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We reconsider the Lee-Wick (LW)models and compare their properties to the properties of themodels that
contain purely virtual particles.We argue against the LWpremise that unstable particles can be removed from
the sets of incoming and outgoing states in scattering processes. The removal leads to a non-Hermitian
classical limit, besides clashing with the observation of the muon. If, on the other hand, all the states are
included, the LW models have a Hamiltonian unbounded from below or negative norms. Purely virtual
particles, on the contrary, lead to a Hermitian classical limit and are absent from the sets of incoming and
outgoing states without implications on the observation of long-lived unstable particles. We give a
vademecum to summarize the properties of most options to treat abnormal particles. We study a method to
remove the LW ghosts only partially, by saving the physical particles they contain. Specifically, we replace a
LW ghost with a certain superposition of a purely virtual particle and an ordinary particle, and drop only the
former from the sets of the external states. The trick can be used tomake the Pauli-Villars fields consistent and
observable, without sending their masses to infinity, or to build a finite QED, by tweaking the original Lee-
Wick construction. However, it has issues with general covariance, so it cannot be applied as is to quantum
gravity, where a manifestly covariant decomposition requires the introduction of a massive spin-2 multiplet.
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I. INTRODUCTION

In the late 1960s Lee and Wick proposed a way to give
sense to models that contain fields with negative kinetic
terms [1,2]. A key point of their idea is that “abnormal”
particles do not belong to the spectrum of asymptotic states,
as long as they are unstable. In their approach, it is
sufficient that all the stable particle states have positive
square lengths. The purpose of Lee and Wick was to
provide a unitary S matrix in the subspace of stable states,
by extending the previous results on unitarity [3–7]. In this
paper, we reconsider the Lee-Wick (LW) models, concen-
trating on the treatment of unstable particles.
The muons are unstable elementary particles that can be

observed directly before they decay. Tauon traces can also
be observed in special situations. Composite long-lived
particles are more common, but their relatively long
lifetimes can be due to their compositeness. The other
elementary particles are stable, short-lived, or confined.

Moreover, the resonances can in principle be boosted
enough and detected as particles before they decay. In
light of these remarks, it does not seem so justified to
remove a particle from the set of asymptotic states just
because it is unstable.
In the context of the Lee-Wick models, it is actually

sufficient to remove the abnormal particles from the sets of
the external states and keep the physical particles as usual.
The advantage of this modified removal option is that it
does not clash with the observation of the muon.
Nevertheless, it leads to an unacceptable classical limit.
The classical limit is given by the tree diagrams that have

physical particles in the external legs and no physical
particles in the internal legs. We can also define a “reduced”
action, which is the effective action obtained by integrating
out the abnormal particles. It collects all the diagrams that
have physical particles in the external legs and no physical
particles in the internal legs, and includes the loops of
abnormal particles as effective vertices. If we want to define
a fundamental theory by removing particles, the reduced
action should be seen as the “classical” action of that
fundamental theory.
The abnormal particles propagating in the internal legs

generate nonlocal, acausal, non-Hermitian effective self-
interactions among the physical particles. Violations of
locality and causality in the classical action are not
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excluded by the requirements of internal consistency, as
long as they are microscopic and compatible with data,
which occurs (for example) if the masses of the abnormal
particles are sufficiently large. On the other hand, a
classical Lagrangian with a nonvanishing imaginary part
is troubling. The simplest explanation for such an instance
is that something has been provisionally integrated out,
which is precisely what is going on in the case we are
considering. If we reinstate the missing entity (which is the
Lee-Wick abnormal particle) as an independent degree of
freedom, we remove the imaginary part of the classical
Lagrangian, but go back to the initial problem of negative
kinetic terms (free Hamiltonian unbounded from below).
This either-or situation is the trouble with the Lee-Wick
models.
For most purposes, the muon can be treated as a stable

particle, since its width is very small (around 10−19 GeV). If
we resum the muon self-energies into the dressed propaga-
tor, as is commonly done for resonances, we find that the
theory predicts no muon observation [8]. The reason is that
we cannot observe an unstable particle with infinite resolv-
ing power on the energy: such an instance would violate the
energy-time uncertainty principle. Once the energy reso-
lutionΔE of the experimental setup is inserted explicitly, the
problem disappears [8]. We can argue in a similar way for
every resonance, if we imagine to boost it enough to make it
detectable as a particle. Indeed, the resonances and themuon
just differ by the magnitudes of their widths. We conclude
that in a sound theoretical framework unstable particles
should be included among the external states.
In this paper, we compare the Lee-Wick idea to several

other options, including physical particles, ordinary ghosts,
and purely virtual particles. We also consider the effects of
the removal of those from the sets of incoming and
outgoing states. By “ghost” we mean a degree of freedom
that appears with a negative kinetic term in the classical
Lagrangian.
Purely virtual particles, or fake particles, or “fakeons,”

are based on new diagrammatics [9]. They allow us to
formulate a consistent theory of quantum gravity [10],
which is experimentally testable due to its sharp prediction
of the tensor-to-scalar ratio in inflationary cosmology [11].
They can also be used to search for new physics beyond the
standard model, by evading common constraints in collider
phenomenology [12] and offering possible resolutions of
discrepancies with data [13]. The only requirement is that
fakeons are massive and nontachyonic. Their diagram-
matics can be implemented in software like FeynCalc,
FormCalc, LoopTools, and PACKAGE-X [14].
Unlike the LW abnormal particles (which we call “LW

ghosts” from now on), fakeons lead to a Hermitian classical
limit and a Hermitian reduced action. Their absence from the
sets of incoming and outgoing states has no implication on
the observation of long-lived unstable particles. The reason is
that the fakeons are purely virtual. Instead, the LWghosts are

not purely virtual, which is why they leave an imaginary
remnant in the classical limit, once they are removed.
After reconsidering the Lee-Wick construction, we for-

mulate a procedure that is as close as possible to the idea of
removing the LW ghost from the sets of external states only
partially and save the physical degree of freedom it contains.
Specifically, we switch to a theory of particles and fakeons
by replacing the LW ghost with a certain superposition of a
fakeon and an observable particle, and remove only the
former. The trick works with neutral matter fields and can be
used to make the Pauli-Villars fields consistent, and observ-
able, without sending their masses to infinity. It also allows
us to build a finiteQED, by overcoming the difficulties of the
original Lee-Wick construction. In quantum gravity, the
method could lead to an extra (observable) massive spin-2
particle. However, a number of unresolved issues with
general covariance (and gauge invariance) shows that it
cannot be applied to gravity as is.A covariant decomposition
can be achieved by adding amassive spin-2multiplet (which
can be done in a unitary and renormalizable way as
explained in [15]). However, this procedure just gives the
theory of [10] coupled to matter in a peculiar way.
We do not cover all the proposals available in the

literature about ghosts. Among the missing ones, we
mention the PT (parity and time reversal) symmetric
approach of Berends and Manheim [16].
The removal of degrees of freedom from the incoming

and outgoing states is consistent only if it is compatible
with unitarity, in which case we call it “projection” and call
the action “projected action.” The fakeon projection is
compatible with unitarity order by order (and diagram by
diagram) in the perturbative expansion (see for example
[9]). The removal of unstable particles (which we call
Veltman’s projection, see below) is compatible with uni-
tarity in a semiperturbative approach, because the self-
energies of unstable particles must be resummed into their
dressed propagators. After this diagrammatic reorganiza-
tion, it is also valid diagram by diagram.
Since the fakeon approach is perturbative, we require the

Hamiltonian to be bounded from below in the free-field
limit (in flat space), both classically and at the quantum
level. Once a particle is projected away, it is no longer
relevant to the issue, because it disappears from the free-
field limit. We have no way to say whether the Hamiltonian
is bounded or not in the complete theory. In simple models,
the nonlocalities surviving the classical limit are diluted by
the fakeon projection into an asymptotic series of pertur-
bative corrections [17]. In other cases, they affect only high
orders, where they compete with the quantum corrections,
which are nonlocal anyway. For example, in [18] it is
shown that, in primordial cosmology, the fakeon projection
leaves the theory practically local for various orders of the
perturbative expansion.
The paper is organized as follows. In Sec. II we discuss

Veltman’s projection and the issue of unitarity with
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unstable particles. In Sec. III we compare various options
for the quantization of fields with negative kinetic terms. In
Sec. IV we briefly recall how such fields are treated inside
the loop diagrams. In Sec. V we present the trick that makes
the Pauli-Villars physical by means of fakeons. In Sec. VI
we apply it to build a finite QED. In Sec. VII we discuss the
obstacles we meet when we apply the same method to
quantum gravity. Section VIII contains the conclusions.

II. VELTMAN’S PROJECTION

A result due to Veltman states that the S matrix
constructed with the dressed propagators and connecting
stable particle states only is unitary [4]. Because of this,
unstable particles can be consistently dropped from the sets
of incoming and outgoing states of the scattering processes.
We call this removal Veltman’s projection. The S matrix
obtained from it is called reduced (or projected) S matrix
and denoted by Sr.
Veltman’s result S†rSr ¼ 1 follows from the common

proofs of perturbative unitarity by means of cut diagrams
[3–7]. When an unstable particle is projected away by
means of Veltman’s projection, it generates effective non-
local, non-Hermitian interactions among the other particles
[see, for example, formula (3.13) below]. In general, non-
Hermitian interactions are problematic for unitarity, but in
the case of Veltman’s projection they are precisely what
makes the unitarity equation S†rSr ¼ 1 hold true. At the end
of this section, we briefly recall how this happens and also
show that Veltman’s projection preserves CPT invariance.
Veltman considered stable and unstable particles. To

apply Veltman’s projection to ghosts, we should first ensure
that Veltman’s results extend to them. There are various
options to treat ghosts at the quantum level.
The simplest possibility, which we call iϵ ghost, is the

standard quantization by means of the Feynman iϵ pre-
scription, which means that we choose the free propagator

−
i

p2 −M2 þ iϵ
ð2:1Þ

and integrate on Minkowski spacetime as usual. In Ref. [8]
it has been shown that the dressed propagators of the iϵ
ghosts do not make sense close to the peaks, because the
resummation of the perturbative expansion does not exist
there. Having no knowledge about the nonperturbative
sector of the theory, Veltman’s projection cannot be applied
to the iϵ ghosts. This is not a big deal, since the iϵ ghosts
violate unitarity.
Other options to quantize ghosts have different proper-

ties. The second possibility, which we call −iϵ ghost, is to
choose the free propagator

−
i

p2 −M2 − iϵ
: ð2:2Þ

Then we cannot integrate on Minkowski spacetime,
because if we do so we run into the consistency problems
described in Ref. [19], which means nonlocal divergent
parts, exchanges of roles between the usual thresholds and
the pseudothresholds, instabilities, violations of unitarity,
etc. Lee and Wick proposed a different set of rules for
handling (2.2) in Feynman diagrams, which must be
combined with the Cutkosky et al. (CLOP) prescription
[20] and possibly other rules, to solve the ambiguities
mentioned in [20] (see also [21]). For the purposes of this
paper, we can just assume that a complete set of rules does
exist. At the end, the −iϵ ghost turns into a new type of
object, which we call a LW ghost.
More importantly, the idea of Lee and Wick is to arrange

the model so that the interactions make the ghost unstable,
to apply Veltman’s projection to it. To this purpose, we note
that the dressed propagator makes sense, even close to the
peak, where it reads1

−
iZ

p2 −M2
gh − iðϵþMghΓÞ

: ð2:3Þ

Here, Γ is a positive width, M2
gh ¼ M2 þ ΔM2 is the

“physical” mass squared and Z is the normalization factor.
The ϵ prescription is there to show that the corrections
proportional to Γ have the same sign. According to the
arguments of [8], it is correct to extend the resummation of
the self-energies from the convergence region to the peak
region by means of analyticity.
To summarize, Lee and Wick get rid of ghosts by turning

them into LW ghosts and arranging the model so that they
are unstable or become so dynamically, to build a unitary
reduced S matrix Sr à la Veltman.
Although Veltman’s result is correct, it does not suggest

that we should drop unstable particles from the physical
spectrum.2 It simply proves that if we drop them, we get a
unitary reduced scattering matrix Sr. The problem with Sr
is that it turns a blind eye to the experimental observation of
the muon.
Normally, the incoming and outgoing states of a scatter-

ing process are assumed to be at t ¼ −∞ and t ¼ þ∞,
respectively. This is a nonrealistic simplification, useful to
derive general formulas. A more realistic assumption is
Δ̄t ≪ Δt < ∞, where Δt denotes the time separation
between the incoming and outgoing states and Δ̄t is the
duration of the interactions. This leaves room for including
long-lived unstable particles, by assuming thatΔt is smaller

1Formula (2.3) is correct as is for legs that disconnect the
diagram once they are broken. Inside loops we must use the rules
mentioned previously.

2Actually, Veltman seems to suggest precisely that in [4], by
saying that it is an undesirable feature of perturbation theory to
have unstable particles among the asymptotic states. Our posi-
tion, instead, is that a theory of scattering where processes end at
the end of time is not satisfactory.
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than the lifetimes of some of them. Once the scattering
process ends and the outgoing particles fly away, there is no
reason why we should wait till they decay, if we can catch
them on the fly.
To establish an unambiguous terminology, we talk about

“physical” spectra when we include everything we can
physically observe, in practice or in principle. Clearly, the
muon is included, among the other unstable particles. With
the word “asymptotic,” we mean the same, i.e., Δt ≫ Δ̄t.
Thus, the muon is also included in the set of “asymptotic
states” and is part of the asymptotic spectra. Incoming and
outgoing states that are literally taken at t ¼ −∞ and
t ¼ þ∞ will be called “strictly asymptotic states.”.
Given that we never see resonances like the Z boson, one

could ask why we should include them in the physical
spectra. The reason is that a fundamental theory should be
able to cover all the situations, including the ones that are
currently out of reach experimentally.
Although Veltman’s projection is not acceptable for

physical particles, because it forces us to drop the muon
from the physical spectrum of the standard model, we could
accept a restricted form of it, by applying it to the LW
ghosts only. The restricted option is compatible with the
observations of long-lived unstable particles. Nevertheless,
Veltman’s projection has another problem, which concerns
the classical limit.
Every unstable particle becomes stable in the classical

limit, by definition. If we ignore unstable particles as
asymptotic states at the quantum level, the classical limit
cannot resuscitate them. This means that the reduced S
matrix Sr does not correspond to an acceptable classical
Lagrangian, typically because the latter turns out to be non-
Hermitian.
Thus, even if there existed no muon in nature, or we

applied Veltman’s projection to the LW ghosts only, the
model would still not be good enough to define a
fundamental quantum field theory, although it could be
acceptable in the realm of effective field theories.
The theories with fakeons do not have these problems,

because they are defined in a radically different way. In
particular, fakeons are purely virtual particles, so they do
not need to be unstable and decay to be removed from the
physical spectrum, which they never enter in the first place.
There is no implication on the observation of unstable
long-lived particles like the muon. The classical limit is
described by a Hermitian Lagrangian, which collects, after
the projection, anti-Hermitian effective vertices. Moreover,
the diagrammatic analysis of [9] shows that all the effective
vertices given by the 1PI diagrams with no fakeons in the
external legs and no physical particles in the internal legs
are anti-Hermitian, even if they close loops. Thus, the
reduced action is Hermitian and the CPT theorem holds
after the projection.
The reason why the LW ghosts leave an imaginary

remnant in the classical limit is that they are not purely

virtual. What Lee and Wick suggest, i.e., assume that they
are unstable and drop them from the physical spectrum,
does not remove them completely.

A. Unitarity, Hermiticity, and CPT invariance

Normally, the unitarity equation S†S ¼ 1 is proved by
means of “cutting equations,” which are identities

Gþ Ḡþ
X
c

Gc ¼ 0; ð2:4Þ

among cut and uncut diagrams. Specifically, one rewrites
S†S ¼ 1 as the optical theorem iT − iT† þ T†T ¼ 0, where
S ¼ 1þ iT. Then,G is the uncut diagram and stands for iT,
Ḡ is its complex conjugate and stands for −iT†, while Gc
are the cut diagrams, which are obtained by cutting internal
lines, and stand for T†T. The cut propagators encode the
on-shell content of the full propagators.
Let us see how the unitarity equation S†rSr ¼ 1 works

after Veltman’s projection. We can build Sr in two ways.
The straightforward method is to quantize the classical,
unprojected Lagrangian L as usual, build the (unprojected)
S matrix from it and perform Veltman’s projection at the
very end. The second method is to work out the projected
Lagrangian LV right away and then derive Sr from LV.
Then, however, LV contains effective non-Hermitian inter-
actions due to the removal of the unstable particles. We
show that these effective interactions make unitarity work
as desired.
The projection L → LV is obtained in two steps. First,

one builds the effective vertices, which are given by the
one-particle irreducible (1PI) diagrams (generated by L)
that have stable particles in the external legs and no stable
particles in the internal legs. Second, the self-energies of
the unstable particles are resummed into their dressed
propagators. In the end, LV is made of “dressed effective
vertices.” In some sense, it is semi-non-perturbative. The
point is that its vertices are not Hermitian, in general. So,
how can the S matrix Sr obtained from LV be unitary?
In the algebraic approach of Ref. [9], it is simple to prove

that a non-Hermitian classical Lagrangian LV leads to a
generalized version of the cutting equations of the form

Gþ Ḡþ
X
c

Gc þ
X
c0
Gc0 ¼ 0; ð2:5Þ

where G and Ḡ are as above, Gc are the cut diagrams
obtained by cutting internal (stable-particle) lines, and Gc0

are additional cut diagrams, obtained by cutting the non-
Hermitian vertices as well. Normally, the extra terms Gc0

quantify the violations of unitarity, because they have no
interpretation in the unitary equation S†S ¼ 1. However, in
the case of Veltman’s projection, they are precisely what is
needed to interpret the identities (2.5) as the correct
diagrammatic versions of S†rSr ¼ 1. The reason is that
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the cut vertices of Gc0 describe the decays of the unstable
particles that have been projected away, which are not
included in the diagrams Gc. More details and the dia-
grammatic analysis of the extra terms can be found in
Veltman’s paper [4].
Another issue is the CPT theorem after Veltman’s

projection. If the unprojected theory is CPT invariant,
the projected theory described by Sr should be CPT
invariant as well. The trouble is, again, that LV is not
Hermitian. If we want to have CPT invariance after the
projection, we must treat the effective vertices of LV in a
particular way under that symmetry.
Specifically, let SðL; ϵÞ denote the S matrix built from a

local Lagrangian L with Feynman’s iϵ prescription. Then,
Sð−L†;−ϵÞ is the conjugate matrix S†. CPT invariance is
the statement that SðL†; ϵÞ ¼ S, or Sð−L;−ϵÞ ¼ S†, which
is true if L ¼ L†. If we take LV as the Lagrangian, we have
SðLV; ϵÞ ¼ Sr, where ϵ refers to the stable particles only.
The point is that LV also depends on the Feynman
prescription (for the unstable particles projected away).
So, Sð−LVðϵÞ;−ϵÞ ≠ S†r . Nevertheless, we have the iden-
tities ðLVðϵÞÞ† ¼ LVð−ϵÞ and Sð−LVð−ϵÞ;−ϵÞ ¼ S†r ,
which can be interpreted as the CPT theorem for Sr.

III. BASIC QUANTIZATION OPTIONS

In this section we compare the quantizations of physical
particles, ghosts, and purely virtual particles and emphasize
their basic properties, also in relation with Veltman’s
projection, when it applies. We concentrate on the tree
diagrams, the classical limit and the dressed propagators.
In the next section we consider the loop diagrams.
We start from the Lagrangian

Lcl ¼
1

2
ð∂μφÞð∂μφÞ −

m2

2
φ2 þ Lϕ − gφ2ϕ − Λϕ ð3:1Þ

in four spacetime dimensions, which couples a physical
particle φ to some other type of particle ϕ, to be defined
below, with free Lagrangian

Lϕ ¼ ρ

2
½ð∂μϕÞð∂μϕÞ −M2ϕ2�: ð3:2Þ

For the time being, we assume M > 2m and ρ ¼ �1. The
last term of (3.1) can be removed by translating ϕ and
redefining the other parameters, so we ignore it from now
on. The theory is superrenormalizable and the particle ϕ
gets a nonvanishing width.
The quantization of φ proceeds as usual, so we concen-

trate on ϕ, starting from the free-field limit. The presence of
φ lets us study the effects of interactions.
The ϕ momentum and its commutation relations read

πϕ ¼ ρ∂0ϕ; ½πϕðt;xÞ;ϕðt; yÞ� ¼ −iδð3Þðx − yÞ: ð3:3Þ

The free classical Hamiltonian is

Hϕ ¼ ρ

2

Z
d3x½ð∂0ϕÞ2 þ ð▽ϕÞ2 þM2ϕ2�: ð3:4Þ

To study more possibilities at once, we expand the field
operator ϕ̂ as

ϕ̂ðt;xÞ ¼
Z

d3k
ð2πÞ32ω ½ð−1Þηake−iσkx þ ð−1Þη0a†keiσkx�;

ð3:5Þ

in terms of creation and annihilation operators a†k and ak,
where kx ¼ ωt − k · x and ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
. The parame-

ters η and η0 can have values 0 or 1, while σ can have values
�1. To have agreement with (3.3), the commutation
relations of a†k and ak must be

½ak; a†k0 � ¼ 2ρσð−1Þηþη0ωð2πÞ3δð3Þðk − k0Þ;
½a†k; a†k0 � ¼ ½ak; ak0 � ¼ 0: ð3:6Þ

We define the vacuum j0i to be annihilated by ak and the
states to be created by a†k:

akj0i¼0;

jni¼ 1ffiffiffiffiffiffiffiffi
n!A

p
Z �Yn

i¼1

d3ki

ð2πÞ32ωi

�
fðk1;…;knÞa†k1

���a†kn
j0i;

ð3:7Þ

where

A ¼
Z �Yn

i¼1

d3ki

ð2πÞ32ωi

�
jfðk1;…;knÞj2:

From (3.4) we derive the Hamiltonian operator

Ĥϕ ¼ ρ

2
ð−1Þηþη0

Z
d3k
ð2πÞ3 a

†
kak ð3:8Þ

(neglecting an infinite additive constant). From (3.6) we
find the norms

hnjni ¼ ρnσnð−1Þnðηþη0Þ: ð3:9Þ

The Ĥϕ eigenvalues are

Ĥϕjni ¼ hnjni; hn ¼ σ
Xn
i¼1

ω̄i; ð3:10Þ

forfðk1;…;knÞ ¼
Q

n
i¼1 δ

ð3Þðki − k̄iÞ (A being replaced by
an arbitrary finite constant), where k̄i are givenmomenta and
ω̄i are their frequencies.
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The free (T ordered) ϕ̂ propagator is

h0jTϕ̂ðxÞϕ̂ðyÞj0i ¼ ρσ

Z
d3k

ð2πÞ32ω ½θðx0 − y0Þe−iσkðx−yÞ

þ θðy0 − x0Þe−iσkðy−xÞ�

¼
Z

d4p
ð2πÞ4

iρe−ipðx−yÞ

p2 −M2 þ iσϵ
: ð3:11Þ

The physical particles have ρ ¼ σ ¼ 1 and η ¼ η0 ¼ 0.
Then the HamiltoniansHϕ and Ĥϕ are bounded from below
and the norms are positive.
Now we consider the options with ρ ¼ −1.

A. iϵ ghost

The first possibility is to perform the ϕ quantization as
usual, which means choose (3.5) with σ ¼ 1, η ¼ η0 ¼ 0.
Then, formula (3.9) shows that there are states with positive
norms and states with negative norms. From (3.10),
we see that the Hamiltonian Ĥϕ is bounded from below.
Formula (3.11) shows that the propagator is equal to (2.1),
that is to say, the opposite of a physical particle. In particular,
the iϵ prescription is the usual one (M2 → M2 − iϵ). This is
just the ordinary ghost, which has positive energy, but
indefinite metric. We call it “iϵ ghost.”
The iϵ ghosts violate unitarity. Nevertheless, they satisfy

a pseudounitary equation (see [6,7]), which holds pertur-
batively diagram by diagram.
Since we are assumingM > 2m, the interaction equips ϕ

with a positive width Γϕ. The ϕ dressed propagator
formally reads

−
iZ

p2 −M2
gh þ iðϵ −MghΓϕÞ

ð3:12Þ

around the peak. The minus sign between ϵ and MghΓϕ

signals that the resummation cannot be trusted close to the
peak, as shown in [8], so we have a “peak uncertainty”. We
cannot apply Veltman’s projection, because we do not
know what dressed propagator we should use inside bigger
diagrams.
On the other hand, we cannot remove the ghosts from the

external states order by order in the perturbative expansion,
since this kind of removal is not a projection, because it is
not compatible with the pseudounitarity equation. Without
projections, the classical limit is just (3.1). Formula (3.4)
shows that the free ϕ classical Hamiltonian Hϕ is not
bounded from below, although, as we have seen above, the
quantum one Ĥϕ is.
A way to overcome these obstacles is to define the

dressed propagator of a ghost as the one of formula (3.12) at
ϵ ¼ 0 and start over from there. Then we obtain the same
options as with the −iϵ ghost discussed below.

B. − iϵ ghost

Now we define ϕ in (3.5) with σ ¼ −1 and η ¼ η0 ¼ 0.
These choices give positive norms in (3.9), but formula (3.10)
shows that the quantum Hamiltonian Ĥϕ in not bounded
from below. The propagator (3.11) becomes (2.2) and
acquires an unusual prescription (M2 → M2 þ iϵ).
This option is not equivalent to the previous one, because

the roles of the annihilation and creation operators are
interchanged inside ϕ, but not in the definitions (3.7) of
vacuum state and occupied states.
The dressed propagator can be resummed straightfor-

wardly, including the region around the peak, where we
find (2.3). Since there is no peak uncertainty, Veltman’s
projection can be applied. Once we remove ϕ from the set
of asymptotic states, because of its finite lifetime, ϕ is no
longer a degree of freedom in the classical limit. This
means that it is “frozen,” integrated out by means of its own
propagator (calculated at ℏ → 0).
The classical limit is obtained by collecting the tree

diagrams. Veltman’s projection reduces the set of such
diagrams to those that do not have ϕ external legs. The ϕ
internal legs build nonlocal interactions among the physical
fields φ. At the end, the true classical Lagrangian LV

cl is the
projected version of (3.1), obtained by integrating out ϕ
with the ghost propagator (2.2), which is the classical limit
of (2.3). The result is

LV
cl ¼

1

2
ð∂μφÞð∂μφÞ −

m2

2
φ2

−
g2

2
φ2

1

□þM2 þ iϵ
φ2: ð3:13Þ

As predicted, it contains a micro nonlocal φ self-inter-
action, which is also micro acausal. IfM is large enough to
have agreement with the experimental data available today,
micro nonlocalities and micro acausalities are not prob-
lematic. What makes LV

cl not acceptable is that it is not
Hermitian. The imaginary part of the projected classical
action is

Z
d4x Im½LV

cl� ¼
πg2

2

Z
d4xφ2δð−□ −M2Þφ2

¼ πg2

2

Z
d4p
ð2πÞ4 φ̃

2ð−pÞδðp2 −M2Þφ̃2ðpÞ;

where φ̃2 is the Fourier transform of φ2.
If we choose not to advocate Veltman’s projection, the

classical Lagrangian we obtain is (3.1): the denominator
□þM2 þ iϵ is moved to the numerator, sandwiched in
between two fields ϕ, so the contribution of −iϵ becomes
negligible. In that case, ϕ is not integrated out, but an
independent degree of freedom, with its own field
equations and boundary conditions. The classical limit is
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Hermitian, but still unacceptable, in the realm of perturba-
tion theory, because the classical free Hamiltonian Hϕ is
not bounded from below.
The Lee-Wick ghosts are −iϵ ghosts equipped with

appropriate rules to treat them inside the loop diagrams
(see Sec. IV).

C. Non-Hermitian ghost

Wemention a third option, because it is the one preferred
by Lee and Wick in their papers, although it is equivalent to
the −iϵ ghost just described. We choose ρ ¼ 1 and expand
ϕ with σ ¼ 1, η ¼ 0, η0 ¼ 1. So doing, we understand that
ϕ is anti-Hermitian and the coupling g is purely imaginary.
The metric is indefinite and the Hamiltonians Hϕ and Ĥϕ

are bounded from below. The dressed propagator is fine, so
there is no peak uncertainty and Veltman’s projection can
be applied. The − iϵ ghost can be obtained from this type of
ghost, which we call non-Hermitian (nH) ghost, by turning
ϕ into iϕ and g into −ig.
There is also a variant with ρ ¼ 1, σ ¼ −1, η ¼ 0,

η0 ¼ 1. Then, the norms are positive, but Ĥϕ is not bounded
from below. The dressed propagator cannot be resummed
in the peak region, so there is a peak uncertainty and
Veltman’s projection cannot be used.

D. Fakeon

In the case of purely virtual particles, we can take
ρ ¼ �1. Doubling the set of creation and annihilation
operators, we write

ϕ̂ðt;xÞ ¼
Z

d3k
ð2πÞ32ω

�
ak þ b†kffiffiffi

2
p e−ikx þ a†k þ bkffiffiffi

2
p eikx

�

and assume

½ak; a†k0 � ¼ 2ρωð2πÞ3δð3Þðk − k0Þ;
½bk; b†k0 � ¼ −2ρωð2πÞ3δð3Þðk − k0Þ;

all the other commutators being identically zero.

Inside the loop diagrams, the fakeon projection amounts
to integrate ϕ out with the appropriate diagrammatic rules
(see [9] for explicit formulas). In the classical limit, we
must integrate it out with the propagator

P
iρ

p2 −M2
; ð3:14Þ

which coincides with the Fourier transform of
h0jTϕ̂ðxÞϕ̂ðyÞj0i, where P is the Cauchy principal value.
The Lagrangian describing the classical limit, which reads

Lf
cl ¼

1

2
ð∂μφÞð∂μφÞ −

m2

2
φ2

þ ρ
g2

2
φ2P

�
1

□þM2

�
φ2; ð3:15Þ

is the sum of a standard kinetic term plus a micro nonlocal
Hermitian self-interaction.

E. Summary

We summarize the various options considered so far and
their main properties in Table I, where “l” stands for local,
“nl” means nonlocal, “þV” and “−V” mean with and
without Veltman’s projection, respectively, and “f�”
denotes the fakeons with ρ ¼ �1. Finally, “phys. part.”
means physical particle, “uncert.” means uncertainty, “Re”
means Hermitian and “Im” means non-Hermitian.

IV. LOOPS AND UNSTABLE PARTICLES

We briefly recall how the various options listed in the
previous section are treated inside the loop diagrams,
referring to the literature for more details.
The propagator of an iϵ ghost coincides with the one of a

physical particle, apart from its overall sign, so its dia-
grammatics is straightforward. The propagator of a −iϵ
ghost, on the other hand, is defined by the opposite
prescription. If we integrate the loop diagrams on real
energies and real momenta, the −iϵ prescription cannot

TABLE I. Main properties of the options for quantization. The symbol “×” means “not applicable”.

Phys. Part. iϵ gh −iϵ ghþ V −iϵ gh − V nHþ V nH − V nHσ¼−1 f�

ρ 1 −1 −1 −1 1 1 1 �1
σ 1 1 −1 −1 1 1 −1 �1
η 0 0 0 0 0 0 0 0
η0 0 0 0 0 1 1 1 0
ϕ̂† ϕ̂ ϕ̂ ϕ̂ ϕ̂ −ϕ̂ −ϕ̂ −ϕ̂ ϕ̂
Norms þ � × þ × � þ ×
Hϕ ≥0 ≤ 0 × ≤ 0 × ≥0 ≥0 ×
Ĥϕ ≥0 ≥0 × ≤ 0 × ≥0 ≤0 ×

Lcl
l l nl l nl l l nl
Re Re Im Re Im Re Re Re

Peak Uncert. no ✓ no no no no ✓ ✓
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coexist with the usual iϵ one [19], because it switches the
roles of the thresholds with those of the pseudothresholds,
causing instabilities, violations of unitarity, as well as
violations of the locality and Hermiticity of counterterms.
To avoid these types of problems, it is necessary to
formulate better integration prescriptions or give alternative
diagrammatic rules.
The LW ghost is obtained from the −iϵ ghost by

adopting the Lee-Wick integration prescription on the loop
energies [1], combined with the CLOP prescription [20]
and any other rules that might be necessary for the internal
consistency. Here, we do not need to prove that they exist,
so we just assume that they do. The LW ghosts must be
unstable, dynamically or not, to apply Veltman’s projection
to them. The procedure is semiperturbative, because it
requires to use the dressed propagators inside diagrams and
reorganize the diagrammatic rules accordingly.
In themodel (3.1), it is enough to turn on thevertex−gφ2ϕ

and assume the inequalityM > 2m. Then, thedecayϕ → φφ
gives ϕ a nonvanishing width Γϕ. The −iϵ prescription
guarantees that it is possible to resum the self-energies into
the ϕ dressed propagators with no peak uncertainty, so
Veltman’s projection can be applied to ϕ, to build a unitary
reduced S matrix Sr on the strictly asymptotic states.
Fakeons inside loops are defined by means of a different

diagrammatics [9], which works as a mathematical tool to
surgically eradicate the potential degree of freedom at all
energies, turning it de facto into a fake degree of freedom.
The mathematics of the fakeon projection does not have a
direct physical interpretation, such as a decay.Wemayexpect
that if the removal of a degree of freedom (or its impossibility
to be observed in nature) is due to the physics, it is either
nonperturbative (as in the cases of quarks and gluons) or not a
complete removal (as in the case of the LW ghost).
In particular, a purely virtual particle does not need to

have a nonvanishing width Γ. The assumption M > 2m is
unnecessary tomake themodel (3.1)workwithϕ ¼ fakeon.
We can even replace the vertex −gφ2ϕ with an interaction
like−gφϕ2, which makes the fakeon width identically zero.
Phenomenologicalmodelswith fakeons of vanishingwidths
are studied in Ref. [12].

V. PAULI-VILLARS FIELDS MADE PHYSICAL

In this section we use fakeons to make the Pauli-Villars
fields consistent and observable without sending their
masses to infinity.
We first recall the main properties of the Pauli-Villars

fields [6,22]. Consider the Lagrangian

LPV ¼ 1

2

XN
j¼1

½ð∂μφjÞð∂μφjÞ −m2
jφ

2
j �

−
1

2

XN0

j¼1

½ð∂μϕjÞð∂μϕjÞ −M2
jϕ

2
j � − Vðφ̆;ϕÞ; ð5:1Þ

where

ϕ≡XN
j¼1

cjφj þ
XN0

j¼1

djϕj;

cj, dj are real constants and φ̆ are the fields φj that do not
appear inside ϕ (because they have cj ¼ 0). V is a potential,
or, more generally, the interaction part (if it depends on the
derivatives of the fields).
It is possible to organize the diagrammatics so that each

non-φ̆ internal leg of the diagrams propagates the whole
combination ϕ, with free propagator

hϕðpÞϕð−pÞi0 ¼
XN
j¼1

ic2j
p2 −m2

j þ iϵ
−
XN0

j¼1

id2j
p2 −M2

j þ iϵ
:

ð5:2Þ

For the moment, we use the standard iϵ prescription for the
PV fields ϕj. We examine different options later.
If we choose cj, dj such that

XN
j¼1

c2jðm2
jÞk ¼

XN0

j¼1

d2jðM2
jÞk; ð5:3Þ

k ¼ 0; 1; 2;…n, the propagator (5.2) falls off as 1=ðp2Þ2þn̄

for large jp2j. So doing, we can improve the power
counting and in some cases render the theory (5.1)
completely finite.
If we plan to send the masses Mj to infinity, we can use

the PV fields as regulators. The Pauli-Villars regularization
technique is obtained by adding PV fields so as to make the
theory completely finite at finite masses Mj.
An important property of the PV regularization tech-

nique is that it is not gauge invariant, nor general covariant,
because it does not treat the quadratic and interaction
parts of the Lagrangian on an equal footing. Indeed, the
interaction part of (5.1) depends only on the physical fields
φ̆ and the linear combination ϕ, while the quadratic terms
cannot be expressed by means of φ̆ and ϕ. Gauge
invariance and general covariance can be recovered in
the limit Mj → ∞ (provided they are not anomalous) by
subtracting local counterterms.
If we want to give physical significance to the PV fields

without sending their masses to infinity, we must restrict to
neutral matter fields. We study the main options we have in
this context.
The first option is the one already considered, i.e.,

quantize the PV fields as iϵ ghosts. Then, it is not possible
to ignore them from the incoming and outgoing states,
because the dressed propagators cannot be resummed
around the peaks. The classical Lagrangian is not accept-
able, because it has negative kinetic terms.
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The second option is what Lee and Wick do, i.e.,
quantize the PV fields as −iϵ ghosts, treat them as LW
ghosts inside the loop diagrams, ensure that they are
unstable, build their dressed propagators and apply
Veltman’s projection. The problem with this option is that
the classical limit is not Hermitian.
The standard option with fakeons is to quantize ϕj as

purely virtual particles, which removes them completely.
There is a new possibility, though, which emerges by
combining the PV, LWand fakeon ideas in a certain way. It
amounts to removing the ϕj only partially, to overcome the
difficulties described above and gain extra (observable)
physical particles. The trick works with neutral matter
fields and is fully perturbative.
We first describe the new option in the model (3.1), with

Λ ¼ 0, which is a particular case of (5.1), then we
generalize it to (5.1). In the next sections we apply it to
finite QED, and quantum gravity.
We decompose ϕ as the combination of a physical field

Φ and an additional field Q. Specifically, we turn the
classical Lagrangian (3.1) into

Lcl¼
1

2
ð∂μφÞð∂μφÞ−

m2

2
φ2þ1

2
ð∂μΦÞð∂μΦÞ−M2

2
Φ2

−
1

2
½ð∂μQÞð∂μQÞ−M2Q2�−gφ2ðΦþ

ffiffiffi
2

p
QÞ ð5:4Þ

and view Φ as a standard physical particle and Q as a
fakeon. The combined ϕ propagator becomes

−
2i

p2 −M2

����
f
þ i
p2 −M2 þ iϵ

; ð5:5Þ

where the subscript “f” means “fakeon prescription. At the
tree level, (3.14) (with ρ → −2) gives

−
i

p2 −M2 − iϵ
−

i
p2 −M2 þ iϵ

þ i
p2 −M2 þ iϵ

¼ −
i

p2 −M2 − iϵ
;

which is the propagator of a −iϵ ghost. Resumming the
self-energies, the dressed propagator reads

−
iZ

p2 −M2
ph − iðϵþ ΓÞ → −

iZ
p2 −M2

ph − iΓ

around the peak, where Γ is non-negative. Although the ϕ
two-point function has no peak uncertainty, this is not crucial
now, because we do not need Veltman’s projection, having
abandoned the LW approach to adopt the fakeon one.
Since Φ is a fakeon, it does not belong to the set of

asymptotic states, by definition. Instead, Q does: unstable
or not, it is an extra, physically observable particle,
originated by a PV field. The decomposition of ϕ as

Φþ ffiffiffi
2

p
Q and the properties of fakeons allow us to treat

Φ and Q differently, which is crucial to have a Hermitian
classical limit. That limit, obtained by keeping Φ and
projecting Q away in (5.4), is given by the Lagrangian

Lf
cl ¼

1

2
ð∂μφÞð∂μφÞ −

m2

2
φ2 þ 1

2
ð∂μΦÞð∂μΦÞ −M2

2
Φ2

− gφ2Φ − g2φ2P
1

□þM2
φ2; ð5:6Þ

which describes two physical particles, φ and Φ, with
a nonstandard (micro nonlocal and micro acausal)
φ self-interaction.
The decomposition also specifies how to treat ϕ inside

the loop diagrams. We must proceed as in [9], distinguish-
ing the contributions due toΦ from those due toQ, sinceΦ
is a physical particle, while Q is a fakeon. Note that Φ and
Q have the same mass, so there are many coinciding
thresholds, which must be treated as limits of distinct ones.
The counterterms of (5.4) just depend on φ and ϕ. The ϕ
propagator renormalizes exactly as for the theory (3.1). The
Φ and Q two-point functions can be derived from it. They
may separately have peak uncertainties, but, again, this is
not of our concern.
The masses of purely virtual particles are observable

quantities. Nevertheless, they are not revealed as “masses,”
but through their indirect effects on the other particles. For
example, in the model (5.6) such effects are encoded in the
last term, M being the mass of the fakeon Q.
We can generalize the trick by turning (5.1) into

LPV ¼ 1

2

XN
j¼1

½ð∂μφjÞð∂μφjÞ −m2
jφ

2
j �

þ 1

2

XN0

j¼1

½ð∂μΦjÞð∂μΦjÞ −M2
jΦ2

j �

−
1

2

XN0

j¼1

½ð∂μQjÞð∂μQjÞ −M2
jQ

2
j � − Vðφ̌;ϕÞ; ð5:7Þ

where

ϕ ¼
XN
j¼1

cjφj þ
XN0

j¼1

djðΦj þ
ffiffiffi
2

p
QjÞ;

and interpreting Φj as additional physical particles and Qj
as fakeons. The ϕ propagator is

XN
j¼1

ic2j
p2 −m2

j þ iϵ
þ
XN0

j¼1

id2j
p2 −M2

j þ iϵ
−
XN0

j¼1

2id2j
p2 −M2

j

����
f

:

Thanks to conditions such as (5.3), we can make it fall off
as fast as we want for large jp2j. The classical limit is a
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theory of N þ N0 physical particles with certain micro
nonlocal self-interactions.

VI. FINITE QED

In this section we use the trick explained in the previous
one to build a finite QED, by tweaking the original Lee-
Wick construction [2]. In the next section we investigate the
possibility of generalizing the trick to quantum gravity.
We start from the classical Lagrangian

LQED ¼−
1

4
FμνFμνþ1

4
GμνGμν−

M2

2
BμBμ

þ
X2
j¼1

ψ̄ j½iγμð∂μþ ieAμþ ieBμÞ−mj�ψ j

þ Ψ̄σ1½iγμð∂μþeσ2Aμþeσ2BμÞ−MΨ�Ψ; ð6:1Þ

where Fμν ¼ ∂μAν − ∂νAμ, Gμν ¼ ∂μBν − ∂νBμ, σ1 and σ2
are the first two Pauli matrices, ψ1 and ψ2 denote the
electron and the muon, respectively, Ψ is an extra fermion
doublet, and MΨ denotes the Ψ mass matrix. The
Lagrangian is Hermitian and gauge invariant, the gauge
transformations being

Aμ → Aμ þ ∂μΛ; Bμ → Bμ; ψ → e−ieΛψ ;

ψ̄ → eieΛψ̄ ; Ψ → e−eσ2ΛΨ; Ψ̄ → Ψ̄e−eσ2Λ:

A. Lee-Wick QED

If we follow Lee andWick, the vector Bμ is a −iϵ ghost at
the tree level, to be treated as a LW ghost inside the loops.
Since the interactions contain only the combination
Aμ þ Bμ, what matters, for power counting, is the combined
propagator of Aμ þ Bμ, which reads

−iημν
�

1

p2 þ iϵ
−

1

p2 −M2 − iϵ

�
þ pμpνð� � �Þ; ð6:2Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the flat-space metric.
The transverse part, proportional to ημν, is gauge indepen-
dent and falls off like 1=ðp2Þ2 for large momenta, à la Pauli-
Villars. The longitudinal part does not fall off rapidly.
Nevertheless, it is gauge dependent and does not affect the
physical quantities.
The behavior of (6.2) is enough to ensure that every

diagram but one is convergent, up to gauge-dependent
contributions. The exception is the one-loop photon self-
energy. Its convergence is provided by the doublet Ψ,
introduced to obtain a completely finite theory.
At one loop the photon self-energy receives contribu-

tions from the bubble diagrams with circulating electrons,
muons, and Ψ fields. The diagram with circulating Ψ fields
has an extra −2 factor with respect to the electron and muon
bubble diagrams, because of the trace

tr½σ1ð−iσ1σ2Þσ1ð−iσ1σ2Þ� ¼ −2:

A σ1 is brought by each Ψ propagator and a −iσ1σ2 is
brought by each vertex. The factor −2 is precisely what is
needed to compensate the logarithmic divergences due to
electrons and muons.
The dressed propagator of Aμ þ Bμ can be resummed in

the transverse sector. We do not repeat the calculation of
Lee and Wick here, but just recall that Bμ acquires a
nonvanishing width and becomes unstable. It is then
removed from the set of strictly asymptotic states à la
Veltman.
Lee and Wick need to make Ψ decay as well. Since Ψ

does not become unstable dynamically, they equip it with a
nonvanishing width at the classical level, by choosing a
mass matrix of the form

MΨ ¼ mΨ þ i
2
σ2γΨ; ð6:3Þ

where mΨ and γΨ are real numbers. The Lagrangian (6.1)
remains Hermitian.
Once Veltman’s projection is advocated for the unstable

particles Bμ and Ψ (the muon being stable here), the
reduced S matrix Sr is unitary. As expected, the classical
limit, which reads

LLW
cl ¼−

1

4
FμνFμνþ

X2
j¼1

ψ̄ j½iγμð∂μþ ieAμÞ−mj�ψ j

þ e2

2M2

�X2
j¼1

ψ̄ jγ
μψ j

�
ημνM2þ ∂μ∂ν

□þM2þ iϵ

�X2
l¼1

ψ̄ lγ
νψ l

�
;

ð6:4Þ

contains a non-Hermitian self-interaction.

B. Standard option with fakeons

The easiest way to solve the problems of the Lee-Wick
construction is to treat Bμ and Ψ as fakeons. The theory
remains finite. The dressed Bμ propagator cannot be
resummed around its peak, so Bμ has a peak uncertainty,
equal to its width divided by 2 [8]. As far asΨ is concerned,
we can just leave γΨ ¼ 0 in formula (6.3), since Ψ is out of
the physical spectrum without requiring that it decays. Note
that Ψ appears quadratically in the action. This means that,
once it is projected away, it does not contribute to the
classical limit (its field equation being satisfied by Ψ ¼ 0).
At higher orders, it contributes by means of Ψ loops
(similar to the loops of Faddeev-Popov ghosts), which
are Hermitian due to the diagrammatics of purely virtual
particles.
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The classical limit becomes

Lf
cl ¼ −

1

4
FμνFμν þ

X2
j¼1

ψ̄ j½iγμð∂μ þ ieAμÞ−mj�ψ j

þ e2

2M2

�X2
j¼1

ψ̄ jγ
μψ j

�
P
ημνM2 þ ∂μ∂ν

□þM2

�X2
l¼1

ψ̄ lγ
νψ l

�
;

ð6:5Þ

which is the standard QED Lagrangian with a nonstandard
four fermion Hermitian, micro nonlocal self-interaction.

C. New option with fakeons

The new option, instead, amounts to interpreting Bμ as a
superposition B̃μ þ

ffiffiffi
2

p
Qμ of a physical vector B̃μ and a

different fakeon Qμ, while the doublet Ψ is still seen as a
fakeon. We obtain the Lagrangian

LQED¼−
1

4
FμνFμν−

1

4
F̃μνF̃μνþM2

2
B̃μB̃μ

þ1

4
QμνQμν−

M2

2
QμQμ

þ
X2
j¼1

ψ̄ j½iγμð∂μþieAμþieB̃μþie
ffiffiffi
2

p
QμÞ−mj�ψ j

þΨ̄σ1½iγμð∂μþeσ2Aμþeσ2B̃μþe
ffiffiffi
2

p
σ2QμÞ−MΨ�Ψ;

ð6:6Þ

where F̃μν ¼ ∂μB̃ν − ∂νB̃μ and Qμν ¼ ∂μQν − ∂νQμ. The
theory remains finite, because the combined propagator of
Aμ þ B̃μ þ

ffiffiffi
2

p
Qμ behaves like (6.2) for large jp2j,

although it is defined by a different prescription at finite
momenta. The classical limit reads

Lf
cl ¼ −

1

4
FμνFμν −

1

4
F̃μνF̃μν þM2

2
B̃μB̃μ

þ
X2
j¼1

ψ̄ j½iγμð∂μ þ ieAμ þ ieB̃μÞ −mj�ψ j

þ e2

M2

�X2
j¼1

ψ̄ jγ
μψ j

�
P
ημνM2 þ ∂μ∂ν

□þM2

�X2
l¼1

ψ̄ lγ
νψ l

�
:

ð6:7Þ

This is the standard QED Lagrangian with an extra Proca
vector B̃μ and a peculiar Hermitian, micro nonlocal four
fermion self-interaction.
Since the QED models formulated in this section are

finite, the coupling α ¼ e2=ð4πÞ does not run. However, if
the massM of the vector Bμ and the massMΨ of the doublet
Ψ are assumed to be large, they can be treated as cutoffs at

low energies. The logarithmic divergences that appear
when they tend to infinity give the usual running.

VII. QUANTUM GRAVITY

In this section we discuss the possibility of applying the
trick to quantum gravity and stress the difficulties that arise
with general covariance. Then we explain how a fully
covariant decomposition can be achieved by adding a
massive spin-2 multiplet.
Consider the classical action

SQG ¼ −
1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
2Λþ R

þ λ

2m2
χ
CμνρσCμνρσ −

R2

6m2
ϕ

�
; ð7:1Þ

where λ ¼ m2
χð3m2

ϕ þ 4ΛÞ=ðm2
ϕð3m2

χ − 2ΛÞÞ is a param-
eter very close to 1. The theory includes the square
CμνρσCμνρσ of the Weyl tensor Cμνρσ and is renormalizable
by power counting [23]. It propagates the graviton, a scalar
field ϕinfl of mass mϕ (which can be interpreted as the
inflaton) and a spin-2 field χμν of mass mχ , which has a
kinetic term multiplied by the wrong sign. The three can be
made explicit with the help of auxiliary fields, as shown
in [24].
If χμν is interpreted as an iϵ ghost, we obtain the Stelle

theory [23], which is not unitary. Since χμν dynamically
acquires a nonvanishing width Γχ , it is interesting to
consider the χμν dressed propagator. The results of [8]
show that the resummation of the self-energies does not
make sense around the peak, because we formally obtain
(3.12). Thus, we cannot project χμν away à la Veltman. The
classical limit of this theory is exactly (7.1), which is not
acceptable.
The LW option, studied by Donoghue and Menezes in

Ref. [25], is to interpret χμν as a −iϵ ghost at the tree level
and as a LW ghost inside the loops. In this case, it is
meaningful to resum the self-energies into the χμν dressed
propagator, which has the form (2.3). It is possible to
project χμν away à la Veltman and focus on the reduced S
matrix Sr. However, the classical limit is not Hermitian, like
(3.13) and (6.4).
If we tweak the Lee-Wick proposal by removing

Veltman’s projection, the classical limit is still (7.1). If
we remove Veltman’s projection just for the physical
massive spin-2 particle singled out by the narrow-width
approximation [the real part of the propagator (2.2)], we
break general covariance, for arguments similar to the ones
we explain below.
Other Lee-Wick approaches to quantum gravity, starting

from different classical actions, have been considered in the
literature [26].
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Now we examine the options we have with fakeons. The
standard option is to interpret χμν as a fakeon, which gives
the quantum gravity theory of [10]. Then, χμν does not
belong to the sets of initial and final states, because it is
purely virtual, and has a peak uncertainty, quantified by its
width Γχ divided by two. The classical limit is Hermitian,
like (6.5) (see [27]).
The new option is to pursue the strategy of the previous

two sections, as in the extensions (5.4), (5.7), and (6.6). We
wish to interpret χμν as the superposition χ̃μν þ

ffiffiffi
2

p
χ0μν of an

extra, observable massive spin-2 particle χ̃μν and a new
fakeon χ0μν.
We recall, from [24], that the χμν action Sχðg;ϕinfl; χÞ,

which can be obtained from (7.1) by means of auxiliary
fields, is the sum

Sχðg;ϕinfl; χÞ ¼ −
λ

8πG
SPFðg; χÞ þ Sχintðg;ϕinfl; χÞ ð7:2Þ

of a term proportional to the covariantized Pauli-Fierz
action

SPFðg;χÞ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½DρχμνDρχμν−DρχDρχ

þ2Dμχ
μνDνχ−2Dμχ

ρνDρχ
μ
ν

−m2
χðχμνχμν−χ2ÞþRμνðχχμν−2χμρχ

ρ
νÞ�; ð7:3Þ

with nonminimal terms (χ denoting the trace gμν χμν), plus
further interactions Sχintðg;ϕinfl; χÞ.
The decomposition of χμν in terms of χ̃μν and χ0μν requires

that we treat the quadratic parts of χ̃μν and χ0μν differently
from their interactions. We expand the metric tensor gμν
around the flat-space metric ημν and write

Sχðg;ϕinfl; χÞ≡ −
λ

8πG
SPFðη; χÞ þ ΔSχðη; g;ϕinfl; χÞ:

Then we modify the theory according to the strategy of
Sec. V. The interaction part remains the same and contains
the combination χμν ¼ χ̃μν þ

ffiffiffi
2

p
χ0μν. Instead, the quadratic

part is turned into the sum of the quadratic parts of χ0μν and
χ̃μν. Mimicking (5.4), the replacement reads

Sχðg;ϕinfl; χÞ →
λ

8πG
SPFðη; χ̃Þ −

λ

8πG
SPFðη; χ0Þ

þ ΔSχðη; g;ϕinfl; χ̃ þ
ffiffiffi
2

p
χ0Þ; ð7:4Þ

so χ̃μν becomes a physically observable massive spin-2
particle, while χ0μν must be treated as a fakeon.
The right-hand side of (7.4) breaks general covariance,

because it depends on both metrics gμν and ημν. The fields
χ̃μν and χ0μν are defined by different prescriptions and
physically distinguished: χ̃μν, which is a physical particle,

must be included in the set of incoming and outgoing states;
χ0μν, as a fakeon, does not belong there. In these circum-
stances, it is not obvious how to recover general covariance.
Below we study the issue in more detail.
We remarked in Sec. V that this problem is a well-known

aspect of the Pauli-Villars approach, which treats the
interactions differently from the quadratic parts.
To conclude, the new option, which works well in QED,

cannot be used as is in quantum gravity. This is unfortunate,
because the resulting theory would contain an additional,
observable massive spin-2 particle χ̃μν with respect to the
theory of [10] (as well as a different spin-2 fakeon χ0μν).

A. General covariance and PV fields

The breaking of general covariance due to the decom-
position of χμν into the fields χ̃μν and χ0μν is entirely due to
the quantization prescriptions. For this reason, the issue
deserves a careful analysis.
We begin by describing an alternative procedure to apply

the trick of converting a ghost into the superposition of a
physical particle plus a fakeon, which helps us keep the
symmetries under control in a more transparent way. Let

Sðϕ; gÞ ¼ −
1

2

Z
d4x½ð∂μϕÞð∂μϕÞ −M2ϕ2� þ Sintðϕ; gÞ

denote the action of a field ϕ with negative kinetic term
coupled to gravity. Adding a decoupled free field Ω with
the same mass, we obtain

S0ðϕ; g;ΩÞ ¼ Sðϕ; gÞ þ 1

2

Z
d4x½ð∂μΩÞð∂μΩÞ −M2Ω2�:

ð7:5Þ

The total action is still invariant under general coordinate
transformations, provided Ω does not transform. At the
infinitesimal level, the transformations read

δϕ ¼ ξρ∂ρϕ;

δgμν ¼ ξρ∂ρgμν þ gμρ∂νξρ þ gνρ∂μξρ;

δΩ ¼ 0: ð7:6Þ

The action (7.5) gives an invariant theory at the quantum
level as long as the quantization prescriptions are compat-
ible with the symmetry (7.6). If so, the Ward-Takahashi-
Slavnov-Taylor (WTST) identities [28] can be derived in
the usual fashion, by means of a change of field variables
dictated by (7.6) in the functional integral, after introducing
the source term

R
d4xðJϕϕþ JΩΩþ JμνgμνÞ. If we focus

on the matter sector and treat the metric as an external field,
the identities read
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Z
d4x½JϕhδϕiJ þ JΩhδΩiJ þ Jμνδgμν� ¼ 0; ð7:7Þ

where h� � �iJ denotes the connected Green functions at
nonvanishing sources. The term hδΩiJ vanishes by (7.6).
We specialize to gμν ¼ ημν and ξρ ¼ constant (translations),
so that the term δgμν vanishes as well. Differentiating the
resulting Eq. (7.7) with respect to Jϕ and JΩ and setting
Jϕ ¼ JΩ ¼ 0 afterwards, we find

hδϕðxÞΩðyÞi ¼ ξρh∂ρϕðxÞΩðyÞi ¼ 0: ð7:8Þ

In particular, the quantization prescription should not mix ϕ
with Ω: a quadratic contribution like

Z
d4xd4yJϕðxÞGmixðx; yÞJΩðyÞ ð7:9Þ

to the generating functional of the connected Green
functions is not compatible with general covariance.
Now, observe that the free-field action

−
1

2

Z
d4x½ð∂μϕÞð∂μϕÞ −M2ϕ2�

þ 1

2

Z
d4x½ð∂μΩÞð∂μΩÞ −M2Ω2�

is invariant under the hyperbolic rotation

ϕ ¼ Φþ
ffiffiffi
2

p
Q; Ω ¼

ffiffiffi
2

p
ΦþQ: ð7:10Þ

The rotated action

S00ðΦ; g; QÞ≡ S0ðΦþ
ffiffiffi
2

p
Q; g;

ffiffiffi
2

p
ΦþQÞ

¼ 1

2

Z
d4x½ð∂μΦÞð∂μΦÞ −M2Φ2�

−
1

2

Z
d4x½ð∂μQÞð∂μQÞ −M2Q2�

þ SintðΦþ
ffiffiffi
2

p
Q; gÞ ð7:11Þ

matches the actions (5.4), (5.7), (6.6), and (7.4). It is
precisely what we need to decompose the field ϕ into a
physical particle Φ plus a fakeon Q.
We can read the symmetries of S00ðΦ; g; QÞ from (7.6).

They are

δΦ ¼ −ξρ∂ρΦ −
ffiffiffi
2

p
ξρ∂ρQ; δQ ¼ −

ffiffiffi
2

p
δΦ:

The free-field propagators we want can be derived from
(5.5). They are, in momentum space,

hΦðpÞΦð−pÞi0¼
i

p2−M2þ iϵ
; hΦðpÞQð−pÞi0 ¼ 0;

hQðpÞQð−pÞi0¼−
i

p2−M2

����
f
: ð7:12Þ

Switching to the field variables ϕ andΩ by means of (7.10),
we find, for legs that disconnect the diagrams,

hϕðpÞϕð−pÞi0 ¼ −
i

p2 −M2 − iϵ
;

hϕðpÞΩð−pÞi0 ¼
ffiffiffi
2

p
πδðp2 −M2Þ;

hΩðpÞΩð−pÞi0 ¼
i

p2 −M2 þ iϵ
þ πδðp2 −M2Þ: ð7:13Þ

We see that, although hϕðpÞϕð−pÞi0 is the desired one,
i.e., (2.2), we cannot fulfil (7.8) and makeGmix vanish. This
is inconsistent with the WTST identities. Moreover, the Q
projection amounts to set JQ ¼ 0, which does not kill the
contributions like (7.9). For these reasons, we cannot
ensure that general covariance can be recovered.
The case of gravity is obtained by means of the

substitutions ϕ → χμν, Φ → χ̃μν, Q → χ0μν, and adapting
the formulas where necessary. The role of Ω is played by a
free Pauli-Fierz spin-2 particle Ωμν of mass mχ .
Renormalizability is ensured by the very fact that Ωμν

decouples from the rest (apart from the quantization
prescription, which does not affect the renormalizability).
The conclusions do not change.

B. Manifestly covariant decomposition by means
of a massive spin-2 multiplet

A way to perform the decomposition in a manifestly
covariant way is to include a Pauli-Fierz spin-2 particle Ωμν

of mass mχ , coupled to gravity as required by general
covariance, and then rotate the degenerate pair χμν, Ωμν, so
as to single out the physically observable spin-2 particle χ̃μν
and the fakeon χ0μν. However, such a theory is not
renormalizable, because the Pauli-Fierz propagator does
not fall off as required by power counting at large momenta.
It is possible to have renormalizability (and unitarity) if

we replace Ωμν with a whole massive spin-2 multiplet ϒμν,
of the type studied in Ref. [15]. In that case ϒμν is a
symmetric, traceless tensor and contains a triplet: the spin-2
particle Ωμν, a spin-1 fakeon Ωμ and a massive scalar Ω. If
we choose the mass of Ωμν to be equal to mχ , to have
degeneracy with χμν, the massesm1 andm0 ofΩμ andΩ are
related tomχ by a certain formula that can be found in [15].
Then, we assume that χμν has the free propagator of a LW
ghost and complete the set of free propagators as in (7.13),
so that, after rotating the degenerate pair χμν, Ωμν, we can
identify the physically observable spin-2 particle χ̃μν and
the fakeon χ0μν, with free propagators of the form (7.12).
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So doing, we manage to extend the original LW concept
to gravity in a general covariant way, under the requirement
that the projected classical action be Hermitian. However,
what we obtain is just the theory of [10] coupled to matter
in a peculiar way.

VIII. CONCLUSIONS

The Lee-Wick models rely on the premise that a unitary
reduced S matrix Sr can be built by removing the LW
ghosts, which are unstable, from the sets of asymptotic
states. However, a finite lifetime is not a sufficient reason to
ignore a particle from the physical spectrum. If we just drop
the LW ghosts, saving the muon and the resonances, the
models have non-Hermitian classical limits.
A proper classical limit is important to develop a

meaningful cosmology. Although it is legitimate to ignore
heavy massive particles at low energies in particle physics,
in primordial cosmology the understanding of high ener-
gies (subhorizon scales) is necessary to make predictions
about the low energies (superhorizon scales). The Bunch-
Davies condition [29,30], for example, specifies the vac-
uum in the subhorizon region. We cannot make realistic
assumptions about that region, which is experimentally and
observationally inaccessible, if the theory has ghosts or
non-Hermitian interactions. The ABP bound mχ > mϕ=4
of [11], crucial for the prediction of the tensor-to-scalar
ratio r, also follows from the interpolation between the
subhorizon and the superhorizon scales.
We have shown that a nonpurely virtual particle cannot

be completely removed, within the realm of perturbation
theory. Barring nonperturbative mechanisms, unacceptable
remnants emerge one way or another, like a non-Hermitian

self-interaction, an indefinite metric or a Hamiltonian that is
unbounded from below.
Fakeons, on the other hand, are purely virtual, so it is not

necessary to worry about making them decay. For this
reason, they avoid the problems of the other options,
without using semiperturbative approaches or advocating
nonperturbative effects. Besides being fully perturbative,
the models with fakeons have a Hermitian classical limit
and a Hermitian reduced action. In quantum gravity, they
lead to a predictive primordial cosmology. The fakeon
width Γ is not interpreted as a lifetime, but as (twice) the
magnitude of the peak uncertainty, for processes that probe
energies close to the fakeon mass.
The investigation carried out in this paper suggests a way

to remove a LW ghost only partially, after converting it into
a superposition of a fakeon and an observable physical
particle. Under certain assumptions, this trick makes the
Pauli-Villars fields consistent without sending their masses
to infinity. It also allows us to build a finite QED.
Nevertheless, it works only with neutral matter fields, in
the absence of gravity, because it clashes with general
covariance and gauge invariance. A manifestly covariant
decomposition can be obtained by adding a massive spin-2
multiplet, which in the end just gives quantum gravity
coupled to matter in a peculiar way.
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