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We consider the classical static soliton solutions of the Skyrme model with false vacuum potential. We
make use of fully three-dimensional relaxation calculations to construct global energy minimizers in the
sectors of topological degrees from Q ¼ 1 to Q ¼ 6. These solutions may be metastable, they contain a
domain of true vacuum inside the core. Further, we explore small regions of negative topological charge
density which appear for the Skyrmions of degrees Q ¼ 3, 5, 6.
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I. INTRODUCTION

Many nonlinear classical field theories admit solitons;
they represent regular spatially localized field configuration
with finite energy, see, e.g., [1,2]. One of the celebrated
examples are Skyrmions, the topological soliton solutions
of the generalized nonlinear sigma model in (3þ 1)
dimensions [3,4], for a review see [5–7]. Originally, the
Skyrmions were interpreted as nucleons, with identification
of the baryon number and the topological charge of the field
configuration. This idea acquired popularity in the 1980s
whenWitten pointed out that, in the limit of infinite number
of colors, the Skyrme model can be considered as a low
energy QCD effective theory [8,9]. Apart from being a
simple example of a relativistic field model, which supports
topological solitons, the Skyrme theory attracted a lot of
attention due to its relation to the holonomy of the Yang-
Mills instantons via the Atiyah-Manton construction [10]
and to the Sakai-Sugimoto model of holographic QCD
[11]. On the other hand, Skyrmion-type solutions naturally
arise in various condensed matter planar systems with
intrinsic and induced chirality [12–15].
According to the scaling arguments of the Derrick’s

theorem [16], a minimal version of the Skyrme model in
(3þ 1)-dimensional spacetime, which may supports stable
topological solitons, should include both the quadratic in
derivatives term L2 and a term of fourth order in the
derivatives L4 (Skyrme term). However, this form is not so
good for a candidate model of nuclear physics; in order to

make it more phenomenological suitable for description
of baryons and pions one has to supplement it with a
potential [17–20].
There is a variety of soliton solutions of the Skyrme

model constructed numerically over last three decades,
starting from pioneering works [21–23]. The simplest
Skyrmion of topological degree Q ¼ 1 is spherically
symmetric, Skyrmions of higher topological degrees may
possess much more complicated symmetries, for example
the Skyrmion of degree Q ¼ 3 is tetrahedrally symmetric,
there are configurations with the symmetries of the dihedral
group Dn, the extended dihedral groups Dnh and Dnd, and
the icosahedral group In. The rational map parametrization,
suggested in [23], provides a nice geometric construction
which is very successful at capturing most of the features of
the Skyrmions.
Interestingly, it was observed that there are tiny domains

of negative topological density for tetrahedral Q ¼ 3
Skyrmions, but none for Q ¼ 2, 4 Skyrmions with higher
amount of symmetry [24–26].
Properties of the multisoliton solutions of the Skyrme

model strongly depend on the choice of the potential; it
yields the asymptotic decay of the field, which defines the
character of interaction between the solitons. Even for the
model with the usual pion mass term, the increase of
the corresponding mass parameter may strongly affect the
structure of the multi-Skyrmion configurations [18,27].
The binding energy of the Skyrmions is relatively high;

in order to set it into correspondence with the experimen-
tally known binding energies of physical nuclei, a number
of modifications of the Skyrme model have been proposed
[28–35]. Notably, solitons of the original Skyrme model
do not attain the topological bound, which yields a linear
relation between the static energy of the solitons and their
topological charges Q. To approach this bound one has to
modify the model, preserving its topological properties
[31–33,36]. An example is a truncated Skyrme model with
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only a sixth-order derivative term, which is the topological
current density squared, and a potential [31,33], or mod-
ifications of the original theory to the form which supports
self-dual equations [37–39]. Multisoliton solutions of this
reduced model exactly saturate the topological bound; they
may interact only elastically and the self-dual multi-
Skyrmion configuration resembles the system of liquid
drops. Another interesting example is the false vacuum
Skyrme model [40], which is an extension of the static
version of the self-dual Skyrme model [38] that preserves the
original self-dual equations and treats the baryonic density as
a self-interacting fluid. Such a theory does not have a
physical potential with true and false minima, but its name
comes from the fact that its dynamics is reduced to a single
second-order differential equation for a fractional power of
baryonic density, which coincides with the Coleman’s false
vacuum problem. A remarkable consequence is that the
baryonic density of the topological solutions with lower
static energy must have radial symmetry, leading to Skyrme-
type radial solutions that reproduce with excellent accuracy
the experimental values of radii and binding energies for a
very wide range of the mass number.
In order to construct weakly bounded multi-Skyrmion

configurations one can consider a combination of the
repulsive and attractive potentials [34,41,42], the latter
can be represented by the pion mass term or by the double
vacuum potential [43,44]. In such a case, the repulsive part
of the potential separates the constituents of the configu-
ration that resembles a loosely bound collection of almost
isolated spherically symmetric unit charge Skyrmions.
Furthermore, various symmetry-breaking potentials were
considered to construct half-Skyrmions [45,46].
An interesting possibility is to consider a potential of the

Skyrme model, which possesses both true and false vacua
[40,47]. Presence of the false vacuum may affect the
properties of the solitons: they become metastable [47–49],
the collisions of the solitons could induce the decay of
the false vacuum [50], and various radiative effects [51].
However, the previous analysis of the multisoliton solu-
tions of the false vacuum Skyrme model was restricted to an
effective theory related to the rational map approximation.
Therefore, reexamination of the results obtained in the
paper [47] seems to be warranted.
In this paper, we will study classically stable multisoliton

solutions of the Skyrme model with the false vacuum
potential, discussed earlier in [47]. In particular, we
investigate Skyrmions of higher degrees and examine the
regions of the negative topological charge density, which
appear for the solitons of degreesQ ¼ 3, 5, 6 and may have
an important effect on false vacuum instability.

II. FALSE VACUUM SKYRMIONS

The Skyrme model is a Poincaré invariant, nonlinear
SUð2Þ sigma model field theory. The basic version of the

Skyrme Lagrangian includes two terms, L2 þ L4, or
explicitly

LSkyrme ¼ −
1

2
TrðRμRμÞ þ 1

16
Trð½Rμ; Rν�½Rμ; Rν�Þ; ð1Þ

where we used the rescaled energy and length units
fπ=ð4eÞ and 2=ðefπÞ, respectively [52]. The SUð2Þ Lie
algebra valued right current is Rμ ¼ ∂μUU† ¼ Ra

μτa, with
τa being the Pauli matrices and U is the so-called Skyrme
field, which belongs to the SUð2Þ Lie group. Once we
impose that Uðx; tÞ takes the same matrix value at spatial
infinity, thus the Skyrme field becomes a map U∶S3 ↦ S3

from the compactified coordinate space R3 ∪ f∞g ↦ S3

onto the target space S3. The topological charge Q
corresponds to the degree of this map and can be written
in the integral representation as

Q ¼ −
1

24π2

Z
d3xεijkTrðRiRjRkÞ: ð2Þ

The Lagrangian (1) can be supplemented by symmetry
breaking potential terms. The simplest choice is the usual
pion mass potential

Vmass ¼ m2Trð1 −UÞ; ð3Þ

it affects the qualitative shape of Skyrmions of higher
degrees [18,27]. The dimensionless parameter m is propor-
tional to the mass of linearized excitations of the scalar field
associated with the pions.
Hereafter, we are only concerned with static solutions of

the Skyrme model, so we consider the energy density

E ¼ −
1

2
TrðRiRiÞ −

1

16
Trð½Ri; Rj�½Ri; Rj�Þ þ VðUÞ: ð4Þ

The potential of the Skyrme model can be adjusted to
model various physical effects, for example, to construct
Skyrmions with low binding energies, the pion mass term
(3) can be supplemented with an additional term propor-
tional to Trð1 −UÞ4 [41]. Another interesting possibility is
to consider a false vacuum potential [47]

V ¼ −
1

4
½m2

1Trð1 −UÞ þm2
2Trð1 −U2Þ�; ð5Þ

where U ¼ 1 is the true vacuum. Therefore, the theory (4)
has an SOð3Þ isospin symmetry corresponding to the field
transformationU → OUO−1, ∀O ∈ SUð2Þ. If U → −1 as
x → ∞, then the following potential shift bym2

1 is essential

V → V −m2
1⟶x→∞

0: ð6Þ

Below, we assume that the Skyrme field asymptotically
may approach both the true and the false vacuum. In the
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latter case the Skyrmions contain the true vacuum in their
core. For later convenience we can introduce an effective
potential (see Fig. 1)

Veff ≡
�
V; Uð∞Þ ¼ þ1 ðSkyrmionsÞ
V −m2

1; Uð∞Þ ¼ −1 ðFalse vac SkyrmionsÞ :

ð7Þ

Note that the potential (5) may possess a local minimum
Ufalse ¼ −1 if and only if m2

1 < 4m2
2. For m

2
1 ≥ 4m2

2 the
field configuration U ¼ −1 is a global maximum. It is not
difficult to check if it expands the SUð2Þ matrix-valued
Skyrme field U ¼ 1ϕ0 þ iϕaτa, where the quartet ðϕ0;ϕaÞ
parametrizes the unit sphere S3. Then the constraint
ϕ2
a ¼ 1 − ϕ2

0 allows us to express the potential (5) as a
polynomial of ϕ0 and find its extrema.
The variation of the Lagrangian of the Skyrme model

with the potential term (5) with respect to the field U, after
some algebra yields the field equations

0 ¼ ∂μ

�
Rμ þ 1

4
½Rν; ½Rν; Rμ��

�

þ 1

8
m2

1ðU −U†Þ þm2
2

4
ðU2 − U†2Þ: ð8Þ

The asymptotic analysis of the Skyrme field becomes
more simple if we make use of the expansion
U ¼ 1ϕ0 þ iϕaτa, it yields

Rμ ¼ iτaðϕ0∂μϕa − ϕa∂μϕ0 þ εabc∂μϕbϕcÞ: ð9Þ

Further, we consider excitations v0, va of the Skyrme field
around the vacua, U ∼ ð−1Þlð1 − v0Þ1þ ivaτa. Here
jv0j; jvaj ≪ 1, and the value of the parameter l ¼ 0
corresponds to the asymptotic value of the Skyrme field
U⟶

x→∞
1, and l ¼ 1 corresponds to the false vacuum

asymptotic, U⟶
x→∞

− 1 (if m2
1 < 4m2

2).

Note that although the va fields can take both positive and
negativevalues, thev0 componentmust be positive due to the
constraint of the field to the unit sphere. On the other hand,
this constraint yields v2a ¼ 1 − ð1 − v0Þ2, and since v0 ≪ 1,
we obtain v2a ≈ 2v0 þOðv20Þ. Hence, ∂iv0 ≈ va∂ivaþ
Oðv20; v0∂iv0Þ. Therefore, v0 ≪ v2a and after some algebra
we arrive to the linearized form of the field equation (8):

∂μ∂
μva þm2

effðlÞva ¼ 0; ð10Þ

where meffðlÞ is an effective mass parameter defined by

meffðlÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ ð−1Þl m
2
1

4

r
; l≡

�
0; Uð∞Þ ¼ þ1

1; Uð∞Þ ¼ −1
:

ð11Þ

Note that the scalar field component ϕ0 always remain
massless while all ϕa fields have the same effective mass,
which in turn can take on pure real or imaginary values.
Evidently, if the Skyrme field asymptotically approached the
true vacuum (l ¼ 0), then the equation (10) corresponds to
the usual Klein-Gordon equation and the triplet of pions has

the same non-negative effective massmtrue vac
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ m2
1

4

q
.

In themassless limit (m2
1 ¼ m2

2 ¼ 0) the asymptotic triplet of
pion fields represent the field of three mutually orthogonal
scalar dipoles, va ∝ r−2, see, e.g., [1,2].
For the false vacuum Skyrmions we have to consider

three possibilities. First, for meffðl ¼ 1Þ ¼ 0 the pion
excitations are massless, as in the usual minimal Skyrme
model without a potential. However, the asymptotic value
of the Skyrme field U → −1 now corresponds to a local
maximum of the potential (5): if such a massless configu-
ration contains a bubble of the true vacuum in the interior
region, then the solutions may be unstable.
Second, as m2

effðl ¼ 1Þ < 0, the potential (5) also pos-
sesses a global maximum at U ¼ −1, in such a case the
linearized equation (10) corresponds to the excitations with
purely imaginary mass, i.e., the false vacuum configuration
is unstable, the domain of the true vacuum exponentially
grows. Third, as m2

effðl ¼ 1Þ > 0, the linearized equa-
tion (10) describes the triplet of massive pions with the

same effective mass mfalse vac
eff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 −
m2

1

4

q
. This is prob-

ably the most interesting case: if the corresponding false
vacuum Skyrmions are metastable, then they can be
destroyed via quantum tunneling [53,54] although the
decay may be strongly suppressed.

-1.0

-0.5

0.0

0.5

1.0

-8 -6 -4 -2  0  2  4  6  8

V
ef

f
/ m

12

�

m1=0.5, m2=0.0
m1=0.5, m2=0.5

FIG. 1. The effective potential, obtained from the 3D simu-
lations, plotted against ζ for the true vacuum Q ¼ 1 Skyrmions at
m1 ¼ 0.5 andm2 ¼ 0 and for the false vacuumQ ¼ 1 Skyrmions
at m1 ¼ 0.5 and m2 ¼ 0.5.
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III. THE RATIONAL MAP ANSATZ

Numerical simulations reveal that Skyrmions of higher
degrees are not spherically symmetric, they possess very
geometrical shapes [21–23]. Rational map approximation
[23] gives surprisingly good approximations to the exact
numerical solutions. The idea of the rational map ansatz is
to map the spheres S2 centered at the origin of domain
space R3 onto the spheres S2 that correspond to latitudes in
the sphere S3, the group space of the Skyrme model [23].
Explicitly, let us consider decomposition of the SUð2Þ
group elementU in terms of a real valued profile function f
and a complex valued function u [1,23,39,55]

U ¼ 1 cos f þ i sin f
1þ juj2

�
1 − juj2 −2iu
2iū −1þ juj2

�
: ð12Þ

The scalar components of the Skyrme field U ¼ 1ϕ0 þ
iϕaτa can be written as

ϕ0 ¼ cos f; ϕ1 ¼ sin f
ūþ u
1þ juj2 ;

ϕ2 ¼ sin f
iðū − uÞ
1þ juj2 ; ϕ3 ¼ sin f

1 − juj2
1þ juj2 : ð13Þ

A point on the domain space R3 can be written in polar
coordinates ðr; z; z̄Þ on the sphere S3, where r is the usual
radial coordinate, z ¼ tan ðθ=2Þeiφ and themetric is given by

ds2 ¼ dr2 þ 4r2

ð1þ jzj2Þ2 dzdz̄: ð14Þ

The rational map ansatz (12) for the Skyrme field then can be
written as [23]

u ¼ uðzÞ ū ¼ ūðz̄Þ; f ¼ fðrÞ; ð15Þ

where uðzÞ ¼ pðzÞ=qðzÞ is a holomorphic rational map
between the Riemann spheres S2, and pðzÞ, qðzÞ are
polynomials of z with no common roots. A well-known
property of the rationalmap is that its algebraic degree,which
corresponds to the highest degree among the polynomials
pðzÞ andqðzÞ, is equal to the topological degree of themapu.
It can be written in the integral representation as

deg u ¼ 1

4π

Z
S2
dΩ ϑ ¼ maxfdegpðzÞ; deg qðzÞg; ð16Þ

where ϑðz; z̄Þ≡ ð1þjzj2
1þjuj2Þ

2 du
dz

dū
dz̄ and we introduced the differ-

ential solid angle

dΩ ¼ sin θdθ ∧ dψ ¼ 2idz ∧ dz̄
ð1þ jzj2Þ2 :

The corresponding topological charge density Q and
topological charge (2) associated with the Skyrme field (12)
are, respectively,

Q ¼ −
f0sin2f
2π2r2

ϑ; Q ¼
�
f − 1

2
sin ð2fÞ
π

�r¼0

r¼∞
deg u;

ð17Þ

where we used (15) and the definition (16). Therefore, the
boundary conditions on the true vacuum configurations are
fð0Þ ¼ π and fð∞Þ ¼ 0, while for the false vacuum
Skyrmions we have to impose fð0Þ ¼ 2π and fð∞Þ ¼ π.
In both cases the topological degree of the rational map is
equal to the topological charge, i.e., Q ¼ deg u. However,
the false vacuum Skyrmion contains a domain of true
vacuum in its center, and the configuration is classically
stable [47].
The angular part of the topological charge density (17)

can be written alternatively as ϑ ¼ ð1þjzjÞ2
ðjpjþjqjÞ2 jWðzÞj2, where

we introduced the Wronskian

WðzÞ≡ qðzÞp0ðzÞ − pðzÞq0ðzÞ; ð18Þ

which is a polynomial with maximum degree 2ðQ − 1Þ. It
so follows that the topological charge density vanishes at
the roots of the Wronskian, which, due to z ¼ tan ðθ=2Þeiφ,
corresponds to angular directions. Indeed, although such
result is obtained in the rational map approximation, its
shed light on why the isosurfaces of topological charge
density of the Skyrmions possesses 2ðQ − 1Þ holes, at least
for small values of Q [1].
The rational map ansatz (12), (15) yields the simple

radial energy functional normalized by the usual factor
12π2

E ¼ 1

3π

Z
∞

0

dr

�
r2f02 þ 2Qðf02 þ 1Þsin2f

þI
sin4f
r2

þ r2VeffðfÞ
�
; ð19Þ

where I is the angular integral

I ¼ 1

4π

Z �
1þ jzj2
1þ juj2

���� dudz
����
�

4 2idzdz̄
ð1þ jzj2Þ2 :

For the spherically symmetric Q ¼ 1 Skyrmion u ¼ z
and I ¼ 1, while for Skyrmions of higher degrees
1 < B ≤ 22 the best approximation to the global minima
is given by the rational map (12) with (see, e.g., [1])
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I ≈ 1.28Q2: ð20Þ

Note that in the energy functional (19) for the false
vacuum Skyrmions we used the shifted potential (6), as
described above.

Veff ¼ V −m2
1; V ¼ m2

1 sin
2

�
f
2

�
þm2

2 sin
2 f: ð21Þ

The corresponding variational equation on the profile
function f is

0 ¼ sin ð2fÞ
�
Qðf02 − 1Þ − Isin2f

r2

�
−
r2

2

δVeff

δf

þ ðr2 þ 2Qsin2fÞf00 þ 2f0r: ð22Þ

The components of the pion triplet given in (13) has the
form ϕa ¼ sin fðrÞφaðz; z̄Þ, for a ¼ 1, 2, 3, where φaðz; z̄Þ
represents the angular dependence, which clearly decou-
ples from the radial part. Asymptotically, we can write the
perfil function as f ¼ lπ þ g, where the g field is an
excitation of the vacuum (l ¼ 0) or the false vacuum
(l ¼ 1). Therefore, the fluctuations of the pion fields are
of the form va ¼ ð−1ÞlgðrÞφaðz; z̄Þ (see Sec. II). Hence, the
asymptotic equation (10) becomes

r2g00 þ 2rg0 − ðr2m2
effðlÞ þ 2ϑðz; z̄ÞÞ g ¼ 0; ð23Þ

where we make use of the relation ∂
2
i ¼ ð1þjzj2Þ2

r2 ∂zz̄ þ
∂
2
r þ 2

r ∂r, which follows from the explicit form of the

Riemanian metric (14), and ∂zz̄φa ¼ − 2∂zu∂z̄ ū
ð1þjuj2Þ2 φa. Note that

the angular dependent term φaðz; z̄Þ in the radial asymptotic
equation (10) is always decoupled.
Multiplying the equation (23) by 1

4π dΩ, integrating over
the S2 and using (16), we obtain the radial asymptotic
equation

r2g00 þ 2rg0 − ðr2m2
effðlÞ þ 2QÞg ¼ 0: ð24Þ

Note that, for meffðlÞ ¼ 0, the potential term vanishes both
for the true and false vacuum Skyrmions, the radial function
gðrÞ decays asymptotically as g ∝ a=r2 and in both cases
the asymptotic triplet of pion fields represents the field of
three mutually orthogonal scalar dipoles. Equation (24) can
be obtained alternatively considering the asymptotic regime
of (22) with f ¼ lπ þ g.
Clearly, the energy of the false vacuum Skymions

diverge asm2
effðlÞ ¼ m2

2 −m2
1=4 < 0 and the effective mass

parameter in the asymptotic Klein-Gordon equation (24)
becomes purely imaginary.

IV. NUMERIC SOLUTIONS

To find stationary points of the energy functional (4) we
implement the simulated annealing technique [56] numeri-
cally relaxing initial field configurations, produced by the
rational map approximation in a sector of topological
degree Q. As a consistency check, we verify that our
algorithm correctly reproduces the known results for the
Skyrmion configurations of the usual rescaled Skyrme
model with pion mass potential (3), for degrees up toQ ¼ 6
it agrees with previously known values of the ratio E=Q
within 1.0% accuracy. For each solution we evaluated the
value of the topological charge Q, we find that this is
accurate to within 10−3 in all simulations reported here.
Another check of the correctness of our results was
performed by verifying that the virial relation for the
Skyrme model in 3þ 1 dimensions between the potential,
quadratic, and quartic in derivatives terms in the static
energy functional, E2 ¼ E4 − 3E0 is satisfied. Here

E0 ≡ 1

12π2

Z
d3xVeff ; E2 ≡ 1

24π2

Z
d3xTrðRiRiÞ;

E4 ≡ 1

192π2

Z
d3xTrð½Ri; Rj�½Ri; Rj�Þ: ð25Þ

More precisely, following the discussion of the loosely
bounded Skyrmions presented in [41], we evaluated the
quantity

D ¼ E4 − E2 − 3E0

E4 þ E2 þ E0

ð26Þ

for each solution we found. In order to have a measure of
the characteristic size of Skyrmions we also introduce the
root mean square (rms) radius defined by

ffiffiffiffiffiffiffiffi
hr2i

q
≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q

Z
d3x r2Q

s
: ð27Þ

Note that using the virial identity we can also estimate
the accuracy of the rational map approximation (15) for
which

E2 ¼
1

3π

Z
∞

0

drðr2f02 þ 2Qsin2fÞ;

E4 ¼
1

3π

Z
∞

0

dr
�
2Qf02sin2f þ I

sin4f
r2

�
;

E0 ¼
1

3π

Z
∞

0

dr r2VeffðfÞ: ð28Þ

We found that the virial constraint is satisfied with an
accuracy of order of 10−2 for all solutions considered in
this paper.
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The results presented here used cubic grids containing
1203 points and Dirichlet boundary conditions (10) are
imposed, i.e., we set U ¼ ð−1Þl1 at the edge of the lattice.
The spatial grid spacing is Δx ¼ 0.08, and consequently
the spacial grid size is R ¼ 9.52. Smaller grid spacing was
used to study specific domains of negative values of the
topological charge densities. For comparison we also
solved one-dimensional radial equation for the Q ¼ 1
spherically symmetric Skyrmion on the grid with spacing
Δx ¼ 0.005 and 4001 points, the errors in evaluation of the
topological degree are less than 0.1%.

A. False vacuum Skyrmions

First, we considered multisoliton solutions of the Skyrme
model with the false vacuum potential (5) we discussed
above. While the previous consideration of this system in
[47] was restricted to the rational map ansatz with the
approximation (20), even for the Skyrmions of very high
degrees, we perform full 3D numerical computations to
find corresponding global minima. Evidently, these con-
figurations do not possess spherical symmetry, the false
vacuum Skyrmions have an effective mass meff ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 −
m2

1

4

q
and the binding energy of these Skyrmions is

large. We found that the rational map approximation yields
a very good initial approximation both for the true vacuum
Skyrmions with the usual pion mass potential (3) and for
the false vacuum Skyrmions with the potential (5).
The distributions of the energy and topological charge

density of the false vacuum Skyrmions depend on the
effective potential (7) which depends both on m1 and m2

and defines the corresponding pressure and shear forces
inside the configuration. As an example, Figs. 2 and 3
display plots of the topological charge density on the
diagonal line through the center of theQ ¼ 4 configuration
and the profiles of scalar component ϕ0 for some set of
values of the parameters m1, m2. Such line corresponds to
the points where all Cartesian coordinates ðx1; x2; x3Þ are
equal, which can be easily parametrized by ζ ≡ signðx1Þr.
The results of our simulations are presented in Tables I–III
and Figs. 4 and 5.
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FIG. 2. The topological charge density Q plotted against ζ for the true vacuum Skyrmions at m1 ¼ 0, 0.5, m2 ¼ 0 and for the
corresponding false vacuum Skyrmions at m1 ¼ 0.5 and some set of values of m2.
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FIG. 3. The profile of the scalar component ϕ0 of the field of
Q ¼ 4 Skyrmion plotted against ζ for the true vacuum Skyrmions
at m1 ¼ 0, 0.5, m2 ¼ 0, and for the false vacuum Q ¼ 4 Sky-
rmions at m1 ¼ 0.5 and some set of values of m2.
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Figure 4 demonstrates that the energies of the Q ¼ 1–6
false vacuum Skyrmions increases approximately linearly
with Q, which is expected since the binding energy per
topological charge unit EB ≡ EQ¼1 − EQ=Q is about
5–10% of EQ¼1 for Q > 1 (see Tables I–III). However,
one can expect this pattern may change for Skyrmions of
higher degrees [18,27]. Dependency of the ratio E=Q of
these configurations on the effective mass meff is displayed
in Fig. 5. By analogy with the corresponding curves in the
model with the usual pion mass potential (3), it increases
with meff .

It is instructive to visualize the solutions of the model (4)
by displaying 3D isosurfaces of the topological charge
densities Q, see, e.g., [1]. However, variation of the mass
parameter significantly affects the characteristic size of
the field configuration. In our simulations, for each solution
we found numerically on a discretized 3D grid, we
introduce an α function, which is defined as a sum of
the edges of the elementary parallelepiped in the domain of
the lattice that contains an isosurface of the topological
density. Explicitly, α is a function of m1, m2, l, Q, and Q,
i.e., α ¼ αðQ;m1; m2; l;QÞ. Using this function, we can
scale an isosurface of the topological density plotted for
some value of the density Q, to make a visual correspon-
dence with a different plot for another value of Q. In other
words, we can define a “zoom factor” between the

TABLE I. False vacuum Skyrmions at m1 ¼ 0.5, m2 ¼ 0.5
with topological chargesQ ¼ 1–6: Numerically computed values
of the ratio E=Q, Derrick constraint (26), the rms radius (27) and
the values of the static energy E and the topological degree Q
(numerical) evaluated in full 3D numerical simulations. In
addition, the first row records the data for the spherically
symmetric Skyrmion Q ¼ 1� on 1D grid with 4001 points and
lattice spacing Δx ¼ 0.005.

Q E=Q D
ffiffiffiffiffiffiffiffi
hr2i

p
E Q (numerical)

1� 1.2716 −0.0016 0.9655 1.2716 1.0000
1 1.2761 0.0213 0.9510 1.2770 1.0007
2 1.2146 0.0155 1.3204 2.4308 2.0014
3 1.1761 0.0186 1.5510 3.5301 3.0015
4 1.1464 0.0219 1.7355 4.5885 4.0024
5 1.1426 0.0282 1.9343 5.7163 5.0028
6 1.1317 0.0322 2.0830 6.7939 6.0033

TABLE II. False vacuum Skyrmions, the same quantities as
those given above in Table I for m1 ¼ 0.5, m2 ¼ 2.5.

Q E=Q D
ffiffiffiffiffiffiffiffi
hr2i

p
E Q (numerical)

1� 1.6384 0.0001 0.6288 1.6384 1.0000
1 1.6381 −0.0025 0.6332 1.6406 1.0015
2 1.5591 −0.0025 0.8764 3.1228 2.0029
3 1.5075 −0.0020 1.0259 4.5277 3.0034
4 1.4650 −0.0022 1.1507 5.8679 4.0053
5 1.4588 −0.0021 1.2870 7.3031 5.0063
6 1.4425 −0.0021 1.3899 8.6658 6.0074
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FIG. 4. The values of energy E of the false vacuum Skyrmions,
presented in the Tables I–III, plotted against Q.
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FIG. 5. The values of the energy per topological charge E=Q of
the false vacuum Skyrmions, presented in the Tables I–III, plotted

against the effective mass meff ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 −
m2
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q
.

TABLE III. False vacuum Skyrmions, the same quantities as
those given above in Table I for m1 ¼ 0.5, m2 ¼ 10.

Q E=Q D
ffiffiffiffiffiffiffiffi
hr2i

p
E Q (numerical)

1� 2.6055 0.0000 0.3609 2.6055 1.0000
1 2.6047 −0.0022 0.3634 2.6086 1.0015
2 2.4920 −0.0020 0.5023 4.9907 2.0027
3 2.4233 −0.0017 0.5821 7.2791 3.0038
4 2.3601 −0.0018 0.6489 9.4520 4.0048
5 2.3528 −0.0015 0.7236 11.7784 5.0061
6 2.3293 −0.0015 0.7786 13.9929 6.0074
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corresponding isosurfaces of the topological charge den-
sities as, for example,

κðQ;m2;QÞ≡ 1 −
αðQ; 0.5; m2; 1;QÞ
αðQ; 0.5; 0; 0; 0.08Þ ; ð29Þ

where, as a reference point, we used the function
αðQ; 0.5; 0; 0; 0.08Þ, and it corresponds to the usual mas-
sive Skyrmions with m1 ¼ 0.5.
Figure 6 displays the corresponding rescaled isosurfaces of

the charge densities for the usual true vacuum massive
Skyrmions (blue figures, upper row) for m1 ¼ 0.5 and
m2 ¼ 0, and the false vacuumSkyrmions (red figures,middle
and bottom rows) for m1 ¼ 0.5 and m2 ¼ 10, respectively.
Clearly, geometrical shapes of the global minimizers in the
Skyrmemodelwith the truevacuumpotential (3) andwith the
false vacuum potential (5) are very similar.

V. REGIONS OF NEGATIVE TOPOLOGICAL
CHARGE DENSITY

A peculiar feature of the Skyrmions is that they allow for
existence of regions of negative topological charge density
[24,25]. It was argued that these regions are associated
with singularities of the nonholomorphic rational map,
this conjecture was supported by direct numerical simula-
tions for the tetrahedrally symmetric minimum-energy
Q ¼ 3 Skyrmion [25]. It was shown that the regions of

negative topological charge density of this configurations
represent a tiny dual tetrahedron at the center of the
configuration, with four small tubes smoothly joining it
up and further, passing though the faces of the tetrahedron of
positive topological density. It was pointed out that in the
model with the usual pion mass term (3), the tubes become
more pronounced [25]. It was also verified that Q ¼ 2 and
Q ¼ 4 Skyrmions do not support any regions of negative
baryon density [24–26].
Our aim now is to extend this study to the Skyrmions of

higher degrees Q ¼ 5, 6 also considering the model with
false vacuum potential (5). Since the regions of the negative
topological density are very tiny, we have to refine our
numerical algorithm to truly capture these domains. First,
we construct a Skyrmion solution on a lattice with 1203

points, with spacing Δx ∼ 0.08, and then we select some
particular rectangular region of the lattice. Second, we use
polynomial three-dimensional interpolation to multiply the
number of points inside and at the border of this small
sublattice, by typically factor of 4, reducing the lattice
spacing, correspondingly. The polynomial expansion of the
fields on the new sublattice is used to generate new input
data. Finally, we repeat the simulated annealing algorithm
inside the new lattice using the fixed boundary conditions.
We can repeat this procedure multiple times to investigate
very tiny structures, like the regions of the negative
topological densities inside the core of the Skyrmions.

FIG. 6. Three sets of charge density isosurfaces of the Skyrmions degrees Q ¼ 1 to Q ¼ 6, from left to right. The upper row displays
the true vacuum massive Skyrmions (blue figures) for m1 ¼ 0.5 and m2 ¼ 0 at Q ¼ 0.08. The second and the third rows displays false
vacuum Skyrmions (red figures) for m1 ¼ 0.5 and m2 ¼ 10 at Q ¼ 0.08 and Q ¼ 1.6, respectively, rescaled to be approximately the
same size. The factor κ is defined by (29).
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First, we revisit the Q ¼ 3 Skyrmion. Considering the
usual model with the pion mass potential (3), we find
numerically the dual tetrahedron of negative topological
density about the origin, the corners of the tetrahedron are
linked to the four tubes [25]. Consequent decrease of the
lattice spacing allows us to refine the shapes of these
regions, the values of the charge density presented in
Table IV are in reasonable agreement with results reported
in [25]. Figure 7 displays the isosurfaces of the topological
charge density of the Q ¼ 3 Skyrmions. Clearly, increase
of the resolution reveals a very fine structure of the domains
of negative charge density.
For the usual Skyrme model the value of the field is close

to the antivacuum, U → −1 at the center of the configu-
ration, and it is taking the vacuum value on the boundary.
For the model with the false vacuum potential (5) the
situation is inverse, see Fig. 3. However, the structure of the
domains of the negative charge density for the tehrahedral
Q ¼ 3 Skyrmions remains the same, see Fig. 7. Our
numerical results indicate that the presence of the these

regions do not destabilize the false vacuum Skyrmions for
all ranges of values of the effective mass.
It was pointed out, that the occurrence of the regions of

negative topological charge density is related with zeros of
the Wronskian (18) associated to the rational map [24,25].
More precisely, the zeros of the distribution of the topo-
logical charge density correspond to the folding of the
Skyrme field, which is a map between the spheres S3. It was
observed, however, that there is no regions of negative
charge density for the axially symmetric Q ¼ 2 Skyrmion
and for the Q ¼ 4 with cubic symmetry [24–26]. Our
numerical simulations confirm this result. It was also
pointed out [24] that the folding structure of the holomor-
phic rational map of the Q ¼ 5 Skyrmions may give rise to
the regions of negative charge density associated with zeros
of the Jacobian matrix of the Skyrme map, but this was
never observed in numerical calculations.
In order to check this hypothesis numerically, we

perform a detailed study of the global minimizers in the
sectors of topological degrees Q ¼ 5 and Q ¼ 6. A best
approximation to the D2d-symmetric Q ¼ 5 Skyrmion is
given by the holomorphic rational map (15)

uðzÞ ¼ zðz4 þ bz2 þ aÞ
az4 − bz2 þ 1

; ð30Þ

where a, b are two real parameters. The rational map is
minimized when a ¼ 3.07, b ¼ 3.94, it yields a polyhe-
dron constructed from four pentagons and four quadri-
laterals [57]. Since the Wronskian (18) associated with (30)
possesses eight roots, it follows that this map gives rise to
eight singular rays, which start at the origin. Our numerical
analysis of the minimum energy Q ¼ 5 Skyrmion in the

FIG. 7. Isosurfaces of the topological charge density for Q ¼ 3 Skyrmions. Upper row: usual massive Skyrme model potential
at m1 ¼ 0.5 and m2 ¼ 0. Bottom row: the model with the false vacuum potential (5) at m1 ¼ 0.5 and m2 ¼ 10. The lattice
spacing in the simulations for the plots (a)–(c) are Δx ¼ 0.08, 0.02, 0.005, and for the plots (d)–(e) are Δx ¼ 0.04, 0.01, 0.0025,
respectively.

TABLE IV. The effective mass meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ l m
2
1

4

q
, the mini-

mal (Q−) and the maximal (Qþ) values of the topological density
for the tetrachedral Q ¼ 3 Skyrmions (l ¼ 1) and false vacuum
Skyrmions ðl ¼ −1Þ.
Type m1 m2 meff Q− ð10−3Þ Qþ
Standard Q ¼ 3 Skyrmion 0.0 0.0 0.0000 −3.50 0.245
Massive Q ¼ 3 Skyrmion 0.5 0.0 0.2500 −3.65 0.255
False Q ¼ 3 Skyrmion 0.5 0.5 0.4330 −3.56 0.262
False Q ¼ 3 Skyrmion 0.5 2.5 2.4875 −6.99 0.790
False Q ¼ 3 Skyrmion 0.5 10.0 9.9969 −15.22 4.036
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model with pion mass potential (3) reveals four tiny regions
of negative topological density, see Fig. 8.
The polyhedral Q ¼ 6 Skyrmion can be constructed via

the D4d symmetric rational map [57]

uðzÞ ¼ z4 þ a
z2ðaz4 þ 1Þ ;

where the parameter of the map has to be taken as
a ¼ 0.16i to minimize the energy. This map gives rise
to ten singular rays, which start at the origin. The Q ¼ 6
configuration can be regarded as a bounded system of two
Skyrmions of charges Q ¼ 4 and a Q ¼ 2, see Figs. 9
and 10. Interestingly, we found eight small tubes of
negative charge density, both in the usual Skyrme model
and in the model with false vacuum potential (5).

FIG. 8. Isosurfaces of the topological charge density forQ ¼ 5 Skyrmions. Upper row: usual massive Skyrme model with the potential
(5) atm1 ¼ 0.5 andm2 ¼ 0. Bottom row: the model with the false vacuum potential (5) atm1 ¼ 0.5 andm2 ¼ 10. The lattice spacing in
the simulations for the plots (a)–(d) are Δx ¼ 0.08, 0.08, 0.02, 0.005, and for the plots (e)–(h) are Δx ¼ 0.04, 0.04, 0.01, 0.0025,
respectively. Clearly, we plot only one isosurface of negative topological charge density in each plot.

FIG. 9. Isosurfaces of the topological charge density forQ ¼ 6 Skyrmions in the usual massive Skyrme model with the potential (5) at
m1 ¼ 0.5 and m2 ¼ 0. The lattice spacing in the simulations for the plots from (a)–(g) are Δx ¼ 0.08, 0.08, 0.02, 0.02, 0.02, 0.005,
0.005, respectively.
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VI. CONCLUSION

Our motivation for this study is twofold. On the one
hand, we want to extend the analysis of the paper [47], to
the global minimizers of the Skyrme model with the false
vacuum potential (5). On the other hand, we studied the
structure of the small domains of the negative topological
charge densities for Skyrmions of degrees higher than
three. We have performed fully three-dimensional numeri-
cal relaxations of Skyrmions with topological charges from
Q ¼ 1 to Q ¼ 6 both in the Skyrme model with the
conventional pion mass term included and in the model
with generalized potential (5), which admits false vacuum
Skyrmions. The rational map parametrization was used to
generate initial data in both models. Our calculations show
that, as the effective mass meff remains positive, the shapes
of the soliton solutions in both models are qualitative
similar, the effective mass is playing the role of the pion
mass parameter. The false vacuum Skyrmions are meta-
stable, they contain a domain of true vacuum inside the
core. These configurations are classically stable; however,
they can decay via quantum tunneling. On the other hand,
the presence of the domains of true vacuum may induce
instability of the colliding false vacuum Skyrmions, as
compared with scattering of the usual Skyrmions [58].
Similar effect may be observed for classically isorotating
Skyrmions [59] and baby Skyrmions [60,61] in the model
with a false vacuum potential.

We also explored numerically very small regions of
negative topological density which appear for the
Skyrmions of degrees Q ¼ 3, 5, 6 both in the model with
pion mass potential and for the false vacuum Skyrmions.
We confirm that these regions are associated with singu-
larities in the rational map ansatz. Our numerical full field
simulations verified previous conclusions [24–26] that the
regions of negative charge density do not appear for the
Skyrmions of degrees Q ¼ 2 and Q ¼ 4.
Obviously it is important to study the quantum decay rate

of the metastable false vacuum Skyrmions. This task may
be performed beyond the thin wall approximation by
applying advanced numerical methods, see, e.g., [62].
We believe it will be interesting to study if the regions
of negative charge density may catalyze the vacuum decay.
Extending this analysis to the Skyrmions of higher degrees
also can be an interesting problem. Another direction for
future study is to consider the extended Skyrme model with
sixtic terms [31,63,64] and a false vacuum potential.
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FIG. 10. The isosurfaces of topological charge density of the Q ¼ 6 Skyrmions in the model with the false vacuum potential (5) at
m1 ¼ 0.5 andm2 ¼ 10. The lattice spacing in the simulations for the figures from (a)–(g) are Δx ¼ 0.04, 0.04, 0.01, 0.01, 0.01, 0.0025,
0.005, respectively.
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