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Classically, the inner horizon of a perturbed, rotating black hole undergoes an instability known as mass
inflation, wherein the spacetime curvature diverges as a result of hyperrelativistic crossing streams of
ingoing and outgoing radiation. The generic outcome of this instability is currently believed to be a strong,
spacelike singularity, potentially alongside a weak, null singularity surviving at late times. However, the
quantum backreaction in this regime has yet to be fully calculated for a realistic black hole spacetime. Here
we consider a massless quantized scalar field ϕ over the inflationary Kasner spacetime, a recently
developed model for the inner horizon geometry of a rotating, accreting black hole. With this spacetime, we
use numerical adiabatic regularization to calculate hϕ2iren, the renormalized coincidence limit of the two-
point correlation function, as a pointer to the behavior of the quantum stress-energy tensor. hϕ2iren is
generically found to be nonzero near the inner horizon, divergent where the curvature classically diverges,
and larger for smaller black hole spins or accretion rates.
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I. INTRODUCTION

What happens inside the event horizon of a black hole? If
the classical laws of general relativity are to be believed,
then the answer is well known. For vacuummodels of black
holes that possess a charge (Reissner-Nordström) or angu-
lar momentum (Kerr), below the event horizon lies a second
horizon, called the inner or Cauchy horizon, which marks
the boundary of causality. Below this inner horizon, the
vacuum models predict a wormhole and a naked timelike
singularity, but since the 1960s it has been predicted that
when the effects of matter and radiation are included in
these models, a singularity will form at the inner horizon,
precluding any possibility of causality violation [1,2].
The reason for a classical singularity at the inner horizon

of a black hole stems from the fact that this horizon is a
surface of infinite blueshift—an infalling observer at an
inner horizon would see the entire history or future of the
Universe flash before their eyes as the energy of incoming
radiation becomes classically unbounded. The result is a
phenomenon known as mass inflation, an inner horizon
instability marked by the divergence of the spacetime
curvature and the quasilocal internal mass parameter.
The instability was first shown to be an inevitable result
of nonlinear perturbations by Poisson and Israel in 1990
[3,4], and since that time, later models have been developed
to confirm and generalize the result [5–21].

The main discrepancy that still exists within the classical
picture of mass inflation concerns the choice of initial
conditions, which dictates the nature of the singularity
formed at the inner horizon. If the black hole forms from
an eternally isolated gravitational collapse, the result is a
weak, null singularity [5,6,8–11,14]. In contrast, if any small,
continuous accretion of matter or radiation is included, the
resulting singularity is strong and spacelike [7,12,13,15–21].
In reality, it may be the case that both these singularities are
present in different sectors of the interior. But regardless,
these pictures of the inner horizon must be incomplete, since
they do not take into account any quantum effects.
As a quantized field theory, gravity is nonrenormaliz-

able, since Feynman diagram calculations at all loop orders
produce divergences that only get worse the higher one
goes in the perturbative expansion. However, as an effective
field theory, one-loop divergences can be absorbed by
renormalization of the next-order parameters, so that
quantum gravitational effects can be calculated provided
the characteristic frequencies of the gravitational back-
ground do not exceed the Planck frequency [22]. The one-
loop approach is usually given the name “semiclassical
gravity,” wherein matter fields are quantized while the
background spacetime is treated classically. Such an
approach has led to celebrated predictions like the existence
of Hawking and Unruh radiation.
For calculations of quantum field theories (QFTs) in

curved spacetimes, the quantity of greatest interest is the
renormalized expectation value of the field’s stress-energy
tensor hTμνi, since it contributes to a backreaction to the
spacetime geometry via the semiclassical field equations
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Gμν ¼ 8πðTclassical
μν þ hTμνiÞ: ð1Þ

The squared amplitude hϕ2i of vacuum fluctuations is often
used as a proxy for the calculation of hTμνi, since hϕ2i
contains fewer divergences that need to be renormalized yet
still provides meaningful information about vacuum polari-
zation effects. In particular, hϕ2i can be used to the
determine the trace of hTμνi for conformally coupled scalar
fields, and hϕ2i additionally provides insight about sponta-
neous symmetry breaking in a given background space-
time [23].
In the context of semiclassical black hole interiors, most

works have considered only two-dimensional or charged
black holes. In the two-dimensional case, the quantum
backreaction at the inner horizon leads to a divergence of
the stress-energy and the formation of a spacelike singu-
larity [24,25]. In the charged, spherically symmetric case,
early work indicated that hTμνi would also likely diverge at
the inner horizon to produce a spacelike singularity, but
could also remain regular in certain cases [26,27]. In the
past few years, an explosion of works studying semi-
classical Reissner-Nordström mass inflation have shown
that the ingoing null component hTvvi yields a nonzero
value at the inner horizon, and switching to a time
coordinate which is regular through the inner horizon
shows that the renormalized stress-energy tensor does
physically diverge there [28–34]. Backreaction from hTvvi
alone is generally believed to cause a strong curvature
singularity [31], though there is no complete semiclassically
consistent solution to verify this yet. What has been shown is
that a dynamical semiclassical inner horizon will evaporate
outward over time (along with a slower, inward-evaporating
outer horizon), leading to a self-consistent steady state that
inevitably contains a curvature singularity [32,35,36].
For the case of spinning black holes, far fewer works

have been published analyzing quantum effects at the inner
horizon. In the simplified vacuum case (the Kerr metric),
before mass inflation was even understood classically,
Hiscock argued from symmetry and conservation condi-
tions that hTμνi must diverge on either the ingoing or
outgoing inner horizon, a result confirmed in the decades
following [37,38]. More recently, hTμνi was calculated for
the inner horizon of rotating (2þ 1)-dimensional black
holes, which was found to result in a spacelike singularity
[39]. Finally, a new set of works by Zilberman et al. have
shown that for a (3þ 1)-dimensional Kerr black hole, the
flux components of hTμνi do generically diverge at the
inner horizon, with the specific choice of spin and polar
angle determining whether the null flux components of
hTμνi are positive or negative [40,41].
Despite the success of the aforementioned studies in

calculating quantum effects in Kerr black holes, the Kerr
metric is not a realistic model when describing the
asymptotic regime near the inner horizon of an astrophysi-
cal black hole, which in general is modified by the

perturbative effects of accretion. Instead of applying a
quantum field over some vacuum spacetime solution, we
here consider the inflationary Kasner spacetime, a recently
developed model for the inner horizon behavior of a
rotating black hole with accretion [21]. The details and
assumptions of this model are described in Sec. II A. Then,
we proceed to calculate the renormalized vacuum polari-
zation hϕ2iren. The quantization procedure is detailed in
Sec. II B, while the renormalization procedure is detailed in
Sec. III. Since the wave equation for this model cannot be
solved analytically, a numerical framework is used, as
described in Sec. IV. This framework is first applied to a
simplified, isotropic case in Sec. IVA, after which the
results for the inner horizon are presented in Sec. IV B. The
paper then concludes with a discussion of the results of the
calculation of hϕ2iren in Sec. V, leaving the calculation of
hTμνiren to future work.

II. PROBLEM SETUP

A. Spacetime metric

The spacetime geometry near the inner horizon of a
rotating, accreting black hole can be modeled using a
homogeneous metric1 [21]:

ds2 ¼ −a20ðtÞdt2 þ
X3
i¼1

a2i ðtÞðdxiÞ2; ð2Þ

where the time-dependent scale factors satisfy

a20 ¼ c1tet
2

; a21 ¼ c1t−1et
2

; a22 ¼ a23 ¼ t2; ð3Þ

for positive time t and positive constant c1. This metric is
called the inflationary Kasner metric because of its
asymptotic resemblance to the well-known Kasner metric
first proposed one hundred years earlier [42]. In particular,
for t above unity, the metric approximates a Kasner metric
with Kasner exponents ðp1; p2; p3Þ ¼ ð1; 0; 0Þ, and as t
decreases on its way down to the spacelike singularity at
t ¼ 0, the spacetime “bounces” to a Kasner metric with
Kasner exponents ð−1=3; 2=3; 2=3Þ.
The coordinates and constants used in the line element of

Eqs. (2)–(3) are chosen for their convenience for the QFT
calculations done here. They are related to those of Ref. [21]
by:

t ¼ T1=2; c1 ¼
1

4πΦ0T
1=2
0 eT0

; ð4Þ

alongwith a suitable rescaling of the spatial coordinates. The
astrophysical properties of the black hole (viz., the spin a, the

1Throughout this paper we use the ð−þþþÞ metric signature
and geometric units where c ¼ G ¼ ℏ ¼ M• ¼ 1.

TYLER MCMAKEN and ANDREW J. S. HAMILTON PHYS. REV. D 105, 125020 (2022)

125020-2



inner horizonBoyer-Lindquist radius r− ≡ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
, and

the initial accretion rate u) are related to these constants via2:

T0 ¼
r3− − 3r2− þ a2r− þ a2

uðr2− þ a2Þ2 ; Φ0 ≈
u2T0

4π
: ð5Þ

To comment briefly on the physical interpretation of this
metric, note that the inflationary Kasner model holds only
in the regime asymptotically close to the inner horizon of a
rotating, accreting black hole. Above this horizon, space-
time is well approximated by the Kerr metric. But once an
observer approaches the inner horizon, they will experience
the mass inflation phenomenon described in Sec. I, corre-
sponding to the radial collapse of the inflationary Kasner
metric as t decreases from its initial value of t0 ≡ ffiffiffiffiffi

T0

p
(which is generally quite large, since T0 is inversely
proportional to the generally tiny accretion rate u, in units
where the black hole mass is 1) until reaching t ∼

ffiffiffiffiffiffiffiffi
1=2

p
.

Then, the inflationary Kasner model predicts a bounce in
the spacetime, wherein the radial collapse reverses and the
collapse in the isotropic directions proceeds toward a
strong, spacelike singularity at t ¼ 0.
Several key assumptions underlie the inflationary Kasner

model; in particular, the near-inner-horizon spacetime is
assumed to be homogeneous and sourced by the self-
similar, asymptotically small accretion of a collisionless,
null fluid. First, the assumption of homogeneity comes
about from the fact that during mass inflation, the curvature
and stress-energy exponentiate rapidly while the Boyer-
Lindquist coordinates r and θ remain frozen at their inner
horizon values. One should not imagine that a vast,
structureless swath of homogeneous spacetime lies hidden
within accreting black holes; rather, homogeneity applies
locally for each near-inner-horizon observer as the entire
structure of the inflationary Kasner model passes by within
a fraction of a second of their proper time. Second, the
assumptions about accretion are a direct result of the
process of mass inflation, which accelerates any infalling
matter to relativistic velocities along the radial direction,
rendering any other contributions to Einstein’s equations
irrelevant until t=t0 reaches below ∼

ffiffiffiffiffiffiffiffiffi
10−5

p
[21]. Finally,

the assumption of a tiny accretion rate should hold for any
black hole at late times (indeed, even the cosmic microwave
background would source such accretion).

B. Quantum field modes

Let ϕðxÞ be a canonically quantized, neutral scalar
field, evaluated at a spacetime point x, that satisfies the
Klein-Gordon wave equation [22]

ð□ −m2 − ξRÞϕ ¼ 0; ð6Þ

where □≡ gμν∇μ∇ν is the d’Alembert operator, m is the
mass of the field quanta, ξ is a numerical factor indicating
the strength of the coupling between the scalar field and the
gravitational field, and R is the Ricci scalar curvature. For
the inflationary Kasner metric, RðxÞ ¼ 0, so the calculation
of hϕ2iren here will not depend on ξ. Later, the massless
case will be assumed, but in order for the adiabatic
expansion of Sec. III A to be valid, m must not be set to
0 until the end of the calculation.3

The homogeneity of the inflationary Kasner spacetime
motivates a decomposition of the quantum field operator ϕ
into a set of modes indexed by wave vectors k ∈ R3:

ϕ ¼ 1

ð2πÞ3=2
Z

d3k½AkψkðtÞeik·x þ A†
kψ

�
kðtÞe−ik·x�: ð7Þ

The creation and annihilation operators A†
k and Ak will then

satisfy the usual commutation relations

½Ak; Ak0 � ¼ ½A†
k; A

†
k0 � ¼ 0; ½Ak; A

†
k0 � ¼ δ3ðk − k0Þ; ð8Þ

provided the mode functions ψk satisfy the Wronskian
condition

_ψ�
kψk − ψ�

k _ψk ¼ i
a0

a1a2a3
¼ it−1: ð9Þ

Here and throughout, an overdot represents differentiation
with respect to the coordinate time t. Introducing the
auxiliary function

fkðtÞ≡
�
a1a2a3
a0

�
1=2

ψkðtÞ ¼ t1=2ψkðtÞ; ð10Þ

Eq. (6) leads to the dynamical equation

f̈k þ ðω2
k þ σÞfk ¼ 0; ð11Þ

where the frequency ωkðtÞ and k-independent geometrical
background term σðtÞ are defined by

ω2
kðtÞ≡ a20

�X3
i¼1

k2i
a2i

þm2

�
; ð12Þ

σðtÞ≡ 1

4

�
2ä0
a0

−
3_a20
a20

þ
X3
i¼1

_a2i
a2i

þ a20ð4ξ − 1ÞR
�
: ð13Þ

2The initial energy density Φ0 depends more generally on the
observer’s polar coordinate θ and the difference in the speed of
ingoing and outgoing streams [17], but the inclusion of these
parameters provides no more precision than the inflationary
Kasner approximation already affords.

3Numerically, a variety of values for the mass were tested until
convergence in the m → 0 limit was achieved; for the present
analysis, m ¼ 10−4 was found to be more than sufficient.
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In the isotropic limit, ωk reduces to the standard definition
of frequency used for Friedmann-Lemaître-Robertson-
Walker (FLRW) universes [43]. With the scale factors of
Eq. (3), the anisotropic background term σðtÞ simplifies to
1=ð4t2Þ, and the wave Eq. (11) has no known solution in
terms of analytic functions. Therefore, the mode functions
fk must be found by numerically solving the wave equation
for each choice of wave vector k. The boundary conditions
are set by the choice of vacuum state, the discussion of
which is deferred to Sec. III B.

C. Asymptotics

While the inflationary Kasner wave equation has no
general closed-form solution, here we comment briefly on
three relevant asymptotic regimes: the adiabatic regime
(t=t0 ≫ 1), where the spacetime behaves adiabatically but
is too far from the inner horizon singularity to match the
behavior of a black hole; the initial inflationary regime
t=t0 → 1, where both the inflationary Kasner and Kerr
metrics are valid just above the inner horizon; and the final
collapse regime (t=t0 → 0), where the spacetime behavior
is dominated by the collapse of the metric toward the
spacelike singularity.

1. Adiabatic regime

When t=t0 exceeds unity, the exponential terms in the
inflationary Kasner scale factors of Eq. (3) will dominate,
provided t0 ≫ 1 (as is true for any astrophysical black hole
below the Thorne limit [44], since t0 scales as u−1=2 for the
generally tiny accretion rate u ≪ 1). The resulting metric,
with an exponential term over the temporal and radial
sectors, has the same Rindler-type form of Lass’s radar
coordinates for Minkowski space (when x and T ≡ t2 are
swapped) [45]. As a Kasner universe, the metric asymp-
totically approaches the well-studied case of Kasner expo-
nents (1,0,0). But even more simply, the coordinate
transformation

T̃ ≡
ffiffiffiffiffi
c1
t

r
e
t2
2 sinhðxÞ; X̃ ≡

ffiffiffiffiffi
c1
t

r
e
t2
2 coshðxÞ;

Ỹ ≡ ty; Z̃≡ tz ð14Þ

will bring the metric to the form

−dT̃2 þ dX̃2 þ dỸ2 þ dZ̃2: ð15Þ

in the large-t limit. Thus, the standard QFT approach to flat
spacetime applies in this limit, provided the appropriate
vacuum state is supplied.

2. Initial inflationary regime

In the massless limit, as t=t0 approaches unity from
below (in fact, for any value of t in the range e−t

2
0
=3 ≲ t≲ t0,

provided t0 ≫ 1), the frequency function in the wave
equation will be dominated by the radial k1 term, which
is quadratic in t. The general solution to the wave equation
in terms of the mode functions ψk ¼ fkt−1=2 can be written
in terms of zeroth-order Bessel functions:

ψk ¼ AkJ0

�
1

2
k1t2

�
þ BkY0

�
1

2
k1t2

�
; ð16Þ

for complex coefficients Ak and Bk.

3. Final collapse regime

As t=t0 approaches zero, the exponential terms in the
inflationary Kasner scale factors of Eq. (3) become
negligible, which results in a standard Kasner metric
with normalized Kasner exponents ð−1=3; 2=3; 2=3Þ.
Asymptotically, the wave Eq. (11) simplifies to

f̈k þ
�
c1k2⊥
t

þ 1

4t2

�
fk ¼ 0; ð17Þ

with a general solution to the mode functions ψk ¼ fkt−1=2

given by zeroth-order Bessel functions with argumentffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k2⊥c1t

p
(where k2⊥ ≡ k22 þ k23). But since t0 ≫ 1, the

constant c1 and therefore the subleading t−1 term from
Eq. (17) is exponentially suppressed by the factor e−t

2
0, so that

the mode solutions further reduce to

ψkðtÞ ¼ Ak þ Bk lnðtÞ; ð18Þ

for complex coefficients Ak and Bk.

III. RENORMALIZATION PROCEDURE

The quantity of interest is the probability density of
vacuum fluctuations, given by the vacuum expectation
value of the squared field operator, denoted h0jϕ2ðxÞj0i (or
more concisely, hϕ2i). Formally, this quantity can be
defined as the coincidence limit of a suitable two-point
correlation function,

hϕ2i≡ 1

2
lim
x0→x

Gð1Þðx; x0Þ; ð19Þ

where

Gð1Þðx; x0Þ≡ h0jfϕðxÞϕðx0Þgj0i ð20Þ

is the Hadamard Green function, defined with anticommu-
tator brackets fg. In the case of the mode expansion
described in Sec. II B, the field variance can be naïvely
calculated as

hϕ2ibare ¼
1

ð2πÞ3t
Z

d3kjfkðtÞj2: ð21Þ
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However, the bare integral in Eq. (21) is quadratically
divergent. In order to obtain a physical, finite result, some
renormalization procedure must be employed, as described
in the next subsection.
Since the mode solutions to Eq. (11) cannot be expressed

in an analytic form and must instead be solved numerically,
most of the standard analytic renormalization techniques
(such as dimensional regularization) cannot be used. One
robust technique for curved spacetimes, known as point-
splitting, has recently been implemented numerically by
Levi and Ori under the name pragmatic mode-sum regu-
larization (PMR) [46,47]. Such a technique requires only
that the background admits some symmetry (Killing field)
to permit a mode expansion, and the present case of
homogeneous symmetry (translational splitting) has been
carried out successfully for the FLRW metric [48].
However, the x-splitting variant of PMR works well only
for isotropic backgrounds—for the inflationary Kasner
metric, the presence of two independent scale factors
renders the PMR method ineffective or perhaps even
impossible.4 Instead, we use the technique known as
adiabatic regularization, as described below.

A. Adiabatic regularization

Instead of renormalizing hϕ2i as a whole or at the level of
the two-point function, consider what happens if the mode
functions themselves are renormalized before any mode
integrals are performed. In particular, the goal will be to
find aWentzel-Kramers-Brillouin-type (WKB-type) expan-
sion of the mode solutions fkðtÞ. These solutions can then
be subtracted off from the numerically-obtained solutions
fkðtÞ to yield a finite integral by construction. This
procedure, known as adiabatic regularization, was devel-
oped by Parker and Fulling in the 1970s and has been found
to provide a consistent means of renormalization, particu-
larly in the case of homogeneous spacetimes [43,49,50].
Although adiabatic regularization lacks a manifestly

covariant formulation, it is expected to be robust for
spacetimes with a high degree of symmetry (such as the
present case with homogeneity and 2D isotropy), and it
benefits from the simplicity of its computations and the
intuitive clarity of its physical interpretation. Further, the
scheme has been shown to be equivalent to the DeWitt-
Schwinger point-splitting method for massive scalar fields
on any Bianchi Type I spacetime [51]. Nonetheless, the
results presented here still may be subjected to a degree of
scrutiny, since they have not been directly compared

against an axiomatic, covariant construction [52].
However, the main ambiguity in the adiabatic scheme
arises from the choice of the leading-order frequency of
Eq. (24) below, and such a choice mainly corresponds to
the well-known mass scale ambiguity for massless scalar
fields, which should not affect the sought-after temporal
dependence of hϕ2i [53].
Equation (11) possesses the formal WKB-type solutions

fkðtÞ ¼
exp ½−i R t dt0Wkðt0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðtÞ
p ; ð22Þ

where the WKB approximate frequency WkðtÞ satisfies the
nonlinear equation

W2
k ¼ ω2

k þ σ −
1

2

�
Ẅk

Wk
−
3

2

_W2
k

W2
k

�
: ð23Þ

Note that fk contains an arbitrary phase factor associated
with the lower bound of the integral in Eq. (22). At this
stage, the shift from fk toWk is nothing more than a change
of variables; theWKB-type form of Eq. (22) has the distinct
advantage that the Wronskian condition of Eq. (9) is
automatically satisfied if Wk is chosen to be real and
non-negative.
Under the adiabatic approximation, if the spacetime is

slowly varying, any derivative terms in Eq. (23) will be
small compared to the squared frequency ω2

k, so a zeroth-
order approximation is to substitute

Wð0Þ
k ≡ ωk ð24Þ

[note that the background term σðtÞ, Eq. (13), has adiabatic
order 2 (as defined below) and therefore vanishes in the
zeroth-order limit along with the explicit derivative terms
on the right-hand side of Eq. (23)]. Higher-order solutions
may then be derived by iteration. The next-highest order
reads:

Wð2Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ σ −

1

2

�
ω̈k

ωk
−
3

2

_ω2
k

ω2
k

�s
: ð25Þ

The superscript (A) attached to the WKB approximate

frequency WðAÞ
k denotes the adiabatic order A of the

function. The Ath adiabatic order is defined by considering
the replacement t → ϵt (where the adiabatic parameter ϵ
will be taken to 1 at the end of the calculation) and
performing an expansion in powers of ϵ to obtain terms up
to order ϵA. Practically, terms of Ath adiabatic order are
those with up to A time derivatives of the metric.
The key feature of adiabatic regularization is that in the

adiabatic limit ϵ → 0 (or equivalently, k → ∞), the adia-
batic expansion of the mode solutions to the wave equation
should match the exact mode solutions. Since this limit is

4In particular, whereas the generalized transform
½T Gð1Þ

DSðεÞ�ðkÞ in the case of isotropic x-splitting has kernel
sincðkεÞ and can be written explicitly, cylindrical x-splitting
requires at most two transforms, with kernels proportional to
cosðkεÞ and J0ðkεÞ, and no generalized Hankel transforms have
been found for the divergent pieces ε−2 and lnðεÞ that do not also
diverge in k-space.
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precisely the regime where hϕ2i contains ultraviolet diver-
gences, subtracting the adiabatic term involving WðAÞ

k from
the term involving the exact solutions Wk should yield a
finite, renormalized result that can be integrated.
More precisely, the renormalized field variance is

hϕ2iren ¼
1

ð2πÞ3t
Z

d3k

�
1

2Wk
−
�

1

2Wk

�ðAÞ�
: ð26Þ

According to the standard prescription for hϕ2i renormal-
ization [22], only terms up to adiabatic order 2 (viz., all
orders containing terms that yield divergent integrals) need
to be subtracted for the solution to be consistent with the

results obtained from renormalization of the bare constants
in the Lagrangian. Utilizing Eq. (25), the result is:

�
1

2Wk

�ð2Þ
¼ 1

2ωk
−

σ

4ω3
k

þ ω̈k

8ω4
k

−
3 _ω2

k

16ω5
k

: ð27Þ

By construction, the terms in Eq. (27) that would diverge
when integrated over k exactly cancel the divergences from
the exact mode solutions 1=ð2WkÞ.
Additionally, since the integrand is even in k1 and

isotropic in the k2 − k3 plane, the integral simplifies in
cylindrical coordinates (with k⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k22 þ k23
p

) to

hϕ2iren ¼ lim
Λ→∞

�
1

2π2t

Z
Λ

0

Z
Λ

0

dk1dk⊥k⊥
�

1

2Wk
−

1

2ωk
þ σ

4ω3
k

−
ω̈k

8ω4
k

þ 3 _ω2
k

16ω5
k

��
: ð28Þ

Equation (28) is the expression used in Sec. IV to calculate
the vacuum polarization effects in the inflationary Kasner
spacetime, first by numerically solving for Wk via Eq. (23)
(with initial conditions provided in the next subsection) and
then integrating up to a suitably large choice for the
ultraviolet cutoff parameter Λ.

B. Choice of vacuum state

For any curved spacetime, the concept of “particles” will
not necessarily hold the same meaning for different
observers. Thus, any calculation in this framework must
make the observer-dependent choice of what defines the
vacuum state. Such a choice is equivalent to specifying
boundary conditions for the wave equation on the
spacetime.
Traditionally, the vacuum state for a stationary black hole

spacetime is defined by imposing an initial condition to the
wave equation along the spacetime’s past null boundaries,
where one can naturally specify free wave solutions with
respect to some affine parameter along those boundaries.
Physically, one can then connect the vacuum state to the
standard Minkowski vacuum seen by stationary observers
at infinity. However, in the present case, the mode expan-
sion for the inflationary Kasner spacetime remains valid
only for observers arbitrarily close to the inner horizon. The
solution to the inflationary Kasner wave equation as t
approaches infinity has no physical meaning, not only
because the spacetime is not stationary, but also because
once t becomes larger than t0, the metric must be replaced
with the Kerr metric if one wishes to describe an astro-
physical black hole.
In the absence of a clear natural choice of vacuum state

within the inflationary Kasner spacetime, three options
present themselves as physically viable choices:

(1) The adiabatic vacuum [22,54] defined at some time
tA consists of purely positive frequency modes with
respect to an adiabatic mode expansion [Eq. (22)],
given tA lies in a regime where the spacetime is
slowly varying.

(2) A Minkowski vacuum can be defined via the asymp-
totic behavior of the inflationary Kasner metric for
t=t0 ≫ 1 (see Sec. II C 1), provided the appropriate
coordinate transformation and mode decomposi-
tion that would allow for the mixing of eik·x and
e−ik·x waves.

(3) The Unruh state [55], which reproduces the pre-
dictions of Hawking radiation for stationary black
holes [56–58], can be defined at the Kerr past null
boundaries, propagated through the spacetime until
it reaches asymptotically close to the inner horizon,
then matched onto the inflationary Kasner spacetime
via a suitable coordinate transformation and mode
decomposition.

Since all three of these vacuum states have transparent,
physical interpretations within the black hole spacetime,
they all should lead to roughly similar vacuum expectation
values, at least when considering the temporal dependence
of the effects of particle production from the rapid evolution
of the spacetime curvature during mass inflation and
collapse. The vacuum state specifically tailored to study
the production of physical particles (in the sense of the
experiences of a comoving particle detector in a dynamic,
homogeneous spacetime) is the adiabatic vacuum state of
Option 1, and it is this state that will be used in the present
analysis. The most physically authentic choice for the
vacuum state would likely be Option 3, especially consid-
ering its recent success in the calculation of the renormal-
ized stress-energy tensor at the Kerr inner horizon [40,41].
However, the transition from Unruh modes to an equivalent
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set of k-modes in the inflationary Kasner regime is complex
and nontrivial, and the authors are currently working on
methods to apply the states of Options 2 and 3 in a follow-
up work.
The adiabatic family of vacuum states j0ðAÞi, which

forms the focus of the present analysis, is defined at Ath

adiabatic order such that the annihilation operator AðAÞ
k

satisfies

AðAÞ
k j0ðAÞi ¼ 0 ð29Þ

and designates an exact mode decomposition of the field
operator ϕ akin to Eq. (7) [43]. The adiabatic terminology
comes into play because the quantized mode solutions to
the wave equation are matched to an adiabatic expansion of
those modes (to order A) at a time t ¼ tA. It should be noted
that despite the terminology, the adiabatic state is not
merely an approximate vacuum; on the contrary, it repre-
sents an exact solution to the wave equation, with the well-
defined choice of positive frequency modes motivated by
the state one would get from a given adiabatic expansion.
The adiabatic vacuum has several distinct advantages as

a physical vacuum state. First, it only requires a matching at
a specific time tA, which can be taken in this case to be far
from the inflationary Kasner bounce so that the effects of
mode distortion from the changing spacetime are mini-
mized in the construction of the quantized field modes.
Second, and more importantly, in the adiabatic limit ϵ → 0,
a comoving particle detector in this vacuum will detect a
spectrum that falls off faster than any inverse power of the
momentum k [43,54]. Since particle number is an adiabatic
invariant, as long as

ωk ≫
_ωk

ωk
; ð30Þ

the excitation of the large-k modes will be highly sup-
pressed, and the adiabatic vacuum will exactly match the
physical vacuum definition of particles. But even for
nonadiabatic portions of a spacetime, the minimization
postulate encoded by the statements above implies that the
adiabatic definition of creation operators will approxi-
mately match that of physical particles throughout the
evolution of the spacetime, up to adiabatic order A. For the
inflationary Kasner spacetime, the adiabatic condition (30)
holds in the strict sense for large k1, k2, or k3, and it holds
more generally when t ≪ 1 or t ≫ 1. For large t, since
ωk ∼ et

2=2 and _ωk=ωk ∼ t, the adiabatic condition is met
even for times as small as t ∼ 5, where the frequency ωk
exceeds its logarithmic derivative already by several orders
of magnitude.
To demonstrate the robustness of the adiabatic state used

here, Fig. 1 shows the computed value of hϕ2ðtÞiren at a
certain intermediate time (t=t0 ≈ 0.32) for a family of
different adiabatic vacuum states parametrized by the

adiabatic matching time tA. In this plot, the renormalized
field variance hϕ2iren is found to be exactly 0 when the
adiabatic vacuum time tA is the same as the evaluated time t
(the rightmost point on the plot), since the field is in
vacuum by definition. But if the adiabatic vacuum state is
chosen to begin at a time tA earlier than the point being
evaluated, hϕ2iren obtains a nonzero value corresponding to
the polarization of the vacuum accomplished by the space-
time’s evolution from tA to t. For a choice of tA far enough
into the past, the value of hϕ2iren asymptotes to a constant,
indicating that the chosen vacuum begins in a suitably
adiabatic regime. Note that for the choice of constants used
throughout this paper, t0 (the starting time for the mass
inflation epoch and the point of matching between the Kerr
and inflationary Kasner metrics) takes on a value of about
3.1, which is not quite large enough to preside in the
adiabatic regime. The vacuum time tA must therefore be
chosen to be distinct from (and farther in the past than) t0
(in particular, tA ¼ 5 ≈ 1.6t0), though it is still close
enough to t0 that the inflationary Kasner model should
still hold reasonably well.
In order to perform the renormalization calculations in

the adiabatic vacuum state, the wave equation [in this case,
Eq. (23)] is solved using a standard numerical integrator,
with the Cauchy initial conditions

1

2Wkðt0Þ
¼

�
1

2Wkðt0Þ
�ðAÞ

; ð31aÞ

∂t

�
1

2Wkðt0Þ
�

¼ ∂t

�
1

2Wkðt0Þ
�ðAÞ

; ð31bÞ

where the quantities with superscript (A) are truncated at
adiabatic order A ¼ 2 by Eq. (25) to ensure consistency
with the renormalization scheme. As mentioned in Sec. III

FIG. 1. The renormalized variance hϕ2ðtÞiren evaluated at the
inflationary Kasner time t ¼ 1 ≈ 0.32t0 for various choices of the
adiabatic matching time tA. The constants used are the black hole
spin a ¼ 0.96 and initial accretion rate u ¼ 0.02, for
which t0 ≈ 3.1.
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A, the mode functions WkðtÞ are used for numerical
calculations instead of fkðtÞ because the Wronskian con-
dition of Eq. (9) is guaranteed to be satisfied as long as
WkðtÞ is constrained to be real and non-negative.

IV. NUMERICAL RESULTS

To demonstrate how the present numerical framework of
adiabatic regularization can be applied to a spacetime (and
to confirm its validity), the technique is first carried out for
a simplified yet comparable Bianchi Type I spacetime. The
chosen spacetime (FLRW model with scale factor t1=3) has
the advantage that the renormalized variance is known
analytically from several independent renormalization
techniques and can also be calculated using a numerical
adiabatic regularization scheme identical to the one pre-
sented here. The numerical results for this simplified case
are shown in Sec. IVA to be entirely consistent with the
analytic solutions. Then, the main results of the renorm-
alization for the inflationary Kasner spacetime are pre-
sented in Sec. IV B.

A. FLRW renormalization

TheFriedmann-Lemaître-Robertson-Walker (FLRW)met-
ric is a special case of the homogeneous metric of Eq. (2)
where the scale factors are completely isotropic. For the
present case, assume the scale factors

a0 ¼ 1; a1 ¼ a2 ¼ a3 ¼ t1=3; ð32Þ

which correspond to a flat FLRWuniversewith a classical free
scalar field (distinct from the quantized scalar field that will be
added to this background). This choice of metric has the
advantage that the formalism of Sec. II B ff. remains com-
pletely unchanged when comparing the inflationary Kasner
and FLRW calculations (in particular, a1a2a3=a0 ¼ t).
The renormalized FLRW variance has been calculated

analytically for a conformally coupled massless scalar field
using both point-splitting and adiabatic techniques [43,59–
61]. Since the spacetime is isotropic, homogeneous, and
spatially flat, it is conformally Minkowski. As such, in the
massless, conformally coupled case, the field can be
decomposed into k-modes as in Eq. (7), with mode
solutions

ψk ¼
exp ð− 3

2
ikt2=3Þffiffiffiffiffiffiffiffiffiffiffiffi

2kt2=3
p ; k≡ jkj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

q
: ð33Þ

These modes are positive frequency with respect to the
globally timelike conformal Killing vector ∂η [with
η≡ R

aðtÞ−1dt ¼ ð3=2Þt2=3]. Therefore, unlike in the case
of inflationary Kasner, the modes of Eq. (33) uniquely
define a natural vacuum state. In particular, the adiabatic
vacuum state of Sec. III B is equivalent to this vacuum state
for all matching points tA, to all adiabatic orders.

On the numerical side, the corresponding initial con-
ditions that must replace Eq. (31) to ensure the same
conformal vacuum state as in the analytic case are those
tied to the modes

Wk ¼ kt−1=3: ð34Þ

Otherwise, after the replacement of the scale factors of
Eq. (32) and the inclusion of the now nonzero Ricci scalar
R ¼ −2=ð3t2Þ, the numerical scheme presented in the
previous sections can be followed exactly as in the infla-
tionary Kasner case.
In the conformal vacuum state, the renormalized vari-

ance of a massless, conformally coupled field over the
FLRW background is [22]

hϕ2iren ¼ −
R

288π2
¼ 1

432π2t2
: ð35Þ

The numerical adiabatic computation of hϕ2iren is
presented in Fig. 2 alongside the analytic expression from
Eq. (35). The integrations necessary to compute each point
in this figure converged to a steady value rather quickly,
usually requiring an ultraviolet cutoff of no more than
Λ ¼ 1. As shown, the two methods show excellent agree-
ment, lending credence to the validity and precision of the
present adiabatic numerical scheme.

B. Inflationary Kasner renormalization

For the inflationary Kasner spacetime, the wave Eq. (23)
subject to the boundary conditions of Eq. (31) is solved
numerically using MATHEMATICA’s parametric ODE solver.
The mode solutions are then used to compute the integral of

FIG. 2. The renormalized variance in an FLRW background
with scale factor power law index 1=3. The black points are
computed numerically using the adiabatic regularization scheme
outlined in Sec. III, and the orange line indicates the analytic
expression from Eq. (35) derived from both adiabatic and point-
splitting regularization techniques.
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Eq. (28) for successively larger values of the momentum
cutoff parameter Λ until convergence is achieved. The
result is the numerical value of hϕ2ðtÞiren at a particular
time t; this process is then repeated for different values of t
until the variance’s full time dependence is found.
Especially for small values of the inflationary Kasner

time t, each numerical calculation of the wave equation to
produce a parametric mode solution can take on the order
of seconds or even minutes. As such, interpolation is used
to increase the code’s efficiency. A grid of points over the
pertinent k-space is sampled to calculate the mode sol-
utions, and the remaining k-space is estimated using third-
order Hermite interpolation. To ensure that no features in
the k-space are overlooked by the choice of sampling grid,
adaptive mesh refinement techniques are employed, such
that if the errors in the interpolation function for a given
region of k-space are greater than a predetermined thresh-
old, the grid is refined to include more sampled points
within that region. This process is then repeated until the
integrals within all regions lie below the error threshold. An
example of this process is shown in Fig. 3.
When the power spectrum of Fig. 3 is integrated over

both k1 and k⊥, the result is hϕ2iren. As k1 or k⊥ increases,
the value of the integrand of Eq. (28) decreases until it
reaches zero, since the numerically computed mode sol-
utions Wk by construction will approach the same value as
the adiabatic mode solutions of Eq. (25) in the large-k
adiabatic limit. To ensure that enough of the infinite k-
space is being integrated over to calculate hϕ2iren, the
integral is performed for successively larger values of Λ
until hϕ2iren converges. As an example, Fig. 4 shows the
convergence of hϕ2ðtÞiren for the same time used in Fig. 3
(t ¼ t0). That is, the integral of the region shown in Fig. 3
corresponds to the point at Λ ¼ 10 in Fig. 4.

Since the time t in Figs. 3 and 4 is close to the adiabatic
vacuum time tA, only the lowest k-modes are occupied, and
the integral converges quickly. But as t advances from t0 to
0 and the spacetime evolves through the inflationary
Kasner bounce, higher modes are expected to be occupied
as the strong gravitational field seeds further particle
production. Throughout the first Kasner epoch from t ∼
t0 to t ∼

ffiffiffiffiffiffiffiffi
1=2

p
signaling mass inflation, the transverse

modes (k⊥) become progressively more occupied, and
during the second Kasner epoch from t ∼

ffiffiffiffiffiffiffiffi
1=2

p
to t ∼ 0

signaling spacelike collapse, energy from the transverse
modes passes over into the higher radial modes (k1).
The time evolution of hϕ2iren for a massless scalar field

in the adiabatic vacuum in the inflationary Kasner space-
time is shown in Fig. 5. Since t begins close to the adiabatic
vacuum time tA (t0 is about 3.1 for the choice of constants
used here, while tA ¼ 5), the vacuum polarization

FIG. 4. Convergence of the integral in Eq. (28) at time t ¼ t0 as
a function of the cutoff parameter Λ. The choice of constants is
the same as in Fig. 3.FIG. 3. Power spectrum [the integrand of Eq. (28)] over a portion

of k-space, evaluated at time t ¼ t0 (as defined in Sec. II A).
Gridlines reveal the steps of adaptive mesh refinement, with an
error threshold of 10−8 and grid sizes varying from 0.625 to
2 × 10−5. The constants used are the black hole spin a ¼ 0.96,
initial accretion rate u ¼ 0.02, and adiabaticmatching time tA ¼ 5.

FIG. 5. Renormalized adiabatic vacuum expectation value of
the quantized field variance as a function of time in the infla-
tionary Kasner spacetime. The vertical line signals the bounce
transition from the mass inflation epoch to the spacelike collapse
epoch, and the dashed line shows a t−3 power law. The black hole
spin is a ¼ 0.96, the initial accretion rate is u ¼ 0.02, and the
adiabatic matching time is tA ¼ 5.
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hϕ2ðt0Þiren begins very close to 0 (the precision-limited
calculation done here for t ¼ t0 has error bars crossing
through 0). But as mass inflation progresses, hϕ2iren
increases as more and more quantized field modes become
occupied by the changing gravitational potential.
After the inflationary Kasner spacetime undergoes a

bounce and proceeds to collapse toward the strong, space-
like singularity, the renormalized variance continues to
increase, spanning several orders of magnitude as it
approaches a divergence at t ¼ 0. Throughout the duration
of the collapse epoch, hϕ2iren seems to follow a quasipower
law in time, with an index of −3. Qualitatively, the vacuum
polarization follows a similar trend to that of the infla-
tionary Kasner spacetime’s classical stress-energy tensor,
whose density and radial flux components in a locally
orthonormal tetrad frame are [21]

T00 ¼ T11 ¼
1

4πc1tet
2 ; ð36Þ

which also asymptote to a power law in t during the final
collapse regime. The main difference is that the power law
divergence in hϕ2iren is even steeper than that of the
classical stress-energy tensor.

V. DISCUSSION

The results from Sec. IV B suggest that as an observer
falls into a rotating, accreting black hole and approaches the
inner horizon, the classical picture of mass inflation and
subsequent spacelike collapse is reinforced when semi-
classical effects are taken into account. In particular, when a
quantized, massless, neutral, scalar field in the adiabatic
vacuum state is coupled to the inflationary Kasner space-
time, to first-loop order, that field acquires a nonzero
variance that follows a similar trend to that of the classical
stress-energy of the spacetime, asymptotically approaching
a power law divergence.
Since the vacuum polarization hϕ2iren can be seen as a

tracer for the behavior of the renormalized stress-energy
tensor hTμνiren, which feeds back into the geometry of the
spacetime via the semiclassical Einstein equations [see
Eq. (1)], the picture that emerges is a quantum backreaction
that acts to amplify the strength of the curvature singularity
at the inner horizon. Locally, particle production occurs
near the inner horizon as the vacuum interacts with the
inflating and collapsing spacetime curvature, and these
particles seed further accretion that should feed back into
the same classical inflationary Kasner spacetime.
The choice of constants used throughout this study is

made both for numerical convenience and astrophysical
relevance. As mentioned in Sec. III B, the choice of the
adiabatic matching time tA should not change the results of
the renormalization much, as long as that time lies within
the adiabatic regime. The only other independent constant
in this model is c1, the metric coefficient for the radial scale

factor, which is determined by two physical constants via
Eqs. (4) and (5), the black hole spin a and the initial
accretion rate u. Though the spin parameter a can take on
any value between 0 and 1, only a small range of values
near 1 lead to numerically tractable values for c1 with the
present choice of coordinates (for example, when a ¼ 0.5,
the presence of an exponential term in the conversion factor
leads to c1 ∼ 10−70). However, within this range, changing
the spin does not change the qualitative behavior of Fig. 5
(only the overall magnitude), and many astrophysical black
holes have been observed with spins consistent with what
has been used for this analysis [62,63].
Regardless, the picture presented here is expected to hold

for all astrophysically relevant ranges of spin and accretion;
as either a or u increases, the overall magnitude of hϕ2iren
decreases nonlinearlywhile preserving its general qualitative
trend in t. The dependence of hϕ2iren on these parameters for
a fixed time t ¼ 1 ≈ 0.32t0 (in the intermediate regime
between inflation and collapse) is shown in Fig. 6. For a
fixed initial accretion rate u, as the spin a increases, hϕ2iren
decreases, and similarly, for a fixed spin a, as the initial
accretion rate u increases, hϕ2iren decreases. Classically, the
tinier the accretion rate, the more powerful mass inflation
becomes, and here we find that the same holds true for the
semiclassical backreaction to mass inflation.
To ensure the robustness of the results presented here, we

intend to engage in a deeper study of vacuum states near the
inner horizon and build on this framework to calculate the
renormalized quantum stress-energy tensor hTμνiren. Such a
calculation involves derivatives of the mode functions and
contains stronger divergences to be renormalized than those
of hϕ2iren, but knowing hTμνiren will allow for a more direct
understanding of the quantum backreaction at the inner
horizon of rotating, accreting black holes.

FIG. 6. Renormalized adiabatic vacuum expectation value of
the quantized field variance as a function of the inflationary
Kasner metric coefficient c1, which depends on both the initial
accretion rate u and the black hole spin a. All the values shown
are calculated at a time t=t0 ≈ 0.32.
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