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In this paper we study the quantum Brownian motion of a scalar point particle in the analog Friedman-
Robertson-Walker spacetime in the presence of a disclination, in a condensed matter system. The analog
spacetime is obtained as an effective description of a Bose-Einstein condensate in terms of quantum
excitations of sound waves, named phonons. The dynamics of the phonons is described by a massless real
scalar field whose modes are also subjected to a quasiperiodic condition. In this sense, we find exact
solutions for the real scalar field in this scenario and calculate the two-point function which makes it
possible to analyze the mean squared velocity dispersion of the particle in all directions. We thus analyze
some interesting particular cases and show some graphs where it is possible to see the consistency of our
results.
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I. INTRODUCTION

Quantum Brownian motion (QBM) of a point particle is
a topic that has been investigated in several contexts and
approaches [1–6]. This is an example of a phenomenon
category induced by modifications in the quantum vacuum
fluctuations of a field, along with the famous Casimir effect
[7,8]. In the QBM the quantum fluctuations of the vacuum
state of a field, for instance, the scalar [1–3] and electro-
magnetic [4–6] ones, induce a stochastic motion on a
particle. The latter, in turn, behaves like a probe device of
the quantum vacuum fluctuation effects, which reveal
themselves when modifications in the Minkowski free
vacuum comes about as a consequence of the imposition
of boundary conditions, thermal effects, and so on. In order
to make the studies increasingly realistic and explore the
effects causing the QBM of the particle over time, different
elements have been investigated, such as temperature
corrections [9–11], smoothing interactions through switch-
ing functions [3,12], which regularize typical divergences
in the model, and the wave packet structure of the particle
[13]. It is important to point out that, although both QBM
and classical Brownian motion are two types of stochastic
motion, they have distinct characteristics due to their
quantum and classical origins, respectively. One of the
main differences, for example, is that in the quantum
domain negative dispersions are possible to happen, a fact

that in the literature is known as the subvacuum effect
(see [11] and references therein).
General relativity as well as quantum field theory predict

highly sensitive physical phenomena, for example, gravi-
tational waves and Hawking radiation. The experimental
verification of such phenomena requires highly advanced
and accurate technology, which is certainly the case of
gravitational waves. Although gravitational waves have
been predicted a long time ago, only recently they were
detected experimentally [14]. On the other hand, Hawking
radiation has been observed only in gravity analog models
[15], since in gravitational context it faces serious diffi-
culties due to its small magnitude when compared to the
cosmic radiation background.
Gravity analog models have also been the subject of

studies in different aspects and scenarios. At a more
elementary level, for instance, those analog systems are
constituted by fluids (as water) in which the acoustic
perturbation velocity, that is, the sound wave, in the
medium, plays a role analogous to the light velocity in a
spacetime geometry. In other words, sound waves propa-
gating through a fluid behave like the light in curved
spacetime. In addiction, it is possible to make this analogy
in more complex systems such as Bose-Einstein conden-
sates (BECs) [16].
BECs are quantum systems widely used in the literature

to investigate various types of phenomena. In fact, for
instance, in Ref. [17] the radial expansion of a ring-shaped
BEC has been considered to simulate a real cosmological
expanding universe, and among the investigations carried
out, phonons redshift is studied, which consists of the
analogous effect to photons in real cosmological spacetime.
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We may also quote the study of the particle production in a
BEC in different expanding scenarios [18]. The BECs
implementation in gravitational wave detections is an idea
that has been discussed [19]. So with these examples we
can see that BECs are indeed very interesting systems to be
considered.
The QBM of point particles also can be studied in the

gravity analog model scenarios previously mentioned. For
instance, in Ref. [20] the QBM of a point particle in the
effective spacetimewas studied, like the one of theFriedman-
Robertson-Walker (FRW) spacetime in cosmology, in the
absence of boundary, as well as in the presence of plane
boundaries. In summary, the authors studied two distinct
cases: free particle and bounded particle by a classical
nonfluctuating external force that cancel the expanding
effects. A remarkable result is that, in the bounded particle
case, in the absence of plane boundaries, a constant and
isotropic velocity dispersion is obtained, indicating the
existence of a stochastic motion. Here, we decided to study
a similar system, but now considering the presence of a
disclination without plane boundaries, so that we can be able
to analyze different configurations from the ones inRef. [20].
More specifically, in the present paper, we propose to

study the QBM of a massless scalar point particle in an
analog model, simulating a conformal expanding universe
in the presence of a linear topological defect known in
condensed matter as disclination and also requiring that the
scalar field obeys a quasiperiodic condition on the angular
variable. In order to simulate the expanding universe we
consider an expanding BEC system that has been explored
as a means of investigation for different physical phenom-
ena. In this sense, we could envisage a condensed matter
system, like liquid crystals, where a disclination is possible
to exist. We should mention that disclination is the analog,
in condensed matter, to cosmic string [21], arising due to
phase transitions in the early Universe. Cosmic strings as it
is known in the literature may have several cosmological,
astrophysical, and gravitational implications, observatio-
nally [22–24].
Regarding to the structure of this paper, in Sec. II we

present a brief discussion about the main relations that
allow us to establish the effective expanding spacetime for
the phonons present in the BEC and taken into consid-
eration the presence of a disclination. In Sec. III we provide
the massless scalar field solution, obeying a quasiperiodic
condition on the angular variable, in the effective FRW
spacetime considered. In Sec. IV we obtain the positive
frequency two-point Wightman function, which is an
essential element for our computation of the mean squared
velocity dispersion (MSVD) of the particle. The point
particle velocity equation coupled to the massless scalar
field is given in Sec. V, which we use to obtain the velocity
dispersion in Sec. VI and to study its behavior. Finally, in
Sec. VII, we summarize the main results in this paper and
present our conclusions.

II. EFFECTIVE FRW SPACETIME IN
BOSE-EINSTEIN CONDENSATE

WITH A DISCLINATION

The condensation occurs when particles of a boson gas
(e.g., rubidium atoms) are submitted to extremely low
temperatures so that they tend to agglomerate in the lowest
energy state of the system, usually called the ground state.
The exact description of this system is made through the so-
called second quantization formalism, where the fields
associated with the system are quantized and become
operators. Thereby, it is known that the field operator
Ψ̂ðx; tÞ related to the bosons condensate obeys the equation
of motion [18,25,26]

iℏ
∂Ψ̂ðx; tÞ

∂t
¼

�
−
ℏ2

2m
∇2 þ VextðxÞ þ UjΨ̂ðx; tÞj2

�
Ψ̂ðx; tÞ;

ð1Þ

where Vext represents an external potential which affects
equally all particles in the gas, for example, the particle
confinement potential. The term U ¼ 4πℏ2a=m is a two-
body potential interaction, i.e., between two bosons in the
condensate, which is written in terms of the bosons mass
and the scattering length a. It is important to mention that
the parameter a will play a key role in the mathematical
construction below, because through it will be defined a
velocity for the acoustics perturbations on the condensate.
Although the exact description of the dynamics of the

system involves operators, as shown in Eq. (1), if the gas is
weakly interacting and lies in the low temperature regime,
the dominant occupation by the particles in a single state
(the ground state) suggest that the field Ψ̂ðx; tÞ allows the
decomposition [18]

Ψ̂ðx; tÞ ¼ Ψðx; tÞ þ δφ̂ðx; tÞ; ð2Þ

whereΨðx; tÞ correspond to the mean-field valueΨðx; tÞ ¼
hΨ̂ðx; tÞi. The point to be noted is that, since all particles
lie in the ground state, we can describe the system on
average by a collective wave function. It is because of this
collective description that sometimes Ψðx; tÞ is said to be
the wave function of the condensate [25]. In this approach
δφ̂ðx; tÞ represent the quantum part of the boson field
operator Ψ̂, which is interpreted as quantum or thermal
fluctuations with null mean value, that is, hδφ̂ðx; tÞi ¼ 0.
This mean-field approach is known as the Bogolyubov
approximation [18].
Using Eqs. (1) and (2), and neglecting the fluctuations,

we can establish that

iℏ
∂Ψðx; tÞ

∂t
¼

�
−
ℏ2

2m
∇2 þ VextðxÞ þ UjΨðx; tÞj2

�
Ψðx; tÞ;

ð3Þ
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which is called the Gross-Pitaevskii equation. This equa-
tion will be the basis to obtain a mathematical description
of the analog model taken into account in our investigation.
Note that unlike Eq. (1), which involves operators, Eq. (3)
is written in terms of the classical field, which corresponds
to the wave function describing the atoms in the ground
state of the condensate. Furthermore, it is instructive to note
the similarity between (3) and the Schrödinger equation for
a particle of massm submitted to a potential Vext, but with a
nonlinear term that is responsible for the two-body
interaction.

A. Effective metric

From the classical point of view, the starting point to
obtain an effective metric is both the continuity and Euler
equations [16]. Similarly, in the quantum level, we can get a
effective metric by considering in Eq. (3) the field decom-
position [18]

Ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðx; tÞ

p
eiθðx;tÞ; ð4Þ

where nðx; tÞ and θðx; tÞ are the density and the phase
classical real fields, respectively. One should remember that
in general the wave function is a complex object, and
complex quantities can be written in terms of modulus and
phase (the polar form of a complex number).
Substituting Eq. (4) in Eq. (3), after some algebraic

manipulations, it is possible to show that small perturba-
tions in the phase field of the condensate wave function
experience an apparently curved spacetime geometry.
This analog spacetime is characterized by the effective
metric [18]

gμνðx; tÞ ¼
�
n0
cm

� 2
ðd−1Þ

2
664
−ðc2 − v2Þ ..

.
−vj

� � � � � �
−vi ..

.
δij

3
775; ð5Þ

where d represents spatial dimensions,

v ¼ ℏ
m
∇θ0 ð6Þ

is a background velocity, and c is the speed of the acoustic
perturbations in the condensate, given by

c2 ¼ Un0
m

: ð7Þ

The parameters θ0 and n0 are background values of the
phase and density fields, respectively. We would like to
emphasize that the metric (5) is established in the so-called
acoustic approximation, also known as hydrodynamics
approximation or semiclassical approximation. In this
regime, the quantum pressure term is negligible, which

leads to an effective metric that describes an analog
Lorentzian geometry [18] (see also Ref. [25] for other
approximations). Note that in the regime of the acoustic
approximation the geometry plays a central role and typical
parameters, like the healing length, are absent.

B. Effective expanding spacetime with a disclination

To create an effective geometry that simulates an
expanding spacetime from the effective metric (5), we
follow distinct routes [27]. In particular, one of these is
done by varying the acoustic perturbation velocity in the
condensate, by considering a temporal dependence in the
sound velocity propagation. This method is commonly
used in the literature [18,20,28,29] and here we will
adopt it.1

Similar to Refs. [18,20,28], here the time variation in the
sound velocity will be introduced by means of a time
dependence of the scattering length, a ¼ aðtÞ, and the
atoms density n0 is maintained fixed in the condensate.
Hence, Eq. (7) becomes

cðtÞ2 ¼ 4πℏ2n0
m

aðtÞ: ð8Þ

Now wewant to establish that the time variation takes place
through a dimensionless scale function responsible for
modulating the interaction about some reference value.
In order for this to happen we can rewrite Eq. (8) as

cðtÞ2 ¼
�
4πℏ2n0

m
a0

�
bðtÞ ¼ U0bðtÞ: ð9Þ

Thus, the relation between the sound velocity and the
scaling function bðtÞ is

bðtÞ ¼
�
cðtÞ
c0

�
2

: ð10Þ

Here, U0 ¼ Uðt ¼ t0Þ, a0 ¼ aðt ¼ t0Þ, and c0 ¼ cðt ¼ t0Þ
correspond to constant values at the initial time t0 and,
consequently, bðt0Þ ¼ 1. It is important to emphasize that,
in this approach, a simulating expanding spacetime is
related to the capacity to control the velocity of the acoustic
perturbations.
Considering the preceding discussions, from the met-

ric (5) with v ¼ 0,2 we get the four-dimensional line
element [18]

ds̄2eff ¼ Ω2
0½−c20b

1
2ðtÞdt2 þ b−

1
2ðtÞδijdxidxj�; ð11Þ

1For an example of a distinct method see Ref. [30].
2As indicated in Ref. [31], although a time variation is

admitted in sound velocity the condensate stays at rest so the
background velocity is zero.
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with

Ω2
0 ¼

n0
c0m

: ð12Þ

As indicated in Ref. [20] we note that, due to the dimen-
sional constant Ω2

0, this line element has a different
dimension from that of a square length, but we can regain
the usual dimension redefining the line element. SinceΩ2

0 is
a constant factor we redefine the line element (11) such that
ds̄2effΩ−2

0 ¼ ds2eff . Therefore

ds2eff ¼ −c20bðtÞ
1
2dt2 þ b−

1
2ðtÞδijdxidxj: ð13Þ

Furthermore, this line element allows us to make the
conformal time transformation

dt ¼ b−
1
2ðtÞdη: ð14Þ

As it is our interest to consider a system with a disclination,
the suitable symmetry for the spatial part of the line element
(13) is the cylindrical one, that is,

δijdxidxj ¼ dρ2 þ ρ2dϕþ dz2; ð15Þ

where ρ ≥ 0, ϕ ∈ ½0; 2π=p�, and z ∈ ð−∞;∞Þ. Here the
parameter p ≠ 1 characterizes the presence of the discli-
nation in the medium or in the analog model context the
existence of the cosmic string.3 Note that it modifies the
range of the angular variable ϕ in contrast to the usual
cylindrical coordinates where p ¼ 1. From Eqs. (13)–(15)
we get

ds2eff ¼ b−
1
2ðηÞ½−c0dη2 þ dρ2 þ ρ2dϕþ dz2�: ð16Þ

This line element characterizes an effective FRW spacetime
in the presence of a disclination (cosmic string analog)
which is conformally related to the locally flat effective
disclination spacetime, with conformal factor b−

1
2ðηÞ.

III. KLEIN-GORDON EQUATION AND
NORMALIZED SOLUTIONS

The Klein-Gordon (KG) equation for the massless scalar
field ψðxÞ in curved spacetime, nonminimally coupled to
gravity, is given by

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
gμν∂νψ þ ξRψ ¼ 0; ð17Þ

where R is the Ricci scalar and ξ is the nonminimal
curvature coupling. Two specific values of ξ are ξ ¼ 0

and ξ ¼ 1=6 that correspond to the minimal and conformal
couplings in (1þ 3)-dimensional spacetime [32], respec-
tively. Note also that, in the context of the condensate
discussed in the previous section, ψðxÞ will represent the
quantum fluctuating part of the phase θðxÞ introduced in
Eq. (4) [18]. Therefore, ψ is a real massless scalar field that
describes the phonons excitations in the condensate. It is
important to stress that Eq. (17) is not the standard form that
describes the perturbations in the field phase θðxÞ≡ ψðxÞ
of the BEC. In fact, the equation which arises from the
Gross-Pitaevskii equation (3) by implementing the acoustic
approximation is given by Eq. (17) without the term ξRψ
(nonminimal coupling to gravity). In any case, we are
assuming the existence of such a coupling. Nonetheless, it
is possible that this nonminimal coupling can be introduced
via the generalized Gross-Pitaevskii equation shown in
Ref. [25]. Another possibility is through some modification
in the external potential in (3).
In the case of conformal transformations the metric

tensor and scalar field obey the following relations:

g̃μνðxÞ ¼ Ω2ðxÞgμνðxÞ ð18Þ

and

ψ̃ðxÞ ¼ Ω
ð2−nÞ
2 ðxÞψðxÞ; ð19Þ

being ΩðxÞ a positive, real, and nonvanishing function and
n is the dimension number of the spacetime [32]. For our
case, n ¼ 4 and Ω2 ≡ b−

1
2.

For a conformally coupled massless scalar field, the two-
point function in an expanding spacetime in the presence of
disclination can be obtained by the corresponding one in
Minkowski spacetime. In order to construct the two-point
function, Eqs. (18) and (19) allow us to solve the KG
equation in the disclination spacetime, described by the line
element in square brackets in Eq. (16), and then to obtain
the solution in the expanding spacetime with a disclination,
by making use of a conformal transformation.
The positive frequency solution of the KG equation in

the presence of a disclination spacetime is given by

ψðt; ρ;ϕ; zÞ ¼ Ae−iωtþipkϕϕþikzzJjkϕjðlρÞ; ð20Þ

where A is a normalization constant and JμðzÞ is the Bessel
function [33]. The energy is given by the expression

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c20l

2 þ k2z

q
: ð21Þ

Here we want to consider that the massless scalar field
obeys the quasiperiodic condition in the angular variable,

ψðt; ρ;ϕ; zÞ ¼ e−ið2πβÞψðt; ρ;ϕþ 2π=p; zÞ; ð22Þ
3Different from the cosmic string, the parameter p associated

with disclination can also assumes values smaller than unity.
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where 0 ≤ β < 1 stands for the quasiperiodicity of the
solution. Let us now point out that the condition above, as
discussed in Ref. [34], indicates in our case that the acoustic
field is a multivalued function as a consequence of the
parameter β being a noninteger number. As also argued in
Ref. [34], there exists an equivalence of continuous multi-
valued functions with discontinues single-valued ones. This
makes it possible to establish a connection with the famous
Aharonov-Bohm effect. Since the parameter β is the cause
of the discontinuity it may be interpreted as an interaction
[35] of an external source with a single-valued acoustic
field. In the case of the original Aharonov-Bohm effect the
interaction is between a line of magnetic flux with an
electrically charged particle [36,37]. In our case, on the
other hand, the analog Aharonov-Bohm effect may re-
present scattering of phonons as a consequence of the
interaction of a vortex line with the acoustic field [38,39].
Now by imposing the condition (22) on the solution (20),

we get

ψðt; ρ;ϕ; zÞ ¼ Ae−iωtþipðmþβÞϕþikzzJpjmþβjðlρÞ; ð23Þ

where m is an integer number and kϕ ¼ qðmþ βÞ. The
solution above is characterized by the complete set of
quantum numbers σ ¼ ðl; m; kzÞ.
The normalization constant A can be obtained by making

using of the normalization condition

−
i

ℏc20

Z
ddx

ffiffiffiffiffiffi
−g

p fψσðxÞ½∂tψ�
σ0 ðxÞ�

− ½∂tψσðxÞ�ψ�
σ0 ðxÞg ¼ δσσ0 ; ð24Þ

where the delta symbol on the right-hand side of the above
equation is understood as the Dirac delta function for the
continuous quantum number ðkz; lÞ and the Kronecker
delta for discrete ones (m). From (24), one has

ψσðxÞ ¼
�
plℏc20
8π2ω

�1
2

e−iωtþipðmþβÞþikzJpjmþβjðlρÞ: ð25Þ

We would like to emphasize that Eq. (25) is a normalized
solution for the KG equation in the disclination spacetime,
satisfying the quasiperiodic condition (22). This quasiperi-
odic condition allows us to obtain a generalized solution in
terms of the general phase 2πβ, which takes into account
other values of β instead of those of the periodic (β ¼ 0)
and antiperiodic (β ¼ 1=2) conditions.
Before ending this section we should point out that, in

order to perform the analysis of the induced quantum
Brownian motion by the system under consideration, the
massless real scalar field must be promoted to a field
operator ψ̂ that can be expressed by

ψ̂ðxÞ ¼
X
σ

½aσψσðxÞ þ a†σψ�
σðxÞ�; ð26Þ

where ψσðxÞ and its complex conjugate ψ�
σðxÞ correspond

to the complete set of normalized solutions of the KG
equation and are given by (25) in our case. The coefficients
a and a† are, respectively, the creation and annihilation
bosonic operators that obey the commutation relation
½aσ; a†σ0 � ¼ δσ;σ0 . The sum symbol over the set of quantum
numbers σ in Eq. (26) is defined as

X
σ

¼
X∞

m¼−∞

Z
∞

−∞
dkz

Z
∞

0

dl: ð27Þ

Therefore, we are able now to introduce and calculate the
two-point Wightman function in the next section.

IV. WIGHTMAN FUNCTION

At the quantum level, one of the most important
quantities in the study of quantum vacuum fluctuation
effects is the positive frequency two-point Wightman
function W, which is defined as [40]

Wðx; x0Þ ¼ hψ̂ðxÞψ̂ðx0Þi ¼
X
σ

ψσðxÞψ�
σðx0Þ; ð28Þ

where h…i≡ h0j…j0i stands for the vacuum expectation
value. Themean value of the fields product above is taken by
making use of Eq. (26) and the commutation relation for the
creation and annihilation operators. As usual the vacuum
state j0i is defined by the condition aj0i ¼ 0. This, ulti-
mately, results in the sum over the quantum numbers σ of the
product of the field ψσðxÞ by its complex conjugate ψ�ðx0Þ.
Substituting the normalized solution (25) in the defi-

nition of the Wightman function (28), along with (27), after
performing the integrals in kz and l, provides the expression

Wd ¼
ℏpc0
8π2ρρ0

eipβΔϕ
Z

∞

0

dξe−
δ

2ρρ0ξIðp; β; ξÞ; ð29Þ

where we have defined δ ¼ Δτ2 þ Δz2 þ ρ2 þ ρ02, with
Δτ ¼ ic0Δt indicating that a Wick rotation has been
performed and Δt ¼ t − t0, Δz ¼ z − z0. In addition, the
function Iðp; β; ξÞ is defined as

Iðβ; p; ξÞ ¼
X∞

m¼−∞
eipmΔϕIpjmþβjðξÞ; ð30Þ

where Δϕ ¼ ϕ − ϕ0. Let us point out that we have been
able to perform the integral in kz and l by making use of the
identity

e−ωΔτ

ω
¼ 2ffiffiffi

π
p

Z
∞

0

dze−ω
2z2−Δτ2

4z2 :

In particular, the integral in l has been worked out by using
the relation

QUANTUM BROWNIAN MOTION FOR A PARTICLE IN ANALOG … PHYS. REV. D 105, 125014 (2022)

125014-5



Z
∞

0

e−s
2z2JrðαzÞJrðβzÞzdz ¼

1

2s2
e−

ðα2þβ2Þ
4s2 Ir

�
αβ

2s2

�
;

where IμðzÞ is the modified Bessel functions of the first kind [33].
The sum in Eq. (30) can be performed by using the following integral representation [41,42]:

Iðβ; p; ξÞ ¼
X∞

m¼−∞
eipmΔϕIpjmþβjðξÞ

¼ 1

p

X
m

eξ cos ð
2mπ
p −ΔϕÞeiβð2mπ−pΔϕÞ −

1

2πi

X1
j¼−1

jejðiπpβÞ
Z

∞

0

dy
fcosh½pyð1 − βÞ� − coshðpβyÞe−ipðΔϕþjπÞg
eξ coshðyÞfcoshðpyÞ − cos½pðΔϕþ jπÞ�g ; ð31Þ

where the m index summation on the right-hand side goes under the restriction

−
p
2
þ Δϕ
ð2π=pÞ ≤ m ≤

p
2
þ Δϕ
ð2π=pÞ :

Moreover, from Eqs. (29) and (31) we obtain

Wdðx; x0Þ ¼
ℏc0
4π2

X
m

1

σm
e2πmβi −

ℏc0p
8π3i

Z
∞

0

dy
1

σy
F ðβ; p;Δϕ; yÞ; ð32Þ

where

σm ¼ δ − 2ρρ0 cos
�
2mπ

p
− Δϕ

�
; σy ¼ δþ 2ρρ0 coshðyÞ; ð33Þ

and

F ðβ; p;Δϕ; yÞ ¼
X1
j¼−1

jejðiπpβÞ
fcosh½pyð1 − βÞ� − coshðpβyÞe−ipðΔϕþjπÞg

fcoshðpyÞ − cos½pðΔϕþ jπÞ�g : ð34Þ

Having obtained the positive frequency Wightman func-
tion, we are in a position to calculate the MSVD of the
particle for each component.

V. EQUATION OF MOTION

In order to obtain the equation of motion for a point
particle in the FRW spacetime in the presence of a
disclination, let us consider the expression, in curved
spacetime,

m
Duμ

dτ
¼ qgμν∇νψ þ fμext; ð35Þ

where uμ is a four vector velocity,m is the mass of the point
particle, and q is its charge. This is the equation of motion
to a point particle coupled to a massless scalar field ψ
[20,43]. Here backreaction effects have been neglected so
we could solve a homogenous KG equation. Furthermore,

Duμ

dτ
¼ duμ

dτ
þ Γμ

αβu
αuβ ð36Þ

is the covariant derivative of the four vector uμ and

Γμ
αβ ¼

1

2
gγμðgγα;β þ gγβ;α − gαβ;γÞ ð37Þ

is the Christoffel symbol.
Let us now consider the equation of motion (35) in the

nonrelativistic regime, which is perfectly reasonable for
the study of the QBM. In this case, the proper time τ and the
time coordinate t are practically the same and only the
spatial components of Eq. (35) are significant. Hence,
Eq. (35) becomes

m
Dui

dt
¼ fi þ fiext; ð38Þ

where fi ¼ qgij∂jψ is the force arising due to the existence
of the field ψ . The term fiext accounts for other possible
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external force contributions to the dynamics of the charged
scalar particle of mass m. These contributions are in
general of classical origin, e.g., the gravitational and
electromagnetic forces. Note that, in essence, Eq. (38) is
very similar to the Langevin equation for the classical
Brownian motion of a suspended particle in a fluid.
Classically, fiext is associated with nonfluctuating forces,
while fi is associated with a stochastic force. However,
here, in the context of quantum field theory, the force fi

carries the information of the quantum vacuum fluctuations
of the scalar field ψ .
Taking into consideration the line element (16), the only

nonzero components of the Christoffel symbols are

Γρ
0ρ ¼ Γρ

ρ0 ¼ Γϕ
0ϕ ¼ Γϕ

ϕ0 ¼ Γz
0z ¼ Γz

0z ¼ −
1

4

_b
b
; ð39Þ

Γρ
ϕϕ ¼ −ρ; Γϕ

ρϕ ¼ Γϕ
ϕρ ¼

1

ρ
; ð40Þ

where _b stands for the time derivative of the function bðtÞ.
Since fiext accounts for classical force contributions, in

order to focus only on quantum effects on the particle
motion, it is suitable to consider

fiext ¼ mðΓρ
ϕϕu

ϕuϕ; 2Γϕ
ρϕu

ρuϕ; 0Þ: ð41Þ

Note that if we make the identification uρ ¼ v and uϕ ¼
ω ¼ v=ρ we realize that fρext and fϕext are both similar to
centripetal forces, which are classical. Based on this, it is
plausible to consider the form of fiext presented in Eq. (41),
so that we can be able to focus only on quantum fluctuation
effects, arising from fi.
Carrying on with our analysis, from Eqs. (38), (39), and

(41), we obtain

uiðtÞ ¼ qb
1
2ðtÞ
m

Z
t

t0

dtb−
1
2ðtÞgij∂jψ ; ð42Þ

where we have considered a zero value for the initial
velocity, that is, uiðt0Þ ¼ 0. Thus, Eq. (42) provides the
coordinate velocity expression to a point particle in an
expanding spacetime with a disclination. Note that the
information about the spacetime under consideration is
codified in the metric tensor present in (42).

VI. VELOCITY DISPERSION

A. General expression

We are now interested in calculating the velocity
dispersion, that is, the MSVD of the particle. The latter,
in turn, is obtained by using the definition

hðΔuiÞ2i ¼ hðuiðxÞÞ2i − huiðxÞi2: ð43Þ

It is clear that, by making the scalar field become an
operator, the velocity of the point particle in Eq. (42)
also becomes an operator, resulting in huiðtÞi ¼ 0 since
hψ̂ðxÞi ¼ 0. This is straightforward to obtain by using
Eq. (26) and the act of the creation and annihilation
operators on the vacuum state. The velocity dispersion
of the particle in Eq. (43) is thus given only by the first term
on the rhs.
Normally, the process of calculating Eq. (43) involves

the subtraction of a divergent contribution that in general,
but not always, is associated with the Minkowski spacetime
contribution. In this case, we formally have

hðΔuiÞ2iren ¼ lim
x0→x

½huiðxÞuiðx0Þi − huiðxÞuiðx0Þidiv�; ð44Þ

which is the renormalized mean squared deviation of the
particle velocity and the second term on the rhs is the
divergent contribution that comes about in the coincidence
limit x0 → x. However, as we shall see, in our case, there
will be no divergent contribution as a consequence of the
choice for the function bðtÞ in (48). Our result, in fact, will
be given by three contributions, where one of them is a
finite constant contribution that is independent of the
parameters p and β. The two other contributions will, of
course, depend on these parameters. Let us see below how
this follows.
As the calculation of Eq. (43) requires only the knowl-

edge of the first term on the rhs, from Eq. (42), the MSVD
of the particle can be calculated through

huiðxÞukðx0Þi ¼ q2bðtÞ
m2

Z
t

t0

dt2

Z
t

t0

dt1b−
1
2ðt2Þb−1

2ðt1Þ

× gij1 g
kj0
2 ∂j∂j0Wðx; x0ÞFRW; ð45Þ

where x ¼ ðt1; ρ;ϕ; zÞ and x0 ¼ ðt2; ρ0;ϕ0; z0Þ. The math-
ematical object Wðx; x0ÞFRW corresponds to the positive
frequencies Wightman function, in FRW spacetime with a
disclination. Moreover, we can make use of the conformal
symmetry (18) exhibited by the line element (16), with
Ω2 ¼ b−

1
2ðtÞ being the conformal factor. Thus, since we

know the Wightman function (32) in the disclination
spacetime, we can write the Wightman function in an
expanding spacetime with a disclination through the
conformal relation [43]

Wðx; x0ÞFRW ¼ b
1
4ðt1Þb1

4ðt2ÞWðx; x0Þd: ð46Þ

Thereby, by applying the conformal time transformation
(14) in Eq. (45) and using (46), we get

huiðxÞukðx0Þi ¼ q2bðηÞ
m2

Z
η

η0

dη2

Z
η

η0

dη1b−
3
4ðη2Þb−3

4ðη1Þ

× gij1 g
kj0
2 ∂j∂j0Wðx; x0Þd; ð47Þ
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which provides the velocity dispersion or, in other words,
the MSVD of the particle in an expanding spacetime in the
presence of a disclination. Note that the Wightman function
Wðx; x0Þd and the metric tensor components gij are given
by Eqs. (32) and (16), respectively.
In order to calculate Eq. (47) it is necessary to pick a

direction i and an appropriate bðηÞ function to simulate the
expansion, i.e., to model the dynamics of the acoustic
perturbation as the condensate expands. Here we will
consider the asymptotically flat scaling factor

b
1
4ðηÞ ¼ b

1
4

0 þ b
1
4

1 tanh

�
η

τ

�
; ð48Þ

where τ is a constant time responsible for controlling the

rate of expansion. Note that we must have b
1
4

0 > b
1
4

1 in order
to ensure that the line element (16) is nonsingular for all

real values of η. The dimensionless constants b
1
4

0 and b
1
4

1 can
be defined in terms of the asymptotic values of the scaling
function which determine their asymptotic bounds, e.g., the
beginning and the end of the expansion, where the scaling
function is a constant. We should emphasize that this is a
scaling factor frequently used in the literature since in many
cases it allows us to give an analytic treatment to Eq. (47)
[6,18,20,28].

B. MSVD in the ρ direction

We now wish first to calculate the ρ component of the
MSVD of the particle by using Eq. (47). Thus, we have

hðΔvρÞ2i ¼ q2b
1
2

f

m2

Z
∞

−∞
dη2b−

1
4ðη2Þ

×
Z

∞

−∞
dη1b−

1
4ðη1Þ∂ρ∂ρ0Wðx; x0Þd; ð49Þ

where we have used the relation between the coordinate

velocity uρ and the physical velocity vρ, that is, vρ ¼ b
−1
4

f uρ.
The integrals above are not analytically solved for finite
values of the conformal time η in the limits of integration.
However, as an approximation, we can analyze how the
system behaves at a much later time so that we are able to
extend the limits of integration from ðη0; ηÞ to ð−∞;∞Þ. In
this limit Eq. (48) becomes b

1
4

f ¼ b
1
4

0 þ b
1
4

1, suggesting that
the scalar point particle motion stopped suffering the effects
of the curved spacetime.
Hence, by substituting Eqs. (32) and (48) in (49) and

performing both the derivative and integration operations,
in the coincidence limit x0 → x we obtain,4

hðΔv̄ρÞ2i ¼ 2ζð3Þ þ 2
X½p2�
m¼1

cosð2πmβÞsmðχÞ

−
p
2πi

Z
∞

0

dyF ðβ; p; yÞsyðχÞ; ð50Þ

where F ðβ; p; yÞ is given by (34) taken as Δϕ ¼ 0. The
result is

F ðβ; p; yÞ ¼ 2i

�
cosh½pyð1 − βÞ� sinðπpβÞ þ coshðpβyÞ sin½pπð1 − βÞ�

coshðpyÞ − cosðpπÞ
�
; ð51Þ

and the functions smðχÞ and syðχÞ are given in a compact
form by

sμðχÞ ¼ 4χ2z4μS3ðμ; χÞ − 2z2μS2ðμ; χÞ þ S2ðμ; χÞ; ð52Þ

with zμ ¼ ðzm; zyÞ ¼ ðsinðmπ=pÞ; coshðy=2ÞÞ and we have
defined the dimensionless parameter χ ¼ 2ρ

πc0τ
, related to the

radial distance ρ to the disclination. The function Sγðμ; χÞ,
on the other hand, is given by

Sγðμ; χÞ ¼
X∞
r¼1

r
½r2 þ ðχzμÞ2�γ

: ð53Þ

Note that we have also defined the dimensionless MSVD of
the particle as

hðΔv̄ρÞ2i ¼ hðΔvρÞ2i
�
2ℏq2b

1
2

f

m2π4c30τ
2

sinh4ðgÞ
b

1
2

1

�−1
; ð54Þ

where

g ¼ 1

2
ln

�
α2 þ 1

α2 − 1

�
; with α2 ¼ b

1
4

0

b
1
4

1

> 1: ð55Þ

Finally, the notation ½p=2� on the sum stands for the integer
part of p=2. However, if p is an integer number we should
replace the sum in (50) according to

X½p2�
m¼1

→
1

2

Xp−1
m¼1

: ð56Þ

As anticipated before, the ρ component for the velocity
dispersion in Eq. (50) is composed of three terms, one of

4To solve the integrals we have used the residue theorem and
followed a similar procedure to that in Appendix B of Ref. [6].
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them being a constant (the first term on the rhs) that does
not depend on the parameters p and β, and arises due to the
choice of the function bðtÞ in Eq. (48). The other two
contributions carry information about the spacetime geom-
etry and the quasiperiodicity by means of the parameters p
and β, respectively. Note that in Eq. (50) the sum inm in the
second term on the rhs is absent if p < 2. In the particular
case that β ¼ 0 (periodicity) the two last terms on the rhs of
Eq. (50) provide a pure disclination contribution. In
contrast, if p ¼ 1, there will be a pure quasiperiodicity
contribution given by the last term. Finally, in the case
β ¼ 1=2, the last term will vanish if p is an even number.
This analysis will be equally valid for the other two
components of the MSVD of the particle in the next
subsections.
In Fig. 1 we plot, on the left side, the ρ component of the

dimensionless MSVD of the particle as a function of χ, for
several different values of β and p. In this case, for some
combination of β and p we have plot regions where the
magnitude of the velocity dispersion undergoes a decrease
or increase, indicating nontrivial behavior. We note that,
asymptotically, Eq. (50) goes to a constant value, which
corresponds to the configuration β ¼ 0 and p ¼ 1, asso-
ciated with a periodic solution and no disclination. In fact,
too far away from the defect, the influence of the discli-
nation on the QBM of the particle is negligible. On the
other hand, Fig. 1 also shows, on the right side, the plot of
the ρ component of the dimensionless MSVD of the
particle as function of the quasiperiodic parameter β, taken
as χ ¼ 1. The plot reveals an oscillatory shape, which
obviously is a consequence of the sinusoidal functions
present in Eq. (50). In other words, this plot shows the
highest or lowest values that Eq. (50) can achieve for each
value of p and fixed distance χ.
Another important feature associated with the ρ compo-

nent of the MSVD of the particle is its behavior near the
disclination, ρ ¼ 0. In order to develop this analysis we

have to investigate the behavior of the function FsyðχÞ,
present in the integral definition of hðΔv̄ρÞ2i, Eq. (50). In
fact, investigating the integrand in the limit χ → 0, the
finiteness of the integral is dominated by large values of y,
i.e., for y ≫ 1. In this limit we can make use of the
approximation coshðyÞ ≈ ey=2 and, as a consequence, we
are able to show that the integrals converge as long as p and
β satisfy the restrictions pβ > 1 and pð1 − βÞ > 1. Note
that for β ∈ ½0; 1=2Þ the first inequality includes the second,
but if β ∈ ð1=2; 1Þ the opposite occurs, and only when
β ¼ 1=2 both inequalities are equivalents. The plots on the
left side of Fig. 1 are in agreement with this analysis.

C. MSVD in the ϕ direction

Now we turn to the calculation of the ϕ component of the
MSVD of the particle. Thereby, in terms of the physical

velocity vϕ ¼ b
−1
4

f ρuϕ, from (47), we have

hðΔvϕÞ2i ¼ q2b
1
2

f

m2ρρ0

Z
∞

−∞
dη2b−

1
4ðη2Þ

×
Z

∞

−∞
dη1b−

1
4ðη1Þ∂ϕ∂ϕ0Wðx; x0Þd; ð57Þ

where we have again extended the limits of integration
from −∞ to ∞. In order to solve the expression above we
follow a similar procedure to that one used for the ρ
component, along with the method adopted in Appendix A
of Ref. [43]. Thus, in the coincidence limit, we obtain

hðΔv̄ϕÞ2i ¼ 2ζð3Þ þ 2
X½p2�
m¼1

cosð2πmβÞhmðχÞ

−
p
2πi

Z
∞

0

dyF ðβ; p; yÞhyðχÞ; ð58Þ

FIG. 1. The behavior of the dimensionless MSVD of the particle hðΔv̄ρÞ2i, as a function of the dimensionless distance parameter χ for
different combinations of the parameters β and p (left side) and as a function of the quasiperiodic parameter β (right side). For the latter
we have taken χ ¼ 1.
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where the functionF is given by Eq. (51), and the functions
hmðχÞ and hyðχÞ are given in a compact form by

hμðχÞ ¼ ð1 − 2z2μÞS2ðμ; χÞ − χ2½1 − ð1 − 2z2μÞ2�S3ðμ; χÞ;
ð59Þ

with zμ ¼ ðzm; zyÞ ¼ ðsinðmπ=pÞ; coshðy=2ÞÞ and the
function Sγðμ; χÞ has been defined in Eq. (53). Note that
the MSVD of the particle in Eq. (58) is in a dimensionless
form and the constant responsible for that is the same as the
one present in Eq. (54). In other words, in Eq. (54) we must
only replace vρ with vϕ to obtain hðΔv̄ϕÞ2i. The analysis
about the finiteness of the ϕ component of the MSVD of
the particle at the disclination position provides the same
results as the ρ component. As a consequence, the ϕ
component of the MSVD in (58) exhibits similar behaviors
near ρ ¼ 0, as the one for the ρ component, as we can see in
the plots presented in Fig. 2. This includes the discussion

about the convergence or divergence, at χ ¼ 0, of the
velocity dispersion depending on the combination values
for p and β, which obey the restrictions pβ > 1 and
pð1 − βÞ > 1 also applied here. So the analysis of these
plots is essentially the same as that made below Eq. (55)
until the end of the subsection.

D. MSVD in the z direction

In terms of the physical velocity dispersion along the

z direction, vz ¼ b
−1
4

f uz, which is the parallel direction to
the disclination, we can obtain the MSVD of the particle
from Eq. (47), resulting in

hðΔvzÞ2i ¼ q2b
1
2

f

m2

Z
∞

−∞
dη2b−

1
4ðη2Þ

×
Z

∞

−∞
dη1b−

1
4ðη1Þ∂z∂z0Wðx; x0Þd; ð60Þ

FIG. 3. Plot of the dimensionless velocity dispersion hðΔv̄zÞ2i as a function of the dimensionless distance parameter χ (left side) and
quasiperiodicity parameter β (right side). In the graph on the right side χ ¼ 1.

FIG. 2. The behavior of the dimensionless MSVD of the particle hðΔv̄ϕÞ2i as a function of the dimensionless distance parameter χ (left
side) and also as a function of the quasiperiodic parameter β (right side). For the latter we have taken χ ¼ 1.
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where we have extended the limits of integration to be from
−∞ toþ∞. To solve the integrals we follow the same steps
as the ones in the calculation of the ρ component. Thereby,
in the coincidence limit x0 → x, we obtain

hðΔv̄zÞ2i ¼ 2ζð3Þ þ 2
X½p2�
m¼1

cosð2πmβÞS2ðm; χÞ

−
p
2πi

Z
∞

0

dyF ðβ; p; yÞS2ðy; χÞ; ð61Þ

which is a dimensionless MSVD defined exactly in the
same way as that in Eq. (54), of course, replacing ρ by z for
the component.
On the left side of Fig. 3 we have plotted the MSVD

hðΔv̄zÞ2i as a function of χ for different values of p and β,
while on the right side we have plotted it in terms of the
quasiperiodic parameter β, taken as χ ¼ 1. Different from
the other two components, the z component of the MSVD
of the particle in Eq. (61) is always finite at χ ¼ 0, for any
values of p and β since the integrand depends only on the
convergence of the function F , which always happens.
Besides that, for comparison effects, all three components
assume a constant value far way from the disclination, that
is, χ ≫ 1. This value, as we can easily verify in the
expressions for all three components is given by 2ζð3Þ.

VII. CONCLUSIONS

In this work we have studied the QBM of a point particle
as a consequence of modifications on the quantum vacuum
fluctuations of a massless real scalar field characterizing
sound wave quantum excitations of a BEC. In this context,
effectively, the condensate is described by the propagation
of phonons in an analog FRW spacetime. In addition, we
have also taken into consideration the presence of a
disclination and a quasiperiodic condition on the angular
variable that must be satisfied by the massless scalar field
representing the phonons. Thus, in order to investigate the
effects of this system on the motion of the point particle we
have calculated its velocity dispersion.
The MSVDs of the scalar point particle that we have

obtained are for a late time regime since we have extended
the limits of integration of Eqs. (49), (57), and (60) from
−∞ to ∞, resulting in a time independence of the
corresponding expressions. The MSVDs present nontrivial

behavior in all directions, but showed a global aspect,
namely, a constant contribution given by 2ζð3Þ for dis-
tances far way from the disclination, i.e., χ ≫ 1. We have
also verified that the expressions (50) and (58) for the
velocity dispersion in the ρ and ϕ directions may present
either a divergent or convergent behavior at χ ¼ 0, depend-
ing on the combination values of p and β. In fact, a careful
analysis has shown that in order for (50) and (58) be
convergent, the parameters p and β must obey the restric-
tions pβ > 1 and pð1 − βÞ > 1, otherwise they are diver-
gent. This aspect is shown in Figs. 1 and 2. In contrast, the
expression (61) for the z component is always convergent
and finite at χ ¼ 0, for all values of p and β, as shown in
Fig. 3. This occurs as a consequence of the integration in y
of the function F always being convergent at χ ¼ 0,
regardless of the values of p and β.
The constant behavior present for χ ≫ 1, for all three

components of the MSVD of the particle, is actually the
case in which there is no quasiperiodicity (β ¼ 0) nor
disclination (p ¼ 1), providing an isotropic and homo-
geneous velocity dispersion. This constant result, 2ζð3Þ,
cannot be interpreted as corresponding to the Minkowski
contribution, which is always divergent in the coincidence
limit x0 → x. Note that this would be the case if bðtÞ ¼ 1,
corresponding to a nonexpanding condensate. In this sense,
the element that produces the constant result is the choice
for the scaling function bðtÞ in Eq. (48). Hence, the
function bðtÞ plays a similar role as the switching functions
considered in Ref. [3]. Therefore, the only divergencies
arising here are related to the presence of the disclination,
at χ ¼ 0.
Finally, it is important to point out that, in the current

study, both thermal and backreaction effects were
neglected. A more realistic treatment should be considered
taking into consideration these effects. This will be pre-
sented elsewhere.
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