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Recently, a new procedure to quantize the SUðNÞ Yang-Mills theory in the nonperturbative regime was
proposed. The idea is to divide the configuration space fAμg into sectors labeled by different topological
degrees of freedom and fix the gauge separately on each one of them. As Singer’s theorem on gauge copies
only refers to gauge fixing conditions that are global in fAμg, this construction might avoid the Gribov
problem. In this work, we present a proof of the renormalizability in the center-vortex sectors, thus
establishing the calculability of the Yang-Mills center-vortex ensemble.
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I. INTRODUCTION

In 1978, I. M. Singer showed that any gauge-fixing
condition in SUðNÞ Yang-Mills (YM) theory that is global
in configuration space fAμgwill necessarily contain Gribov
copies [1–3]. This is the fundamental reason behind the
infrared problems faced when trying a quantization in the
continuum. In the last many years, the main approach to
circumvent this problem has been based on the restriction
of the path integral to the first Gribov region, the ensuing
Gribov-Zwanziger quantization procedure [4–6], as well as
its refinement and improvement [7–10]. It is interesting
to note that, in his work, Singer pointed to a different
procedure based on a locally finite open covering fϑαg of
the total space of gauge field configurations fAμg, namely,

fAμg ¼ ∪α ϑα; ð1:1Þ

together with a subordinate partition of unity [11,12]

X
α

ραðAμÞ ¼ 1; ∀ Aμ ∈ fAμg; ð1:2Þ

where the support of the function ρα is ϑα. Introducing this
identity, the YM partition function can be rewritten as

ZYM ¼
X
α

ZðαÞ; ZðαÞ ¼
Z
ϑα

½DA�ραðAÞe−SYM½A�; ð1:3Þ

where SYM is the YM action. Note that, in each term, the
path-integral can be done on the support of ραðAÞ. Now, by
choosing the components of the covering ϑα such that they
admit local cross sections

fαðAÞ ¼ 0; ð1:4Þ

without copies, the usual Faddeev-Popov procedure can be
safely implemented on each term ZðαÞ

ZYM ¼
X
α

Z
ϑα

½DA�ραðAÞe−SYMδðfαðAÞÞDet
δfαðAUÞ

δU

����
U¼I

:

ð1:5Þ

Over the years, this possibility was overlooked, certainly
because of the difficulties to identify and characterize
this type of covering and effectively implement the parti-
tion of unity. Along this line, if the covering were a
partition of fAμg,

fAμg ¼ ∪α ϑα; ϑα ∩ ϑβ ¼ ∅; α ≠ β; ð1:6Þ

then ραðAÞ would be a characteristic function θαðAÞ, which
is one if Aμ ∈ ϑα and is zero otherwise. This case was
precisely implemented in Ref. [13]. The main idea is to
introduce a map SðAÞ ∈ SUðNÞ such that

SðAUÞ ¼ USðAÞ; ð1:7Þ

where UðxÞ ∈ SUðNÞ is regular and AU stands for the
gauge transformed field. This map is obtained by initially
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introducing an auxiliary tuple of adjoint scalar fields
ψðAÞ ¼ ðψ1½A�;ψ2½A�;…Þ that minimize an auxiliary
action SH½A� with SUðNÞ → ZðNÞ spontaneous symmetry
breaking (SSB),

δSH½A�
δζI

¼ 0: ð1:8Þ

In the next step, a polar decomposition

ðψ I;ψ2;…Þ¼ðSq1S−1; Sq2S−1;…Þ; qI ∈suðNÞ ð1:9Þ

(I is the flavor index) is performed in terms of a “pure
modulus” tuple ðq1; q2;…Þ defined by the condition

fðq1; q2;…Þ ¼ 0; f ∈ suðNÞ: ð1:10Þ

As the phases SðAÞ are not always regular (even when Aμ is
smooth), a nontrivial partition can be introduced by means
of the equivalence relation between singular maps: S0 ∼ S,
iff S0 ¼ US for some regular U ∈ SUðNÞ. Then, Aμ is said
to be in ϑS0 iff SðAÞ is equivalent to some class represen-
tative S0 ∈ SUðNÞ. The infinitely many labels S0 corre-
spond to different distributions of topological defects
such as oriented and nonoriented center vortices (see
Refs. [13–15]). Regarding the relation between center
vortices and the infrared properties of YM theory, see
Refs. [16–26]. Based on this construction, it is clear that
the orbit of a given gauge field Aμ cannot intersect different
sectors. This is because the orbits are generated by
performing all possible regular gauge transformations.
That is, as we move along the orbit of Aμ, the map changes
according to Eq. (1.7). Therefore if Aμ ∈ ϑS0 , necessarily
AU
μ ∈ ϑS0 . Moreover, after fixing the gauge in a given sector

ϑS0 by means of a condition

SðAÞ ¼ S0; ð1:11Þ

no Gribov copies are expected. In effect, because of the
property (1.7), this condition together with SðAUÞ ¼ S0
implies UðxÞ ¼ 1. This type of argument was first given in
Ref. [27] by relying on the N lowest eigenfunctions of the
lattice covariant Laplacian defined in the fundamental
representation. These objects were organized as the col-
umns of an N × N matrix M, which transforms as
M → UM under a gauge transformation U. Then, con-
figurations were said to be gauge fixed if the SUðNÞ-phase
obtained by means of the usual polar decomposition ofM is
the identity. A related gauge was based on the set of N2 − 1
lowest eigenfunctions of the lattice covariant adjoint
Laplacian [28]. As we will review in Sec. II, our procedure
in the continuum is closer to the latter, with an important
difference: in the lattice, the gauge fixing conditions can be
defined globally as there is no concept of singular phase in
a discrete spacetime. On the other hand, the possibility of

singular phases in the continuum is precisely the reason that
allows us to define physically inequivalent sectors and fix
the gauge locally. To illustrate this situation, consider the
Abelian Higgs model in 3þ 1 dimensions. In this case,
there is a vortex-free sector where the Higgs-phase can be
fixed to be identically zero. On the other hand, as is well
known, this theory admits static vortex nontrivial solutions
where the phase changes by a multiple of 2π, when going
around a loop encircling the vortex guiding-centers. Of
course, because of topological reasons, the phase of the
Higgs field cannot be fixed to be trivial in this case. Instead,
a particular choice of multivalued phase can be defined.
For example, when considering a single unit-charge vortex
along the z-axis, the gauge can be fixed by requiring the
Higgs phase to be the harmonic polar angle. Similarly, our
procedure is a unitary gauge independently performed on
each topological sector, but defined on auxiliary fields. The
necessary conditions for this procedure to be well-defined
will be briefly reviewed in Sec. II. These include an
appropriate choice for the number of flavors, the pure
modulus condition, and the SSB pattern of the auxiliary
action. There, we shall also discuss its implementation at
the quantum level, where the Yang-Mills partition function
is written as a superposition of local contributions origi-
nated from ϑS0 . Of course, to make sense of the formal
expressions, a fundamental requirement is renormalizabil-
ity. In Ref. [29], relying on the algebraic method, we
showed that this property is valid in the vortex-free sector
(S0 ¼ I), where the possible counterterms are restricted by
the Ward identities of the gauge-fixed action. In this work,
we present a proof of renormalizability for the center-
vortex sectors. In Sec. III, we give some preliminary
definitions and review the gauge-fixed action in the
vortex-free sector from a BRST perspective. In Sec. IV,
we extend this procedure to a general sector labeled by
center vortices, and we introduce the required boundary
conditions in a way that maximizes the symmetries of
the full action. In Sec. V, we list these symmetries and
use them to establish the renormalizability of a general
center-vortex sector ϑS0. Finally, in Sec. VI we present our
conclusions.

II. DETAILING THE PROCEDURE

In order for the maps A → ψðAÞ → SðAÞ given by
Eqs. (1.8) and (1.9) to be well defined, natural conditions
leading to a unique solution must be specified. Besides the
regularity of the fields, we consider the asymptotic behav-
ior ψ IðAÞ → ψ̄ IðAÞ ∈ M, where M is the vacua manifold
of SH, together with DðAÞψ I → 0. In addition, the solution
must satisfy

ðψ1ðAUÞ;ψ2ðAUÞ;…Þ ¼ ðψ1ðAÞ;ψ2ðAÞ;…Þ⇒U ∈ ZðNÞ;
ð2:1Þ
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otherwise, any attempt at gauge fixing will surely have
Gribov copies. In regions where the gauge field is close to
ði=gÞS̄∂μS̄−1, S̄ ∈ SUðNÞ, the solution is expected to be
close to an element of M whose phase accompanies S̄.
Then, it is clear that the elements of M must satisfy
Eq. (2.1), which corresponds to choosing an SUðNÞ →
ZðNÞ SSB pattern for SH. For this choice, showing that for
every A the regular solution ðψ1ðAÞ;ψ2ðAÞ…Þ satisfies
Eq. (2.1) is a hard mathematical problem. Nonetheless, it is
clear that this pattern favors this condition, as it plays a
similar role to the orthonormality conditions in the lattice
for the lowest eigenfunctions of the covariant adjoint
Laplacian. For example, in Ref. [29], we considered an
auxiliary action based on N2 − 1 adjoint scalar fields ζI ,
where the elements of M are given by ψ I ¼ vSTIS−1,
S ∈ SUðNÞ. These elements satisfy ðψ I;ψJÞ ¼ δIJ, thus
forming orthonormal bases. The action reads

SH ¼
Z

d4xðDab
μ ζbID

a0b0
μ ζb

0
I þ VHÞ;

VH ¼ μ2

2
ζaI ζ

a
I þ

κ

3
fabcfIJKζaI ζ

b
Jζ

c
K þ λ

4
γabcdIJKLζ

a
I ζ

b
Jζ

c
Kζ

d
L;

ð2:2Þ

where γ is a combination of antisymmetric structure
constants and deltas compatible with color and flavor
symmetry. This generalizes the model introduced in
Ref. [30]. Furthermore, in Ref. [15], Eq. (2.1) was shown
to be valid for some examples of A, which include center-
vortex configurations. As for the polar decomposition of
the tuple of auxiliary fields in Eq. (1.9), the proposal was to
define the pure modulus tuple ðq1; q2;…Þ as the one that
minimizes the average distance to the Lie basis vTI,

XN2−1

I¼1

ðqI − vTIÞ2: ð2:3Þ

This leads to the condition

fðq1; q2;…Þ ¼
XN2−1

I¼1

½qI; vTI� ¼ 0: ð2:4Þ

The uniqueness of this decomposition in sectors labeled
by center vortices was also studied in Ref. [15]. In each
sector ϑS0, the gauge is then fixed by means of the
condition (1.11), or, equivalently,

fS0ðAÞ ¼ fðS−10 ψ1S0; S−10 ψ2S0;…Þ ¼ 0: ð2:5Þ

In order to avoid the presence of multivalued fields, the Lie
algebra components of qI that rotate under S0 must satisfy
regularity conditions at the center-vortex guiding centers.

Let us now discuss the implementation of this procedure
at the quantum level. The tuple ψðAÞ is introduced by
means of an identity

1 ¼
Z

Dζδðζ − ψðAÞÞ;

ZYM ¼
Z

½DA�½Dζ�δðζ − ψðAÞÞe−SYMðAÞ: ð2:6Þ

The information that ψðAÞ is a solution to the auxiliary
equations of motion is given through the representation

δðζ − ψðAÞÞ ¼ det

�
δ2SH
δζIδζJ

�
δ

�
δSH
δζI

�
: ð2:7Þ

Next, by definition (see Sec. I), the contribution to ZYM
originated from the sector ϑS0 is given by restricting the ζ
path-integral to auxiliary fields of the form

ζ¼ðSq1S−1;Sq2S−1;…Þ; S¼US0; fðq1;q2;…Þ¼0

ð2:8Þ

[cf. Eq. (2.4)], i.e.,

ZS0
YM ¼

Z
½DA�½Dq�r:c:½DU�δðfðqÞÞJðqÞ

× δðSqS−1 − ψðAÞÞe−SYMðAÞ: ð2:9Þ

Here, J is the Jacobian that arises as a consequence of
switching from the integral over ζ to the integral over
its modulus q and phase S [13]. The gauge can then be
fixed upon redefining AU → A, ζU → ζ. The presence of S0
occurs as it cannot be eliminated by a regular gauge
transformation U. The classification of all possible defects
in this non-Abelian context is a difficult problem which is
out of the scope of the present work. Instead, we will focus
on some examples. In sectors labeled by center vortices, in
order to ensure regularity, the components of qI that rotate
under S0 must vanish at the guiding centers. For example,
in a sector labeled by an elementary center vortex
with guiding center along some closed world surface Ω,
the label is given by S0 ¼ eiχβ·T, χ being an angle that
changes by 2π when going around a loop that links Ω,
and β being proportional to a fundamental weight. Here, we
use the definition β · T ≡ βqTq, where βq are the compo-
nents of the (N − 1)-tuple β, and Tq are the Cartan
subalgebra generators.1 Because of the relation ei2πβ·T ¼
e−i2π=N ∈ ZðNÞ, the rotated Lie basis S0TIS−10 ¼
AdðS0ÞJITJ describes a topologically nontrivial loop in
AdðSUðNÞÞ, as we travel around a path in real space that

1The conventions for the Lie algebra generators are described
in Appendix.
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links Ω. This means that the basis necessarily becomes ill-
defined when the path size is shrunk to zero. Indeed, the
transformed Lie components read

S0TαS−10 ¼ cosðα · βχÞTα − sinðα · βχÞT ᾱ;

S0T ᾱS−10 ¼ cosðα · βχÞTα þ sinðα · βχÞT ᾱ: ð2:10Þ

The (N − 1)-tuples α are the roots of suðNÞ, i.e., they are
formed by eigenvalues of the adjoint action of the Cartan
generators on suðNÞ (see Appendix). Then, the elements
Tα, T ᾱ, with α · β ≠ 0, are ill-defined at the vortex guiding
centers. For the corresponding field components, we must
require the regularity conditions

ζαI ¼ ζᾱI ¼ 0; x ∈ Ω; ð2:11Þ

which can be imposed with the introduction of appropriate
Lagrange multipliers defined on Ω. This will be discussed
carefully in Sec. IV.
Summarizing, after introducing an identity in the inte-

grand of ZYM, and then restricting the auxiliary fields, the
gauge fields get restricted to be associated with solutions
ψðAÞ of the form in Eq. (2.8). When S0 is inequivalent to

S00, the gauge fields that contribute to ZS0
YM and Z

S0
0

YM are
expected to be physically inequivalent. Consider, for
example, a pair of sectors with the same weight β, but
phases χ, χ0 multivalued at different guiding centers Ω
and Ω0. As we move on a gauge orbit, which is done with
regular transformations, the guiding centers cannot be
changed, so that a pair of gauge fields on a given orbit
cannot be in different sectors. Note also that by increasing
the vacuum parameter v, the solutions outside Ω corre-
sponding to A ∈ ϑS0 are expected to be close to vS0TIS−10 .
Then, the implemented SSB pattern tends to rule out the
possibility of multiple counting, and the sum over all
possible labels is expected to yield the full YM partition
function,

ZYM ¼
X
S0

ZS0
YM: ð2:12Þ

III. PRELIMINARY DEFINITIONS AND THE
VORTEX-FREE SECTOR

To construct the complete action, in a BRST formal
manner [31], we start by defining the usual YM action in
4-dimensional Euclidean spacetime2

SYM ¼ 1

4

Z
x
Fa
μνFa

μν; ð3:1Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field

strength for the SUðNÞ gauge-field Aa
μ, while g is the

coupling constant. Lower case greek and latin indices take
the values f0; 1; 2; 3g and f1;…; N2 − 1g, respectively.
Another field naturally appearing in YM theory is the

Faddeev-Popov ghost field ca. This field appears in the
gauge-fixing procedure and, together with Aμ, can be
interpreted geometrically [32–34]. For now, we can define
the nilpotent BRSToperator s and the corresponding BRST
transformations of the fields

sAa
μ ¼

i
g
Dab

μ cc;

sca ¼ −
i
g
fabccbcc; ð3:2Þ

with the covariant derivative defined as Dab
μ ¼

δab∂μ − gfabcAc
μ.

To fix the gauge in the vortex-free sector, we follow the
procedure developed in [13,29]. The first step is to
introduce a set of auxiliary fields ζaI , b

a
I , c

a
I , c̄

a
I , where

the flavor index takes values in f1; 2;…; N2 − 1g. In order
to keep the physical degrees of freedom of pure YM
theory unaltered, these fields are introduced as BRST
doublets [31],

sζaI ¼ ifabcζbI c
c þ caI ;

scaI ¼ −ifabccbI cc;

sc̄aI ¼ −ifabcc̄bI cc − baI ;

sbaI ¼ ifabcbbI c
c: ð3:3Þ

Moreover, a set of BRST doublet parameters fμ; U; κ;K;
λ;Λg are introduced

sμ2 ¼ U2;

sU2 ¼ 0;

sκ ¼ K;

sK ¼ 0;

sλ ¼ Λ;

sΛ ¼ 0: ð3:4Þ

The parameters μ, κ, and λ are required to implement the
SUðNÞ → ZðNÞ spontaneous symmetry breaking in the
auxiliary action, thus producing the correlation between Aμ

and the phases SðAÞ containing defects. Their respective
doublet partners U2, K, Λ are required to guarantee that the
observables remain independent from the gauge-fixing
parameters [31,35]. The auxiliary action is introduced as
a BRST-exact term in the form

2In this paper, we employ a condensed notation for integrals asR
x ≡

R
d4x.
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Saux ¼ −s
Z
x
ðDab

μ c̄bI D
ac
μ ζcI þ μ2c̄aI ζ

a
I þ κfabcfIJKc̄aI ζ

b
Jζ

c
K þ λγabcdIJKLb

a
I ζ

b
Jζ

c
Kζ

d
LÞ

¼
Z
x
ðDab

μ bbID
ac
μ ζcI þDab

μ c̄bI D
ac
μ ccI þ μ2ðc̄aI caI þ baI ζ

b
I Þ þ κfIJKfabcðbaI ζbJζcK − 2c̄aI ζ

b
Kc

c
JÞ

þ λγabcdIJKLðbaI ζbJζcKζdL þ 3c̄aI c
b
Jζ

c
Kζ

d
LÞ −U2c̄aI ζ

a
I − Λfabcfcdec̄aI ζbJζdI ζeJ −KfIJKfabcc̄aI ζ

b
Jζ

c
KÞ: ð3:5Þ

Here, γ is a general color-flavor tensor, which is invariant
under the adjoint global symmetry group AdðSUðNÞÞ. For
later use, when implementing the different symmetries, we
shall consider tensors formed by antisymmetric structure
constants and Kronecker deltas such that sγabcdIJKLb

a
I ζ

b
Jζ

c
Kζ

d
L

is c-independent, i.e.,

γmbcd
IJKLf

ame þ γamcd
IJKLf

bme þ γabmd
IJKLf

cme þ γabcmIJKLf
dme ¼ 0:

ð3:6Þ

The gauge fixing per se is performed in an indirect way by
imposing some condition on the auxiliary fields (see for
instance [13,29]). With this purpose, the usual BRST
doublet fc̄a; bag is introduced [31]

sc̄a ¼ −ba;

sba ¼ 0; ð3:7Þ

with c̄a being the Faddeev-Popov antighost field and ba the
Lautrup-Nakanishi field. In the vortex-free sector, the
representative S0 can be taken as the identity, so the gauge
fixing condition reads

fabcηbI ζ
c
I ¼ 0; ηI ¼ vTI: ð3:8Þ

The parameter v has mass dimension. Indeed, the field ηI
can be thought of as a reference element in the classical
vacua manifold M of the auxiliary action [13,15,29]. The
gauge fixing is essentially a condition setting the local
frame ζaI T

a ∈ suðNÞ to lie as close as possible to the global
frame vTI . Such a condition is realized by the gauge-fixing
action

Sgf ¼ −s
Z
x
ifabcc̄aηbI ζ

c
I ;

¼
Z
x
½ifabcðbaηbI ζcI þ c̄aηbI c

c
I Þ þ fecdfebac̄aηbI ζ

c
I c

d�:

ð3:9Þ

The full gauge-fixed action in the vortex-free sector then
reads

Svf ¼ SYM þ Saux þ Sgf : ð3:10Þ

Note that, as the terms Saux and Sgf are BRST exact, the
theory continues to be pure YM, in spite of the SSB
properties of the auxiliary sector. Another important feature
of action (3.10) is a global flavor symmetry, which implies
an extra conserved charge (besides the ghost number), the
Q-charge. Such symmetry and others play a crucial role in
the proof of renormalizability of the vortex-free sector [29].
For completeness and further use, we display in Tables I
and II the quantum numbers of fields and parameters so far
introduced.

IV. CENTER-VORTEX SECTORS

Let us consider a sector labeled by n elementary center
vortices located at arbitrary closed surfaces Ωi. When they
carry the same fundamental weight β, the associated phase
can be written as S0 ¼ eiχβ·T , where χ is multivalued when
going around Ω ¼ Ω1 ∪ … ∪ Ωn. In this case, the gauge-
fixed configurations of auxiliary fields will be of the form
ζI ¼ S0qIS−10 , with ½qI; TI� ¼ 0 [cf. Eq. (2.9)]. Then, to
assure regularity, the components of ζI that rotate under S0
must vanish at Ω. These are given by the fields ζαI and ζᾱI
along the off-diagonal directions Tα, T ᾱ, with α · β ≠ 0. A
well-known manner to implement this type of boundary
condition is to introduce a δ–functional in the partition
function, and exponentiate it using auxiliary fields that only
exist in Ω [36],

TABLE I. Quantum numbers of the fields.

Fields Aμ ζI cI c̄I bI ηI c̄ c b ξI λI

Mass dimension 1 1 1 1 1 1 2 0 2 1 1
Ghost number 0 0 1 −1 0 0 −1 1 0 −1 0
Q-charge 0 1 1 −1 −1 −1 0 0 0 −1 −1
Nature B B F F B B F F B F B

TABLE II. Quantum numbers of the parameters.

Parameters U2 K Λ μ2 κ λ

Mass dimension 2 1 0 2 1 0
Ghost number 1 1 1 0 0 0
Q-charge 0 −1 −2 0 −1 −2
Nature F F F B B B
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Y
γ

δΩðζγIÞδΩðζγ̄IÞ ¼
Z

½Dλ�ei
P

γ

R
dσ1dσ2

ffiffiffiffiffiffiffiffiffiffiffiffi
gðσ1;σ2Þ

p
ðλγI ðσ1;σ2ÞζγI ðxðσ1;σ2ÞÞþλγ̄I ðσ1;σ2Þζγ̄I ðxðσ1;σ2ÞÞÞ; ð4:1Þ

where xðσ1; σ2Þ is a parametrization of Ω, λγI and λγ̄I are
auxiliary fields, g is the determinant of the worldsheet
metric, and we are denoting by γ the roots that satisfy
γ · β ≠ 0. By introducing a source localized on Ω, this
expression can also be written in terms of a field λI defined
on the whole spacetime

Y
γ

δΩðζγIÞδΩðζγ̄IÞ ¼
Z

½Dλ�ei
R

dx JΩðxÞ
P

γ
ðλγI ðxÞζγI ðxÞþλγ̄I ðxÞζγ̄I ðxÞÞ;

ð4:2Þ

JΩðxÞ ¼
Z

dσ1dσ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðσ1; σ2Þ

p
δðx − xðσ1; σ2ÞÞ: ð4:3Þ

This procedure was proposed in Ref. [29]. However, these
terms break the color-flavor symmetry, which would
allow too many new counter-terms in the renormalizability
analysis. For instance, the single term c̄aca would generate
ðN2 − 1Þ2 independent contributions. To circumvent this
problem we can invoke the Symanzik method [37] to
promote JΩ to a set of generic Schwinger sources JaðxÞ, so
the color-flavor symmetry can be restored. At the end, we
choose Ja so as to recover the initial theory. One possibility
to perform the trick is to consider the replacement

Y
γ

δΩðζγIÞδΩðζγ̄IÞ →
Z

½Dλ�e−
R

dx fabcJaλbI ζ
c
I : ð4:4Þ

Expression (4.2) is then recovered by setting the source Ja

to its physical values, namely,

Jαjphys ¼ Jᾱjphys ¼ 0;

Jqjphys ¼ iβq

Z
dσ1dσ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðσ1; σ2Þ

p
δðx − xðσ1; σ2ÞÞ: ð4:5Þ

In this case, we have

fabcJaλbI ζ
c
I ¼ JqfqbcλbI ζ

c
I ; ð4:6Þ

and taking into account that the only structure constants
which contribute are fqαᾱ ¼ αjq, Eq. (4.6) becomes

X
α>0

J · αðλαI ζᾱI − λᾱI ζ
α
I Þ

¼
Xn
i¼1

X
α>0

iβ · α
Z

dσ1dσ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðσ1; σ2Þ

p
δðx − xðσ1; σ2ÞÞ

× ðλαI ζᾱI − λᾱI ζ
α
I Þ: ð4:7Þ

Since the scalar product α · β is either 1;−1, or 0, the
desired expression is recovered. However, we still need
to worry about the BRST invariance of these boundary
conditions, which imply sζγI ¼ sζγ̄I ¼ 0 on the vortex
surface [38]. For this purpose, it is convenient to work
with BRST doublets and write the Ja-term as a BRST-exact
quantity. Thus, we introduce the auxiliary field ξI such that
the pair fλI; ξIg forms a BRST doublet

sξaI ¼ λaI ;

sλaI ¼ 0: ð4:8Þ

This ensures that these fields cannot be part of the physical
spectrum of the theory [31]. The source Ja is assumed to be
BRST invariant. Hence,

SJ ¼ s
Z
x
fabcJaξbI ζ

c
I

¼
Z
x
fabcJa½λbI ζcI − ξbI ðifcdeζcI ce þ ccI Þ�: ð4:9Þ

Up to this point, the full action in the vortex sector reads

S ¼ Svf þ SJ: ð4:10Þ

Note that the discussion can be trivially extended to a
sector labeled by vortices carrying a distribution of weights
β1;…; βn, i.e., S0 ¼ eiχ

1β1·T…eiχ
nβn·T , where χi is multi-

valued when going around Ωi, and each βi takes values
among the N different fundamental weights. In this case,
the physical values of the source would be

Jαjphys ¼ Jᾱjphys ¼ 0;

Jqjphys ¼ i
Xn
i¼1

βiq

Z
dσi1dσ

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðσi1; σi2Þ

q
δðx − xðσi1; σi2ÞÞ;

ð4:11Þ

where xðσi1; σi2Þ is a parametrization of Ωi.

V. ALGEBRAIC ANALYSIS OF
RENORMALIZABILITY

In this section we analyze the center vortex sectors by
employing the algebraic renormalization technique [31].
We will prove it at first order. Nevertheless, since this
technique is recursive, the proof is valid to all orders in
perturbation theory.
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A. Ward identities

As discussed in [29], the action (3.10) for the vortex-free sector displays a rich set of Ward identities. It turns out that the
same set of Ward identities can be accommodated for the action (4.10) of the center vortex sectors. For this aim, we have to
include an additional external source term

Sext ¼ s
Z
x
ðKa

μAa
μ þ C̄aca þ L̄a

I c
a
I þQa

I ζ
a
I þ Ba

I b
a
I þ L̄a

I c̄
a
I þmab

IJ ζ
a
I ξ

b
J þMab

I c̄aζbI Þ;

¼
Z
x

�
i
g
Ka

μðDab
μ cbÞ − 1

2
iC̄afabccbcc − ifabcL̄a

I c
b
I c

c þQa
I ðifabcζbI cc þ caI Þ þ ifabcBa

I b
b
I c

c

− La
I ðifabcc̄bI cc þ baI Þ þ Nab

I c̄aζbI −Mab
I baζbI −Mab

I c̄aðifbmnζmI c
n þ cbI Þ

− nabIJ ζ
a
I ξ

b
J þmab

IJ ½λaI ζbJ − ξaI ðifbcdζcI cd þ cbI Þ�
�
; ð5:1Þ

with K, C̄, L̄, Q, B, and L being BRST invariant, while

sMab
I ¼ Nab

I ;

sNab
I ¼ 0;

smab
IJ ¼ −nabIJ ;

snabIJ ¼ 0: ð5:2Þ

The large amount of sources introduced is necessary to
control nonlinear symmetries as well as to ensure important
symmetries to establish the renormalization of the theory.
The quantum numbers of all sources are displayed in
Table III. The final full action in the vortex sectors is then

Σ ¼ Sþ Sext: ð5:3Þ

This action enjoys the following set of Ward identities:
(i) The Slavnov-Taylor identity,

SðΣÞ ¼
Z
x

�
δΣ
δKa

μ

δΣ
Aa
μ
þ δΣ
δL̄a

I

δΣ
δcaI

þ δΣ
δLa

I

δΣ
δc̄aI

þ δΣ
δBa

I

δΣ
δbI

þ δΣ
δQa

I

δΣ
δζaI

þ−ba
δΣ
δc̄a

þ δΣ
δC̄a

δΣ
δca

þNab
I

δΣ
δMab

I

þ λaI
δΣ
δξaI

− nabIJ
δΣ
δmab

IJ

�

þU2
δΣ
δμ2

þK
δΣ
δκ

þΛ
δΣ
δλ

¼ 0: ð5:4Þ

(ii) The gauge-fixing equation,

δΣ
δba

¼ ifabcηbI ζ
c
I −Mab

I ζbI ; ð5:5Þ

(iii) The antighost equation,

ḠaΣ¼
�

δ

δc̄a
þMab

I
δ

δQb
I
− ifabcηbI

δ

δQc
I

�
Σ¼ Nab

I ζbI :

ð5:6Þ

(iv) The ghost number equation,

N ghΣ ¼
Z

d4x

�
caI

δ

δcaI
− c̄aI

δ

δc̄aI
þ ca

δ

δca
− c̄a

δ

δc̄a

þU2
δ

δU2
þK

δ

δK
þ Λ

δ

δΛ

− Ka δ

δKa − 2C̄a δ

δC̄a − 2L̄a
I

δ

δL̄a
I
−Qa

I
δ

δQa
I

− Ba
I

δ

δBa
I
þ Nab

I
δ

δNab
I

− ξaI
δ

δξaI
þmab

IJ
δ

δmab
IJ

�
ΣS0 ¼ 0: ð5:7Þ

(v) The global flavor symmetry,

QΣ ¼
�
ζaI

δ

δζaI
− baI

δ

δbaI
− c̄aI

δ

δc̄aI
þ caI

δ

δcaI
− uaI

δ

δuaI

−Qa
I

δ

δQa
I
þ Ba

I
δ

δBa
I
þ La

I
δ

δLa
I

− L̄a
I

δ

δL̄a
I
− κ

δ

δκ
− 2λ

δ

δλ
−K

δ

δK
− 2Λ

δ

δΛ

− Nab
I

δ

δNab
I

−Mab
I

δ

δMab
I

− ξaI
δ

δξaI
− λaI

δ

δλaI

�
Σ ¼ 0: ð5:8Þ

TABLE III. Quantum numbers of the sources.

Sources Kμ C̄ L̄I LI BI QI MI NI mIJ nIJ J

Mass dimension 3 4 3 3 3 3 1 1 2 2 2
Ghost number −1 −2 −2 0 −1 −1 0 1 0 1 0
Q-charge 0 0 −1 1 1 −1 −1 −1 0 0 0
Nature F B B B F F B F B F B
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(vi) The linearly broken rigid symmetry,

RΣ¼
�
c̄aI

δ

δbaI
þζaI

δ

δcaI
− ifabcηaI

δ

δNbc
I
−Ba

I
δ

δL̄a
I

þ L̄a
I

δ

δQa
I
−κ

δ

δK
−2λ

δ

δΛ
−Mab

I
δ

δNab
I
−ξaI

δ

δλaI

�
Σ

¼ L̄a
I c

a
I þLa

I c̄
a
I −ζaI Q

a
I : ð5:9Þ

(vii) The ghost equation,

GaΣ ¼
�

δ

δca
þ ðfabcfcnmηnI þ ifabnMmn

I Þ δ

δNmb
I

þ iðfblcfcmaJl þ imdb
IJ f

dmaÞ δ

δnmb
IJ

�
Σ

¼ ifabcðC̄bcc þQb
I ζ

c
I þ L̄b

I c
c
I þ Lb

I c̄
c
I

þ Bb
I b

c
I Þ þ

i
g
Dab

μ Kb
μ: ð5:10Þ

(viii) The J equation,3

J aΣ ¼ δΣ
δJa

− fabcδIJ
δΣ
δmbc

IJ
¼ 0: ð5:11Þ

(ix) Global symmetry in the boundary-conditions sector,

FΣ ¼ λaI
δΣ
δλaI

þ ξaI
δΣ
δξaI

− Ja
δΣ
δJa

− nabIJ
δΣ
δnabIJ

−mab
IJ

δΣ
δmab

IJ
¼ 0: ð5:12Þ

(x) The linearly broken λ equation,

Λa
IΣ ¼ δΣ

δλaI
¼ fabcζbI J

c: ð5:13Þ

B. The most general counterterm

With the full action (5.3) at hand, we are now able to
construct the most general counterterm ΣC compatible
with all Ward identities in Sec. VA. Hence, we write the
perturbative expansion of the quantum action Γ at first
order,

Γð1Þ ¼ Σþ ϵΣC; ð5:14Þ

and impose on it all the Ward identities respected by the
classical action Σ. A straightforward calculation leads to the
following constraints for the counterterm,

BΣΣC ¼ 0;

δΣC

δba
¼ 0;

ḠaΣC ¼ 0;

N ghΣC ¼ 0;

QΣC ¼ 0;

RΣC ¼ 0;

GaΣC ¼ 0;

J aΣC ¼ 0;

FΣC ¼ 0;

Λa
IΣC ¼ 0: ð5:15Þ

Here,

BΣ ¼
Z
x

�
δΣ
δKa

μ

δ

Aa
μ
þ δΣ
δAa

μ

δ

δKa
μ
þ δΣ
δLa

I

δ

δc̄aI
þ δΣ
δc̄aI

δ

δLa
I

þ δΣ
δL̄a

I

δ

δcaI
þ δΣ
δcaI

δ

δL̄a
I
þ δΣ
δBa

I

δ

δbI
þ δΣ
δbaI

δ

δBa
I

þ δΣ
δQa

I

δ

δζaI
þ δΣ
δζaI

δ

δQa
I
þ δΣ
δC̄a

δ

δca
þ δΣ
δca

δ

δC̄a

þ Nab
I

δ

δMab
I

− ba
δ

δc̄a
− nabIJ

δ

δmab
IJ

þ λaI
δ

δξaI

�

þU2
δ

δμ2
þK

δ

δκ
þ Λ

δ

δλ
ð5:16Þ

is the linearized Slavnov-Taylor operator, which turns out
to be nilpotent. Thence, the first equation in (5.15) defines a
cohomology problem for BΣ. The solution reads [31]

ΣC ¼ Δ0 þ BΣΔ−1; ð5:17Þ

where Δ0 is the nontrivial part of the cohomology and
BΣΔ−1 is the trivial one. The nontrivial part is an integrated
functional, polynomial in the fields, sources and their
derivatives, with dimension 4, and vanishing ghost number.
The quantity Δ−1 is also an integrated functional, poly-
nomial in the fields, sources and their derivatives, with
dimension 4, but with ghost number −1. Due to the rich set
of constraints (5.15), it is a straightforward exercise to show
that the nontrivial cohomology is the usual one in YM
theory, namely

Δ0 ¼ a0SYM; ð5:18Þ

with a0 being an independent renormalization constant. For
the trivial sector of the cohomology, we can write

Δ−1 ¼ Δ̄−1ðφÞ þD−1ðφ;ϕÞ; ð5:19Þ
3Notice that, due to this Ward identity, the variables ðJ;mIJÞ

can enter the counterterm only through the combination
δIJfabcJa −mbc

IJ .
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where ϕ≡ fJ; λI; ξI; mIJ; nIJg and φ stands for all the
other fields, sources and parameters. This decomposition is
a direct consequence of the Ward identity (5.12) together
with the quantum numbers of the sources involved. Then, it
follows that Δ̄−1ðφÞ is identical to the full Δ−1 of the
vortex-free sector obtained in Ref. [29]. Remarkably, after
applying all remaining constraints in (5.15), one finds

Δ̄−1 ¼
Z
x
½a1ðc̄aI ∂2ζaI þ gfabc∂μAa

μc̄bI ζ
c
I

þ g2facmfdbmAa
μAb

μc̄cIζ
d
I Þ þ a2fIJKfabcκc̄aI ζ

b
Jζ

c
K

þ aabcd3;IJKLλc̄
a
I ζ

b
Jζ

c
Kζ

d
L þ a4μ2c̄aI ζ

a
I � ð5:20Þ

D−1 ¼ 0; ð5:21Þ

with ai being independent renormalization parameters. The
tensor aabcd3;IJKL has the same structure of γabcdIJKL. Therefore,

ΣC ¼ ΣCðφÞ; ð5:22Þ

where ΣCðφÞ, given by

ΣCðφÞ ¼
Z
x

�
a0
2
ð∂μAa

νÞ2 −
a0
2
∂νAa

μ∂μAa
ν þ

a0
2
gfabcAa

μAb
ν∂μAc

ν þ
a0
4
g2fabcfcdeAa

μAb
νAd

μAe
ν

þ a1ð∂μbaI ∂μζaI þ gfabc∂μbaI A
b
μζ

c
I þ gfabcbaI ∂μζ

b
I A

c
μ þ g2fabefcdeAa

μbbI A
c
μζ

d
I

þ ∂μc̄aI ∂μc
a
I þ gfabc∂μc̄aI A

b
μccI þ gfabcc̄aI ∂μc

b
I A

c
μ þ g2fabefcdeAa

μc̄bI A
c
μcdI Þ

þ a2fIJKfabcðKc̄aI ζ
b
Jζ

c
K − κbaI ζ

b
Jζ

c
K − 2κc̄aI c

b
Jζ

c
KÞ þ aabcd3;IJKLðΛc̄aI ζbJζcKζdL − λbaI ζ

b
Jζ

c
Kζ

d
L − 3λc̄aI c

b
Jζ

c
Kζ

d
LÞ

þ a4ðU2c̄aI ζ
a
I − μ2baI ζ

a
I − μ2c̄aI c

a
I Þ
	
; ð5:23Þ

is the vortex-free counterterm found in [29].

C. Quantum stability

To prove stability, one has to show that the counterterm
(5.23) can be absorbed in the original action (5.3) by means
of a multiplicative redefinition of the fields, sources and
parameters, i.e.,

ΣðΦ;S; PÞ þ ϵΣCðΦ;S; PÞ ¼ ΣðΦ0;S0; P0Þ; ð5:24Þ

where Φ stands for the fields, S collects the sources, and P
contains the parameters. The bare fields are defined by the
multiplicative renormalization

Φ0 ¼
�
1þ ϵ

2
zΦ

�
Φ;

S0 ¼ ð1þ ϵzSÞS;
P0 ¼ ð1þ ϵzPÞP: ð5:25Þ

As proven in [29], the ΣðφÞ part is stable, and the
factors zφ are the same as those of the vortex-free sector.
Specifically,

zA ¼ a0; zg ¼ −
a0
2
;

zcI ¼ 0; zc̄I ¼ 2a1;

zζI ¼ 0; zbI ¼ 2a1;

zκ ¼ −a1 − a2; zK ¼ −a1 − a2;

zλ ¼ −a1 − a4; zΛ ¼ −a1 − a4;

zμ2 ¼ −a1 − a3; zU2 ¼ −a1 − a3;

zc ¼ 0; zc̄ ¼ 0;

zC̄ ¼ 0; zb ¼ 0;

zL ¼ −a1; zL̄ ¼ 0;

zK ¼ −
a0
2
; zB ¼ −a1;

zQ ¼ 0; zM ¼ 0;

zN ¼ 0: ð5:26Þ

Moreover,

zn ¼ zm ¼ zJ ¼ −
zλI
2

¼ −
zξI
2
: ð5:27Þ

As there is no counterterm containing J, and cI and ζI do
not renormalize, it is safe to set zn ¼ zm ¼ zJ ¼ zλI ¼
zξI ¼ 0. Therefore, since the algebraic technique is recur-
sive, the renormalizability of the model at all orders in
perturbation theory is proven. The number of independent

RENORMALIZABILITY OF A YANG-MILLS CENTER-VORTEX … PHYS. REV. D 105, 125015 (2022)

125015-9



renormalizations is given by the number of independent
renormalization parameters ai, namely, five.

VI. CONCLUSIONS

The search for a well defined quantization procedure for
the Yang-Mills theory in the nonperturbative regime has
attracted a lot of activity for many years. Many proposals
have been analyzed, always considering gauge fixing
procedures which are global in configuration space.
Global conditions lead to the Gribov problem, which has
been tackled by restricting the configuration space to be
path-integrated. A different way out was raised at the end of
Ref. [1], where a superposition of infinitely many local
gauge-fixings was proposed. Recently, a particular reali-
zation of this general scenario was implemented by means
of a partition of the configuration space into sectors labeled
by topological degrees of freedom. The conditions for this
realization to be well defined were discussed in Ref. [15],
and briefly reviewed in Sec. II of the present work. In this
work, we showed for the first time that this path is in
principle calculable. Namely, we established the all-orders
perturbative renormalizability of the procedure in sectors
labeled by oriented center vortices. Remarkably, as the
counterterms are the same as those of the vortex-free sector,
no new parameters had to be introduced. In a future work, it
would be important to explicitly calculate an approximation
to the partial contributions defined in Eq. (2.9). At large
distances, they are expected to contain terms proportional
to the area and to the square of the extrinsic curvature of Ω,
the closed worldsurface where the center-vortex guiding
centers are located. This points to the idea that Singer’s
no go theorem is the fundamental reason behind a first-
principles YM center-vortex ensemble. Furthermore, this
could establish a connection with phenomenological
ensembles of center vortices, which are known to success-
fully reproduce the properties of the confining string (see
the reviews [39,40], and references therein).
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APPENDIX: LIE ALGEBRA CONVENTIONS

In this work, following Ref. [30] and references therein,
we use a basis for suðNÞ, the Lie algebra of SU(N), which
relies on the Cartan decomposition. The first N − 1

elements are given by the generators Tq, q ¼ 1;…;
N − 1 of the Cartan subalgebra, also known as the maximal
torus of suðNÞ, since all of its elements commute with each
other:

½Tq; Tp� ¼ 0: ðA1Þ

Then, we define the eigenvectors Eα of the adjoint action
of Tq:

½Tq; Eα� ¼ αqEα: ðA2Þ

The eigenvalues αq, q ¼ 1;…; N − 1 are known as the
roots of suðNÞ. It is possible to define a notion of ordering
of these objects, where a root is said to be positive if and
only if its last nonvanishing component is positive. The
number of negative and positive roots is the same. This
follows from the fact that if α is a root, then −α is also a
root, with E−α ¼ E†

α. This may be obtained by taking the
Hermitian conjugate of Eq. (A2). Then, the remaining
NðN − 1Þ Hermitian generators are defined as

Tα ¼
Eα þ E†

αffiffiffi
2

p ðA3Þ

T ᾱ ¼
Eα − E†

α

i
ffiffiffi
2

p : ðA4Þ

We denote the elements of the basis ðTq; Tα; T ᾱÞ collec-
tively by Ta, always with a latin index different than p, q,
which we use only for the Cartan generators. The commu-
tation relations of this basis which are relevant for the
purposes of this work are

½Tq; Tp� ¼ 0; ðA5Þ

½Tq; Tα� ¼ iαqT ᾱ; ðA6Þ

½Tq; T ᾱ� ¼ −iαqTα: ðA7Þ

These relations, together with the fact that the commutators
between root generators never involve Cartan generators,
imply that fqbc is nonvanishing only when b ¼ α and
c ¼ ᾱ, or b ¼ ᾱ and c ¼ α. Finally, we remark that this
basis is orthonormal with respect to the Killing metric

ðA;BÞ ¼ TrðAdðAÞAdðBÞÞ; ðA8Þ

where AdðÞ stands for the adjoint representation of the Lie
Algebra.
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