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The loss of time-translational invariance caused by a time-dependent external agent leads to particle
creation effects in quantum field theory. This phenomenon results in ambiguities when selecting the quantum
vacuum of the canonical quantization. In this work we analyze how the time evolution of the number of
created particles depends on these ambiguitieswhen external agents are spatially homogeneous. In particular,
we generalize the standard quantum Vlasov equation in order to accommodate in its formulation the
possibility of having different choices of vacuum, including adiabatic vacua. This study leads us to propose a
new physical criterion stronger than the unitary implementation of the dynamics in order to reduce the
quantization ambiguities.
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I. INTRODUCTION

In quantum field theory, particle creation effects exist in
many different settings including the Schwinger effect [1,2]
in quantum electrodynamics, the Hawking effect [3] in
black holes, and particle creation effects in cosmology [4]
such as the Gibbons-Hawking effect [5]. In order to study
these phenomena, it is common to consider the dynamics
of canonically quantized matter fields coupled to time-
dependent external electromagnetic and/or gravitational
fields. In such analyses, one usually neglects backreaction,
thus assuming a mean-field approximation for the test
matter fields, which propagate on a classical background.
We will do so in this work. In particular, we will focus our
study on the time dependence of the number of created
particles NðtÞ generated in this kind of process.
Particle creation is rooted in the breaking of symmetries

caused by external agents. Free fields in flat spacetime
possess Poincaré symmetry. When imposing the invariance
of the canonical quantum theory under this group of
symmetry, there is only one possible basis of modes in
which solutions to the equations of motion can be
expanded: plane waves. This basis determines unique sets

of annihilation and creation operators, which in turn define
the Fock vacuum of the quantum theory: the so-called
Minkowski vacuum. However, for instance, when a time-
dependent external field is coupled to matter fields, the
classical Hamiltonian is no longer invariant under time
translations and there is freedom in the choice of the
annihilation and creation operators (and thus, the vacuum)
of the corresponding Fock quantization, which is therefore
not unique. Depending on the choice of vacuum at each
time, its evolution might produce particle-antiparticle pairs
determining the time dependence of NðtÞ. Due to these
ambiguities, the physical interpretation of NðtÞ and other
physical observables such as the energy density is an
ongoing discussion [6–9].
There can be found different choices of vacuum in the

literature. In general, its selection depends on the particular
system under study and on the properties that we want to
impose to its quantum theory. One of the most common
options is to choose adiabatic vacua introduced by Parker in
[4] and later formalized by Lüders and Roberts in [10].
They are intensively used not only in cosmology but also in
the context of the Schwinger effect [11,12]. These adiabatic
modes are understood to be the most natural and simple
extensions of Minkowski plane waves when the external
agent slowly varies throughout time. However, many other
options motivated by different criteria are also legitimate
a priori. Some examples so far considered are modes
diagonalizing the Hamiltonian in cosmology [13–15],
modes minimizing oscillations in the primordial power
spectrum in cosmology [16,17], adiabatic modes minimiz-
ing oscillations in the number of created particles by the
Schwinger effect and by cosmological settings [6,7,9], etc.
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In this work, we will be interested in generalizing standard
expressions found in the literature for the evolution of the
particle number NðtÞ by considering arbitrary selections of
modes for the quantization. Bogoliubov transformations
of the canonical quantization approach will allow us to
address this question.
In the study of classical nonequilibrium physical sys-

tems, kinetic theory has been a very successful tool [18]. In
particular, when describing a system composed by identical
particles, the starting point in this theory is the Liouville
equation for the joint probability distribution of the entire
system. If we assume that particles are weakly correlated,
we can deduce a closed equation of motion for the
probability distribution of each individual particle: the
so-called classical Vlasov equation. This equation does
not consider collisions between particles. This can be
accomplished with a more general but complicated
approximation: the Boltzmann kinetic equation. A gener-
alization to quantum field theory of the classical Vlasov
equation should contemplate particle creation. This is done
in the context of the quantum kinetic approach. The widely
accepted proposal based on incorporating a particle crea-
tion term is the so-called quantum Vlasov equation (QVE),
which is an integro-differential equation for NðtÞ. In the
context of the Schwinger effect, this equation was first
presented in [11] for scalar charged fields under a spatially
homogeneous and time-dependent external electric field.
Later, its extension to fermionic quantum fields was
proposed in [19]. This equation and its formalism has
been used in a wide range of frameworks, including
continuum strong QCD [20], electron-positron pair crea-
tion in QED (from nuclei phenomena to black hole physics)
[21], laser technology [22–24], or in cosmology consider-
ing a de Sitter spacetime [12,25]. Most of the literature use
this QVE for the particular choice of vacuum defined by
zeroth-order adiabatic modes. One of the main aims of this
work is to generalize this equation to arbitrary vacua,
getting in this way a “generalized QVE.” Later we will
restrict this generalized QVE to higher-order adiabatic
vacua [12].
In order to reduce the ambiguities in the quantization of

classical theories with no time-translational invariance, a
criterion has been proposed in various settings, from
homogeneous cosmologies [15,26–28] to the Schwinger
effect [29,30]: the unitary implementation in the quantum
theory of matter fields dynamics. Weaker conditions are
also found in the literature, imposing that only the in and
out states (at asymptotic past and future times) are related
by a unitary S-matrix [31,32]. The motivation for imposing
the former stronger requirement, at all intermediate times,
is twofold. First, we ensure that quantum theories at all
times are physically equivalent, in the sense that they
provide the same probability amplitudes. Moreover, in
those references it was proved that in a wide range of
settings this requirement reduces the ambiguities in the

quantization to a unique family of unitarily equivalent
quantizations. Second, it ensures that the total number of
created particles is well defined (i.e., finite) at every
finite time.
The unique family of vacua associated with the quan-

tizations that unitarily implement the dynamics is precisely
the family to which we will restrict our previously found
generalized QVE. We will see that there is an interesting
connection between the usual QVE and its generalization to
modes unitarily implementing the dynamics: Under certain
conditions, the former is precisely the leading order of the
latter in the ultraviolet regime. This will allow us to propose
a more strict criterion for reducing the ambiguity in the
quantization based on the ultraviolet behavior of the
generalized QVE.
For definiteness, we will consider a charged scalar

field in the presence of a spatially homogeneous but
time-dependent electric field system studied in [29],
although extensions to other homogeneous systems follow
straightforwardly.
The structure of the paper is as follows. In Sec. II we

specify the pair creation effects to which the generalizations
of the expressions found in the literature for NðtÞ might be
extended. In Sec. III we present the key ideas of the
canonical quantization approach, parametrizing the ambi-
guities and deducing a general expression for NðtÞ. These
results will be used in Sec. IV, where we will obtain the
generalization to arbitrary quantizations of the quantum
Vlasov equation. In Sec. V, we will analyze the unitary
dynamics criterion in the scalar Schwinger effect, particu-
larizing our generalized QVE to modes satisfying this
requirement. We will also propose an additional criterion
for reducing the quantization ambiguities. Finally, Sec. VI
is devoted to summarizing and discussing the essential
results of this work.

II. FROMTHE SCHWINGER EFFECT TO CURVED
SPACETIMES

In order to study the Schwinger effect, let us consider a
scalar field ϕðt;xÞ of mass m and charge q propagating in
Minkowski spacetime under an external time-dependent
electric field with four-vector potential Aμ. It satisfies the
Klein-Gordon equation of motion

½ð∂μ þ iqAμÞð∂μ þ iqAμÞ þm2�ϕðt;xÞ ¼ 0: ð1Þ

In this work we will also assume that the electric field is
homogeneous, although not necessarily isotropic. We will
use the temporal gauge, i.e., AμðtÞ ¼ ð0;AðtÞÞ. Therefore,
after Fourier transforming (1) the time-dependent k-modes

ϕkðtÞ ¼
Z

d3x

ð2πÞ3=2 e
−ik·xϕðt;xÞ ð2Þ

satisfy decoupled harmonic oscillator equations
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ϕ̈kðtÞ þ ωkðtÞ2ϕkðtÞ ¼ 0; ð3Þ

with time-dependent frequencies

ωkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kþ qAðtÞ�2 þm2

q
: ð4Þ

Note that complex scalar modes ϕkðtÞ can be split into their
real and imaginary parts, both satisfying harmonic oscil-
lator equations (3). Thus, from now on we will consider
without loss of generality ϕkðtÞ as real variables.
Observe that the dependence on the electric field only

appears in ωkðtÞ. Due to the fact that we are treating it as an
external agent, frequencies ωkðtÞ are fixed and not affected
by the dynamics of the modes ϕkðtÞ. In other words, we
neglect backreaction effects, only dealing with (3) and
forgetting about the equation of motion of the external field.
Although our working example will be the scalar

Schwinger effect, our approach can be easily extended
to many other systems. Indeed, for most parts of this work
we are not going to use the explicit expression of the
Schwinger frequency (4), except for Sec. V, where we will
use a system-dependent reasoning. Thus, the key require-
ment that a theory has to verify so that our formalism is
applicable is that it can be characterized by a collection of
real degrees of freedom satisfying decoupled harmonic
oscillator equations with time-dependent frequencies.
For instance, we can consider systems that have degrees

of freedom ψ iðtÞ verifying the equation of motion of a
damped oscillator

ψ̈ iðtÞ þ 2γiðtÞ _ψ iðtÞ þ ΩiðtÞ2ψ iðtÞ ¼ 0; ð5Þ

since there always exists a canonical transformation

ψ iðtÞ ¼ e−
R

t dt0γiðt0ÞϕiðtÞ which removes the first-order
term [33], transforming the equation of motion (5) for
ψ iðtÞ into a harmonic oscillator equation for ϕiðtÞ with
time-dependent frequency

ωiðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩiðtÞ2 − _γiðtÞ − γiðtÞ2

q
: ð6Þ

A second example of a system characterized by equa-
tions of the type (3) is a fermionic field coupled to a
homogeneous time-dependent electric field. In this case,
the Fourier transform of the Dirac equation yields fermionic
modes formed by four real variables satisfying (3) with
time-dependent frequencies (see e.g., [19,30])

ωð�Þ
k ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½kþ qAðtÞ�2 þm2 � iqj _AðtÞj

q
: ð7Þ

However, these variables are not completely decoupled and
minor manipulations inspired in Refs. [19,30] should be
applied to the procedure followed here in order to extend
these results to the fermionic case.

Other significant examples are found in cosmological
settings. Let φ be a real scalar field with mass m in a
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
time defined by the well-known metric

ds2 ¼ aðtÞ2ð−dt2 þ hijdxidxjÞ: ð8Þ

Here a is the scale factor, t is the conformal time, and hij is
the time-independent three-dimensional metric on a spatial
hypersurface Σ. It can be easily seen [27] that the redefined
scalar field ϕ ¼ aφ satisfies

ϕ̈−ΔϕþmðtÞ2ϕ¼ 0; mðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2aðtÞ2 − äðtÞ=aðtÞ

q
;

ð9Þ

where Δ is the Laplace-Beltrami operator on the spatial
hypersurface Σ. While in the Schwinger effect the agent-
generating particle production is the external electric field,
now in FLRW spacetimes the particle production is due
to the evolution of the Universe, characterized by aðtÞ.
An alternative interpretation is that the field ϕ is a free field
propagating in the static spacetimeds2 ¼ −dt2 þ hijdxidxj,
but with a time-dependent mass mðtÞ. In order to obtain a
harmonic oscillator equation of the type (3) for certain
modes, different orthonormal bases for the expansions of the
solutions to (9) can be chosen depending on the particular
system. For example, if Σ is a three-sphere in a closed
FLRW spacetime, an expansion in terms of hyperspherical
harmonics of order n leads to decoupled modes satisfying
harmonic oscillator equations with time-dependent frequen-
cies [27]

ωnðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2Þ þmðtÞ2

q
: ð10Þ

In all these systems the external agent (either the electric
or the gravitational field) is assumed to be spatially
homogeneous. Thanks to this symmetry, it is possible to
find modes of the scalar matter field verifying decoupled
harmonic oscillator equations with time-dependent
frequencies. However, this is not the case when dealing
with spatial inhomogeneities. In that case the mode
decomposition would lead to a tower of coupled equations
of motion for the infinite modes of the field and we would
need other techniques. For example, in the case of the
inhomogeneous Schwinger effect, one could consider the
Wigner approach [34–38]. We leave those more compli-
cated systems for future work.

III. CANONICAL QUANTIZATION APPROACH

In this section we will quantize the classical systems
described in the previous section following the canonical
quantization approach. We present here the essential
aspects in order to understand our work. For deeper
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analyses covering a wide range of systems of the type
described in Sec. II, see e.g., [15,27,29,30,39].

A. Ambiguities in the canonical quantization

Given a particular complex solution zkðtÞ of the har-
monic oscillator equation with time-dependent frequency
(3), there exists a unique complex coefficient ak such that
any other real solution ϕkðtÞ and its canonically conjugate
momentum πkðtÞ ¼ _ϕkðtÞ can be uniquely written as

�
ϕkðtÞ
πkðtÞ

�
¼ Gðzk;_zkÞðtÞ

�
ak
a�k

�
;

Gðzk;_zkÞðtÞ ¼
�
zkðtÞ z�kðtÞ
_zkðtÞ _z�kðtÞ

�
: ð11Þ

The coefficient ak and its complex conjugate a�k of this
linear combination are called annihilation and creation
variables, respectively.
The above decomposition depends on the choice of the

solution zkðtÞ. More generally, we have the possibility of
expressing the solution ϕkðtÞ and its momentum πkðtÞ in
terms of complex functions ζkðtÞ and ρkðtÞ, respectively1:

�
ϕkðtÞ
πkðtÞ

�
¼ Gðζk;ρkÞðtÞ

�
akðtÞ
a�kðtÞ

�
;

Gðζk;ρkÞðtÞ ¼
�
ζkðtÞ ζ�kðtÞ
ρkðtÞ ρ�kðtÞ

�
: ð12Þ

Let us remark that ζkðtÞ is not necessarily a solution to the
harmonic oscillator equation (3). Only if this is the case, the
annihilation and creation variables akðtÞ and a�kðtÞ are time
independent. Otherwise, these variables have to carry the
appropriate time dependence compensating for that of ζkðtÞ
and ρkðtÞ, so that the combination (12) leads to a solution
ϕkðtÞ of (3).
Note that Eq. (12) reduces to (11) if we choose ζkðtÞ ¼

zkðtÞ, which then implies ρkðtÞ ¼ _zkðtÞ [and akðtÞ ¼ ak].
In the general case, i.e., when ζkðtÞ is not a solution to (3),
ζkðtÞ and ρkðtÞ are not completely independent. Indeed, the
pair of canonical modes and the annihilation and creation
variables have to verify the Poisson bracket relations

fϕkðtÞ; πk0 ðtÞg ¼ δðk − k0Þ;
fakðtÞ; a�k0 ðtÞg ¼ −iδðk − k0Þ; ð13Þ

where δ denotes the Dirac delta distribution. They impose
the normalization conditions

ζkðtÞρ�kðtÞ − ζ�kðtÞρkðtÞ ¼ i: ð14Þ

It can be easily verified that this requirement ensures that
the expression for πkðtÞ given in the second row of (12) is
equivalent to the time derivative of ϕkðtÞ in the first row.
In the canonical quantization approach we promote the

annihilation and creation variables to annihilation and
creation operators acting on the corresponding Fock space.
Then, in view of (12), one classical theory can have infinitely
many associated quantum theories. Indeed, we have the
ambiguity in the particular choice of functions ðζkðtÞ; ρkðtÞÞ,
which have to verify the relation (14). This selection
determines a one-parameter family of quantizations, one
for each value of the time variable t: the corresponding
quantum operators ðâkðtÞ; âkðtÞ†Þ determine the associated
Fock vacuum state j0it as the state annihilated by âkðtÞ for all
k. In other words, and connecting with analog discussions in
the literature of unitary implementation of the quantum field
dynamics (see e.g., [26]), we have ambiguity in the choice of
canonical variables to be quantized and in the choice of
complex structure to carry out the quantization, both encoded
in the functions ðζkðtÞ; ρkðtÞÞ.
One criterion to reduce these ambiguities is to unitarily

implement the symmetries of the classical system in the
quantum theory, which reduces the possible selections of
functions ðζkðtÞ; ρkðtÞÞ. In fact, in Minkowski spacetime
when no external field is present, Poincaré symmetry fixes
completely this choice: This maximal symmetry fixes ζkðtÞ
to be the plane wave of frequency ωk. For systems which
only differ slightly from flat spacetime, one can expect that
this construction can be extended. This is the case when
ωkðtÞ varies slowly throughout time, recovering the
Minkowski case in the limit of constant frequency.
However, in our workwewill go beyond this particular case.
Let us note that in our system, requiring that our

quantization unitarily implements the classical symmetries
implies invariance of the vacuum under spatial translations.
As a consequence, other expansions of the canonical pair
ðϕðt;xÞ; πðt;xÞÞ mixing Fourier modes are not allowed,
and all the ambiguity that we are considering is the one
encoded in the choice of ðζkðtÞ; ρkðtÞÞ.

B. Parametrization of the ambiguities

For later convenience, we parametrize the freedom in the
choice of ζkðtÞ in terms of two arbitrary real functions
WkðtÞ > 0 and φkðtÞ related to its modulus and its phase,
respectively, in the following way:

ζkðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðtÞ
p e−iφkðtÞ: ð15Þ

In addition, it is easy to verify that the normalization
condition (14) reduces the ambiguity in the choice of the
complex function ρkðtÞ to just one real function YkðtÞ
such that

1In the literature about the canonical study of the quantum
unitary implementation of the dynamics (e.g., see
Refs. [27,29,30]) it is usual to denote these time-dependent
functions as ζk ¼ ig�k and ρk ¼ −if�k.
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ρkðtÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffi
WkðtÞ
2

r
½iþ YkðtÞ�e−iφkðtÞ: ð16Þ

There are occasions in which certain families of func-
tions ðζkðtÞ; ρkðtÞÞ stand out. In the particular case in
which we demand ζkðtÞ to be a solution to the harmonic
oscillator equation with time-dependent frequency (3), then
not only the normalization condition (14) has to be verified
but also ρkðtÞ ¼ _ζkðtÞ. This fixes _φkðtÞ and YkðtÞ as
functions of WkðtÞ according to

WkðtÞ2 ¼ ωkðtÞ2 −
1

2

�
ẄkðtÞ
WkðtÞ

−
3

2

_WkðtÞ2
WkðtÞ2

�
; ð17Þ

_φkðtÞ ¼ WkðtÞ; YkðtÞ ¼
_WkðtÞ

2WkðtÞ2
: ð18Þ

Thus, the freedom in the choice of the pair ðζkðtÞ; ρkðtÞÞ
when we impose that ζkðtÞ is a particular normalized
solution to (3) is encoded in the initial conditions Wkðt0Þ,
_Wkðt0Þ, and φkðt0Þ at some initial time t0.
Another possibility is to require that ζkðtÞ is an approxi-

mate solution to the equation of motion. In this case,
Eqs. (17) and (18) must hold approximately. For instance,
when the time-dependent frequency ωkðtÞ is slowly vary-
ing, the most common selection in the literature is the
adiabatic approximation [40]. It is recursively defined from
the zeroth-order approximation

Wð0Þ
k ðtÞ ¼ ωkðtÞ; φð0Þ

k ðtÞ ¼
Z

t

t0

dt0 ωkðt0Þ: ð19Þ

For Yð0Þ
k ðtÞ there are two choices with different adiabatic

order [i.e., number of time derivatives of ωkðtÞ]. The first

possibility Yð0Þ
k ðtÞ ¼ _ωkðtÞ=½2ωkðtÞ2� is common in the

references about quantum field theory in curved spacetime
(see, e.g., [40]). This approximates exact modes (called
zeroth-order adiabatic modes) and their derivatives up to

second-adiabatic order. The other choice Y̆ð0Þ
k ðtÞ ¼ 0 (we

have added a ˘to differentiate it from the previous option) is
common in the QVE literature (see, e.g., [11,19,41]). This
approximates exact adiabatic modes only up to first-adia-
baticorder.Wewill emphasize the consequencesof these two
different selections later in the text. The nth-adiabatic
approximation can be obtained in the standard way [40]
recursively introducing the previous order in (17). The

corresponding exact mode zðnÞk ðtÞ determined by fixing

the initial data according to zðnÞk ðt0Þ ¼ ζðnÞk ðt0Þ and _zðnÞk ðt0Þ ¼
ρðnÞk ðt0Þ is usually called the nth-order adiabatic mode.2

On the other hand, remember that in general we do not
require ðζkðtÞ; ρkðtÞÞ to be solutions to the equation of
motion, not even approximately. We find in the literature
other selections, including functions diagonalizing the
Hamiltonian for large wave numbers [14,15], and others
which minimize oscillations of the number of created
particles throughout timeor of the primordial power spectrum
[6,7,16,17]. Moreover, recently the so-called exact WKB
analysis has been used, which consists of a Borel resumma-
tion of the ordinary WKB approximations, to study the
Schwinger effect [43]. Our analysis will be general, without
assuming specific selections of these functions. In Sec. V we
will restrict the study to the family of Fock quantizationswith
unitary dynamics, as we consider that property as essential.
In summary, a particular family of canonical quantum

theories (one for each time t) is unequivocally selected by
choosing ðζkðtÞ; ρkðtÞÞ for each k. The preservation of the
Poisson algebra of the canonical fields and the creation and
annihilation variables at each time restricts in a precise way
the choice of ρkðtÞ through the normalization condition
(14). We have complete freedom of two real time-
dependent functions (WkðtÞ, φkðtÞ) to determine ζkðtÞ
and only one additional real function YkðtÞ to characterize
ρkðtÞ. As we are going to see, the number of created
particles throughout time will strongly depend on the
choice of both WkðtÞ and YkðtÞ.

C. Number of created particles

We are interested in computing the number of particles in
the vacua j0it with respect to the vacuum of another
quantum theory that we will take as reference.
Furthermore, we will see the variation in t in the functions
ðζkðtÞ; ρkðtÞÞ as providing time evolution for the quantiza-
tion, so that particles are created or destroyed as time
evolves. For this comparison, first we have to choose such a
reference vacuum. With that aim we fix a complex basis
ðzkðtÞ; z�kðtÞÞ for the space of solutions of the harmonic
oscillator equation (3), and determine the associated
creation and annihilation time-independent variables
ðak; a�kÞ. Then, the reference vacuum, that will be denoted
by j0i, will be the state annihilated by all the operators âk.
The different sets of annihilation and creation variables

ðak; a�kÞ and ðakðtÞ; a�kðtÞÞ associated with ðzkðtÞ; z�kðtÞÞ
and ðζkðtÞ; ρkðtÞÞ, respectively, are related by a canonical
transformation BðtÞ called a Bogoliubov transformation.
Since the modes ϕkðtÞ satisfy decoupled harmonic oscil-
lator equations (3) for different wave vectors k, BðtÞ does
not mix them. Its k-component BkðtÞ can be written as

�
akðtÞ
a�kðtÞ

�
¼BkðtÞ

�
ak
a�k

�
; BkðtÞ¼

�
αkðtÞ βkðtÞ
β�kðtÞ α�kðtÞ

�
: ð20Þ

The preservation of the Poisson algebra of the creation and
annihilation variables relates the Bogoliubov coefficients
for all t according to

2In the context of cosmology it is also usual to define the
zeroth-order adiabatic approximation via Wð0Þ

k ðtÞ ¼ k and
Yð0Þ
k ðtÞ ¼ 0 [42]. With that convention the (nþ 2)th-order adia-

batic mode is our nth-order adiabatic mode.
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jαkðtÞj2 − jβkðtÞj2 ¼ 1: ð21Þ

This Bogoliubov transformation (20) enables us to better
understand the physical consequences of having an ambi-
guity in the selection of annihilation and creation variables.
As long as these β-coefficients do not vanish, the associated
quantum theories will have different notions of particles
and antiparticles. In this way, the number of particles for
each wave vector k in the quantum theory defined by the
set ðâkðtÞ; â�kðtÞÞ measured with respect to the reference
vacuum j0i is given by

NkðtÞ ¼ h0jâkðtÞ†âkðtÞj0i ¼ jβkðtÞj2: ð22Þ

The last equality is obtained by substituting the expression
of âkðtÞ in terms of âk using (20). We see that this number
of created particles strongly depends both on the reference
vacuum and on the particular functions ðζkðtÞ; ρkðtÞÞ
chosen, and this will be made explicit in the following.
In order to write an expression for the Bogoliubov

coefficients we use the classical equivalence between
ϕkðtÞ and πkðtÞ written in terms of an exact solution
zkðtÞ [Eq. (11)] and in terms of ζkðtÞ and ρkðtÞ [Eq. (12)].
Using also the normalization condition (14) we finally
deduce that

�
αkðtÞ
β�kðtÞ

�
¼ G−1

ðζk;ρkÞðtÞ
�
zkðtÞ
_zkðtÞ

�
;

G−1
ðζk;ρkÞðtÞ ¼ −i

�
ρ�kðtÞ −ζ�kðtÞ
−ρkðtÞ ζkðtÞ

�
: ð23Þ

Then, it is direct to write NkðtÞ in terms of the free
functions WkðtÞ, φkðtÞ, and YkðtÞ that characterize ζkðtÞ
and ρkðtÞ, and the particular solution zkðtÞ defining the
reference vacuum j0i:

NkðtÞ ¼
WkðtÞ
2

½1þ YkðtÞ2�jzkðtÞj2 þ
1

2WkðtÞ
j_zkðtÞj2

−
1

2
þ YkðtÞRefz�kðtÞ_zkðtÞg: ð24Þ

This first result is a generalized expression of the one found
in [41], which corresponds to the particular case in which
we choose ðζkðtÞ; ρkðtÞÞ to be the zeroth-order adiabatic

approximation ðζð0Þk ðtÞ; ρð0Þk ðtÞÞ fixed by (19) and the choice
Y̆ð0Þ
k ðtÞ ¼ 0:

Nð0Þ
k ðtÞ ¼ ωkðtÞ

2
jzkðtÞj2 þ

1

2ωkðtÞ
j_zkðtÞj2 −

1

2
: ð25Þ

In this case, zkðtÞ would naturally be the zeroth-order
adiabatic mode (with initial adiabatic conditions at t0)

z̆ð0Þk ðtÞ. In particular, our formalism also allows us to write

the alternative version of this equation when we select

Yð0Þ
k ðtÞ ¼ _ωkðtÞ=½2ωkðtÞ2� instead of Y̆ð0Þ

k ðtÞ, which pro-
vides a better zeroth-order adiabatic approximation to the
equation of motion, as explained in Sec. III B.
As we see from (24), NkðtÞ does not depend on the phase

φkðtÞ of ζkðtÞ. Thus, although we have a freedom of three
real time-dependent functions to determine the canonical
quantization, the number of created particles only depends
on two of them: WkðtÞ and YkðtÞ. This is obvious from the
fact that, in our formalism where we do not ask the functions
ζkðtÞ to solve the equation of motion, multiplying ζkðtÞ by a
time-dependent phase is a trivial Bogoliubov transformation,
i.e., a transformation with null β-coefficients. In the par-
ticular case that we choose ζkðtÞ as a solution to (3) related
to zkðtÞ by a nontrivial Bogoliubov transformation, _φkðtÞ
would be fixed by WkðtÞ according to (18). Therefore, in
that case, the only freedom in the phase is its value at initial
time φkðt0Þ, but again NkðtÞ is independent from such
initial value.
Once WkðtÞ and YkðtÞ are chosen, in order to compute

NkðtÞ there is still a residual ambiguity in the choice of
reference vacuum j0i, or equivalently, in the selection of a
particular solution zkðtÞ to the harmonic oscillator equa-
tion (3) for each k. However, this ambiguity can be suitably
fixed under certain circumstances. For example, let us
consider matter fields which behave as in free Minkowski
spacetime in the asymptotic past. This can be achieved, for
instance, in the Schwinger effect by turning on the electric
field at a finite time or in FLRW spacetimes by considering
an asymptotically static expanding universe [40]. Then, the
system possesses Poincaré symmetry when t → −∞. When
we require that the quantum theory preserves this classical
symmetry in the past, we need to impose that in the
asymptotic past zkðtÞ behaves as a positive-frequency plane
wave (according to our conventions of creation and
annihilation of particles). This asymptotic condition zkðt →
−∞Þ completely determines zkðtÞ for all t and there
remains no ambiguity in the selection of j0i. Another
example, already mentioned above, in which there is a
natural choice for zkðtÞ is when the field modes behave
adiabatically. In that case we are interested in comparing

the nth-order adiabatic approximation ðζðnÞk ðtÞ; ρðnÞk ðtÞÞwith
the corresponding exact solution, and then one chooses

zkðtÞ as the nth-order adiabatic mode zðnÞk ðtÞ.
In addition, there are only a few cases in which it is

possible to find particular solutions to (3), and hence
compute NkðtÞ from (24). For example, this is the case
in the Schwinger effect when the external electric field
derives from a Sauter-type potential [1], which turns off in
the asymptotic past, and following the arguments above we
search for solutions that behave as positive-frequency plane
waves in t → −∞ [44]. However, in general this is not
possible and it would be useful to obtain a differential
equation forNkðtÞ in which particular solutions zkðtÞ to the

ÁLVAREZ-DOMÍNGUEZ, GARAY, and MARTÍN-BENITO PHYS. REV. D 105, 125012 (2022)

125012-6



equations of motion do not take part explicitly. This is
precisely what we are going to do in the next section.

IV. GENERALIZED QUANTUM VLASOV
EQUATION

In the following we are interested in deducing a differ-
ential equation for the number of created particles for
which, unlike (24), there is no need to solve the harmonic
oscillator equation with time-dependent frequency first. Of
course, this equation, just like (24), will strongly depend on
the particular choices of ðζkðtÞ; ρkðtÞÞ.
The dynamics of the number of particles as compared

with the reference vacuum, NkðtÞ ¼ jβkðtÞj2, is determined
by the evolution of the Bogoliubov coefficients. Hence, it
will be useful to write time-evolution equations for both
αkðtÞ and βkðtÞ. For that, we differentiate (23) with respect
to t and replace ̈zkðtÞ by −ωkðtÞzkðtÞ as dictated by the
equation of motion (3). Finally, we use the inverse of (23)
and obtain

�
_αk
_β�k

�
¼ i

�
sk þ _φk rke2iφk

−r�ke−2iφk −ðsk þ _φkÞ

��
αk

β�k

�
; ð26Þ

where sk is a real time-dependent function given by

sk ¼ −
ω2
k

2Wk
þ 1

2
½ _Yk −Wkð1þ Y2

kÞ� þ
_Wk

2Wk
Yk; ð27Þ

while the time-dependent function rk is determined by its
real and imaginary parts, μk and νk, respectively:

μk ¼ skþWk; νk ¼−
_Wk

2Wk
þWkYk; rk ¼ μkþ iνk:

ð28Þ
Note that we have deliberately eliminated the dependence
on the phase φk in sk and rk, extracting it explicitly in (26).
Thus, both sk and rk are unequivocally specified once the
free functions ðWk; YkÞ, which characterize the particular
annihilation and creation operators âkðtÞ and âkðtÞ† in the
quantum theory, are fixed. Equations (26) coincide with the
results of [12], with the appropriate change of variables.
Once these evolution equations are known, we general-

ize the procedure followed in [11]. Differentiating jβkðtÞj2
and using (26) it can be easily seen that

_NkðtÞ ¼ 2 Imfe−2iφkðtÞr�kðtÞMkðtÞg; ð29Þ

where we have taken advantage of the real character of sk
and we have defined the auxiliary function

MkðtÞ ¼ αkðtÞβkðtÞ: ð30Þ

Analogous to this deduction, it is not difficult to obtain an
equation for MkðtÞ,

_MkðtÞ ¼ irkðtÞe2iφkðtÞ½1þ 2NkðtÞ�
þ 2i½skðtÞ þ _φkðtÞ�MkðtÞ; ð31Þ

by using (26) and the relation (21) between the Bogoliubov
coefficients.
Note that neither Eq. (29) nor (31) depend explicitly on

the particular solution zkðtÞ of the harmonic oscillator
equation with time-dependent frequency. However, the
residual ambiguity in the choice of reference vacuum j0i
has not disappeared but has been transformed from the
freedom in the selection of zkðtÞ to the freedom in the initial
conditions for NkðtÞ and MkðtÞ. The natural choice
zkðt0Þ ¼ ζkðt0Þ and _zkðt0Þ ¼ ρkðt0Þ ensures that both sets
of annihilation and creation operators coincide at t0, which
implies βkðt0Þ ¼ 0 and hence Nkðt0Þ ¼ Mkðt0Þ ¼ 0.
In order to make a direct comparison with the results in

the quantum kinetic approach [11,19,41], it will be inter-
esting to rewrite Eqs. (29) and (31) as an integro-differ-
ential equation for NkðtÞ where the auxiliary function
MkðtÞ does not intervene. With this objective, we solve
(31) by the method of variation of constants with Nk fixed
and initial condition Mkðt0Þ ¼ 0. Then,

MkðtÞ ¼ e2iφkðtÞ
Z

t

t0

dτ irkðτÞ½1þ 2NkðτÞ�eiθkðt;τÞ; ð32Þ

where

θkðt; τÞ ¼ 2

Z
t

τ
dt0 skðt0Þ: ð33Þ

Substituting this expression in (29) we finally obtain, in
terms of the real and imaginary parts of rk ¼ μk þ iνk:

_NkðtÞ ¼
Z

t

t0

dτ2½1þ 2NkðτÞ�

× f½μkðtÞμkðτÞ þ νkðtÞνkðτÞ� cos½θkðt; τÞ�
− ½μkðtÞνkðτÞ − νkðtÞμkðτÞ� sin½θkðt; τÞ�g: ð34Þ

Note that _Nk does not depend on the arbitrary phase φk, but
only onWk and Yk, as we already deduced in Sec. III. This
equation is exact and completely general for any given
quantization characterized by the pair ðζkðtÞ; ρkðtÞÞ.
The equation above shows that pair creation is nonlocal

in time: Time evolution of NkðtÞ depends on the values of
this magnitude in previous times through the bosonic
enhancement factor 1þ 2NkðτÞ.3 This is due to coherence
between particle creation events when intense external
fields are applied. Conversely, in the limit in which external
agents are weak enough, particle creation events are
sufficiently separated in time so that a local approximation
of this equation is feasible [11,45].

3In fermionic systems, the factor 1þ 2NkðτÞ transforms into a
Pauli blocking factor 1 − 2NkðτÞ [19].

GENERALIZED QUANTUM VLASOV EQUATION FOR PARTICLE … PHYS. REV. D 105, 125012 (2022)

125012-7



The integro-differential equation (34) might seem at first
sight difficult to solve. However, the canonical approach
discussed in Sec. III helped us to indirectly solve it. Indeed,
the expression (24) for Nk is a solution to the above
equation. The difficulty in solving an integro-differential
equation translates into calculating a particular solution
zkðtÞ of the harmonic oscillator equation with time-
dependent frequency (3), which, as we have already
discussed, can only be analytically done in specific cases
such as constant external fields.
When we choose ðζkðtÞ; ρkðtÞÞ as a zeroth-order adia-

batic approximation (19) with Y̆ð0Þ
k ðtÞ ¼ 0, the real time-

dependent functions taking part in the previous equation
reduce to

μ̆ð0Þk ðtÞ ¼ 0; ν̆ð0Þk ðtÞ ¼ −
_ωkðtÞ
2ωkðtÞ

;

θ̆ð0Þk ðt; τÞ ¼ −2
Z

t

τ
dt0 ωkðt0Þ; ð35Þ

leading to the usual integro-differential QVE found in the
literature [11]:

_Nð0Þ
k ðtÞ ¼ _ωkðtÞ

2ωkðtÞ
Z

t

t0

dτ
_ωkðτÞ
ωkðτÞ

½1þ 2Nð0Þ
k ðτÞ�

× cos

�
2

Z
t

τ
dt0 ωkðt0Þ

�
: ð36Þ

Therefore, (34) is the generalized QVE for arbitrary chosen
functions ðζkðtÞ; ρkðtÞÞ. In particular, this generalization
allows us to write the QVE corresponding to the zeroth-
order adiabatic approximation, but with the selection

Yð0Þ
k ðtÞ ¼ _ωkðtÞ=½2ωkðtÞ2�. Indeed, it is easy to verify that

this equation is characterized by the functions

μð0Þk ðtÞ ¼ 1

4

�
ω̈kðtÞ
ωkðtÞ2

−
3

2

_ωkðtÞ2
ωkðtÞ3

�
; νð0Þk ðtÞ ¼ 0;

θð0Þk ðtÞ ¼ −2
Z

t

τ
dt0 Wð2Þ

k ðt0Þ: ð37Þ

As explained in Sec. III B, with this last choice one ensures
a better adiabatic approximation to the equation of motion

while maintaining the same expression for ζð0Þk ðtÞ.
Moreover, remember that this is the usual definition for
the zeroth-order adiabatic mode in the context of quantum
field theory in curved spacetime [40]. In addition, while the
only nonvanishing contribution to the usual QVE (36),

ν̆ð0Þk ðtÞ, is of first-adiabatic order, for the generalized QVE
characterized by (37) the only term which contributes,

μð0Þk ðtÞ, is of second-adiabatic order. This translates into
_Nð0Þ
k ðtÞ being of two higher adiabatic orders for the choice

of Yð0Þ
k ðtÞ than for Y̆ð0Þ

k ðtÞ. Thus, the generalized QVE for

the choice of Yð0Þ
k ðtÞ provides a good balance between

precision and simplicity when compared to the usual
QVE (36).
In Sec. V we will particularize the generalized QVE to

quantizations that allow for a unitary implementation of the
dynamics in the quantum theory, studying their relation in
the ultraviolet limit with the ones for adiabatic modes.
Finally, we note that in order to perform explicit

calculations it is more convenient to rewrite the integro-
differential equation (34), whose numerical resolution is
not generally easy [45], as a real linear system of ordinary
differential equations. This was first done in [46] for the
standard QVE. To that end, we define two auxiliary time-
dependent functions:

M1kðtÞ¼
Z

t

t0

dτ2½1þ2NkðτÞ�

×fμkðτÞcos½θkðt;τÞ�−νkðτÞsin½θkðt;τÞ�g;

M2kðtÞ¼
Z

t

t0

dτ2½1þ2NkðτÞ�

×fμkðτÞsin½θkðt;τÞ�þνkðτÞcos½θkðt;τÞ�g; ð38Þ

such that

_NkðtÞ ¼ μkðtÞM1kðtÞ þ νkðtÞM2kðtÞ: ð39Þ
Differentiating these auxiliary functions we obtain the
linear differential system:

d
dt

0
B@
1þ2Nk

M1k

M2k

1
CA¼ 2

0
B@

0 μk νk

μk 0 −sk
νk sk 0

1
CA
0
B@
1þ2Nk

M1k

M2k

1
CA: ð40Þ

These real differential equations are also equivalent to the
complex differential system composed by (29) and (31).
We have verified that this system of equations is equivalent
to the one derived in [12] that carries out an analog analysis
focusing on adiabatic modes of arbitrary order.

V. UNITARY DYNAMICS

Hamiltonians associated with the type of systems studied
in this work are time dependent. Thus, time-translational
invariance is broken. One usually wants the associated
Fock quantum theory to preserve the symmetries of the
classical system. When it no longer possesses Poincaré
symmetry, as it is the case, this requirement is not restrictive
enough to select particular functions ðζkðtÞ; ρkðtÞÞ in
general and ambiguities emerge in the canonical quantiza-
tion (see Sec. III). In order to reduce these ambiguities,
previous studies of both scalar and fermionic fields in
homogeneous cosmological settings [15,26–28] as well as
in the context of the Schwinger effect [29,30] impose that
the canonical time evolution of the fields be unitarily
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implemented in the quantum theory. Physically, this trans-
lates into a well-defined total number of created particles
throughout the evolution of fields at all finite times. This
physical condition imposes a restriction on the large wave
vector k-functions ζkðtÞ and ρkðtÞ. The main consequence
of demanding a unitary implementation of the quantum
field dynamics, as proven in Refs. [15,26–30], is its
uniqueness: Quantizations compatible with this require-
ment form a unique unitarily equivalent family. One of the
primary objectives in this section is to emphasize and
generalize the procedures from Refs. [15,26–30] in order to
extract relevant physical properties of the generalized QVE
(34) when particularized to this unique family of quantiza-
tions. More precisely, once ζkðtÞ and ρkðtÞ allowing for a
unitary implementation of the dynamics are characterized
in terms of their asymptotic ultraviolet behavior, wewill see
that the usual QVE (36) is in most cases (but not all) the
leading order of the generalized QVE (34). This analysis
will motivate a new criterion to further reduce the quan-
tization ambiguities.

A. Time evolution

First, we study time evolution as a classical Bogoliubov
transformation. In addition, we are interested in comparing
formalisms used in works about unitary implementation of
the quantum dynamics [15,26–30] and others dealing with
the quantum kinetic approach [11,12,19,41] for deducing
the usual QVE (36). Moreover, this will help to simplify
proofs in future sections.
Let us consider the canonical time evolution T ðt0; tÞ of

the canonically conjugate fields ðϕðt;xÞ; πðt;xÞÞ from t0 to
time t. The pairs of modes ðϕkðtÞ; πkðtÞÞ are dynamically
decoupled for different k; i.e., ϕkðtÞ satisfy decoupled
harmonic oscillator equations (3). Thus, we can write

�
ϕkðtÞ
πkðtÞ

�
¼ T kðt0; tÞ

�
ϕkðt0Þ
πkðt0Þ

�
; ð41Þ

where T kðt0; tÞ is the component of T ðt0; tÞ relating the k-
modes. As the annihilation and creation variables ak and a�k
are time independent, from (11) we deduce that

T kðt0; tÞ ¼ Gðzk;_zkÞðtÞG−1
ðzk;_zkÞðt0Þ: ð42Þ

Note that, although the fundamental matrix Gðzk;_zkÞðtÞ
depends on the particular solution zkðtÞ to the equation
of motion (3) that we had chosen, according to the general
knowledge about linear ordinary differential equations, the
canonical matrix T kðt0; tÞ is independent of zkðtÞ.
The time-evolution transformation T ðt0; tÞ has an

associated Bogoliubov transformation B̃ðt0; tÞ whose
k-component B̃kðt0; tÞ relates the initial conditions
akðt0Þ and a�kðt0Þ for the creation and annihilation
variables to their time-evolved ones, i.e.,

�
akðtÞ
a�kðtÞ

�
¼ B̃kðt0; tÞ

�
akðt0Þ
a�kðt0Þ

�
;

B̃kðt0; tÞ ¼
�
α̃kðt0; tÞ β̃kðt0; tÞ
β̃�kðt0; tÞ α̃�kðt0; tÞ

�
: ð43Þ

Therefore, at the quantum level, B̃kðt0; tÞ compares the
quantum theories defined by the same choice of
ðζkðtÞ; ρkðtÞÞ at two different times t0 and t characterized
by annihilation and creation operators ðâkðt0Þ; âkðt0Þ†Þ and
ðâkðtÞ; âkðtÞ†Þ, respectively.
Explicitly, the relation between the time-evolution trans-

formation T kðt0; tÞ defined in (41) and B̃kðt0; tÞ reads

B̃kðt0; tÞ ¼ G−1
ðζk;ρkÞðtÞT kðt0; tÞGðζk;ρkÞðt0Þ; ð44Þ

as it is easy to deduce using (12). Written in this way it is
clear how the time-dependent transformations Gðζk;ρkÞðtÞ
for each k mediate between the classical time evolution of
the field T ðt0; tÞ ¼ ⊕kT kðt0; tÞ and the Bogoliubov trans-
formation B̃ðt0; tÞ ¼ ⊕kB̃kðt0; tÞ that relates Fock quanti-
zations at different times. It is the latter that encodes the
quantum field dynamics and therefore the transformation
that one would like to implement via a unitary operator
Ûðt0; tÞ ¼ ⊕kÛkðt0; tÞ such that�

âkðtÞ
âkðtÞ†

�
¼ Ûkðt0; tÞ

�
âkðt0Þ
âkðt0Þ†

�
Ûkðt0; tÞ−1: ð45Þ

This is a nontrivial question, and only appropriate choices
of ðζkðtÞ; ρkðtÞÞ render B̃ðt0; tÞ unitarily implementable at
the quantum level [26], as we will discuss later.
Note the difference between this time-evolution

Bogoliubov transformation B̃ðt0; tÞ and the previously
considered BðtÞ defined by (20). BkðtÞ relates the reference
Fock quantization associated with a particular solution
zkðtÞ of the harmonic oscillator equation (3) (with anni-
hilation and creation variables denoted by ak and a�k) to
another canonical quantization defined by chosen functions
ðζkðtÞ; ρkðtÞÞ [associated with akðtÞ and a�kðtÞ]. While BðtÞ
is usually studied in works concerning the quantum kinetic
approach and the QVE [11,12,19,41], the works that study
the uniqueness of the quantizations that unitarily imple-
ment the dynamics, such as [15,26–30], deal with the time-
evolution Bogoliubov transformation B̃ðt0; tÞ.
For the present study, it is useful to find a relation

between B̃ðt0; tÞ and BðtÞ. The latter can be computed from
(23), and using (42) we can rewrite (44) as

B̃kðt0; tÞ ¼ BkðtÞBkðt0Þ−1: ð46Þ

Note that this decomposition explicitly depends on the
reference quantization. We can interpret the Bogoliubov
transformation B̃kðt0; tÞ implementing the time evolution
of the field as a composition of two canonical
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transformations. First, Bkðt0Þ−1 transforms the initial con-
ditions ðakðt0Þ; a�kðt0ÞÞ into the time-independent annihi-
lation and creation variables ðak; a�kÞ associated with the
particular solution zkðtÞ. Second, BkðtÞ takes ðak; a�kÞ to
the time-evolved ðakðtÞ; a�kðtÞÞ. In other words, by means
of an auxiliary set of modes zkðtÞ we have factorized
B̃kðt0; tÞ in terms of Bogoliubov transformations relating
ζkðtÞ and zkðtÞ at different times.
Given B̃kðt0; tÞ, we can define the magnitude

Ñkðt0; tÞ ¼ jβ̃kðt0; tÞj2. It measures the number of created
particles at some instant t from the evolution of the vacuum
defined at t0,which is the state annihilated byall theoperators
âkðt0Þ. As discussed previously, we will naturally choose
zkðt0Þ ¼ ζkðt0Þ, and hence _zkðt0Þ ¼ ρkðt0Þ; equivalently,
âkðt0Þ ¼ âk. Then, that vacuum state is just the reference
vacuum j0i of previous sections, and we would simply
obtain B̃kðt0; tÞ ¼ BkðtÞ. Then, both notions of the number
of created particles coincide: Ñkðt0; tÞ ¼ NkðtÞ ¼ jβkðtÞj2,
with Nkðt0Þ ¼ 0. This will simplify the study of the
unitary implementation of the dynamics in the next section.

B. Unitary implementation of the dynamics

In this section we will characterize those quantizations
that unitarily implement the quantum field dynamics. For
concreteness, we will restrict our arguments to the scalar
Schwinger effect, already studied in [29]. Here we will
review the results thatwe need for our analysis, also adapting
them to our present formalism. Other references [15,26–28]
have already studied this in cosmological settings and in the
fermionic Schwinger effect [30]. This section depends on
the particularities of the system, as we will use the asymp-
totic dependence of frequencies on its label (wave numberk
in the Schwinger effect, for example). Instead of working
withYkðtÞ fixed to zero as it is often done, wewill also study
the restrictions imposed on it. This is interesting due to the
fact that NkðtÞ depends on it [see (24) and (34)].
A theorem by Shale [47,48] ensures that B̃ðt0; tÞ is

unitarily implementable if and only if the total number of
created particles in the evolution of the field,Z

d3kÑkðt0; tÞ ¼
Z

2π

0

dϕ
Z

π

0

dθ sin θ
Z

∞

0

dkk2Ñkðt0; tÞ;

ð47Þ
is finite for each fixed finite time t.4 Note that the notion of
unitary implementation of the Bogoliubov transformation
B̃ðt0; tÞ involves all its k-components B̃kðt0; tÞ. Since
Ñkðt0; tÞ ¼ NkðtÞ ¼ jβkðtÞj2, the unitary implementation
of B̃ðt0; tÞ is satisfied if and only if in the ultraviolet limit
jkj ¼ k → ∞ we have

βkðtÞ ¼ Oðk−λÞ; λ > 3=2; ð48Þ

at all finite times t and for almost all fixed directions
ðθ;ϕÞ.5 Note that because of the anisotropy of the
Schwinger effect, the ultraviolet behavior of βkðtÞ depends
on the direction in which we calculate the limit of large k.
Indeed, from (4) we see that the time derivatives of the
frequencies carry a leading-order contribution _ωkðtÞ ¼
Oðk0Þ for directions with constant θ ∈ ð0; πÞ, while in
the direction parallel to the vector potential (θ ¼ 0; π),
_ωkðtÞ ¼ Oðk−1Þ. However, this axis has zero measure in
R3 and does not contribute to the integral in (47).
Remember that βkðtÞ depends both on the particular

reference solution zkðtÞ of the harmonic oscillator equa-
tion (3) and the functions ðζkðtÞ; ρkðtÞÞ. As we said before,
in the most realistic case in which the electric field is
switched off in the asymptotic past, there is no ambiguity
in the selection of zkðtÞ as at that initial time we are forced
to choose positive-frequency plane waves for all k.
Furthermore, assuming general mild conditions on the
time dependence of the frequencies,6 Ref. [29] proves that
this particular solution behaves in the ultraviolet as

jzkðtÞj2 ¼ Oðk−1Þ;
_zkðtÞ ¼ i½−ωkðtÞ þ ΛkðtÞ�zkðtÞ; ð49Þ

where ΛkðtÞ converges to zero at least as fast as Oðk−1Þ.
Once zkðtÞ is fixed, let us characterize the functions
ðζkðtÞ; ρkðtÞÞ which verify the unitary dynamics condition
(48). Using (23) and (49), we can write βkðtÞ as

βkðtÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffi

WkðtÞ
2

r
½1þ iYkðtÞ�

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WkðtÞ

p ½−ωkðtÞ þ Λ�
kðtÞ�

�
eiφkðtÞz�kðtÞ: ð50Þ

We see that both its real and its imaginary parts are Oðk−λÞ
if and only if WkðtÞ and YkðtÞ behave in the ultraviolet as

WkðtÞ ¼ ωkðtÞ½1þOðk−γÞ�; YkðtÞ ¼ Oðk−ηÞ; ð51Þ

with γ; η > 3=2, for each finite time t and for almost all k.
These two conditions characterize the choice of
ðζkðtÞ; ρkðtÞÞ that allow for a unitary implementation of
the dynamics.
All adiabatic approximations of arbitrary order are in

this family as they all behave in the ultraviolet as

4For other systems the integral might be substituted by a sum
over the discrete indexes enumerating the frequencies, with their
corresponding degeneracies, e.g., a sum in n [see (10)] for closed
FLRW spacetimes with spherical spatial symmetry.

5Note that we only consider ultraviolet divergences because we
deal with massive scalar fields and, consequently, there are no
infrared divergences.

6In the scalar Schwinger effect, a sufficient condition to satisfy
this mild condition is that _ωkðtÞ=ωkðtÞ both remains finite and
changes it signs a finite number of times in each closed interval of
time.
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WðnÞ
k ðtÞ ¼ ωkðtÞ½1þOðk−3Þ�, YðnÞ

k ðtÞ ¼ Oðk−2Þ, and

Y̆ðnÞ
k ðtÞ ¼ Oðk−2Þ. However, without any additional criteria

we cannot distinguish them from the rest of the possible
choices that allow for a unitary implementation of the
dynamics. On the other hand, note that as long as the
external agent is time dependent, the usual Minkowski
positive-frequency plane wave modes do not allow for a
unitary implementation of the dynamics since, for this
quantization, γ ¼ 1 (see e.g., Refs. [49,50] for the corre-
sponding QVE). Then, using Minkowski modes in the
Schwinger effect would lead to finite values of NkðtÞ when
the electric field is turned on but the sum of all of them
would diverge [51].
As an aside, in cosmological isotropic settings such as in

FLRW spacetimes, the behavior of the time derivative of
the frequencies does not depend on the angle θ. For
instance, frequencies would be of the form ωkðtÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þmðtÞ2

p
, where mðtÞ is independent of k, and hence

_ωkðtÞ ¼ Oðk−1Þ in all directions. An analogous analysis to
the one developed here leads to the same behavior of
functions (51).
In summary, in order to completely fix the canonical

quantization scheme, we started with a freedom of three
real time-dependent functions ðWkðtÞ; YkðtÞ;φkðtÞÞ for
each k. We proved in Secs. III C and IV that the number
of created particles NkðtÞ does not depend on φkðtÞ. Now,
the behavior of functions WkðtÞ and YkðtÞ with large k ¼
jkj have been restricted. Moreover, Ref. [29] shows that the
possible selections compatible with these restrictions form
a unique unitarily equivalent family of Fock quantizations
in which the total number of created particles (sum of all the
contributions by each k) remains finite at all finite times.
Nevertheless, it is important to remember that each par-
ticular selection in the family provides a different total
number of particles.

C. Generalized QVE and unitary quantum dynamics

In the following we are going to study the asymptotic
ultraviolet behavior of the generalized QVE (34) for
canonical quantizations unitarily implementing the dynam-
ics. In particular, this study will provide us with an
additional physical criterion, stronger than the unitary
implementation of the dynamics, to reduce the ambiguities
in the canonical quantization.
In the ultraviolet, our system should resemble free

Minkowski spacetime regardless of the curvature or the
external fields at work. This suggests a kind of generic
ultraviolet behavior for the generalized QVE, independent
of the specifics of the canonical quantization, at leading
order. Such details should certainly play a role in sublead-
ing terms.
Actually, we are going to argue that quantizations that

unitarily implement the dynamics, i.e., with the ultraviolet
behavior (51), satisfy this criterion provided that γ, η > 2.

Otherwise the leading order of the generalized QVE
depends on the specific quantization that is being carried
out. It turns out that this generic quantization-independent
leading order is precisely that of the QVE, i.e., the
generalized QVE for zeroth-order adiabatic modes.
Indeed, let us consider a canonical quantization defined

by functions WkðtÞ and YkðtÞ which behave in the ultra-
violet according to the unitary dynamics requirement (51)
but with the stronger condition

WkðtÞ ¼ ωkðtÞ½1þOðk−γÞ�; YkðtÞ ¼ Oðk−ηÞ; ð52Þ

with γ, η > 2. This faster ultraviolet decay implies that the
leading order of its generalized QVE (34) coincides with
the usual QVE (36) as can be seen by straightforward
calculation. Thus, for generic functionsWkðtÞ and YkðtÞ in
this subfamily of quantizations allowing for a unitary
implementation of the dynamics, the ultraviolet behavior
of _NkðtÞ at leading order is independent of the particular
time dependence of those functions other than that imposed
by the external electric field through ωkðtÞ.
On the other hand, when generic canonical quantizations

allow for a unitary implementation of the dynamics but do
not satisfy the previous stronger condition (52), their
generalized QVE provides particle creation rates _NkðtÞ
whose ultraviolet behaviors at leading order strongly
depend on functions WkðtÞ and YkðtÞ themselves, even
with a slower ultraviolet decay. More precisely, under these
hypotheses the leading orders in the expansions in k ¼ jkj
of the functions (28) defining the generalized QVE are

μkjLO ¼ 2k

�
1 −

ffiffiffiffiffiffiffi
ωk

Wk

r �				
LO

¼ Oðk1−γÞ;

νkjLO ¼ −
1

2
k−1q _A cos θ þ kYkjLO

¼ Oðk−1Þ þOðk1−ηÞ: ð53Þ

When γ < 2 or η < 2, one of them converges to zero more

slowly than ν̆ð0Þk ðtÞ ¼ Oðk−1Þ in the case of the usual QVE
for the lowest adiabatic approximation [see (35)]. The
limiting cases γ ¼ 2 and η ≥ 2 and vice versa lead to the
same ultraviolet decay as the generic one (for γ, η > 2)
but in a state-dependent fashion.
Note that this analysis is valid as long as the leading order

of the generalized QVE is of the same adiabatic order as the
standard QVE. There are a few exceptions to this generic
case such as canonical quantizations based on higher-order
adiabatic approximations, whose generalized QVE are of
higher order. The nth-adiabatic approximation cancels the
lower-order contributions to its generalized QVE, and in
particular, that of the usual QVE. But this makes the leading
order being that of the nth-adiabatic approximation, which
decays faster than the zeroth order in the ultraviolet,
significantly diminishing the rate of particle creation.
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More explicitly, the leading order of the functions μðnÞk and

νðnÞk for the nth-order adiabatic modes (with n ≥ 2) are

μðnÞk jLO ¼ WðnÞ
k −Wðnþ2Þ

k ¼ Oðk−ðnþ2ÞÞ;
νðnÞk jLO ¼ kðYðnÞ

k − Yðnþ2Þ
k Þ ¼ Oðk−ðnþ3ÞÞ: ð54Þ

For all these reasons, we consider that the physically
reasonable choices for generic WkðtÞ and YkðtÞ should
satisfy (52). This allows not only for a unitary implemen-
tation of the dynamics, but also provides a generalized
QVEwhose leading order coincides with the corresponding
to the lowest adiabatic order. Other selections not satisfying
this criterion but such that they cancel the contribution for
the usual QVE [e.g., higher-order adiabatic approxima-

tions, which have YðnÞ
k ¼ Oðk−2Þ], lead to particle creation

rates which converge even faster to zero than all the others
as we have discussed and are therefore good candidates
as well.
One could also consider more restricting criteria in the

task of reducing the ambiguity in the quantization based on
the generalized QVE for higher adiabatic orders. A moti-
vation for these criteria may come from the fact that, in
cosmological settings and within the strict family of
adiabatic vacua, it is necessary to consider higher adiabatic
orders to obtain a well-defined renormalized stress-energy
tensor [52].

VI. CONCLUSIONS

In usual quantum field theory in Minkowski spacetime,
Poincaré symmetry fixes the vacuum. In curved spacetimes,
or if an external agent is coupled to a matter field in flat
spacetime, the classical system is, in general, not invariant
under such a restrictive group of symmetry. In particular,
when time-translational invariance is lost, the vacuum
changes throughout time and particle creation effects can
occur. When imposing that the associate quantum theory
preserves the classical symmetries we find that there are
still ambiguities in the choice of vacuum defining the
quantum theory.
In this work we have written a generalized version of the

usual quantum Vlasov equation [11], which is an integro-
differential equation for the number of created particles
throughout time for the Schwinger effect, extending it to
arbitrary canonical quantizations. We have also provided its
formal solution, thus generalizing the result in [41].
Moreover, we have particularized it for arbitrary nth-order
adiabatic modes, calculating its leading order in an adiabatic
expansion.

Although our analysis has been carried out for the scalar
Schwinger effect, in which an external homogeneous time-
dependent electric field is applied in flat spacetime, we
have also argued how our analysis can be straightforwardly
applied to quantum matter fields propagating in FLRW
spacetimes.
Next, we have resorted to the unitary implementation of

the quantum field dynamics as physical criterion to restrict
the set of acceptable quantizations. This criterion, mainly
pushed forward in the context of FLRW cosmological
spacetimes [15,26–28], reduces the ambiguities in the
canonical quantization to a unique family of unitarily
equivalent quantizations. This also happens to be true in
the scalar and fermionic Schwinger effects with a homo-
geneous electric field [29,30]. In practice, this requirement
restricts the ultraviolet behavior of the Fourier modes used
in the quantization so that the total number of created
particles is well defined at all finite times.
Focusing on the quantizations that allow for a unitary

implementation of the dynamics, in the present work we
have proved that there is a wide family of them whose
generalized QVE behaves, at leading order in the ultraviolet
asymptotic expansion, exactly as the standard QVE for
zeroth-order adiabatic modes. Namely, the time depend-
ence of such leading order is only due to the characteristics
of the external agent (electric field) responsible for the
creation of particles, and not to the specific modes used to
quantize our field. On the other hand, we have also proved
that there is another family of quantizations that, while also
allowing for a unitary implementation of the dynamics,
yield a generalized QVE whose leading order in the
ultraviolet limit depends explicitly on the quantization
(via a time-dependent term that is not simply determined
by the time dependence of the external agent). In view of
this last result we have proposed a new criterion which,
together with the unitary implementation of the dynamics,
restricts even more the quantizations that we consider
acceptable: those for which the leading order of the
generalized QVE is just that of the zeroth-order adiabatic
vacuum (except when this leading order vanishes, e.g., for
the higher-order adiabatic vacua). This criterion guarantees
that the particle creation rate is independent of the details of
the quantization at leading order in the ultraviolet, and
which decays at least as fast as for the lowest adiabatic
approximation.

ACKNOWLEDGMENTS

This work has been supported by Project. No. MICINN
PID2020–118159GB-C44 from Spain. A. A. D. acknowl-
edges financial support from Universidad Complutense de
Madrid through the predoctoral Grant No. CT82- 20.

ÁLVAREZ-DOMÍNGUEZ, GARAY, and MARTÍN-BENITO PHYS. REV. D 105, 125012 (2022)

125012-12



[1] F. Sauter, Über das Verhalten eines Elektrons im homogenen
elektrischen Feld nach der relativistischen Theorie Diracs,
Z. Phys. 69, 742 (1931).

[2] J. S. Schwinger, On gauge invariance and vacuum polari-
zation, Phys. Rev. 82, 664 (1951).

[3] S. W. Hawking, Black hole explosions, Nature (London)
248, 30 (1974).

[4] L. Parker, Quantized fields and particle creation in expand-
ing universes. I, Phys. Rev. 183, 1057 (1969).

[5] G.W. Gibbons and S. W. Hawking, Cosmological event
horizons, thermodynamics, and particle creation, Phys. Rev.
D 15, 2738 (1977).

[6] R. Dabrowski and G. V. Dunne, Superadiabatic particle
number in Schwinger and de Sitter particle production,
Phys. Rev. D 90, 025021 (2014).

[7] R. Dabrowski and G. V. Dunne, Time dependence of
adiabatic particle number, Phys. Rev. D 94, 065005
(2016).

[8] A. Ilderton, Physics of adiabatic particle number in the
Schwinger effect, Phys. Rev. D 105, 016021 (2022).

[9] Y. Yamada, Superadiabatic basis in cosmological particle
production: Application to preheating, J. Cosmol. Astropart.
Phys. 09 (2021) 009.

[10] C. Lüders and J. E. Roberts, Local quasiequivalence and
adiabatic vacuum states, Commun. Math. Phys. 134, 29
(1990).

[11] Y. Kluger, E. Mottola, and J. M. Eisenberg, Quantum
Vlasov equation and its Markov limit, Phys. Rev. D 58,
125015 (1998).

[12] S.Habib,C.Molina-París, andE.Mottola,Energy-momentum
tensor of particles created in an expanding universe, Phys. Rev.
D 61, 024010 (1999).

[13] M. J. Fahn, K. Giesel, and M. Kobler, Dynamical properties
of the Mukhanov-Sasaki Hamiltonian in the context of
adiabatic vacua and the Lewis-Riesenfeld invariant, Uni-
verse 5, 170 (2019).

[14] B. Elizaga Navascués, G. A. M. Marugán, and T. Thiemann,
Hamiltonian diagonalization in hybrid quantum cosmology,
Classical Quantum Gravity 36, 185010 (2019).

[15] J. Cortez, B. Elizaga Navascués, G. A. M. Marugán, S.
Prado, and J. M. Velhinho, Uniqueness criteria for the Fock
quantization of Dirac fields and applications in hybrid loop
quantum cosmology, Universe 6, 241 (2020).

[16] D. M. de Blas and J. Olmedo, Primordial power spectra for
scalar perturbations in loop quantum cosmology, J. Cosmol.
Astropart. Phys. 06 (2016) 029.

[17] B. Elizaga Navascués, G. A. Mena Marugán, and S. Prado,
Non-oscillating power spectra in loop quantum cosmology,
Classical Quantum Gravity 38, 035001 (2021).

[18] R. Liboff, Kinetic Theory: Classical, Quantum, and Rela-
tivistic Descriptions, Graduate Texts in Contemporary
Physics (Springer, New York, 2003).

[19] S. Schmidt, D. Blaschke, G. Röpke, S. A. Smolyansky,
A. V. Prozorkevich, and V. D. Toneev, A quantum kinetic
equation for particle production in the Schwinger mecha-
nism, Int. J. Mod. Phys. E 07, 709 (1998).

[20] C. D. Roberts and S. M. Schmidt, Dyson-Schwinger equa-
tions: Density, temperature and continuum strong QCD,
Prog. Part. Nucl. Phys. 45, S1 (2000).

[21] R. Ruffini, G. Vereshchagin, and S.-S. Xue, Electron–
positron pairs in physics and astrophysics: From heavy
nuclei to black holes, Phys. Rep. 487, 1 (2010).

[22] G. V. Dunne, New strong-field QED effects at extreme light
infrastructure, Eur. Phys. J. D 55, 327 (2009).

[23] C. K. Dumlu and G. V. Dunne, Interference effects in
Schwinger vacuum pair production for time-dependent laser
pulses, Phys. Rev. D 83, 065028 (2011).

[24] F. Hebenstreit, R. Alkofer, G. V. Dunne, and H. Gies,
Momentum Signatures for Schwinger Pair Production in
Short Laser Pulses with a Subcycle Structure, Phys. Rev.
Lett. 102, 150404 (2009).

[25] P. R. Anderson and E. Mottola, Instability of global de
Sitter space to particle creation, Phys. Rev. D 89, 104038
(2014).

[26] J. Cortez, G. A. Mena Marugán, and J. M. Velhinho,
Quantum unitary dynamics in cosmological spacetimes,
Ann. Phys. (Amsterdam) 363, 36 (2015).

[27] J. Cortez, G. A. Mena Marugán, and J. Velhinho, Quantum
linear scalar fields with time dependent potentials: Over-
view and applications to cosmology, Mathematics 8, 115
(2020).

[28] J. Cortez, G. A. Mena Marugán, and J. M. Velhinho, A brief
overview of results about uniqueness of the quantization in
cosmology, Universe 7, 299 (2021).

[29] L. J. Garay, A. G. Martín-Caro, and M. Martín-Benito,
Unitary quantization of a scalar charged field and Schwinger
effect, J. High Energy Phys. 04 (2020) 120.

[30] A. Álvarez-Domínguez, L. J. Garay, D. García-Heredia, and
M. Martín-Benito, Quantum unitary dynamics of a charged
fermionic field and Schwinger effect, J. High Energy Phys.
10 (2021) 74.

[31] S. P. Gavrilov and D. M. Gitman, Vacuum instability in
external fields, Phys. Rev. D 53, 7162 (1996).

[32] R. M. Wald, Existence of the S-matrix in quantum field
theory in curved space-time, Ann. Phys. (N.Y.) 118, 490
(1979).

[33] I. A. Pedrosa, Canonical transformations and exact invari-
ants for dissipative systems, J. Math. Phys. (N.Y.) 28, 2662
(1987).

[34] F. Hebenstreit, R. Alkofer, and H. Gies, Schwinger pair
production in space- and time-dependent electric fields:
Relating the Wigner formalism to quantum kinetic theory,
Phys. Rev. D 82, 105026 (2010).

[35] F. Hebenstreit, A. Ilderton, M. Marklund, and J. Zamanian,
Strong field effects in laser pulses: The Wigner formalism,
Phys. Rev. D 83, 065007 (2011).

[36] F. Hebenstreit, A. Ilderton, and M. Marklund, Pair produc-
tion: The view from the lightfront, Phys. Rev. D 84, 125022
(2011).

[37] X. Sheng, R. Fang, Q. Wang, and D. H. Rischke, Wigner
function and pair production in parallel electric and mag-
netic fields, Phys. Rev. D 99, 056004 (2019).

[38] O. A. Fonarev, Wigner function and quantum kinetic theory
in curved space–time and external fields, J. Math. Phys.
(N.Y.) 35, 2105 (1994).

[39] R. Wald, Quantum Field Theory in Curved Spacetime and
Black Hole Thermodynamics, Chicago Lectures in Physics
(University of Chicago Press, Chicago, 1994).

GENERALIZED QUANTUM VLASOV EQUATION FOR PARTICLE … PHYS. REV. D 105, 125012 (2022)

125012-13

https://doi.org/10.1007/BF01339461
https://doi.org/10.1103/PhysRev.82.664
https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1103/PhysRev.183.1057
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.15.2738
https://doi.org/10.1103/PhysRevD.90.025021
https://doi.org/10.1103/PhysRevD.94.065005
https://doi.org/10.1103/PhysRevD.94.065005
https://doi.org/10.1103/PhysRevD.105.016021
https://doi.org/10.1088/1475-7516/2021/09/009
https://doi.org/10.1088/1475-7516/2021/09/009
https://doi.org/10.1007/BF02102088
https://doi.org/10.1007/BF02102088
https://doi.org/10.1103/PhysRevD.58.125015
https://doi.org/10.1103/PhysRevD.58.125015
https://doi.org/10.1103/PhysRevD.61.024010
https://doi.org/10.1103/PhysRevD.61.024010
https://doi.org/10.3390/universe5070170
https://doi.org/10.3390/universe5070170
https://doi.org/10.1088/1361-6382/ab32af
https://doi.org/10.3390/universe6120241
https://doi.org/10.1088/1475-7516/2016/06/029
https://doi.org/10.1088/1475-7516/2016/06/029
https://doi.org/10.1088/1361-6382/abc6bb
https://doi.org/10.1142/S0218301398000403
https://doi.org/10.1016/S0146-6410(00)90011-5
https://doi.org/10.1016/j.physrep.2009.10.004
https://doi.org/10.1140/epjd/e2009-00022-0
https://doi.org/10.1103/PhysRevD.83.065028
https://doi.org/10.1103/PhysRevLett.102.150404
https://doi.org/10.1103/PhysRevLett.102.150404
https://doi.org/10.1103/PhysRevD.89.104038
https://doi.org/10.1103/PhysRevD.89.104038
https://doi.org/10.1016/j.aop.2015.09.016
https://doi.org/10.3390/math8010115
https://doi.org/10.3390/math8010115
https://doi.org/10.3390/universe7080299
https://doi.org/10.1007/JHEP04(2020)120
https://doi.org/10.1007/JHEP10(2021)074
https://doi.org/10.1007/JHEP10(2021)074
https://doi.org/10.1103/PhysRevD.53.7162
https://doi.org/10.1016/0003-4916(79)90135-0
https://doi.org/10.1016/0003-4916(79)90135-0
https://doi.org/10.1063/1.527707
https://doi.org/10.1063/1.527707
https://doi.org/10.1103/PhysRevD.82.105026
https://doi.org/10.1103/PhysRevD.83.065007
https://doi.org/10.1103/PhysRevD.84.125022
https://doi.org/10.1103/PhysRevD.84.125022
https://doi.org/10.1103/PhysRevD.99.056004
https://doi.org/10.1063/1.530542
https://doi.org/10.1063/1.530542


[40] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
1982).

[41] A. M. Fedotov, E. G. Gelfer, K. Y. Korolev, and S. A.
Smolyansky, Kinetic equation approach to pair production
by a time-dependent electric field, Phys. Rev. D 83, 025011
(2011).

[42] L. Parker and D. Toms, Quantum Field Theory in Curved
Spacetime: Quantized Fields and Gravity, Cambridge
Monographs on Mathematical Physics (Cambridge Univer-
sity Press, Cambridge, England, 2009).

[43] H. Taya, T. Fujimori, T. Misumi, M. Nitta, and N. Sakai,
Exact WKB analysis of the vacuum pair production by
time-dependent electric fields, J. High Energy Phys. 03
(2021) 82.

[44] P. Beltrán-Palau, A. Ferreiro, J. Navarro-Salas, and S. Pla,
Breaking of adiabatic invariance in the creation of particles
by electromagnetic backgrounds, Phys. Rev. D 100, 085014
(2019).

[45] S. Schmidt, D. Blaschke, G. Röpke, A. Prozorkevich, S.
Smolyansky, and V. Toneev, Non-Markovian effects in
strong-field pair creation, Phys. Rev. D 59, 094005 (1999).

[46] J. C. R. e. a. Bloch, Pair creation: Back reactions and damp-
ing, Phys. Rev. D 60, 116011 (1999).

[47] D. Shale, Linear symmetries of free boson fields, Trans. Am.
Math. Soc. 103, 149 (1962).

[48] S. Ruijsenaars, On Bogoliubov transformations. 2. The
general case, Ann. Phys. (N.Y.) 116, 105 (1978).

[49] S. P. Kim and C. Schubert, Nonadiabatic quantum Vlasov
equation for Schwinger pair production, Phys. Rev. D 84,
125028 (2011).

[50] A. Huet, S. P. Kim, and C. Schubert, Vlasov equation for
Schwinger pair production in a time-dependent electric
field, Phys. Rev. D 90, 125033 (2014).

[51] S. N. M. Ruijsenaars, Charged particles in external fields. I.
Classical theory, J. Math. Phys. (N.Y.) 18, 720 (1977).

[52] L. Parker and S. A. Fulling, Adiabatic regularization of the
energy-momentum tensor of a quantized field in homo-
geneous spaces, Phys. Rev. D 9, 341 (1974).

ÁLVAREZ-DOMÍNGUEZ, GARAY, and MARTÍN-BENITO PHYS. REV. D 105, 125012 (2022)

125012-14

https://doi.org/10.1103/PhysRevD.83.025011
https://doi.org/10.1103/PhysRevD.83.025011
https://doi.org/10.1007/JHEP03(2021)082
https://doi.org/10.1007/JHEP03(2021)082
https://doi.org/10.1103/PhysRevD.100.085014
https://doi.org/10.1103/PhysRevD.100.085014
https://doi.org/10.1103/PhysRevD.59.094005
https://doi.org/10.1103/PhysRevD.60.116011
https://doi.org/10.1090/S0002-9947-1962-0137504-6
https://doi.org/10.1090/S0002-9947-1962-0137504-6
https://doi.org/10.1016/0003-4916(78)90006-4
https://doi.org/10.1103/PhysRevD.84.125028
https://doi.org/10.1103/PhysRevD.84.125028
https://doi.org/10.1103/PhysRevD.90.125033
https://doi.org/10.1063/1.523334
https://doi.org/10.1103/PhysRevD.9.341

