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We write the curvature of spacetime in terms of the excitation probability of particle detectors
ultrarapidly coupled to a quantum field. More precisely, we provide an expansion for the excitation
probability of a smeared Unruh-DeWitt detector delta-coupled to a real scalar quantum field in a curved
background. Using a short-distance expansion for the Wightman function, we express the excitation
probability of a detector as the transition probability in Minkowski spacetime plus correction terms written
as a function of the curvature tensors and the detector size. Comparing the excitation probability in curved
spacetimes with its flat analog, we are able to express the components of the Ricci and Riemann curvature
tensors as a function of physically measurable excitation probabilities of different-shaped detectors.
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I. INTRODUCTION

At its core, general relativity is a theory of gravity
phrased operationally in terms of measurements of dis-
tances and time using classical rulers and clocks.
Quantizing these notions has been a major problem of
theoretical physics for the past century and, as of today,
there is still no complete theory of quantum gravity.
Nevertheless, there are multiple effective tools that can
be used in order to better understand the relationship of
gravity and quantum physics in low energy regimes. In
particular, the behavior of quantum fields in curved space-
times can be well described using a semiclassical theory,
where the background is classical and the matter fields are
quantum. Although this approach does not provide a full
theory of quantum gravity, it gives important results, such
as the Unruh and Hawking effects [1–4] and the model of
inflation [5], which describes the Universe fractions of
seconds after its creation. A more recent application of this
semiclassical theory is to rephrase classical notions of
space and time intervals in terms of properties of quantum
fields [6–9]. As argued in [8,9], this rephrasing might lead
to a quantum theory of spacetime, which could redefine the
notions of distance and time close to the Planck scale.
In order to relate the spacetime geometry with properties

of a quantum field theory (QFT), it is necessary to study the
specific way that the background spacetime affects a
quantum field. The effect of curvature in the correlation
function of a QFT has been thoroughly studied in the

literature [6,10,11]. In fact, it is possible to show that,
within short scales, the behavior of the correlations of a
quantum field can be written as the correlations in flat
spacetime added to terms that involve corrections due to
curvature [12,13]. This suggests that if one finds a
mechanism to locally probe these correlations, one would
then be able to recover the geometry of spacetime.
Onewayof probing quantum fields locally, and recovering

their correlation functions, is through the use of particle
detector models [9,14]. Broadly speaking, particle detector
models are localized nonrelativistic quantum systems that
couple to a quantum field. Examples of physical realizations
of these range from atoms probing the electromagnetic field
[15–17] to nucleons interacting with the neutrino fields [18–
20]. After their first introduction by Unruh and DeWitt in
[3,21], thesemodels foundmany different uses for studying a
wide range of phenomena of quantum field theories in both
flat and curved spacetimes. There are several applications of
these models, such as the study of the entanglement in
quantum fields [15,22–26], the Unruh effect [2,4,27–29],
and Hawking radiation [2,30–33]. Moreover, particle detec-
tors can be used to provide a measurement framework for
quantum field theory [34,35], to probe the topology [36]
and geometry of spacetime [9], among other applications
[14,37,38].
In this manuscript we show how it is in principle possible

to recover the curvature of spacetime using smeared
particle detectors ultrarapidly coupled to a quantum field
[39,40]. Smeared particle detectors have a finite spatial
extension, which can be controlled to probe the quantum
field in different directions. The effect of the spacetime
curvature in the correlation function of the quantum field
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then affects the transition probabilities of the detector. We
precisely quantify how curvature affects the response of
particle detectors, so that by comparing the response of a
detector in curved spacetimes with what would be seen in
Minkowski, one can infer the spacetime curvature. Using
particle detectors with different shapes then gives access to
the spacetime curvature in different directions, so that it is
possible to reconstruct the full Riemann tensor at the center
of the detector’s trajectory, and all geometrical quantities
derived from it.
Our results are another instance of rephrasing geomet-

rical properties of spacetime in terms of measurements of
observable quantities of quantum fields [6–9]. We argue
that such rephrasing is an important step toward under-
standing the relationship between quantum theory and
gravity. This sets the grounds for future works which
might provide a detailed answer to how to define the
notions of space and time in scales where the classical
notions provided by general relativity fail to work.
This paper is organized as follows. In Sec. II we describe

the coupling and the dynamics of a particle detector
ultrarapidly coupled to a massless scalar field. In Sec. III
we write the excitation probability of an ultrarapidly
coupled particle detector as an expansion in the detector
size, with coefficients related to the spacetime curvature. In
Sec. IV we provide a protocol such that one can recover the
spacetime curvature from the excitation probability of
particle detectors. The conclusions of our work can be
found in Sec. V.

II. ULTRARAPID SAMPLING
OF QUANTUM FIELDS

In this section we describe the particle detector model
that will be used in this manuscript. We consider a two-
level Unruh-DeWitt (UDW) detector model coupled to a
free massless scalar quantum field ϕ̂ðxÞ in a D ¼ nþ 1
dimensional spacetime M with metric g. The Lagrangian
associated with the field can be written as

L ¼ −
1

2
∇μϕ∇μϕ; ð1Þ

where ∇ is the Levi-Civita connection. We will not be
concerned with the details of the quantization of the field
here. However, we will assume that the state of the field is a
Hadamard state, for reasons that will become clear in
Sec. III. Moreover, Hadamard states are those for which it is
possible to associate a finite value to the stress-energy
tensor of the quantum field [12,41], which makes them
appealing from a physical perspective.
The detector is modeled by a two-level system under-

going a timelike trajectory zðτÞ in M with four-velocity
uμðτÞ and proper time parameter τ. We pick Fermi normal
coordinates ðτ; xÞ around zðτÞ (for more details we refer the
reader to [42–44]). We assume the proper energy gap of the

two-level system to be Ω, such that its free Hamiltonian in
its proper frame is given by ĤD ¼ Ωσ̂þσ̂−, where σ̂� are
the standard raising/lowering ladder operators. The inter-
action with the scalar field is prescribed by the scalar
interaction Hamiltonian density

ĥIðxÞ ¼ λ̃ΛðxÞμ̂ðτÞϕ̂ðxÞ; ð2Þ

where μ̂ðτÞ ¼ e−iΩτσ̂− þ eiΩτσ̂þ is the detector monopole
moment, λ̃ is the coupling constant, and ΛðxÞ is a scalar
function that defines the spacetime profile of the inter-
action. This setup defines the interaction of a UDW
detector with a real scalar quantum field, and has been
thoroughly studied in the literature [3,9,12,14,19–
21,26,43,44]. This model also has a physical appeal, as
it has been shown to reproduce realistic models, such as
atoms interacting with the electromagnetic field [15–17]
and nucleons with the neutrino fields [18–20].
Under the assumption that the shape of the interaction

between the detector and the field is constant in the
detector’s frame i.e. a rigid detector, we can write the
spacetime smearing function as ΛðxÞ ¼ χðτÞfðxÞ, where
now fðxÞ (the smearing function) defines the shape of the
interaction and χðτÞ (the switching function) controls the
strength and the duration of the coupling. This decom-
position also allows one to control the proper time duration
of the interaction by considering χðτÞ ¼ ηφðτ=TÞ=T for a
positive compactly supported function φ that is L1ðRÞ
normalized and symmetric with respect to the origin. Here
η and T are parameters with units of time, which ensure that
χðτÞ is dimensionless. In this manuscript we will be
particularly interested in an ultrarapid coupling [39,40],
which is obtained when T → 0 and χðτÞ → ηδðτÞ.
The evolution of the system after an interaction is

implemented by the time evolution operator

Û ¼ T τ exp
�
−i

Z
M

dVĥIðxÞ
�
; ð3Þ

where T τ denotes time ordering with respect to τ and dV ¼ffiffiffiffiffiffi−gp
dDx is the invariant spacetime volume element. In the

case of ultrarapid coupling, where χðτÞ ¼ ηδðτÞ, Eq. (3)
simplifies to

Û ¼ e−iμ̂ ŶðfÞ ¼ cosðŶÞ − iμ̂ sinðŶÞ; ð4Þ

where

ŶðfÞ ¼ λ

Z
d3x

ffiffiffiffiffiffi
−g

p
fðxÞϕ̂ðxÞ; ð5Þ

with μ̂ ¼ μ̂ð0Þ ¼ σ̂þ þ σ̂−, λ ¼ λ̃η, and ϕ̂ðxÞ ¼ ϕ̂ðτ ¼ 0; xÞ
is the field evaluated at the rest space associated with the
interaction time, τ ¼ 0. In the equation above the integral is
performed over the rest space of the system at τ ¼ 0.
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We consider a setup where the detector starts in the
ground state ρ̂d;0 ¼ σ̂−σ̂þ and the field starts in a given
Hadamard state ω. The final state of the detector after the
interaction, ρ̂d, will then be given by the partial trace over
the field degrees of freedom. It can be written as

ρ̂d ¼ ωðÛρ̂d;0Û
†Þ

¼ ωðcos2ðŶÞÞσ̂−σ̂þ þ ωðsin2ðŶÞÞσ̂þσ̂−

¼ 1

2
ð1þ ωðcosð2ŶÞÞσ̂zÞ; ð6Þ

where we used μ̂ρ̂d;0μ̂ ¼ σ̂þσ̂− and ωðsinðŶÞ cosðŶÞÞ ¼ 0

due to the fact that this operator is odd in the field ϕ̂, and ω
is a Hadamard state, so that it is quasifree [11] and all of its
odd point functions vanish. In particular, notice that
trðρ̂dÞ ¼ ωðcos2ðŶÞ þ sin2ðŶÞÞ ¼ 1, as expected. The exci-
tation probability of the detector is then given by

P ¼ trðρ̂dσþσ−Þ ¼ ωðsin2ðŶÞÞ ¼ 1

2
ð1 − ωðe2iŶÞÞ; ð7Þ

where we used sin2 θ ¼ 1
2
ð1 − cosð2θÞÞ and the fact that

ωðcosð2ŶÞÞ ¼ ωðexpð2iŶÞÞ, because only the even part of
the exponential contributes. Moreover, there is a simple
expression for the excitation probability in terms of a
smeared integral of the field’s Wightman function
Wðx; x0Þ ¼ ωðϕ̂ðxÞϕ̂ðx0ÞÞ. Let

L ¼ λ2
Z

dnxdnx0
ffiffiffiffiffiffi
−g

p ffiffiffiffiffiffiffi
−g0

p
fðxÞfðx0ÞWðx; x0Þ; ð8Þ

where Wðx; x0Þ ¼ Wðτ ¼ 0; x; τ0 ¼ 0; x0Þ. Then, we show
in Appendix A that if ω is a quasifree state,ωðe2iŶÞ ¼ e−2L,
so that the excitation probability of the delta-coupled
detector can be written as

P ¼ 1

2
ð1 − e−2LÞ: ð9Þ

Notice that in the pointlike limit the detector is essentially
sampling the field correlator at a single point. In this case,
ρ̂d →

1
2
1 and no information about the quantum field can be

obtained. By considering finite-sized detectors, it is then
possible to sample the field in local regions, allowing one to
recover information about both the field and its background
spacetime.

III. THE EFFECT OF CURVATURE ON THE
EXCITATION PROBABILITY

In this section we will derive an expansion for the
excitation probability of a particle detector rapidly inter-
acting with a quantum field in curved spacetimes. From
now on, we will focus in the case of (3þ 1) dimensions.
Our expansion will relate P in Eq. (9) with the excitation

probability of a delta-coupled particle detector in
Minkowski spacetime. By comparing these results, we
will later be able to rewrite the components of the Riemann
curvature tensor as a function of the excitation probability
of the detector.
Notice that the detector’s excitation probability in Eq. (9)

is entirely determined by L in Eq. (8), so that in order to
obtain an expansion for the excitation probability, it is
enough to expand L. The first step in order to perform our
expansion is to write the Wightman function in curved
spacetimes as its flat spacetime analog added to an
expansion in terms of curvature. Assuming the field state
ω to be a Hadamard state, it can be shown that the
correlation function of a quantum field can be written as
[11,27,41,45,46]

Wðx;x0Þ ¼ 1

8π2
Δ1=2ðx;x0Þ
σðx;x0Þ þvðx;x0Þ ln jσðx;x0Þjþwðx;x0Þ;

ð10Þ

where vðx; x0Þ and wðx; x0Þ are regular functions in the limit
x0 → x, Δðx; x0Þ is the Van Vleck determinant (see [42]),
and σðx; x0Þ is Synge’s world function, corresponding to
one half the geodesic separation between the events x and
x0. In Eq. (10), the function wðx; x0Þ contains the state
dependence, while vðx; x0Þ is fully determined by the
properties of both the field and the spacetime. We can
then write

Wðx; x0Þ ¼ 1

8π2σ
½Δ1=2 þ 8π2v0σ ln jσj þ 8π2w0σ

þOðσ2 ln jσjÞ�; ð11Þ
where v0 ¼ v0ðx; x0Þ and w0 ¼ w0ðx; x0Þ are the first order
terms of an expansion of v and w in powers of σ [13].
Notice that we have factored the Minkowski spacetime
Wightman function for a massless field,W0ðx; x0Þ ¼ 1

8π2σ
in

Eq. (11). In [13,42] it was shown that for a massless field,
v0ðx; x0Þ ¼ RðxÞ=6þOð ffiffiffi

σ
p Þ, so that the leading order

contribution for the expansion is given by the Ricci scalar.
The same is true for the state-dependent part of the
Wightman function, wðx; x0Þ ¼ ω0ðxÞ þOð ffiffiffi

σ
p Þ for a

given function ω0ðxÞ which determines the state contribu-
tion to Wðx; x0Þ to leading order in σ. Moreover, the Van
Vleck determinant admits the following expansion:

Δ1
2ðx; x0Þ ¼ 1þ 1

12
RαβðxÞσαðx; x0Þσβðx; x0Þ; ð12Þ

where σαðx; x0Þ denotes the tangent vector to the geodesic
that connects x and x0 such that its length corresponds to the
spacetime separation between x and x0. σα also corresponds
to ∂ασ [42].
Combining the results above, we find that the Wightman

function of a quantum field in a Hadamard state can be
approximated as
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Wðx; x0Þ ≈W0ðx; x0Þ
�
1þ 1

12
RαβðxÞσαðx; x0Þσβðx; x0Þ

þ 4π2

3
RðxÞσðx; x0Þ ln jσðx; x0Þj

þ 8π2ω0ðxÞσðx; x0Þ
�
; ð13Þ

where W0ðx; x0Þ is the Wightman function in Minkowski
spacetime.
Equation (13) allows one to locally relate the Wightman

function in curved spacetimes with its Minkowski counter-
part. However, we wish to have an expansion in terms of the
proper distance from the center of the interaction, z. This
proper distance can be expressed naturally in terms of
Synge’s world function in Fermi normal coordinates due
to the fact that xi ¼ σiðz; xÞ, so σðx;x0Þ ¼ 1

2
σiðz;xÞσiðz;xÞ¼

1
2
xixi. Thus, considering x and x0 sufficiently close to the
point z, we can use the following approximations:

σðx; x0Þ ≈ σðz; xÞ − σαðz; xÞσαðz; x0Þ þ σðz; x0Þ;
σαðx0; xÞ ≈ σαðz; xÞ − σαðz; x0Þ ¼ ðx − x0Þα: ð14Þ

It is also possible to expand the Ricci scalar and the Ricci
tensor according to RðxÞ ¼ RðzÞ þOðrÞ and RαβðxÞ ¼
RαβðzÞ þOðrÞ, where OðrÞ denotes terms of order

r ¼
ffiffiffiffiffiffiffiffi
xixi

p
. Analogously,we can expand the state-dependent

term as ω0ðxÞ ¼ ω0ðzÞ þOðrÞ. In the end we obtain an
expression that relates Wðx; x0Þ with W0ðx; x0Þ, tensors
evaluated at z, and the effective separation vector between
z and x=x0:

Wðx; x0Þ ≈W0ðx; x0Þ
�
1þ 1

12
Rijðx − x0Þiðx − x0Þj

þ 2π2

3
Rðx − x0Þ2 ln

���� 12 ðx − x0Þ2
����

þ 4π2ω0ðzÞðx − x0Þ2
�
; ð15Þ

where the curvature tensors are all evaluated at the center
point of the interaction, z. In Eq. (15), ðx − x0Þi ¼ xi − x0i
denotes the difference in Fermi normal coordinates of the
points x and x0 and ðx − x0Þ2 ¼ ðx − x0Þiðx − x0Þi ¼ r2.
The last factor that was not yet considered in our

expansion is the factor of
ffiffiffiffiffiffi−gp

terms that show up in
the definition of L in Eq. (8). If the detector size is small
enough compared to the radius of curvature of spacetime,
we can employ the expansion of the metric determinant
detailed in Appendix B around the center of the interaction
z. We then have

ffiffiffiffiffiffi
−g

p ¼ 1þ aixi þ
1

2
Mijxixj þOðr3Þ; ð16Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxixj

q
corresponds to the proper distance

from a point to zð0Þ, ai is the four-acceleration of the
trajectory at τ ¼ 0, and the tensorMij is evaluated at z. This
tensor is explicitly given by

Mij ¼
2

3
Rτiτj −

1

3
Rij: ð17Þ

At this stage, we have all the tools required to expand the
excitation probability. Combining the results of Eqs. (15)
and (16), we can write the excitation probability of a
smeared delta-coupled particle detector in a curved space-
time as the following short-scale expansion:

P ≈ P0 þ e−2L0

�
MijQij þ 2aiDi þ 1

12
RijLij

þ 2π2

3
RLR þ 4π2ω0Lω

�
; ð18Þ

where P0 ¼ 1
2
ð1 − e−2L0Þ and we have defined

L0 ¼ λ2
Z

d3xd3x0fðxÞfðx0ÞW0ðx; x0Þ;

Qij ¼ λ2
Z

d3xd3x0fðxÞfðx0ÞW0ðx; x0Þxixj;

Di ¼ λ2
Z

d3xd3x0fðxÞfðx0ÞW0ðx; x0Þxi;

Lij ¼ λ2
Z

d3xd3x0fðxÞfðx0ÞW0ðx; x0Þðx − x0Þiðx − x0Þj;

LR ¼ λ2
Z

d3xd3x0fðxÞfðx0ÞW0ðx; x0Þ

× ðx − x0Þ2 ln
���� 12 ðx − x0Þ2

����;
Lω ¼ λ2

Z
d3xd3x0fðxÞfðx0ÞW0ðx; x0Þðx − x0Þ2: ð19Þ

Notice that P0 corresponds to the excitation probability of
the detector if it were interacting with the vacuum of
Minkowski spacetime. Equation (18) contains all correc-
tions to the excitation probability of the detector up to
second order in the detector size, as we have considered all
terms of this order or lower in our computations.
In Eq. (18) we see corrections arising from five different

fronts. The MijQij term is associated with the spacetime
volume element in the rest frame of the trajectory where the
detector interacts with the quantum field. The aiDi term is
the effect that the instantaneous acceleration of the detector
has in the shape of its rest surface. TheRijLij term is related
to the corrections to the correlation function due to the Van
Vleck determinant, associated with the determinant of the
parallel propagator. The RLR term is associated with the
corrections to the correlation function due to spacetime
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curvature. Finally, the ω0Lω term is associated with the
state of the quantum field. We highlight that this is the only
term in Eq. (18) whose coefficient is not independent of the
other ones, given that we can write Lω ¼ δijLij.
The expansion of Eq. (18) contains the effect of the

curvature of spacetime in the excitation probability of a
smeared delta-coupled UDW detector. Moreover, this
expansion works for a large class of spacetimes under
weak assumptions for the quantum field, provided that the
detector size is small compared to the curvature radius of
spacetime. It is also important to mention that the integral
for L in Eq. (8) is not solvable analytically in most
spacetimes, and can demand great computational power
to be performed numerically. However, the expression for
L0, Qij, Di, Lij, LR, and Lω can be computed analytically
for a large class of smearing functions (see, for instance
Appendix C). In this sense, the expansion presented in this
section can be used to simplify the study of sufficiently
small particle detectors in curved spacetimes.
Overall, the expansion in Eq. (18) shows the different

ways that the background geometry manifests itself on
ultrarapid localized measurements of a quantum field.

IV. THE CURVATURE OF SPACETIME IN TERMS
OF THE EXCITATION PROBABILITY

In this section we will use the results of Sec. III in order
to build a protocol by which one can obtain the curvature of
spacetime from the excitation probability of delta-coupled
particle detectors. In order to do so, we will consider
explicit shapes for detectors, so that we can explicitly
compute the L0,Qij,Di, Lij, LR, and Lω terms of Eq. (18),
and obtain the curvature-dependent terms Mij, Rij, and R
from the excitation probabilities.
Before outlining the operational protocol which will

allow us to recover the spacetime curvature, it is important
to discuss the effect that the detector size has on the
excitation probability in flat spacetimes. Consider a point-
like detector in Minkowski spacetime. After the ultrarapid
coupling with the quantum field, this detector will be in a
maximally mixed state, with excitation probability equal to
1=2. The physical reason behind the detector ending up in a
maximally mixed state is that it instantaneously probes all
of the field modes. This generates a great amount of noise,
which results in the detector state containing no informa-
tion about the field. Overall, the size of the detector
determines the smallest wavelength (largest energy modes)
that it is sensitive to. Thus, increasing the size of the
detector makes it sensitive to less energetic modes, which
then decreases the excitation probability, according to
Eq. (9). This allows one to obtain information about the
field modes up to a cutoff determined by the inverse of the
detector’s size.
The discussion of the last paragraph can also be extended

to curved spacetimes. In particular, the fact that a pointlike
detector delta-coupled to a quantum field ends up in a

maximally mixed state also holds in general spacetimes. In
fact, in the pointlike limit one ends up sampling smaller and
smaller regions that are locally flat, and too small to be
affected by curvature. This can be explicitly seen from
Eq. (18), where all the correction terms are proportional to
some power of the detector size [Eq. (19)]. Similarly, as
discussed in the case of flat spacetimes, a finite-sized
particle detector will then couple to field modes of finite-
sized wavelengths, and the effect of these modes in the
particle detector will change its excitation probability.
Moreover, the curvature in different directions will affect
the modes that propagate in these directions differently.
This implies that probing the quantum field with smeared
delta-coupled particle detectors with different shapes
should allow one to recover the spacetime curvature in
different directions.
We are now at a step where we can explicitly formulate a

protocol where spacetime curvature can be recovered from
ultrarapid local measurements of a quantum field. In order
to do this, we will first have to make assumptions about the
spacetimeM and the events where we sample the field. As
one would expect, in order to recover the classical curvature
of spacetime in terms of expected values of quantum
systems, one would require many samplings of the quan-
tum field in similar conditions. Thus, we will require our
spacetime to be locally stationary for the duration of the
experiment,1 so that it contains a local timelike Killing field
ξ localized in the region where the experiments take place.
Moreover, we will assume that the center points of the
interactions of the particle detectors with the quantum field
can all be connected by the flow of ξ. This will ensure that
the curvature tensorRμναβ and all other tensors derived from
it are the same for all interactions considered, so that the
expansion of Eq. (18) has constant coefficientsMij, ai, Rij,
and R.
The final assumption for our setup is that the different

centers of the interactions are sufficiently separated in time
so that the backreaction that each coupling of the detectors
has on the field can dissipate away. This is a key
assumption, which implies that the field state being probed
remains approximately the same throughout the interaction.
Equivalently, this implies that the state-dependent part of
the Wightman function expansion in Eq. (18), ω0, will
remain approximately constant within the detectors’ smear-
ings. We note that we are considering a massless field, so
that field excitations propagate at light speed. Thus, the
assumption that ω0 is approximately constant translates
into the different interactions being separated in time by
more than the detectors’ light-crossing time. Overall, this is
a reasonable assumption for any experimental setup.

1This is a strong condition that could be relaxed, as we only
need spacetime not to vary too much in the frame of one timelike
curve during the experiments, but we will assume this stronger
version in order to build an explicit protocol.
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In order to build an explicit protocol, wewill consider the
detectors’ smearing functions to be given by ellipsoidal
Gaussians in their respective Fermi normal frames. By
considering ellipsoidal Gaussians as the shape of the
detectors, we will then be able to select the modes that
they are sensitive to in each spatial direction. Explicitly, we
consider smearing functions of the form

fðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p
ð2πÞ32 e−

1
2
aijxixj ; ð20Þ

where aij is a positive symmetric bilinear map. We assumeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p ¼ OðL−3Þ, where L is a constant with units of
length that determines the approximate size of the detectors
and dictates the smallest wavelengths that they are sensitive
to. The smearing function is prescribed in the detector’s
rest space in terms of the Fermi normal coordinates
x ¼ ðx1; x2; x3Þ.
With the explicit choice of the detectors’ shapes in

Eq. (20), it is possible to compute most coefficients from
the expansion of Eq. (18) analytically. In fact, in
Appendix C, we show that with the choice of elliptic
Gaussian for fðxÞ, L0, Qij, Di, Lij, and Lω can be
computed analytically. Moreover, Di ¼ 0 in this case, so
that the expansion in Eq. (18) can be written as

P ¼ P0 þ e−2L0

�
MijQij þ NijLij þ 2π2

3
RLR

�
; ð21Þ

whereMij ¼ 2
3
Rτiτj − 1

3
Rij and Nij ¼ 1

12
Rij þ 4π2ω0δij. In

Appendix C we also show that Qij, Lij, and LR can all be
varied independently due to their different nonlinear
dependence on aij (or equivalently, on the shape of the
detector). In this sense, Eq. (21) particularizes the expan-
sion in Eq. (18) for this specific setup and explicitly shows
the independent coefficients Qij, Lij, and LR determined
by the detectors’ shape.
We are now at a stage where we can pick different

detector sizes and shapes in order to recover information
about the curvature of spacetime from their excitation
probabilities. First, we consider the case where the detec-
tor’s trajectory zðτÞ is the flow of the Killing vector field ξ.
In this case, we expect to recover the tensors Mij and Nij

and the scalar R by sampling the probability P in Eq. (18)
for different shapes of detectors (or, correspondingly, for
different values of aij). That is, we perform measurements
using different detectors with different shapes placed in
different orientations, so that we “sample the effect of
curvature” in each direction. In order to fully recover these
tensors, it is necessary to sample the field using at least 13
different values of aij which give a set of 13 linearly
independent coefficients Qij (with six independent com-
ponents), Lij (with six independent components), and LR.

We then need a total of 13 ¼ 6þ 6þ 1 measurements in
order to be able to write Mij, Nij, and R in terms of the
different probabilities.
From the tensorsMij, Nij, and R it is possible to recover

Rij, Rτiτj, and ω0. In fact, using Mi
i ¼ 2

3
Rττ − 1

3
Ri

i and
R ¼ −Rττ þ Ri

i, we obtain Ri
i ¼ 2Rþ 3Mi

i. We can then
obtain the state-dependent term, ω0 ¼ 1

12π2
ðNi

i − 1
12
Ri

iÞ.
Finally, the curvature tensors can be written as Rij ¼
12ðNij − 4π2ω0δijÞ and Rτiτj ¼ 3

2
Mij þ 2Rij. This protocol

then allows one to recover 13 independent terms: We
recover all the space components of the Ricci scalar Rij, all
components of the Riemann tensor of the form Rτiτj, and
the state-dependent term ω0. In particular, from Rij and
Rτiτj, it is possible to obtain Rττ and the Ricci scalar R. The
protocol outlined above then allows one to recover infor-
mation about the spacetime geometry using only 13
different couplings of detectors with the field. Moreover,
if the spacetime whose geometry we wish to recover has
known symmetries, it might be possible to require even
fewer than 13 samplings by exploiting these symmetries.
At this stage it should be clear that it is possible to

recover some information about the spacetime geometry
from the excitation probability of ultrarapid coupled
particle detectors. However, it is still not possible to recover
the full Ricci tensor, or the full Riemann curvature tensor
from the setup described so far. In fact, it is not possible to
write the components Rτi, Rτijk, or Rijkl in terms of Mij,
Nij, and R. However, it is possible to recover these tensors
by considering detectors in different states of motion such
that the center of their interactions with the quantum field is
at events that still lie along the same flow of the Killing
field ξ. For concreteness, consider a second detector which
has a relative velocity v in a (Fermi normal) coordinate
direction xi with respect to the previous setup. In this case,
it is possible to write the instantaneous four-velocity of the
second detector at the point of the interaction as
u0 ¼ γðuþ veiÞ, where u is the four-velocity of the flow
of the ξ trajectory, ei is the frame vector associated with the
Fermi normal coordinates in the direction i, and v is the
magnitude of the instantaneous relative three-velocity
between the trajectories. Then, performing the same pro-
tocol described above for detectors with relative velocity v
at the interaction points, we will obtain the tensors Ri0j0 ,
Rτ0i0τ0j0 , and the scalar Rτ0τ0, where the primed coordinates
are associated with the components with respect to the
Fermi frame of the trajectory u0. Using the standard Lorentz
coordinate transformation between these frames at the
interaction points, it is possible to write Rττ ¼ γ2ðRτ0τ0−
2vRτ0i0 þ v2Ri0i0 Þ. This expression now allows us to write
the components Rτ0i0 in terms of other previously obtained
tensor components. An analogous procedure can also be
carried over to the Riemann curvature tensor, allowing one
to obtain Rτ0i0j0k0 and Ri0j0k0l0 by considering frames with
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relative motion with respect to the flow of ξ. With this
protocol, we are then able to recover all components of the
Riemann curvature tensor.
We have particularized this protocol for specific elliptical

Gaussian detector shapes, so that their proper acceleration
did not play any role in the expansion of Eq. (18). That is,
this choice allows one to recover the geometry of spacetime
regardless of the instantaneous proper acceleration of the
detectors. However, it is possible to generalize this pro-
cedure using general detector shapes, provided that one
finds linearly independent coefficients for the terms Qij,
Di, Lij, and LR. In fact, if we had considered detectors with
nontrivial Di terms, the acceleration of the detector would
also play a role in the expansion of Eq. (18). Then, with 16
couplings it would be possible to recover Mij, ai, Nij, and
R. An analogous protocol could then be performed in order
to recover the full Riemann curvature tensor curvature of
spacetime.
Overall, we have shown that it is possible to write the

components of the curvature tensors in terms of the
excitation probabilities of smeared delta-coupled particle
detectors of different shapes in different states of motion. In
order to do so, we assume that the spacetime geometry is
approximately unchanged for the duration of the experi-
ments. Intuitively, by varying the shape of the detector in
different directions, the detector will couple to different
field modes, which are affected by curvature in specific
ways according to Eq. (18). Having the specific depend-
ence of these modes on curvature then allows one to
associate the excitation probability of the particle detectors
with the geometry of spacetime.

V. CONCLUSION

We have expressed the spacetime curvature in terms of
the excitation probability of smeared particle detectors
delta-coupled to a quantum field. Specifically, we have
devised a protocol in which one considers particle detectors
of specific shapes and with specific states of motion which
repeatedly interact with the quantum field. Under the
assumption that the background geometry is approximately
unchanged during these measurements, one can then
recover the components of the Riemann curvature tensor
associated with the directions in which each detector is
more smeared.
With the protocol we have devised, it is then possible to

recover all components of the Riemann curvature tensor,
and thus all information about the spacetime geometry,
from measurable quantities of particle detectors. Overall,
we have devised a protocol by which one can write the
geometry of spacetime in terms of the expectation values of
quantum observables. This represents yet another step
toward obtaining a theory of spacetime and gravity which
is compatible with with quantum theory and rephrases
classical notions of spacetime and curvature entirely in
terms of properties of quantum fields.
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APPENDIX A: THE EXCITATION PROBABILITY
IN A QUASIFREE STATE

We consider a quasifree state ω for a real scalar quantum
field. The excitation probability for a delta-coupled detector
according to Sec. II then reads

P ¼ 1

2
ð1 − ωðe2iŶÞÞ; ðA1Þ

where

e2iŶ ¼
X∞
n¼0

ð2iλÞn
n!

Z
d3x1…d3xnfðx1Þ…fðxnÞ

× ϕ̂ðx1Þ…ϕ̂ðxnÞ: ðA2Þ

In a quasifree state, we have ωðϕ̂ðxÞÞ ¼ 0, so that
ωðϕ̂ðx1Þ…ϕ̂ðx2nþ1ÞÞ ¼ 0 for all odd powers of the field.
This allows one to write

ωðe2iŶÞ ¼
X∞
n¼0

ð−1Þnð2λÞ2n
ð2nÞ!

Z
d3x1…d3x2nfðx1Þ…fðx2nÞ

× ωðϕ̂ðx1Þ…ϕ̂ðx2nÞÞ: ðA3Þ

Moreover, we can use Wick’s theorem in order to write the
2n-point functions as

ωðϕ̂ðx1Þ…ϕ̂ðx2nÞÞ ¼
X
σ∈P2n

Yn
i¼1

WðxσðiÞ; xσðiþ1ÞÞ; ðA4Þ

where we denote Wðx; x0Þ ¼ ωðϕ̂ðxÞϕ̂ðx0ÞÞ and P2n
denotes the set of ð2n − 1Þ!! permutations involved in
Wick’s theorem.
At this stage, we notice that the functions of 2n variables

fðx1Þ…fðx2nÞ are invariant under permutations. This
implies that under a change of variables on the integrals
of Eq. (A3), we obtain that every term in the sum over the
permutations in P2n yields the same result. That is, we
obtain
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ωðe2iŶÞ¼
X∞
n¼0

ð−1Þnð2λÞ2nð2n−1Þ!!
ð2nÞ!

×
Z

d3x1…d3x2nfðx1Þ…fðx2nÞ
Yn
i¼1

Wðxi;xiþ1Þ:

ðA5Þ

At this stage, we notice that the 2n integrals can be factored
as n identical integrals given by L in Eq. (8). That is, we
can write

ωðe2iŶÞ ¼
X∞
n¼0

ð−1Þn22nð2n − 1Þ!!
ð2nÞ! Ln: ðA6Þ

Using ð2n − 1Þ!! ¼ 21−nð2n − 1Þ!=ðn − 1Þ!, we reach the
simplified expression

ωðe2iŶÞ ¼
X∞
n¼0

ð−1Þn2n
n!

Ln ¼ e−2L; ðA7Þ

so that the excitation probability for a delta-coupled
detector in flat spacetimes reads

P ¼ 1

2
ð1 − e−2LÞ: ðA8Þ

APPENDIX B: FERMI NORMAL COORDINATES

In this appendix we review some basic concepts asso-
ciated with the Fermi normal coordinates (FNCs) around a
trajectory zðτÞ and expansions of the metric in this
coordinate system. In order to build the FNCs around a
timelike curve zðτÞ with four-velocity u, we pick a value τ0
and an orthonormal frame eμðτ0Þ at zðτ0Þ such that
e0ðτ0Þ ¼ uðτ0Þ and eiðτ0Þ satisfy ðeiÞμuμ ¼ 0 and
ðeiÞμðejÞμ ¼ δij. Then, we extend this frame to the whole
curve zðτÞ by imposing that the eiðτÞ are Fermi-Walker
transported according to the equation

DðeiÞμ
dτ

þ a½μuν�ðeiÞν ¼ 0: ðB1Þ

The Fermi-Walker transport above ensures that the
extended vector fields eiðτÞ remain orthogonal among
themselves and to u for all τ [42].
With the frame eiðτÞ, we can write any vector v

orthogonal to u at the point zðτÞ as vðτÞ ¼ xieiðτÞ. We
then define the local rest space associated with zðτÞ at each
τ as the set Στ defined as the expðvðτÞÞ for every vðτÞ
orthogonal to uðτÞwithin the normal neighborhood of zðτÞ.
Στ also allows for a natural coordinate system built from
this construction, in which we associate a point p ∈ Στ to
the coordinates xi if p ¼ expðvðτÞÞ with vðτÞ ¼ xieiðτÞ.

This defines a coordinate system xi in each one of the local
rest spaces of zðτÞ. Thus, ðτ; xÞ define a coordinate system
in a local region of spacetime defined by ∪τ∈R Στ. This
coordinate system is referred to as the Fermi normal
coordinates associated with the curve zðτÞ, and its appli-
cations range from the description of extended bodies in
general relativity, to many computations involving local
rest frames of observers [29,42,43,47–49].
In Fermi normal coordinates the spacetime metric can be

expanded as

ḡττ ¼ −ð1þ 2aixi þ ðaixiÞ2 þ RτiτjxixjÞ þOðr3Þ;

ḡτi ¼ −
2

3
Rτkijxkxj þOðr3Þ;

ḡij ¼ δij −
1

3
Rikjlxkxl þOðr3Þ; ðB2Þ

where r denotes the geodesic distance between the point
x ¼ ðτ; xÞ and the trajectory zðτÞ.
In particular, the metric determinant at each τ can be

expanded as

ffiffiffiffiffiffi
−g

p ¼ 1þ aixi þ
1

2
Mijxixj þOðr3Þ; ðB3Þ

where

Mij ¼
�
Rτiτj −

1

3
ðR1i1j þ R2i2j þ R3i3jÞ

�

¼ 2

3
Rτiτj −

1

3
Rij; ðB4Þ

and all tensors above are evaluated at the point zðτÞ so that
they bear no dependence in x.

APPENDIX C: EXPLICIT COMPUTATION OF
THE COEFFICIENTS IN THE SHORT-DISTANCE

EXPANSION

In this appendix we simplify the terms in Eq. (19), in the
case where the smearing function of the detector can be
written as in Eq. (20) in (3þ 1) spacetime dimensions. In
this case, most terms in Eq. (19) can be written as a single
integral, which can be analytically computed for each
choice of aij. In order to simplify the terms Mij, Lij,
LR, and Lω, define the functional

B½h� ¼ λ2
Z

d3xd3x0fðxÞfðx0ÞW0ðx; x0Þhðx; x0Þ

¼ λ2

8π2
detðaijÞ
ð2πÞ3

Z
d3xd3x0e−1

2
aijxjxje−

1
2
aijx0jx0j

hðx; x0Þ
ðx − x0Þ2 :

ðC1Þ
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Notice that different choices for the function hðx; x0Þ give
the different terms in Eq. (19).
In order to simplify the integral in B½h�, we first complete

the square in the exponential using

aijðxjxj þ x0ix0jÞ ¼ aijðx− x0Þiðx− x0Þj þ 2aijxix0j: ðC2Þ

This allows us to rewrite the Gaussians in B½h� as

e−
1
2
aijxjxje−

1
2
aijx0jx0j ¼ e−

1
2
aijðx−x0Þiðx−x0Þje−aijxix0j : ðC3Þ

We now consider the following change of variables:

� ui ¼ 1ffiffi
2

p ðxi − x0iÞ;
vi ¼ 1ffiffi

2
p ðxi þ x0iÞ: ðC4Þ

Using these new variables we can then write
vðivjÞ − uðiujÞ ¼ 2xðix0jÞ, so that using the symmetry of
aij, we obtain aijxix0j ¼ 1

2
aijðvivj − uiujÞ. This allows us

to simplify B½h� to

B½h� ¼ λ2

8π2
detðaijÞ
ð2πÞ3

Z
d3u
2u2

e−
1
2
aijuiuj

Z
d3ve−

1
2
aijvivjhðu; vÞ;

ðC5Þ

where we denoted hðx; x0Þ expressed in terms of the new
variables u and v by hðu; vÞ.
In order to perform the integrals for different choices of

hðu; vÞ, it will be useful to perform a spatial coordinate
transformation that takes the coordinates ðx1; x2; x3Þ in the
rest frame of the detector to the principal axis of the
ellipsoid described by aij. In these coordinates, the expres-
sions for the tensors Lij and Qij in Eq. (19) become
simplified, as these tensors become diagonal. We denote
the principal coordinates by primes, so that ðx10 ; x20 ; x30 Þ are
aligned with the principal directions of aij and
ai0j0xi

0
xj

0 ¼ a2ðx10 Þ2 þ b2ðx20 Þ2 þ c2ðx30 Þ2. With these con-
ventions, the eigenvalues of aij are a2, b2, and c2, which
control the inverse length scale of the detector in each of the
principal axes. For convenience, we will assume that
a ≤ b ≤ c. Using the principal axis of the ellipsoid that
defines the detectors’ shape, most integrals in Eq. (19) can
be solved analytically in terms of the elliptical functions

Eðφ; kÞ ¼
Z

φ

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
; ðC6Þ

Fðφ; kÞ ¼
Z

φ

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p : ðC7Þ

We start by computing the excitation probability of an
elliptical Gaussian detector in flat spacetimes, L0. Picking
hðu; vÞ ¼ 1 in Eq. (C5) yields the L0 term. We find that

L0 ¼
λ2

16
ffiffiffi
2

p
π2

detðaijÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − a2

p F

�
cos−1

�
a
c

�
;
c2 − b2

c2 − a2

�
: ðC8Þ

In the case of a spherical detector with characteristic size σ,
that is, a ¼ b ¼ c ¼ 1=σ, we obtain

L0 ¼
λ2

16
ffiffiffi
2

p
π2

1

σ2
: ðC9Þ

Notice that in the limit of a pointlike detector (σ → 0), we
obtain L0 → ∞, so that the excitation probability in Eq. (9)
gives 1=2, as expected.
The state-dependent coefficient Lω can be obtained by

picking hðu; vÞ ¼ 2u2, so that both integrals over u and v
become the same, and one obtains a constant, which is
independent of the specific shape of the ellipsoid that
defines the detector,

Lω ¼ λ2

8π2
: ðC10Þ

The Di term is obtained by choosing hðu; vÞ ¼
1ffiffi
2

p ðui þ viÞ. We then obtain two integrals which can be

shown to be 0 due to parity:

Z
d3u
2u2

e−
1
2
aijuiujuk ¼ 0;

Z
d3ve−

1
2
aijvivjvk ¼ 0: ðC11Þ

This implies that for elliptic Gaussians, the Di term does
not contribute, and the acceleration of the curve does not
play any role to leading order in the expansion of Eq. (18).
Choosing hðu; vÞ ¼ 2uiuj in Eq. (C5) gives the Lij term.

It is diagonal in the principal basis associated with the
ellipsoid’s shape and its components are given by

L1010 ¼ −
λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − b2

p

32
ffiffiffi
2

p
π2ðb2 − a2Þ

�
Eðcos−1ðbcÞ; c

2−a2
c2−b2Þ

a2 − c2
þ Fðcos−1ðbcÞ; c

2−a2
c2−b2Þ

c2 − b2
−
2b
ac

�
;

L2020 ¼ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − a2

p

16
ffiffiffi
2

p
π2

�
Eðcos−1ðacÞ; c

2−b2
c2−a2Þ

ðb2 − a2Þðb2 − c2Þ −
Fðcos−1ðacÞ; c

2−b2
c2−a2Þ

ðc2 − a2Þðc2 − b2Þ
�
þ F 2;

L3030 ¼ λ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p
16

ffiffiffi
2

p
π2

ð−Eðcos−1ðacÞ; c
2−b2
c2−a2Þ þ Fðcos−1ðacÞ; c

2−b2
c2−a2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 − a2
p

ðc2 − b2Þ
; ðC12Þ
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where F 2 is defined as

F 2 ¼
λ2

16
ffiffiffi
2

p
π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p
ð2πÞ3=2

a
	
a2ð2b2 þ c2Þ þ c2ðb2 − 4c2Þ þ 6c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − b2

p
tanh−1

	 ffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2

c2

q 


3bc3ða2 − b2Þ2 : ðC13Þ

The term Qij can be obtained by choosing hðu; vÞ ¼
1
2
ðui þ viÞðuj þ vjÞ ¼ 1

2
ðuiuj þ vivj þ 2uðivjÞÞ. The inte-

grals that involve mixed terms of u and vwill be zero due to
Eq. (C11). Also notice that the term corresponding to 1

2
uiuj

yields a result proportional to Lij, while the 1
2
vivj term

gives a result proportional to L0, so that Qij ¼ 1
4
Lijþ

1
2
L0Eij. Here Eij is given by

Eij ¼
�Z

d3ve−
1
2
aklvkvlvivj

�.�Z
d3ve−

1
2
aklvkvl

�
:

We note that Ei0j0 is diagonal in the principal basis of aij. Its
diagonal elements are given by

E1010 ¼
ffiffiffi
2

p

a
; E2020 ¼

ffiffiffi
2

p

b
; E3030 ¼

ffiffiffi
2

p

c
: ðC14Þ

Thus, Qij is also diagonal in this basis. Finally, notice that
Qij can be varied independently of Lij due to the nonlinear
dependence of the Eij term in aij.
Finally, we stress that the integral for LR cannot be

solved analytically for both u and v and a general aij. We
can however write

LR ¼ λ2

8π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðaijÞ

p
ð2πÞ3=2

Z
d3u
2u2

e−
1
2
aijuiuj lnðu2Þ: ðC15Þ

Given that it is not possible to integrate the expres-
sion above analytically, this implies that LR can be
varied independently of all other coefficients computed
above.
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