by the Hamiltonian H. At the quantum level,
it means that we need to search for eigenstates of Kx − Jz,

ðĤψÞðρ;ϕÞ¼ 1

2λκLP
ðcKx− bJzÞψðρ;ϕÞ¼Eψðρ;ϕÞ: ð3:8Þ

Hopefully, the associated differential equation has an
analytical solution. Diagonalizing with respect to the
Casimir Cslð2;RÞ, we obtain again a complete basis for
the Hilbert space,

ĤjB;Ei ¼ EjB; Ei; ð3:9aÞ

B̂jB;Ei ¼ BjB;Ei; ð3:9bÞ

hρ;ϕjB;Ei ¼
ffiffiffiffiffiffiffiffiffiffi
λκLP

p
2π

1ffiffiffi
ρ

p
sinðϕ=2Þ e

−iB log ðρ sin2ðϕ=2ÞÞ

× e−ið2λκLPE cotðϕ
2
ÞÞ; ð3:9cÞ

hB0; E0jB;Ei ¼ δðE − E0ÞδðB − B0Þ: ð3:9dÞ

We shall remark that the spectrum of the Hamiltonian is
continuous and unbounded from below, exactly as it
happens for cosmology and conformal mechanics [56].
This should lead to a catastrophic instability when we
consider (multiple) interacting systems, but our formalism
is valid only for a single static black hole, without any
matter content, and thus the question of stability cannot be
addressed here. For instance, it does not make any sense to
couple with a thermal bath and to look at the partition
function e−βH.
In order to verify the orthogonality, as well as the

completeness, of the basis, it is convenient to perform a
change from the ðρ;ϕÞ polarization to a new set of
variables, with respect to which the eigenfunctions look
like plane waves (see Appendix A for the realization of the
Poincaré algebra on the new variables):

z≔ 2λκLP cot

�
ϕ

2

�
; a≔ log

�
ρsin2

ϕ

2

�
; ðz;aÞ∈R2;

ð3:10Þ

hz; ajB; Ei ¼ 1

2π
e−iBae−iEz: ð3:11Þ

I choose to call the second variable a because it is actually
related to the A operator:

ðÂψÞðρ;ϕÞ ¼ 1

2λ
ðΠ0 − ΠyÞψðρ;ϕÞ ¼

1

λ

�
ρsin2

ϕ

2

�
ψðρ;ϕÞ

≔
1

λ
ð beaψÞðρ;ϕÞ: ð3:12Þ

On the other hand, z, being conjugated to the energy, is
expected to be related to time. This is indeed what happens
once we consider physical states satisfying the quantum

2In the last two lines, the complex shift of the Casimir
must be read as a formal replacement of B into the wave function,
for example hρ;ϕjΠ̂0jB;mi ¼ 1

2π
1ffiffi
ρ

p e−iðBþiÞ logðρÞe−1
2
ið2mþsÞϕ ¼

1
2π

ffiffiffi
ρ

p
e−iB logðρÞe−1

2
ið2mþsÞϕ. Actually, the momenta operator Πi

acting on a single eigenstate of the Casimir labeled by B maps it
to a combination of eingenstates, exactly like the momentum
operator acting on a position eigenstate in standard quantum
mechanics.
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dynamics. The imposition of the dynamics on the Hilbert
space will be the subject of the next subsection.

B. Physical solution and semiclassical states

In the previous section, we found the eigenvectors that
diagonalize both the Hamiltonian (Kx − Jz) and one of the
classical first integral represented by the slð2;RÞ Casimir
(B). We can exploit this basis to impose the dynamics of the
system. We face two different possibilities to do so: we
recall that at the classical level we can both impose the
constraint CH ¼ H − κLP=L2

s ¼ 0 or equivalently see H as
a true Hamiltonian generating the time evolution with
respect to τ. On the quantum level, the two interpretations
(hereafter denoted respectively by strong and weak con-
straints) will lead to drastically different semiclassical
evolutions. In both cases, we will reconstruct the metric
as an emergent quantity, based on the expectation values of
the fundamental operators.
Strong constraint.— The most natural way of imple-

menting the strong constraint is to require that the physical
states are the ones that satisfy CHjψiphys ¼ 0, or equiv-
alently

jψiphys ≔
Z

dE
Z

dBδ

�
E −

κLP

L2
s

�
ψðBÞjB; Ei

¼
Z
R
dBψðBÞ

����B; κLP

L2
s



; ð3:13Þ

where the energy scales and their ratio κ are given a priori
and they act as multiples of the identity operator. These
physical states are of course not normalized within the
original Hilbert space, and we need to introduce a new
inner product on the physical space. To this purpose, we
make use of group averaging (or refined algebraic quan-
tization) [1,61,62] and define the projector

δðCHÞ ¼
1

2π

Z
∞

−∞
dx exp ðixCHÞ; δðCHÞ∶Hkin → Hphys;

ð3:14Þ

that induces the inner product

hχjψiphys ¼ hχjδðCHÞjψikin ¼
Z

dBχðBÞ�ψðBÞ: ð3:15Þ

Notice that on Hphys, only the quantum operators Ô that

commute with the constraint are well defined ½Ô; cCH� ¼ 0;
otherwise, their action will map out of the physical sub-
space. We need then to deparametrize the dynamics with
respect to a preferred clock (here τ). More explicitly, this
means that the observables we can measure are one-
parameter families, e.g.,

cV1ðτÞ¼
τ2

2L2
Pκ

2
Â; cV2ðτÞ¼ B̂

τ

LPκ
−

τ2

2LPκ
Ĥ: ð3:16Þ

From the expression (3.11), we can infer that B and a are
conjugated variables, while z is conjugated to the energy E,
and it is thus traced out in the group averaging (3.14). The
most convenient way of representing the physical space is
in terms of functions of the variable a [i.e., Fourier
transform of ψðBÞ], upon which the physical observables
in (3.16) act as

ÂψðaÞ ¼ 1

λ
eaψðaÞ; B̂ψðaÞ ¼ i∂aψðaÞ;

ĤψðaÞ ¼ κLP

L2
s
ψðaÞ: ð3:17Þ

The semiclassical states can be obtained by picking as
ψðaÞ a Gaussian distribution peaked around some classical
values ða�; B�Þ,

ψ�ðaÞ ¼
1

ð2πσ2Þ1=4 e
−ða−a�Þ2

4σ2 e−iB�a;

����� h
cV1ðτÞi ¼ ea�þ

σ2
2

2λ
τ2

2L2
Pκ

2 ≔ A�
2

τ2

2L2
Pκ

2 ;

hcV2ðτÞi ¼ B�τ
LPκ

− τ2

2L2
s
:

ð3:18Þ

This means that the expectation values follow the classical
trajectories, up to a constant rescaling of the first integral A,
due to quantum indetermination. This comes without much
surprise, as the classical evolution has already been imposed
in the deparametrization of the dynamics, in the definition of
the one-parameter family of Dirac observables (3.16).
Weak constraint.— The other possibility to impose the

dynamics consists in asking that the constraint is satisfied
in a weaker sense: hψ jHjψi ¼ κLP

L2
s
. One could imagine that

somehow this would account for some deep fuzziness of
the geometry, contributing as an effective stress-energy
tensor, that allows some fluctuations around the classical
constraint. In the following, we will see how this statement
should be correctly interpreted, the uncertainty on the
energy level coming explicitly into the game.
The imposition of the weak constraint is easily achieved

by Gaussian wave packets, peaked on some semiclassical
values for the pairs of conjugated variables ðB�; a�Þ and
ðκLP=L2

s ; z�Þ:

jψ�i ≔
Z

dE
Z

dB
1

ð2πσBσEÞ1=2
e
−ðB−B�Þ2

4σ2
B e

−ðE−κLP=L2s Þ2
4σ2

E

× eiBa�eiEz� jB;Ei; ð3:19aÞ

ha; zjψ�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σBσE

π

r
e−ða−a�Þ2σ2Be−ðz−z�Þ2σ2EeiB�ða�−aÞ

× eiðz�−zÞκLP=L2
s : ð3:19bÞ
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Now, all the operators corresponding to the isoð2; 1Þ
generators are well defined. If we want to reconstruct
the evolution of the black hole, we simply need to map
these generators back to the gravitational phase space:

cV1ψðρ;ϕÞ ¼ λðcΠ0 þ cΠyÞψðρ;ϕÞ;cV2ψðρ;ϕÞ ¼ λðbJz þ cKxÞψðρ;ϕÞ: ð3:20Þ

A straightforward calculation, using the properties of
Gaussian integrals, gives the expectation values

hcV1i ¼
1

2λL2
Pκ

2
e
a�þ 1

8σ2
B

�
z2� þ

1

4σ2E

�
≔

A�
2L2

Pκ
2

�
z2� þ

1

4σ2E

�
;

ð3:21aÞ

hcV2i ¼
B�
LPκ

z� −
1

2L2
s

�
z2� þ

1

4σ2E

�
: ð3:21bÞ

Comparing with the classical solutions, we identify τ ¼ z�,
and we see that the quantum evolution closely follows a
classical trajectory, for large time τ ≫ 1=4σ2E, up to a shift
in the relationship between the classical constant of motion
A� and its quantum realization ea� , due to the quantum
indetermination. On the other hand, for small τ, the
quantum correction comes into play, and it actually
prevents V1 from being zero, avoiding the singularity.
We must also notice that the imposition of the weak

constraint coincides with considering H as a true
Hamiltonian so that the states must satisfy the Schrödinger
equation

i∂τjψðτÞi ¼ HjψðτÞi; ð3:22Þ

whose solution is indeed given by (3.19) replacing
z − z� ↦ τ − τ0. In the following Fig. 1, there is a
comparison between the classical solution and the expect-
ation values of a Gaussian semiclassical state.
Inserting the expectation values into the line element

(2.1),3 with a suitable change of coordinates similar to
(2.11),4we can recast the metric into the form

ds2eff ¼ −fðTÞ−1dT2 þ fðTÞdr2 þ ðT2 þ ΔÞdΩ2;

fðTÞ ¼ 2MT − T2 − Δ
T2 þ Δ

; ð3:23Þ

where the quantum corrections are encoded in the parameter

Δ ¼ L2
s

8λσ2EL
2
Pκ

2
e
a�þ 1

8σ2
B ¼ A�L4

P

8σ2EL
2
0L

2
s
: ð3:24Þ

It depends on the scales of the system but also on the
quantum states through the uncertainty on the energy σE
and the classical first integral A�. For small quantum
correction (Δ=M2 ≪ 1), the region where τ is timelike is
bounded by two horizons for the Killing vector ∂r, in
correspondence of the zero of V2. The outer one is close to
T ≈ 2M and represents the event horizon for the outside of
the black hole. The inner one is close to T ≈ 0. The interior
structure resembles closely the Reissner-Nordström solu-
tion of general relativity, bounded by two null horizons.
Extending the solution outside the horizons [17,55], we
actually merge two asymptotically flat regions at T → �∞,
without any singularity.
Looking at the exterior region for positive T, this

effective solution will give a new class of stationary
modified black holes, and it would be interesting to further
study the correction to standard black hole physics (e.g.,
Hawking radiation or quasinormal modes) on such an
effective spacetime [63,64]. Concerning the region behind
the inner horizon, it represents a white hole outside region,
where ∂r is timelike, and the effectivemass is negative −M.
Figure 2 represents a schematic diagram for the light

cones structure in the three regions.
We shall nevertheless remark that the locations (and even

their existence) of the two horizons depend on the quantum
states. Moreover, in the extremal limit Δ → M2, the two
horizons coincide, and the quantum correction becomes

FIG. 1. Plot of the expectation values of the Gaussian state
(3.21), with a� ¼ 1,λ ¼ 1=

ffiffiffi
2

p
, L0 ¼ 1, Ls ¼ 1, σE ¼ 1,

σB ¼ 100, and B� ¼ 1, compared with the respective classical
trajectory labeled by the first integrals B ¼ B�; A ¼ A�.

3We shall remark here that we have actually calculated the
expectation values of the fundamental fields Vi, and not of the
metric coefficients; the two can differ from some σ correction.
We have considered the effective metric to be ds2eff ¼
− hV1i

2hV2i dτ
2 þ 8hV2i

hV1i dx
2 þ hV1iL2

sdΩ2.Doing so, we have a well-
defined operator Vi; otherwise, we should introduce some
regularization to deal with the inverse operator.

4The change of coordinate here is τ ¼ z� ¼
ffiffiffiffi
2
A�

q
LPκ
Ls

T,

x ¼ Ls
2LPκ

ffiffiffiffi
A�
2

q
r.
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relevant at a macroscopic scale, meaning that there are large
deviations from the classical solution in the low curvature
regime, near the horizon. In order to see this, we could also
look at the value of the Kretschmann scalar at the transition
surface (T ¼ 0), where the radius of the two-sphere (V1) is
minimal. It is given by

KT¼0 ¼
12

Δ2
: ð3:25Þ

All the corrections to the standard Schwarzschild solution
are encoded in the parameter Δ, which in turn depends on
the uncertainty on the energy σE and the classical first
integral A. The importance of the quantum correction is
directly proportional to Δ, so inversely proportional to σE.
By calculating the expectation values of the squared
operators, it is possible to show that the uncertainties on
the metric coefficients (δVi ≔ hV2

i i − hVii2) near the min-
imal radius ðz� ¼ 0Þ also grow inverse proportionally to the
dispersion σE,

δVijz�¼0 ⟶
σE→0

O
�
1

σ4E

�
;

δV1jz�¼0 ⟶
σE→∞

O
�

1
σ4E

�

δV2jz�¼0 ⟶
σE→∞

O
�

1
σ2E

� : ð3:26Þ

It is then logical to expect that for a heavily fluctuating
metric (small σE), the quantum correction becomes impor-
tant, and this is indeed what happens. The problem of this
model is that for any given dispersion σE, playing with A,
coupled with the other integral B, it is possible to makeΔ as
big as desired, without changing M. Even for small metric
fluctuation (big σE), the deviation from the Schwarzschild
solution could be appreciable as close as desired to the
horizon, or even cancel the horizon itself (if Δ > M2). This
means that we need to add by hand a first-class constraint
on the integral A, that fixes its value. We also would like to
eliminate the dependence on the fiducial scale of the
quantum correction. This uniquely fixes A� ¼ L2

0L
2
s=L4

P

and implies that all the corrections come from the uncer-
tainty on the energy. However, at this point, this constraint
might seem a little bit ad hoc, and it seems hard to believe
that we can infer this kind of constraint from the full theory
or its quantization.
We shall remark that the behavior of the black hole

minisuperspace presents a huge difference with respect to
cosmology, where the appearance of quantum correction
for the Wheeler-DeWitt quantization has not been observed
[26]. Nonetheless, this dependence on the energy uncer-
tainty disappears for nonsqueezed states, where the
dispersion on conjugate variables is minimized, by e.g.,
fixing σE;B ¼ 1=2.
We will see in the last section (Sec. IV) how the results

are modified if we introduce a regularization. Before
moving to the study of possible regularizations, we could
exploit again the Poincaré structure to discuss the mass
spectrum; this is the subject of the next subsection.

C. Mass operator

We recall that at the classical level we have a degeneracy
on the definition of the mass; we have indeed two first
integrals A and B, that combine into (2.12) to give the only
physical quantity that is relevant in the GR framework, the
mass, that labels diffeoinequivalent solutions. But if we
look at the quantum theory, we expect that both B and A
acquire some fluctuation contributing to the mass.
Moreover, the two observables do not commute, and we
had to build coherent states to represent semiclassical
solutions with a finite spread on both of them.
This in turn inevitably forces us to work with semi-

classical states that are not eigenvectors of the mass
operator. Nevertheless, the group quantization provides
interesting information about the mass spectrum. For this
purpose, we need to further investigate the properties of the
mass operator.
In the first section, we found how we can map the

classical observable measuring the squared mass to a
combination of Poincaré generators (2.18). With the
definition of the square root of the slð2;RÞ Casimir,
provided at the beginning of this section, we can easily
build the self-adjoint mass operator

cM2ψða; zÞ ≔ L2
M

2
B̂ Â B̂ψða; zÞ

¼ −
L2
M

2λ
∂aðea∂aψða; zÞÞ: ð3:27Þ

We shall remark that this operator sees only the a
dependence of the wave function. Unsurprisingly, this
means that the mass is a Dirac observable commuting
with the Hamiltonian, which in turn implies that it can be
measured without any problem on both the weakly and
strongly constrained states. For the sake of simplicity, in the
following, we will consider states on the strongly

FIG. 2. Diagram of the future directed light cones in the
effective solution with two horizons. The T coordinates spans
the whole real line, and the vertical lines correspond to the
locations of the horizons.

GROUP QUANTIZATION OF THE BLACK HOLE … PHYS. REV. D 105, 126003 (2022)

126003-9



constrained physical space, tracing out the time-energy
dependence of the wave function. The conclusions about
the spectrum will not be affected by this simplification.
We can explicitly calculate the wave functions that

diagonalize the mass operator and provide a complete
basis for the physical wave functions. These are given by
the set

hajMi ≔ ψMðaÞ ¼ 2

ffiffiffiffiffiffiffi
λM

p

LM
e−a=2J1

� ffiffiffiffiffi
8λ

p M
LM

e−a=2
�
;

cM2jMi ¼ M2jMi; ð3:28Þ

where M is a real positive continuous parameter and J1 is
the first order Bessel function of the first kind. By virtue of
the integral properties of the Bessel functions, we can prove
the orthogonality and completeness of the basis, and with
y ¼ ffiffiffiffiffi

8λ
p

e−a=2=LM, we have indeed

hM0jMi¼
Z

∞

0

dyJ1ðMyÞJ1ðM0yÞ
ffiffiffiffiffiffiffiffiffiffi
MM0p

y¼δðM−M0ÞZ
∞

0

jMihMj¼ I: ð3:29Þ

The existence of the Poincaré structure forces the mass to
have a continuous spectrum, as has been pointed out in
Ref. [55]. This property is in contrast with several other
investigations of black hole spectra [65,66] where a discrete
spectrum is postulated or obtained [67–69]. In particular, it
means that the black hole could emit particles with any
given mass and not only the ones corresponding to the gap
between eigenstates.

IV. SINGULARITY AND REGULARIZATION

In this section, I will discuss how it is possible to define a
“polymer” quantization that preserves the ISOð2; 1Þ sym-
metry. For this regularization, the coherent states evolution
reproduces the effective metric (3.23) for both the strong
and weak constraints.
The main ingredient of Loop Quantum Cosmology is a

realization of the Weyl algebra on a nonseparable Hilbert
space, inequivalent to the standard Schrödinger represen-
tation. For a given configuration variable (say, q ∈ R), the
space is spanned by orthogonal vectors jqi, and it contains
functions that are nonvanishing only on a countable subset
of R. The lack of weak continuity implies that the
momentum operator (say p ¼ −i∂q) is not defined, but
only its finite exponential eiλp. This leads to the necessity to
introduce a regularized Hamiltonian, where the momenta
are replaced by (combination of) their exponentiated
version. This is usually done by the substitution
p ↦ sinðλpÞ=λ, but other regularizations are possible as
well, and the exact form of the effective Hamiltonian has
been heavily debated, especially in the context of black
hole interior [17,18,21–25]. In any case, the regulator λ is

claimed to encode the fundamental discreteness of space-
time, relating its value to the Planck length. In the limit
where it becomes negligible λ → 0, we shall recover the
classical evolution. For a given parameter λ, the Hilbert
space is divided into the so-called superselected sector,
according to the position eigenstates, the latter taking
discrete real values ϵþ nλ, with a fixed offset ϵ. The
operator eiλp creates a finite shift of step λ and lets us move
within a given superselected sector.
The problem with introducing a regularization scheme

for the Hamiltonian is that, in general, it spoils the classical
Poincaré symmetry, unless we extend the regularization to
the other observables. A systematic way to ensure that any
Poisson structure on a phase space is preserved is to look at
the regularization as a canonical transformation [46,49],
where we then replace the new variables vi at the place of
the corresponding classical Vi into the line element. This
last step is crucial to make the polymerization describe
different physics.
We shall remark that a canonical transformation could be

implemented by a nonunitary transformation at the quan-
tum level. Nevertheless, we should be capable of rewriting
the polymer variables in terms of isoð2; 1Þ generators and
calculating their quantum expectation values on both the
weakly and strongly constrained wave functions. In other
words, the difference between the Wheeler-DeWitt quan-
tization and the polymer one is not seen as the result of
Hilbert spaces that are unitary inequivalent but as the
consequence of considering inequivalent operators (not
related by a unitary transformation) on the same Hilbert
space, that in addition carries an irreducible representation
of ISOð2; 1Þ.
Nevertheless, we cannot freely choose any transforma-

tion, but we want it to satisfy a set of properties:
(i) The transformation must be such that the

effective metrics is asymptotically equivalent to
the Schwarzschild solution.

(ii) We want that the phase space functions representing
the polymer coefficients to have a quantum realiza-
tion with discrete spectra.

We already have at our disposal an operator whose
eigenvalues are discrete, and with a superselected sector, it
is the rotation generator Jz; the idea is then to take the
regularized metric coefficient to be [70]

v2 ¼ 2λJz ¼ V2 − 2κLPλ
2H: ð4:1Þ

The λ parameter must be the same as in the mapping from
the original phase space to the isoð2; 1Þ generator to ensure
the right limit λ → 0, that maps back to the original phase
space. For the superselected sector chosen in the previous
sections (s ¼ 0), the eigenvalues of v2 are discrete real
values 2nλ; n ∈ Z.
Concerning V1, the polymerization is less straightfor-

ward. Assuming the transformation (4.1) for V2, we find
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that a compatible canonical transformation is of the
form

���������

v1 ¼ v1ðΠ0; BÞ ¼ v1ðV1 þ λV1P2
2; V1P1Þ;

p1 ¼ p1ðΠ0; BÞ ¼ p1ðV1 þ λV1P2
2; V1P1Þ;

v2 ¼ 2λJz ¼ V2 − 2λ2κLPH;

p2 ¼ 1
λ arctanðλP2Þ;

ð4:2Þ

with two functions satisfying fv1; p1g ¼ 1. We thus need
to find an operator, composed of Π0 and B that has a
discrete spectrum. Unfortunately, this is not achievable
through a linear combination, but we need at least a
quadratic operator. The simplest one is given by

bv21 ≔ 4λ2Π̂2
0 − μ2B̂2; ð4:3Þ

with a real parameter μ. Its discrete eigenvalues (see
Appendix C for the technical details) are 4μ2n2; n ∈ Z.
In this case, we will not have access to the quantum
operator measuring v1 but only its square value. From the
point of v1, this is similar to what happens in cosmology,
where the fundamental discreteness is imposed on the
volume, the third power of the scale factor. From the point
of view of the scale factor in FLRW cosmology and v1 here,
it looks like a so-called μ-scheme. Nevertheless, on the
semiclassical level, it is possible to take the square root and
implement the canonical transformation:������������

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λ2Π2

0 − μ2B2
p

¼ V1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ P2λ

2Þ2 − μ2P2
1

p
;

p1 ¼ 1
μ arctan

�
μP1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þP2λ
2Þ2−μ2P2

1

p
�
;

v2 ¼ V2 þ λ2P2ð2P1V1 þ P2V2Þ;
p2 ¼ 1

λ arctanðλP2Þ:

ð4:4Þ

For the previous construction to make sense, we need to
add a constraint on μ. The minimal value of Π0 during the
classical evolution is provided by 2λA. If we want a definite
positive square v21, we need

μ ≤
2λ2A
B

; ð4:5Þ

when the strict inequality holds; we have that v1 is never
zero and there is no singularity in the effective metric. On
the other hand, if μB ¼ 2λ2A, there is a singularity at
T ¼ 0. If the inequality is not satisfied, the canonical
transformation is not defined on the whole trajectory,
and the singularity occurs before the classical one. The
only way to have a canonical transformation that is well
defined on the whole phase space is to take the limit μ → 0,
which corresponds to not polymerise V1. This is somehow
analogous to what has been found for the deformation of
the constraint algebra for spherically symmetric spacetimes

[71], where only one of the momenta gets polymerized.
When μ goes to zero, we gain back an operator measuring
directly the metric coefficient v1, instead of its square value,
but now it has continuous eigenvalues:

μ → 0 ⇒

���������

v1 ¼ 2λΠ0 ¼ V1ð1þ P2λ
2Þ;

p1 ¼ P1

1þP2λ
2 ;

v2 ¼ 2λJz;

p2 ¼ 1
λ arctanðλP2Þ:

ð4:6Þ

Inverting the canonical transformation, we can expressH in
terms of the polymerised variables, and it gives

κLPH ¼ −v1
tan μp1

μ

sinð2λp2Þ
2λ

− v2
sin2ðλp2Þ

2λ2

⟶
μ→0

− v1p1

sinð2λp2Þ
2λ

− v2
sin2ðλp2Þ

2λ2
: ð4:7Þ

The evolution of v1 and v2, generated by the effective
Hamiltonian, can be easily solved by inverting the canoni-
cal transformation above.
The main advantage of looking at the regularization as a

canonical transformation is that the description of both
classical and quantum mechanics in terms of Poincaré
generators is not modified. In other words, the evolution is
always generated by Kx − Jz, and the dynamical quantum
states are the same as in the previous section, according to
which kind of constraint we want to impose. We simply
need to change the mapping between Poincaré operators
and metric coefficients. We will study here the case where
μ → 0, and the effective metric corresponds to

ds2eff ¼ −
hΠ0i
2hJzi

dτ2 þ 8hJzi
hΠ0i

dx2 þ 2λhΠ0iL2
sdΩ2: ð4:8Þ

Without much surprise, deparametrizing the dynamics with
respect to the time τ, the evolution of Jz and Π0 on the
physical Hilbert space satisfying the strong constraint
follows the respective classical trajectories

hλcΠ0ðτÞi ¼
A�

2κ2L2
P
ðτ2 þ 4κ2L2

Pλ
2Þ;

hλbJzðτÞi ¼ B�
κLP

τ −
1

2L2
s
ðτ2 þ 4κ2L2

Pλ
2Þ: ð4:9Þ

The expectation values are on the Gaussian physical state,
as in (3.18), and the deparametrization has been done by
using the classical solution for Π0 and Jz given directly by
(2.10), and then we replace the first integrals A, B by the
corresponding quantum operator. This leads to the same
effective metric as in (3.23), where now Δ ¼ 2λ2A�L2

s.
The interesting thing is that the σ correction appearing in

the evolution on the weakly constrained states goes in the

GROUP QUANTIZATION OF THE BLACK HOLE … PHYS. REV. D 105, 126003 (2022)

126003-11



same direction. More precisely, on the weakly constrained
Gaussian wave packets (3.19), we have

hdλΠ0i ¼
1

2λL2
Pκ

2
e
a�þ 1

8σ2
B

�
z2� þ 4λ2κ2L2

P þ 1

4σ2E

�

≔
A�

2κ2L2
P

�
z2� þ 4λ2κ2L2

P þ 1

4σ2E

�
; ð4:10aÞ

hcλJzi ¼ B�
LPκ

z� −
1

2L2
s

�
z2� þ 4L2

Pκ
2λ2 þ 1

4σ2E

�
: ð4:10bÞ

The effective structure is again given by (3.23), but now the
quantum correction is encoded in

Δ ¼
�
2λ2L2

s þ
L4
P

8σ2EL
2
0L

2
s

�
A�: ð4:11Þ

We shall remark that this does not solve the apparent
paradox of quantum correction at a macroscopic scale. If
we leave A free, even for metrics with small fluctuation (big
σE), the inner horizon can come as close as desired to the
external horizon. We still need to add a condition on A.
Taking a closer look at the parameter Δ, we see that it is

exactly the sum of the one obtained for the weakly
constrained WdW states and the strongly constrained
polymer states. It is natural to interpret the two contribu-
tions as taking into account respectively the quantum
uncertainty on the metric coefficients and the deep dis-
creteness of the spacetime. For wave functions that are well
localized, the first one is negligible compared to the second
one, i.e., κ2

σ2EL
2
P
≪ λ2. In this case, we expect that the

quantum corrections are of Planck size, meaning that the
first-class constraint would impose

2λ2L2
sA ≈ L2

P ⇒ Δ ≈
�
L2
P þ κ2

16σ2Eλ
2

�
: ð4:12Þ

This in turn implies that it is impossible to fully get rid of
the fiducial scale, entering the game through the central
charge κ. It would be worth studying the role of the cutoff
scales, looking at them as running renormalization param-
eters. The imposition of a first-class constraint relating the
polymerization parameter to one of the first integrals is
analogous to the construction in Ref. [17]. Despite (4.12)
being more reasonable than the one imposed in the WdW
setup, the question of if and how we can infer this kind of
constraint from the full LQG theory is still unanswered.
However, we can have a hint about its origin by remarking
the presence of A in the coordinate redefinition (2.11). The
relationship (4.12) is expected to be related somehow to
the introduction of a Planck length ruler on spacetime. The
impossibility of completely eliminating the dependence of
the effective metric on the fiducial scales points again
toward a physical role of the boundary. We would like

to stress that similar behavior has been observed in
cosmology [72].
In the previous section, we saw that the evolution of the

operators measuring the metric coefficients produces dras-
tically different metrics, depending on whether we allow
some energy fluctuation or not. Here, the main features of
the effective metric are the same in both cases, and
moreover they agree with the classical line element
corresponding to (3.23). The evolution of quantum coher-
ent states on the polymer Hilbert space follows the effective
evolution described by the corresponding polymer
Hamiltonian, and this is stable for nonzero energy fluc-
tuation. This feature has been used as a consistency check
in favor of the robustness of FLRW polymerization and can
here be extended to the black hole interior.

V. DISCUSSION

The existence of a hidden symmetry, leaving on top of
the time reparametrization, has been revealed for some
simple and yet physically relevant minisuperspaces. This is
for instance the case of cosmology [47,49–53], or the black
hole interior [46,55]. In the quantization of the theory we
should deal with the presence of this structure, because of
its ability to encode the classical dynamics. Taking here the
conservative approach of preserving the classical structure
has provided a criterion to constrain the quantization.
Concretely, this means that any Hilbert space we would
like to choose, be it the standard Schrödinger picture or a
regularized polymer space, must contain an irreducible
representation of the symmetry group we want to preserve.
In this work, I focus attention on the black hole interior, but
the construction can be generalized to any minisuperspace
model that exhibits similar symmetries. The question of the
existence of such structures for a general minisuperspace is
currently under investigation. We can as well beg the
question of whether the Poincaré group for black holes is
the maximal symmetry group or is part of a larger structure.
In the article, the well-known irreducible representations

of ISOð2; 1Þ are used to build a consistent quantum theory,
providing an explicit example of observables and their
spectra. The most striking consequence of this construction
is that we obtain amass operatorwith a continuous spectrum.
This has important consequences on the emission spectra of
black holes and is in contrast to what has been postulated in
various works on black hole quantum physics. The existence
of this hidden symmetry could also explicitly play a role in
perturbation theory, providing an interesting interpretation in
terms of conserved quantities associated to test fields
propagating on the black hole background.
On a more concrete playground, I have started with a

quantization equivalent to the standard Schrödinger repre-
sentation ofWheeler-DeWitt gravity, calculating the expect-
ation values of the metric coefficients on some semiclassical
states. Classically, only a particular combination of first
integrals (namely the mass) is physically relevant. On the
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other hand, if we allow some fluctuation on the energy, we
have seen that the effectivemetric, emerging as a result of the
quantum evolution, strongly depends on both the first
integrals and the amplitude of the fluctuations.
In the last section, I propose a half-polymerized regu-

larization, reminiscent of the modification allowed in the
context of deformed constraint algebra for spherically
symmetric spacetime [71]. The apparent puzzle of intro-
ducing a discretization on the configuration space, keeping
the invariance under Poincaré group, is solved here by
looking at the regularized variables as a set of operators that
satisfy the polymer-Weyl algebra on the same Hilbert space
as the usual Schrödinger operator, but the two sets are not
related by a unitary transformation.
We find out that the quantum corrections come from two

terms going in the same direction, summing up into the
parameter Δ that modifies the classical spacetime structure
as in (3.23). The singularity is replaced by a Killing
horizon, leading to a white hole region. The two contri-
butions have been interpreted as the effect of a quantum
uncertainty on the metric coefficients and a constant piece
proportional to the Planck length, encoding the fundamen-
tal discreteness of spacetime. This implies that the light
cone structure is the same for both the weakly and strongly
constrained states, where the effective structure is achieved
by evolving the metric coefficients with respect to the
polymerized Hamiltonian (4.7).
Despite the common feature of replacing the singularity

with a black-to-white hole transition, the metric presented
in this article is different than the one usually considered for
the study of properties of regular black holes (see
Refs. [63,64] and references therein), and it would be
interesting to see how this affects the phenomenology.
The existence of the hidden Poincaré structure has been

recently extended to the case with a nonvanishing cosmo-
logical constant [55], both for de Sitter and anti-de Sitter
cases, meaning that the results of this article are easily
generalizable in the presence of a cosmological constant.
Finally, a puzzling role is played by the boundaries. On the

one hand, the boundary seems not to play any role in the
physics of the system, because of homogeneity the boundary
of the spacelike slice trivially carries the same information as
the bulk. On the other hand, in order to reduce the action to a
mechanical model, we need to introduce such a boundary to
regulate the divergent integration of the action. And it is
precisely the IR regulator that interplays with the sym-
metries, beingmodified when we act on a physical trajectory
[46,55]. It also plays a crucial role in the quantum theory, by
labeling the solution states. How this could be related to
renormalization properties, while we consider the IR regu-
lator as a running parameter, is still an open question. Finally,
on an effective level, the fiducial scales (and so the boundary)
appear explicitly in the modified line element, suggesting a
physical role of the boundary for the quantum effects and
pointing toward some holographic properties of gravity.
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APPENDIX A: IRREDUCIBLE
REPRESENTATIONS OF ISOð2;1Þ

I report here somekey insight on the unitary representation
of (the universal cover of) the three-dimensional Poincaré
group. I followed the notations of Ref. [58], where the reader
can find a more exhaustive discussion on the properties of
such representations. They are distinguished into three
categories according to the sign of the first Casimir C1.
The latter represents the mass of the particle when we look at
ISOð2; 1Þ as the symmetry group of the three-dimensional
Minkowski space. On top of them, there is the trivial
representation, where all the elements of the algebra act as
zero on the states. As we are interested here in the massless
representations ðC1 ¼ 0Þ, I recall here their main features.
Massless representations are labeled by three parameters

η ¼ �; s ∈ Rðmod 2Þ, t ∈ R. The Hilbert space is usually
presented in terms of function on R2, where the two
coordinates represent the spatial components of the
momenta, and the scalar product is given by

hψ jχi¼
Z
R2

dxdy
ρ

ψ�ðx;yÞχðx;yÞ; ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

q
: ðA1Þ

And the generators of the algebra act like

ðΠμ
ðη;s;tÞψÞðx; yÞ ¼ pμψðx; yÞ pμ ¼ ðρ; x; yÞ; ðA2aÞ

ðJzðη;s;tÞψÞðx;yÞ¼
�
−i
�
x
∂
∂y−y

∂
∂x

�
−
s
2

�
ψðx;yÞ; ðA2bÞ

ðkiðη;s;tÞψÞðx; yÞ ¼
�
iρ

∂
∂pi − sϵij

pj

2ρ
−
ηt
2
ϵij

pj

ρ2

�
ψðx; yÞ:

ðA2cÞ

By a straightforward calculation, we can verify that they
satisfy the quantum version of the algebra (2.15). As
expected, the massless representation gives a zeroC1, while

Ĉ2 ≔
1

2
ðJzΠ0 þ Π0Jz þ KxΠy þ ΠyKx − KyΠx − ΠxKyÞ;

ðA3Þ

Ĉ2ψðx; yÞ ¼
1

2
ηtψðx; yÞ: ðA4Þ

If now we want to realize the phase space presented in the
main text of the article, we shall take t ¼ 0 to have also a
zero C2.
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In the paper, we have actually considered another
realization of the Hilbert space, unitarily equivalent to
the one just presented here. It simply consists in expressing
the wave function in polar coordinates instead of the
Cartesian ones ðx; yÞ ¼ ðρ sinϕ; ρ cosϕÞ; this makes the
1=ρ factor disappear from the measure. The relation
between the two wave function expressions is simply given
by a change of variable in the argument,

ψðx; yÞ ¼ ψðρ sinϕ; ρ cosϕÞ ≔ ψpolðρ;ϕÞ;

hψ jχi ¼
Z

∞

0

dρ
Z

2π

0

dϕψ�
polðρ;ϕÞχpolðρ;ϕÞ: ðA5Þ

By a bit of abuse of notation, we will drop the subscript pol,
and we denote with the same symbol the two realizations.
The action of the Poincaré generators on these functions is
given in the main text at (3.2).
The last realization of the Hilbert space that is used in the

main text is the a − z polarization, or its dual Fourier
transform. This turns out to be practical to deal with
eigenstates of the Hamiltonian Kx − Jz. In this case, we
still do a change of variables, but now we absorb the
Jacobian determinant appearing in the measure into the
wave function

z¼ 2λcot

�
ϕ

2

�
; a¼ log

�
ρsin2

ϕ

2

�
; ðz;aÞ∈R2

ψ azða;zÞ≔
1ffiffiffi
λ

p ea=2ψðρða;zÞ;ϕðz;aÞÞ

hψ jχi¼
Z
R2

dadzψ�ða;zÞχða;zÞ: ðA6Þ

We will drop again the subscript, because we always
represent the same state, even if the measure for the two
realizations is not the same. The argument of ψ will
implicitly denote the measure we need to pick up. We
conclude the discussion by rewriting the action of the
generators in this realization,

ðΠ0
ðsÞψÞða; zÞ ¼ ea

�
1þ z2

4λ2

�
ψða; zÞ; ðA7aÞ

ðΠx
ðsÞψÞða; zÞ ¼ ea

z
λ
ψða; zÞ; ðA7bÞ

ðΠy
ðsÞψÞða; zÞ ¼ ea

�
z2

4λ2
− 1

�
ψða; zÞ; ðA7cÞ

ðJzðsÞψÞða; zÞ ¼
�
i
2λ

�
z∂a þ

4λ2 þ z2

2
∂z

�
−
s
2
−

i
4λ

z

�
× ψða; zÞ; ðA7dÞ

ðKx
ðsÞψÞða; zÞ ¼

�
i
2λ

�
z∂a þ

4λ2 − z2

2
∂z

�

−
s
2

z2 − 4λ2

z2 þ 4λ2
−

i
4λ

z

�
ψða; zÞ; ðA7eÞ

ðKy
ðsÞψÞða; zÞ ¼

�
ið−∂a þ z∂zÞ þ s

4λz
z2 þ 4λ2

þ i
2

�
ψða; zÞ:

ðA7fÞ

And we see that B is simply conjugated to a, while H has
en extra term depending on s and λ, that vanishes for the
superselected sector s ¼ 0,

B̂ψða; zÞ ¼ i∂aψða; zÞ:

Ĥψða; zÞ ¼ i∂zψða; zÞ þ
2sλ

4λ2 þ z2
ψða; zÞ: ðA8Þ

APPENDIX B: WHEELER-DEWITT
QUANTIZATION

In this Appendix, we will see how the Poincaré irre-
ducible representations are equivalent to the so-called
Wheeler-DeWitt quantization; by the latter, I mean the
natural quantization scheme that consists in promoting
the configuration variables Vi to multiplicative operators
and the momenta to derivatives P̂i ¼ −i∂Vi

. The Hilbert
space is given by square normalizable wave functions
L2ðR2; dV1dV2Þ.
This corresponds to the position polarization of the wave

functions, that is known to be equivalent to the momenta
polarization up to a Fourier transform. The key idea is to
perform the Fourier transform only on the variable V2,
meaning that the multiplicative operators are now V1 and
P2, and

cV1ψðV1; P2Þ ¼ V1ψðV1; P2Þ;cP1ψðV1; P2Þ ¼ −i∂V1
ψðV1; P2Þ;cP2ψðV1; P2Þ ¼ P2ψðV1; P2Þ;cV2ψðV1; P2Þ ¼ i∂P2

ψðV1; P2Þ: ðB1Þ

With these fundamental operators at hand, we can build the
observables corresponding to the isoð2; 1Þ generators on
the classical phase space. We simply need to consider the
corresponding combination of fundamental operators and
make it self-adjoint; for example, if we take Ky ¼ −PiVi,
the corresponding hermitian operator is given by

ðcKyψÞðV1; P2Þ ¼ −
1

2
ðcV1

cP1þcP1
cV1 þcV2

cP2þcP2
cV2Þ

× ψðV1; P2Þ: ðB2Þ

FRANCESCO SARTINI PHYS. REV. D 105, 126003 (2022)

126003-14



The whole algebra is then

ðcΠ0ψÞðV1; P2Þ ¼
V1ð1þ P2

2λ
2Þ

2λ
ψðV1; P2Þ; ðB3aÞ

ðcΠxψÞðV1; P2Þ ¼ V1P2ψðV1; P2Þ; ðB3bÞ

ðcΠyψÞðV1; P2Þ ¼
V1ð1 − P2

2λ
2Þ

2λ
ψðV1; P2Þ; ðB3cÞ

ðbJzψÞðV1; P2Þ ¼ i

�
1þ P2

2λ
2

2λ
∂P2

− P2V1

�
ψðV1; P2Þ;

ðB3dÞ

ðcKxψÞðV1; P2Þ ¼ i

�
1 − P2

2λ
2

2λ
∂P2

þ P2V1

�
ψðV1; P2Þ;

ðB3eÞ

ðcKyψÞðV1; P2Þ ¼ −i½P2∂P2
− V1∂V1

�ψðV1; P2Þ: ðB3fÞ

This already has the form of the operator in the previous
Appendix, where the translation operator is multiplicative,
and the rotation and boosts contain some derivatives. The
unitary equivalence is proven by considering the following
change of coordinate in the wave function:

V1 ¼ λyþ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
¼ λρð1þ cosϕÞ;

P2 ¼ −
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
xλ

¼ 1

λ
tan

ϕ

2
: ðB4Þ

Absorbing the Jacobian of the transformation into the
measure of the new realization, we recover the realization
presented in the main text and in Appendix A, meaning that
the two are unitarily equivalent.

APPENDIX C: v̂1 EIGENSTATES

In Sec. IV, I claim that the simplest combination of
operators B and Π0 that have a discrete spectra is the
quadratic functional (4.3). In order to see this explicitly, we
shall in the first place look at the linear combination

v̂1 ≔ 2λcΠ0 þ μB̂: ðC1Þ

By acting on a wave function in the polar representation,
we can analytically solve the eigenvalue problem and find
the eigenvectors

hρ;ϕjv1; mi ¼ 1

2π
ffiffiffiffiffi
μρ

p e−ið2
ρλ
μ−

v1
δ log ρÞe−imϕ;

bv1jv1; mi ¼ v1jv1; mi; ðC2Þ

that provide an orthonormal basis for a continuous spec-
trum v1 ∈ R:

hv01; njv1; mi ¼ δn;mδðv1 − v01Þ: ðC3Þ

On the other hand, the quadratic combination (4.3) con-
sidered in the main text has eigenvectors

hρ;ϕjv21; mi ¼
ffiffiffiffiffiffiffi
v1
2λρ

r
Jv1

μ

�
2λρ

μ

�
1ffiffiffiffiffiffi
2π

p e−imϕ;

bv21jv21; mi ¼ v21jv21; mi; ðC4Þ

where Jn are the first kind Bessel functions. The eigenstates
are normalized for a discrete spectrum v1

2μ ∈ Z. This is easily
shown by using the integral property of the Bessel functionsZ

∞

0

dy
y
J2nðyÞJ2mðyÞ ¼

1

2π

sin ðπðn −mÞÞ
n2 −m2

¼ 1

2n
δn;m ⇔ n;m ∈ Z: ðC5Þ
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