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The standard description of particles and fundamental interactions is crucially based on a regular metric
background. In the language of differential geometry, this dependence is encoded into the action via Hodge
star dualization. As a result, the conventional forms of the scalar and Yang-Mills actions break down in a
pregeometric regime where the metric is degenerate. This suggests the use of first order formalism, where
the metric may emerge from more fundamental constituents and the theory can be consistently extended to
the pregeometric phase. We systematically explore different realizations and interpretations of first order
formalism, finding that a fundamental vector or spinor substructure brings about continuum magnetization
and polarization as integration constants. This effect is analogous to the description of the cosmological
dark sector in a recent self-dual formulation of gravity, and the similar form obtained for the first order
Yang-Mills theory suggests new paths toward unification.
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I. INTRODUCTION

The description of gravity in general relativity (GR) is
built on a four-dimensional pseudo-Riemannian manifold
supplying the fundamental field of interest: the metric. This
describes distances and determines the curvature of space-
time through the Levi-Civita connection. The contempo-
rary treatment of gauge fields can be taken to be just as
geometric as that of gravity—Yang-Mills theory is then
built on top of the background manifold by considering
the dynamical connections and curvature of a G-bundle
pertaining to the chosen symmetry group G. Scalar and
fermionic fields can also be described with a similar
apparatus, which highlights a difference in the treatment
of fermions and bosons. In fact, whereas the Dirac action is
inherently of the first order, the actions of bosonic fields are
usually given in the second order form and rely on the
metric to operate the required contractions.
Thus, the formulation of quantum field theory (QFT), and

the Standard Model of particle physics in particular, pre-
supposes a (constant, Minkowski) metric background [1],

and in the context of GR this background is promoted to a
dynamical field. Consequently, both frameworks com-
pletely break down in the hypothetical situation where
the metric field becomes degenerate. This possibility was
already considered byEinstein andRosen, in their attempt of
providing a geometrical description of elementary particles
through “bridges” characterized by a vanishing metric
determinant, g ¼ 0 [2]. Later, such solutions and their
topology have played an important part in attempts at
quantum geometrodynamics [3,4]. In particular, it has been
proposed that in quantum gravity, the ground state of the
metric field should be gμν ¼ 0 [5,6].We point out a semantic
inconsistency which occurs if the definition of a metric is
taken to require an invertible, symmetric and covariant
tensor. In the case that one insists upon ametric theory in this
sense, the physical implication of an “ametric” phase, i.e.,
the loss of causal structure, then manifests in the inevitable
nonlocality of the ultraviolet completion, e.g., in terms of
infinite-derivative [7] or fake degrees of freedom [8].
A vanishing ground state for the metric was explicitly

realized in a recent pregeometric gravity theory [9,10]. The
related pregeometry program proposes that the metric, or
the (co)frame, is emergent and composed of other, poten-
tially purely fermionic fields. The framework is in line with
earlier studies such as that of Ref. [11], later invoked within
unification [12], spinor gravity [13,14], analogue gravity
[15], time-space asymmetry [16], lattice regularization [17]
and cosmology [18,19]. By introducing the emergent
coframe via the exterior covariant derivative of a Lorentz
vector (or, a bispinor) in a Cartan-geometric language,
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Ref. [9] found that the consistent general-relativistic
solutions are immediately accompanied by dust interpret-
able as dark matter.1 In the ground state, the gauge
connection is arbitrary. To support a Minkowski back-
ground, the Lorentz vector spontaneously breaks the
symmetry of the theory by acquiring a timelike expectation
value and the gauge connection configuration has both
torsion and curvature. Thus, in terms of the more primitive
fields, there is a nontrivial structure underlying the
Minkowski metric background.
As we show in the present paper, the fact that the metric

could be emergent and admit a singular phase forces to
question the traditional descriptions of elementary fields.
In fact, although the fermionic sector poses no problem, in
a singular metric phase the conventional actions for scalar
and Yang-Mills theory have to be abandoned due to the
presence of a potentially singular inverse metric in the
Hodge dualization. To overcome the problem, we system-
atically study the possibilities offered by the first order
formalism, seeking forms for the bosonic actions which
recover the usual equation of motions and are suitable for a
possible pregeometric regime.
Several approaches have been investigated before. For

instance, Ref. [22], working in Euclidean signature, con-
structed matter actions invariant under Oð5Þ, independent
of the metric and connection via introducing auxiliary
fields, while Ref. [23] used a “preferred volume” formal-
ism, without requiring general covariance, but only covari-
ance under volume-preserving reparametrizations, likewise
introducing an auxiliary field, which coincides with the
inverse vierbein after symmetry breaking. Reference [24]
studied a Yang-Mills-Cartan action, where the gauge field
included a Cartan index, and was the initial basis for
developing the approach here. The Yang-Mills-Cartan
action is included in their Cartan-unified theory, but
separate de Sitter gauge invariance requires assuming that
the contact vector is constant. Thus, these previous
approaches are based on five-dimensional extensions of
the four-dimensional orthogonal symmetry. In a similar
vein, see realizations of Yang-Mills theory in the T-duality
incorporating double field theory [25–27], which doubles
the coordinates of the configuration space and allows for
non-Riemannian backgrounds; see e.g., Refs. [28–30] for
further detail.
Our approach does not resort to higher dimensions or

extra sets of coordinates. Starting from Lorentz symmetry,
this article will instead discuss actions that essentially are
alternative realizations of a first order Yang-Mills theory,
that now with polynomially simple actions appear to be

particularly applicable in the study of gravity. The appli-
cation of first order Yang-Mills theory to degenerate
spacetimes has been remarked earlier [31,32], but the
specific actions in Secs. III A–III B were previously not
presented in the language of differential forms. This
differential geometric formalism allows us to unravel
several interpretational questions and connections, previ-
ously obscured. In particular the excitation in premetric
theory is now determined by the dynamics rather than being
postulated as a fundamental axiom, and the formal sim-
ilarity with the gravitational action, including bimetric
gravity, is made clear. Furthermore, connecting to the
theory of Khronon gravity [9], in Secs. III C–III D we
present a fully novel modification by reducing to vector
substructure, producing magnetization and polarization
effects in the electromagnetic case. A similar approach
to scalar field theory is possible as well, and is only briefly
mentioned, but it deserves more future analysis.
For terminological clarity, it may be useful to distinguish

our approach from the premetric discourse in the literature.
The basic idea is the same: removing the metric from the
fundamental equations of physics. The premetric program,
put forward by Kottler in 1922, has developed into an
axiomatic framework for analyzing and constructing the
structure of a theory, beginning from the identification of
the conserved quantities, and avoiding the reference to any
metrical concepts as far as possible [33]. In principle, this
framework allows us to consider very general theories
which do not even necessarily admit a Lagrangian formu-
lation. In practice, however, the metric is often introduced at
the stage when the theory is made predictive by postulating
its constitutive law. Premetric electrodynamics has been very
well studied, a classic textbook reference is [34], and a
shorter overview is [35], for extension to gravity see [36,37].
Yet, an extension toYang-Mills theory appears to bemissing.
The pregeometric theory that we pursue is, more

particularly, a theory that is based on an invariant, poly-
nomial action principle which remains well-defined when
the inverse metric (that only emerges, potentially highly
nonpolynomially, as a composite of more primitive fields)
does not exist, becomes degenerate or even singular. Thus,
we could state that what we mean by a pregeometric theory
is a premetric theory satisfying the two key axioms:
(1) formulation as an action principle and (2) viability of
the “ametric” phase. We shall make connection with the
existing constructions of premetric electromagnetism,
wherein the electromagnetic excitation is introduced in
conjunction with the axiom of charge conservation and the
form of the excitation is finally postulated (with or without
invoking a metric) through the constitutive law, by instead
promoting the excitation to a dynamical field. Thus, a new
result is that the constitutive law is the consequence of
dynamics and only valid on shell, and moreover, the usual
relation between the excitation and the field strength
may only emerge in the metric phase. We then proceed

1In a unimodular version of this theory, both the cold dark
matter (CDM) and the cosmological constant Λ arise as integra-
tion constants [20]. This provides, to our knowledge, the unique
candidate for a ΛCDM theory of cosmology. The topological
origin of the CDM, due to the existence of a gμν ¼ 0 phase, had
been anticipated in the work of Bañados [21].
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to explore the possibility of reducing, together with the
metric field, the new dynamical excitation field into more
primitive substructure.
The article is structured as follows. In Sec. II we will

briefly go over our conventions and set the formalism used
to describe matter fields. The bulk of the article, in Sec. III,
is devoted to introducing the first order Yang-Mills actions
and studying them. We present and study the first order
actions suitable for pregeometry in Secs. III A–III B. The
implications of a novel first order theory with vector
substructure are investigated in Secs. III C–III D, producing
analogous results to [9]. Section IV brings attention to the
similarity of this first-order Yang-Mills theory and self-dual
Palatini gravity and goes over some questions involving
unification of gravity in first order formalism, before
reaching the conclusion.

II. CLASSICAL THEORY OF MATTER
AND GRAVITY

A. Some mathematical preliminaries

Our conventions are ðηabÞ ¼ diagð−;þ;þ;þÞ and
ϵ0123 ¼ −ϵ0123 ¼ −1. Lorentz indices are in Latin, with
the spatial components capitalized, while greek indices
refer to the coordinate basis, or arbitrary basis in this
section. We implicitly use natural units c ¼ ℏ ¼ 1, gen-
erally barring numerical coefficients if they do not modify
the analysis nor the dynamics; coefficients and coupling
constants are introduced in Sec. IV for comparing GR with
Yang-Mills theory.
A few concepts that should be emphasized are more clear

in arbitrary n dimensions, but will be restricted to four
dimensions later on. Then, a general p-form,

ω ¼ 1

p!
ωμ1…μpϑ

μ1 ∧ … ∧ ϑμp : ð1Þ

It is important to note that the Levi-Civita symbols ϵμ1…μn

and ϵμ1…μn themselves are a premetric concept, arising from
differential forms of maximal rank,

ϑμ1 ∧ … ∧ ϑμn ¼ ϵμ1…μnϑ0 ∧ … ∧ ϑn−1 ¼ ϵμ1…μn ϵ̂; ð2Þ

and their maximal interior product,

ϵμ1…μn ¼ sgnðgÞəμn ⌟… ⌟ əμ1 ϵ̂; ð3Þ

where the 1-forms ϑμi are an arbitrary cobasis with əμi its
respective vector basis; note the addition of the sign is here
only conventional, not strictly required for constructing the
symbol. Without a metric, there is no immediate corre-
spondence between the two symbols, which is sometimes
notationally emphasized. The placement (or omission) of
the sign of the metric determinant is the primary point of
contention between various Levi-Civita symbol and tensor

conventions. Here it is added to the symbol ϵμ1…μn , but
alternatively it could instead be added to the symbol ϵμ1…μn

or either of the Levi-Civita tensors. In practical terms,
mainly the Levi-Civita tensors are used, but as can shortly
be seen, in an orthonormal frame they coincide with the
Levi-Civita symbols up to sign conventions. Note that in
the paper we further assume Lorentz symmetry as a starting
point, therefore the symbols ϵi1i2…in and ηi1i2 (and in
particular, ϵabcd and ηab in four dimensions) are available
as invariants of the symmetry, and in particular, ηi1i2 can be
seen not as a field on spacetime, but simply as an invariant
of Lorentz symmetry.
Furthermore, the chain of interior products ϵ̂μ1 ¼

əμ1 ⌟ ϵ̂; ϵ̂μ1μ2 ¼ əμ2 ⌟ əμ1 ⌟ ϵ̂;… yields a differential form

basis equivalent to ϑμ1 ; ϑμ1 ∧ ϑμ2 ;…; see e.g., [34] for
more discussion. Therefore it is also possible to expand
differential forms as

ω ¼ 1

ðn − pÞ!ω
μ1…μn−p ϵ̂μ1…μn−p : ð4Þ

Moving between a differential form description and the
usual index formalism can be realized with the ⋄-dual
density, which establishes a correspondence between
p-forms and totally antisymmetric tensor densities of
weight þ1 and type ðn − p; 0Þ, i.e., (n − p) vectors.
Generally in terms of basis vectors in n dimensions,

⋄ðϵ̂μ1…μpÞ ¼ δ
ν1…νp
μ1…μpəν1 ⊗ … ⊗ əνp ; ð5Þ

thus for a general p-form ω the ⋄-dual tensor density,
⋄ω ¼ 1

ðn − pÞ!ω
μ1…μn−pəμ1 ⊗ … ⊗ əμn−p ; ð6Þ

with the components,

ωμ1…μn−p ¼ 1

p!
ωμn−pþ1…μnϵ

μ1…μn : ð7Þ

Note this duality between differential forms and tensor
densities does not yet use the metric, as neither the
expansion with respect to the Levi-Civita dual basis
ϵ̂μ1μ2… nor the Levi-Civita symbols involve the metric,
and is therefore viable in a premetric description.
However, establishing the Hodge �-duality between

differential forms of rank p and n − p does require the
metric; see in components,

�ω¼
ffiffiffiffiffiffi−gp

p!ðn−pÞ!ω
μ1…μpϵμ1…μpμpþ1…μnϑ

μpþ1 ∧…∧ ϑμn ; ð8Þ

where the metric determinant appears explicitly and the
inverse metric was used to raise indices. Likewise, the
metric appears in the Levi-Civita tensors,

εμ1…μn ¼
ffiffiffiffiffi
jgj

p
ϵμ1…μn ; ð9Þ
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εμ1…μn ¼ 1ffiffiffiffiffijgjp ϵμ1…μn : ð10Þ

However, note the volume form in four dimensions,

Vol ¼ 1

4!
εμνρσdxμ ∧ dxν ∧ dxρ ∧ dxσ

¼ 1

4!
ϵabcdea ∧ eb ∧ ec ∧ ed; ð11Þ

where in an orthonormal cobasis it loses explicit reference
to the metric, as the determinant η ¼ −1.

B. Matter actions in differential forms

Equipped with the apparatus of differential geometry we
review the standard actions of matter and gravity in the
framework of Lorentz symmetry, paying special attention
to the role of the metric. For a more thorough discussion of
possible geometric descriptions of the background and their
possible equivalence, we refer the reader to Ref. [38].
The simplest case of a massless Dirac fermion can be

described in Riemann-Cartan geometry through the Dirac
spinor action,

Sψ ¼ −
Z

ψ̄γ ∧ �iDψ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ψ̄γμiDμψ ; ð12Þ

where γ ¼ γaea is a 1-form and γa are the Dirac gamma-
matrices, while the exterior covariant derivative (barring
possible gauge interactions) acts on the spinor 0-form as

Dψ ¼ dψ −
i
2
ωab

�
−
i
4
½γa; γb�

�
ψ : ð13Þ

The action can be straightforwardly extended to include a
Dirac mass term ψ̄mψVol, possibly generated after the
spontaneous breaking of gauge symmetries via the Higgs
mechanism. The explicit mathematical construction of
spinor theory on curved spacetime is lengthier. A simple
exposition is that the 0-forms are spinor-valued in
Minkowski space tangent to the background manifold.2

Scalar field and Yang-Mills theories usually rely on
second order actions, the kinetic terms being, respectively,

Sϕ ¼ −
1

2

Z
dϕ ∧ �dϕ; ð14Þ

SA ¼ −
1

2

Z
TrðF ∧ �FÞ: ð15Þ

Scalar fields ϕ are just functions, i.e., 0-forms on a
manifold, while Yang-Mills fields A are the G-connection
1-forms of the corresponding gauge symmetry group G
with Lie algebra g, and the respective curvature 2-form is
given as

F ¼ dAþ A ∧ A: ð16Þ

There are several ways to describe connections, for instance
through a G-invariant horizontal distribution, as a family of
1-forms etc. Here, implicitly working with G-bundles E
over M, and purely for a general description, we can
assume that A is a section of EndðEÞ valued in g. Therefore,
locally A is a Lie algebra valued 1-form on the G-bundle.
Most of the various descriptions are equivalent, emphasiz-
ing different properties, and it is possible to consistently
work in local charts if necessary. Proceeding forward,
variation with respect to ϕ produces the Klein-Gordon
equation, while the variation with respect to A yields the
inhomogeneous Yang-Mills equation D � F ¼ J. The
homogeneous equation is trivial as the Bianchi identity
DF ¼ 0 is satisfied by construction of the curvature 2-form.
Finally, the Palatini gravity action is

Sea;ωab
¼ 1

2κ

Z
ea ∧ eb ∧ �Rab; ð17Þ

where Rab is the curvature 2-form of the spin connection
1-form ωab. The basic variables are the coframe ea and
the spin connection ωab, variation with respect to the first
producing the Einstein equations, while the equations of
motion of the latter fix the connection used in calculating
curvature and used in the energy-momentum. In particular,
when there is no contribution to spin density, the torsion
vanishes and the connection reduces to Levi-Civita.
As we can see, Hodge dualization appears in all the

actions reported above, thereby apparently preventing us
from immediately using them in a regime of the theory
where the inverse metric, used in the dualization, is not
available. Regarding this, we remark that the problem can
actually be circumvented in pure spinor theories, as the
action can be spelled out explicitly in an arbitrary ortho-
normal coframe,

Sψ ¼
Z

ϵabcdea ∧ eb ∧ ec ∧ ψ̄γdiDψ ; ð18Þ

without using the inverse metric nor the tetrad. On top of
that, the Hodge star operator in the gravitational action is
particularly amiable in self-dual formulation, discussed in
Sec. IV. The relevant formulation of scalar and Yang-Mills
theory, suitable for a pregeometric regime independent of

2We refer the reader to e.g., Ref. [39] for a discussion
pertaining to spin geometry and the construction of spinor
bundles. Notably, it is not possible to define such structure on
completely arbitrary manifolds, as generally there can be topo-
logical obstructions. Pregeometry could liberate from such
obstructions. (One can comb a hairy ball if it is allowed to have
a bald spot.)
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the metric, is not as well-known but can be resolved in a
first order theory, as we will show below.

III. THE YANG-MILLS KINETIC CYCLE

A. An auxiliary 1-form

To describe the dynamics of theG-connection gauge field
A for a (generally non-Abelian) gauge groupG, consider the
action, for brevity neglecting overall coefficients,

S ¼
Z

TrG

�
1

2
ϵabcdua ∧ eb ∧ uc ∧ ed þ ηabua ∧ eb ∧ F

�
;

ð19Þ

where ua is an auxiliary Lie algebra g valued 1-form,
transforming as

A → gAg−1 þ gdg−1 ⇒ F → gFg−1; ð20Þ

ua → Adgua ¼ guag−1: ð21Þ

The action is thus by construction invariant under local
gauge transformations, local Lorentz transformations and
diffeomorphisms. Likewise, it is polynomial and only
involves derivatives up to first order. Importantly, the action
only makes use of the fundamental objects available: a
coframe3 ea, a 1-formua, thevector potentialA (contained in
its field strength 2-form F), and the invariants ϵabcd and ηab
of the Lorentz group. A second coframe is present in the
conformal extension of the Lorentz symmetry [10]; see also
e.g., [40,41]. However, here we simply consider the (pre-
sumably broken) symmetry SOð1; 3Þ ×G, and shall return
to discuss paths to unification in Sec. IV.
The corresponding equations of motion of A and ua are

respectively,

Dðηabua ∧ ebÞ ¼ J; ð22Þ

ϵabcdub ∧ ec ∧ ed þ ea ∧ F ¼ 0: ð23Þ

Here J is the current 3-form, which is generally sourced by
the matter terms in the total action.4 The first equation is
just the prototype inhomogeneous Yang-Mills equation,
while the second equation, as we will show, enforces that
on shell ηabua ∧ eb be related to the Hodge dual of gauge
curvature.

The classical equivalence of this formulation with the
usual Yang-Mills theory can be shown by considering
⋄-dual densities of the differential forms, as defined in
Eq. (6). In our case, the analysis will be done in a prototype
orthonormal coframe ea, which is required to be a proper
coframe in the nonsingular phase detðηabeaμebνÞ ≠ 0. The
differential forms ua and F can thus be expanded in the
basis provided by ea, and we can employ the Minkowski
metric to raise and lower indices as necessary. In this case,
in components,

ϵabcdubiϵicdk þ
1

2
ηabFcdϵ

bcdk ¼ 0; ð24Þ

which is

2ubiδikab ¼ 2ðuka − δkauiiÞ ¼
1

2
ηabFcdϵ

bcdk: ð25Þ

Tracing over the indices a and k implies uii ¼ 0, and finally
utilizing the Minkowksi metric to lower indices implies
uðabÞ ¼ 0. The remaining antisymmetric part, uab ¼ u½ab�,
can be reorganized to

uak ¼ −
1

4
Fijϵijak; ð26Þ

which coincides with the Hodge star in an orthonormal
coframe. As ua ¼ uakek, in the nonsingular phase,

ηabua ∧ eb ¼ �F: ð27Þ

Substituting the above relation back into the prototype
inhomogeneous equation produces the usual Yang-Mills
equations. As DF ¼ 0 is trivially satisfied, this first order
formulation is classically equivalent to usual Yang-Mills
theory by realization of a two-step “kinetic cycle.”
Likewise, the on shell action neatly coincides with the
usual Yang-Mills action, as multiplying Eq. (23) by ua and
taking the trace immediately yields

Trðϵabcdua∧eb∧uc∧edÞ¼Trð−ηabua∧eb∧FÞ; ð28Þ

and the results follows through Eq. (27).
The action in Eq. (19) can be considered to be pregeo-

metric in the sense that it remains well defined, as do the
corresponding equations of motion, even if the physical
metric gμν ¼ eaμebνηab is singular. In fact, neither the
action nor the equations of motion depend on the inverse
metric,

gμν ¼ 4ϵα1α2α3μϵβ1β2β3νgα1β1gα2β2gα3β3
ϵα1α2α3α4ϵβ1β2β3β4gα1β1gα2β2gα3β3gα4β4

: ð29Þ

The action is not completely premetric, however, as it still
requires the Minkowski metric ηab. The general similarity

3Note in particular that the (prototype) coframe ea used here
need not be regular everywhere and is only required to allow a
proper expansion with respect to it in the nonsingular phase. In
this sense, the coframe 1-forms produce the geometric structure
of interest, rather than just being part of the description of
spacetime. For conciseness we will refer to ea just as a coframe
rather than a pseudocoframe.

4When a metric is available, J is usually taken to be the Hodge
dual of a current 1-form, so J ¼ �j.
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of our approach to topological QFT, topological Yang-
Mills theory, and background field (BF) theory has to be
noted, for further inspiration.
Heuristically, to emulate the Hodge dualization without

having a regular metric at hand, it makes sense to begin
with an expansion in the prototype orthonormal coframe,
allowing for a possible singular phase. In order to recover
the ordinary Yang-Mills theory, first setting aside possible
topological terms, any prototype kinetic term X ∧ F will
require X to become the dual field strength 2-form �F,
which can easiest be done by introducing explicit Lorentz
indices and 1-form substructure to X, the simplest sub-
stitution being X → ηabua ∧ eb, as in Eq. (19). This can
then be coupled with the Levi-Civita dualized basis as
ϵabcdua ∧ eb ∧ uc ∧ ed, similarly to how the Hodge dual-
ization (8) connects differential form components to a dual
basis. The procedure could be extended by introducing
more auxiliary fields or Lagrange multipliers, thereby
lengthening the cycle, but it does not appear helpful at
present stage. Likewise, it is by no means the only method
to construct a pregeometric Yang-Mills theory, as discussed
earlier.
Other approaches can be thought of too. For instance,

introducing complex structure and instead considering the
field strength F as a fundamental field, the Yang-Mills
equations in four dimensions are equivalent to the system,

D�F ¼∓ i
2
J; ð30Þ

as � � F ¼ −F in Minkowski signature. In particular, when
considering Uð1Þ theory, the covariant derivative is
replaced by the exterior derivative, which then immediately
implies the inhomogeneous Maxwell equation and that F is
closed; therefore under suitable topological assumptions by
de Rham’s first theorem (cf. the Poincare lemma), F is also
exact. In the non-Abelian case (30) does not work as neatly,
but more crucially, this approach implicitly still requires the
use of the Hodge dual in the definition of �F. It is not clear
whether it is possible to work around this.
Initially, the proposed “kinetic cycle” was developed

purely from the ideas in Ref. [24], but without introducing
any Cartan “rolling” indices; note that the action (19) does
not introduce more degrees of freedom than employing
rolling indices would do. However, the action (19) essen-
tially is a realization of first order Yang-Mills theory,
applicable in arbitrary spacetime and in presence of metric
singularities. Note the usual index form of the first order
Yang-Mills action on flat Minkowski space,

SðA;BÞ ¼
Z

d4x

�
1

2
BI
abB

Iab − BI
abF

Iab

�
; ð31Þ

where the auxiliary Bab and Yang-Mills gauge Aa are
independent fields, with the field strength FI

ab of Aa

defined as

FI
ab ¼ ∂aAI

b − ∂aAI
b þ gfIJKAJ

aAK
b ; ð32Þ

and I, J, K are Yang-Mills indices. As such, the direct
translation to a curved background in exterior form
language is

SðA;BÞ ¼
Z

TrG

�
1

2
B ∧ �B − B ∧ �F

�
; ð33Þ

or equivalently up to sign conventions, when essentially
instead considering the Hodge dual of B as the fundamental
field,

SðA; B̃Þ ¼
Z

TrG

�
1

2
B̃ ∧ �B̃þ B̃ ∧ F

�
; ð34Þ

with the independent 1-form vector potential A and 2-form
auxiliary field B (or B̃). Although the utility of first order
Yang-Mills theory in degenerate spacetimes was already
discussed in Refs. [31,32], the exterior algebra structure
of the theory is not particularly discussed in literature.
Furthermore, the direct translation is not immediately
applicable to pregeometry. Thus, even though not a difficult
modification, the action (19) offers a differential form
reimagining suitable to the pregeometric setting, built
from Lorentz symmetry as a fundamental constituent.
Importantly, the language of differential forms allows to
immediately connect with premetric theory of electromag-
netism and gravity. In fact, there are several pregeometric
formulations available, as we find in Sec. III B, which
allow for further interpretations discussed in Sec. IV.
Besides reproducing previous results, the formalism
allows for novel developments, one if which is discussed
in Secs. III C–III D.
More expansive study of first order theory itself goes

back to at least the 1970s [42,43] in relation to strong
coupling effects, but it has also appeared even longer ago,
e.g., [44] in an appendix or see (the republication) [45] in
remark and comparison of Maxwell electromagnetism with
gravity, and is more generally related to the Ostrogradski
procedure of lowering derivative order [46,47]. It has
also been employed in relation to the Duffin-Kemmer
formulation [48,49], or computation of loop effects [50]
in emphasis of the simpler vertex structure. Proving the
classical equivalence of first order and ordinary formu-
lation of Yang-Mills theories is rather straightforward.
Equivalence at the quantum level was recently studied
via vacuum functionals [51], and earlier discussion can be
found in e.g., [52], while other recent results include study
into renormalization [53] and consistency conditions
related to Green’s functions and ultraviolet divergences
[54]. Furthermore, as an aside to pregeometric deliberation,
first order theory has been formulated as a deformation of
topological BF theory [55].
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From the formulation in terms of differential forms, it
can now be immediately seen that in the electromagnetic
Uð1Þ theory the 1-form ua can also be interpreted in terms
of the electromagnetic excitationH, appearing from electric
current conservation as dJ ¼ 0 ⇒ J ¼ dH. The excitation,
both in the equations of motion and the action, appears on a
premetric level; see Ref. [34] for details. In this light, we
find that rather than axiomatically defining correspondence
between the excitation and dual field strength via the
electromagnetic spacetime relation, in a first order theory
this correspondence appears because of the specific form of
the action and the excitation itself can be regarded as a
fundamental field of the theory.
Furthermore, in the exterior formulation, ua is immedi-

ately reminiscent of an extra coframe field, albeitYang-Mills
charged. This can be further related to bimetric theory, see
Ref. [56] for proposals, although for ua to be considered a
proper coframelike object, the implications of expansion
with respect to ua require investigation.5 Curiously enough,
the 1-form ua allows to define a Yang-Mills derived
pseudometric for any Yang-Mills theory,

gYMμν ¼ TrGðuaμubνηabÞ: ð35Þ

This is not necessarily canonical, however, as it is possible to
derive similar structure from the interior product of the field
strength 2-formFwith respect to a vector basis, and likewise
the interpretation of gYMμν is unclear. Quite interestingly, in
D ¼ 3 dimensions similar metric construction connects
with gravity rather closely; see [59,60].
Finally, as expected, in a gravitational context the

energy-momentum derived from ea also agrees with the
usual Yang-Mills energy-momentum tensor. Variation with
respect to the coframe ea, yields the canonical energy-
momentum 3-form,

θa ≔ TrGðϵabcdeb ∧ uc ∧ ud − ua ∧ FÞ: ð36Þ

One can also derive the energy-momentum from (14) and
(15), and the equivalence is simplest seen via index
calculations in the dual densities, investigating the compo-
nent expression. Assuming ua is on shell, so that Eq. (26)
holds, and a regular metric phase, algebraic manipulation
yields altogether

Tr

�
ϵabcduciudjϵbijk − uab

1

2
Fijϵ

bijk

�

¼ Tr

�
−
�
FaiFki −

1

4
δkaFijFij

��
: ð37Þ

That is

Tμν ∼ Tr

�
FμρFν

ρ −
1

4
gμνFρσFρσ

�
; ð38Þ

therefore, up to conventions, the energy-momentum tensor
agrees with that of the usual theory.

B. A Yang-Mills charged transformation

Equivalently, it is possible to instead introduce a Lie
algebra valued 0-form Gab with antisymmetric Lorentz
indices, via the action,

S ¼
Z

Tr

�
1

24
GabGcdηacηbdϵijklei ∧ ej ∧ ek ∧ el

þ Gabηacηbdec ∧ ed ∧ F

�
: ð39Þ

The resulting equations of motion with respect to A andGab

are respectively,

DðGabea ∧ ebÞ ¼ J; ð40Þ

1

12
Gabϵijklei ∧ ej ∧ ek ∧ el þ ea ∧ eb ∧ F ¼ 0: ð41Þ

The analysis mirrors that of the previous section, going to
the dual basis yields

Gabea ∧ eb ¼ �F; ð42Þ

and e.g., analyzing the energy-momentum would proceed
in a similar way. Likewise the action (39) makes no
reference to the inverse metric, thus allows for a singular
phase and could be considered pregeometric.
The main difference lies in the interpretation, now more

transparent in the language of differential forms, further
discussed in Sec. IV. Equivalently we can construct

S ¼
Z

Tr

�
1

4
ðGabηacηbdea ∧ ebÞ ∧ ðGijϵijklek ∧ elÞ

þ ðGabηacηbdec ∧ edÞ ∧ F

�
; ð43Þ

where the coupling ofGab to the surface element ea ∧ eb is
more explicit, similar to the appearance of ua ∧ eb in the
1-form approach. Either approach is classically equivalent
to second order Yang-Mills theory, and there is evidence of

5Interestingly, the action features precisely the partially mass-
less interaction term of the Hassan-Rosen ghost-free bimetric
theory [57]. Besides the partially massless term, there exist two
other viable interactions [58]. It might be interesting to explore
how including these terms would modify the first order Yang-
Mills theory, and whether the bimetric modified gravity could
perhaps be interpreted in this connection with particle physics.
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quantum equivalence as well. Particularly in flat space, the
differential form description can be reduced to (a variant of)
first order Yang-Mills theory in the usual index formalism,
for which the study of quantum properties and equivalence
was discussed earlier; see e.g., [51]. The quantum proper-
ties of the first order formalism while remaining in curved
spacetime require further investigation, however, and a
deeper overview of applying the many possible quantiza-
tion schemes promises to be insightful as well.

C. Vector substructure

In analogy with Ref. [9], we can produce the coframe
from a single Yang-Mills charged vector ϕa, such that

ua ¼ Dϕa ¼ dϕa þ ωa
bϕ

b þ ½A;ϕa�; ð44Þ

and through this produce a fully novel theory. Therefore,
rather than introducing a Lie-algebra valued 1-form ua,
only a single Lorentz vector ϕa is postulated. Explicitly, the
novel action becomes

S ¼
Z

TrG

�
1

2
ϵabcdDϕa ∧ eb ∧ Dϕc ∧ ed

þ ηabDϕa ∧ eb ∧ F

�
; ð45Þ

with the equations of motion for A and ϕa respectively,

ϵabcd½ϕa;Dϕb�∧ ec ∧ edþea ∧ ½ϕa;F�þDðDϕa ∧ eaÞ¼ J;

ð46Þ

DðϵabcdDϕb ∧ ec ∧ ed þ ea ∧ FÞ ¼ 0: ð47Þ

Further, note that it is possible to consider a single Dirac
spinor ψ instead of a vector ϕa, similarly to how various
spinor-pregeometric approaches work with coframes. This
is most clear in the commutative case ofUð1Þ theory, where
we could consider a substitution of the type ϕa → ψ̄γaψ ,
with the objects in the adjoint representation being invariant
under transformations. The non-Abelian case, however,
requires more structure than a single spinor ψ, cf. extra
Yang-Mills indices.6

Although the analysis is similar to earlier, the exterior
covariant derivative yields extra effects, as was the case for
the similar procedure in gravity. The second equation can
be formally solved by introducing a Lie algebra valued
3-form Xa such that DXa ¼ 0; an integration constant, so to
say. The formal solution,

ϵabcdDϕb ∧ ec ∧ ed þ ea ∧ F ¼ Xa; DXa ¼ 0; ð48Þ

can be contracted from the left or right by ϕa. Then
subtracting yields the commutator,

ϵabcd½ϕa;Dϕb� ∧ ec ∧ ed þ ea ∧ ½ϕa; F� ¼ ½ϕa; Xa�: ð49Þ

Therefore the Yang-Mills equation prototype includes an
arbitrary 3-form integration constant in the commutator,

½ϕa; Xa� þ DðDϕa ∧ eaÞ ¼ J: ð50Þ

In case of Abelian groups ½ϕa; Xa� ¼ 0, while otherwise
this term is nontrivial.
Establishing correspondence between Dϕa ∧ ea and the

dual field strength 2-form proceeds in analogy with the
previous sections, but in the presence of the extra 3-form
Xa. For convenience, let Dϕa ¼ ua. Investigating the dual
density of Eq. (48) starts from

ϵabcdubiϵicdk þ
1

2
Fcdϵa

cdk ¼ 1

3!
Xaicdϵ

icdk; ð51Þ

and results in

2ðuka − ηakuiiÞ ¼
1

2
Fcdϵcdak −

1

3!
Xa

icdϵicdk; ð52Þ

so in global form,

ua ∧ ea ¼ �F þ 1

2
ð�XaÞ ∧ ea; ð53Þ

with the symmetric addition decoupled from Yang-Mills
theory. Therefore, the equations of motion of the vector
potential A are

½ϕa; Xa� þ
1

2
Dð�Xa ∧ eaÞ þ D � F ¼ J: ð54Þ

The theory is equivalent to usual Yang-Mills theory when

½ϕa; Xa� þ
1

2
Dð�Xa ∧ eaÞ ¼ 0: ð55Þ

A particular solution is Xa ¼ 0 ⇒ DXa ¼ 0, so a proper
Yang-Mills limit exists. A solution for the ϕa should
generally exist, since (53) has the same number of equations
as unknowns. Looking at this a bit more explicitly, in the
geometric phase we can write the components of uka in (52)

6An attractive possibility would be to consider ϕ as aG-vector,
and ψ̄ as its dual G-vector, so that ψ̄γaψ would have its indices in
the adjoint as desired. This would essentially realise the same
trick internally as we are now performing externally, by consid-
ering the Lorentz vector ϕa instead of the Lorentz adjoint Ga

b.
The trick would considerably reduce the number of independent
variational degrees of freedom. However, it remains to be
investigated whether the gauge-invariant degrees of freedom in
the (dual) field strength can be consistently encoded within one
G-vector spinor (or whether we may would have to e.g., consider
the ψ and χ̄ ≠ ψ̄ as independent).
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in some coordinate system asu½μν� ¼ −gα½μ∇ν�ϕα. In thevery
simplest case of flat space gμν ¼ ημν, ∇μ ¼ ∂μ, Abelian
group G ¼ Uð1Þ and setting Xa ¼ 0, the solution is simply
that ϕμ ¼ Ãμ [up to the Uð1Þ ambiguity ϕμ → ϕμ þ ∂μφ],
where Ãμ is the electromagnetic gauge field corresponding
to the dual field strength. In the generic case the solution for
ϕμ ¼ eaμϕa will be a nonlinear function of the gravitational
fields, the gauge fields and the Xa-field, but there is no
obvious reason why such a solution should not always exist.
In general when Xa ≠ 0 the meaning of the additional

terms is not particularly clear. In the case of Abelian Uð1Þ
theory, however, there is a simple interpretation in terms of
vacuum magnetization and polarization. In usual electro-
magnetic theory, the current 3-form J splits into the
contribution Jmat from bound electric current inside matter
and an external current Jext as

J ¼ Jmat þ Jext: ð56Þ

The total current is conserved, dJ ¼ 0, and it is assumed
there is no conversion between internal and external
charges. Therefore it is meaningful to introduce a matter
excitation Hmat such that Jmat ¼ dHmat, see Ref. [34] for
details.
This excitation can then be split in terms of magnetiza-

tion and polarization after proceeding with a 1þ 3 decom-
position. Let spacetime have a local 1þ 3 foliation,
parametrized by a monotonously increasing variable σ.
Therefore topologically7 let the differentiable manifold
M ¼ Σ × R. The vector field n corresponding to a con-
gruence of observer worldlines is defined by

n ⌟ dσ ¼ Lnσ ¼ −1: ð57Þ

Any p-form ω can be split into a component longitudinal to
n by

⊥ω ¼ dσ ∧ ω⊥; ω⊥ ¼ n ⌟ω; ð58Þ

the remainder being the transverse component,

ω ¼ ð1−⊥Þω ¼ n ⌟ ðdσ ∧ ωÞ; n ⌟ω ¼ 0: ð59Þ

Therefore,

ω ¼ ⊥ωþ ω ¼ dσ ∧ ω⊥ þ ω: ð60Þ

Applying this procedure to the internal excitation,

Hmat ¼ ⊥Hmat þHmat ¼ −Hmat ∧ dσ þDmat; ð61Þ

serves as the basis for defining the polarization 2-form P
and magnetization 1-form M,

Dmat ¼ −P; ð62Þ

Hmat ¼ M; ð63Þ

where the minus sign is convention.
In the Abelian case, Eq. (55) reduces to

d � F ¼ J −
1

2
dð�Xa ∧ eaÞ; ð64Þ

and we find 1
2
dð�Xa ∧ eaÞ is precisely of the current form

J ¼ dH, with the “vacuum excitation,”

Hvac ¼ 1

2
� Xa ∧ ea: ð65Þ

This can then be split into the magnetization and polari-
zation components, as

Mvac ¼ 1

2
ð�XaðnÞea − eaðnÞ�XaÞ; ð66Þ

Pvac ¼ 1

2
ea ∧ �Xa; ð67Þ

where ea is the spatial coframe. In essence we have found
that a suitable reformulation of electromagnetism allows for
magnetization and polarization to appear simply as inte-
gration constants, similarly to how dark matter is described
in the Khronon theory proposed in Ref. [9]. Defining
analogues of magnetization and polarization for non-
Abelian Yang-Mills theory is not conventional. The appear-
ance of new contributions in (54) is reminiscent of the
terms obtained in Ref. [27] in double field theory, where
(in the Abelian case) the extra vector field was interpreted
as a phonon displacement field, there producing a
“strain-Maxwell” theory.
By defining the dressed field strength, F ¼ F − �Hvac,

we can rewrite Eq. (64) as

d � F ¼ J: ð68Þ

By straightforward manipulations, we can show that in
the geometric phase the energy-momentum tensor of
the dressed electromagnetism contribution, that is includ-
ing only the antisymmetric component for uab ¼ Dbϕa,
becomes

7Let us note in passing that a set of assumptions, like con-
nectedness, orientability, paracompactness, and Hausdorff sepa-
rability, would be closely related to the existence of a 3þ 1
foliation, and further to the existence of a pseudo-Riemannian
structure on the manifold. Here we only assume and proceed with
the spacetime decomposition to clarify the meaning of the extra
terms.
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Tμν ¼ 1

2
ðF μ

αF να þ F ðμ
αFνÞαÞ − 1

4
gμνF αβFαβ: ð69Þ

In principle, the gravitational effect of the symmetric
component is nontrivial and requires greater detail, but
the vacuum excitation by itself modifies the energy-
momentum sources in an interesting way. It may break
the conformal invariance of the gauge theory if
Tμ

μ ¼ − 1
2
Trð�FμνHvac

μν Þ ≠ 0. If the field strength vanishes,
Fμν ¼ 0, the vacuum may still contain energy due to the
Hvac

μν . On the other hand, the solution for the gauge field
strength F μν ¼ 0 is always available in the absence of
material sources Jμ ¼ 0, and this solution has zero energy.
In the next Sec. III D we will see that when coupled to
Khronon gravity, the Xa-field can further generate a
“hypermomentum” source.
The resulting magnetization and polarization is not

completely arbitrary, but is constrained by DXa ¼ 0. It
would be attractive to interpret this in terms of “covariantly
closed” forms, but as in general D2 ≠ 0, this does not
produce a proper cohomology theory. Rather, DXa ¼ 0,
and generally Dω ¼ 0 for arbitrary forms ω, could be taken
as the generalization of requiring Xa or ω to be covariantly
constant, compare with the exterior covariant derivative D
on some vector bundle E mapping D∶v ∈ TM ↦ Dv, such
that for any section s ∈ ΓðEÞ and vector field v we have
DsðvÞ ¼ Dvs, among other axioms. Therefore the difficulty
of solving DXa ¼ 0, e.g., in terms of differential equations,
should be of the same class as finding covariantly constant
fields, possibly devolving into (numeric) integration in
charts.
The interior product yields the precise relation of Xa to

the vacuum excitation 2-form Hvac, thus to the magneti-
zation and polarization. Let əa correspond to the vector
basis dual to the coframe ea, that is eaðəbÞ ¼ δab. Then
directly

Hvac ¼ 1

2
Hijei ∧ ej ¼ −

1

2
ðəa ⌟HvacÞ ∧ ea

¼ 1

2
� Xa ∧ ea: ð70Þ

Therefore,

Xa ¼ − � ðəa ⌟HvacÞ: ð71Þ

In the regular metric phase, instead of Xa, we could
consider the Hodge dual Ya ¼ �Xa as the introduced
fundamental quantity. The condition DXa ¼ 0 reads in
terms of the excitation as

Dð�ðəa ⌟HvacÞÞ ¼ 0; ð72Þ

which is rather a co-covariant constancy condition, if a
covariant codifferential δD ¼ �D� were to be introduced.

The interpretation of terms in the non-Abelian case remains
unclear, however. From the above we see that though the
dressed field strength F ¼ F − �Hvac satisfies (68) (in the
premetric context called the first fundamental equation),
only the contracted field strength F a ¼ əa ⌟F −
�ðəa ⌟HvacÞ would satisfy the adapted Bianchi identity
(respectively, the second fundamental equation), DF a ¼
−#Ta

⌟F ¼ 0 in the absence of torsion (c.f. Lemma 1
of Ref. [61]).

D. Pregeometric Yang-Mills theory
and Khronon gravity

The Cartan Khronon theory of gravity is based upon a
new approach to the problem of time. Space and time
emerge in a spontaneous symmetry breaking which might
ultimately be connected to the collapse of the wave
function. At the formal level, the key is the reduction of
the coframe to the Cartan Khronon field τa such that ea ¼
Dτa [9] (we will briefly discuss the spinor version of the
formulation in Sec. IV). Then, a canonical clock field is
built into the structure of the theory, and rather than
introducing some σ by hand in the decomposition intro-
duced above, we can identify σ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηabτ

aτb
p

. The coupling
of the pregeometric Yang-Mills theory to the Cartan
Khronon gravity reveals further physical properties of
the newly found 3-form Xa.
Consider the coupled theory,

S ¼
Z

Dτa ∧ Dτb ∧ þRab

þ
Z

Tr

�
Dϕa ∧ Dτb ∧

�
1

2
ϵabcdDϕc ∧ Dτd þ ηabF

��
:

ð73Þ
Note the implicitly complexified setting and the appearance
of (anti-)self-dual component of the Lorentz algebra,
defined by

�Vab ¼
1

2

�
δcaδ

d
b ∓ i

2
ϵab

cd

�
Vcd; ð74Þ

for an arbitrary tensor Vab, and further discussed in Sec. IV.
The equations of motion for the (Cartan) Khronon and the
gravitational connection are, respectively,

DðþRa
b ∧ Dτb − θaÞ ¼ 0; ð75Þ

1

2
DþðDτ½a ∧ Dτb�Þ ¼ τ½aþRb�

c ∧ Dτc − τ½aθb� − Trðϕ½aXb�Þ:
ð76Þ

By integrating the first equation, we obtain the dark matter
3-form Ma such that DMa ¼ 0. Using this solution to
simplify the second equation, we get
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þRa
b ∧ Dτb ¼ θa þMa; ð77Þ

1

2
DþðDτ½a ∧ Dτb�Þ ¼ τ½aMb� − Trðϕ½aXb�Þ: ð78Þ

In the second equation the lhs is self-dual, and thus must be
the rhs. Assuming that this applies to each term separately,
we see that whereas the dark matter 3-form satisfies the
self-duality condition −ðτ½aMb�Þ ¼ 0 with respect to the
Khronon τa, the vacuum excitation 3-form satisfies the self-
duality condition Tr−ðϕ½aXb�Þ ¼ 0 with respect to the
iso-Khronon ϕa. This justifies the interpretation of the
cosmological dark matter as the gravitational analogy to
the vacuum magnetization/polarization in the internal
gauge theory.
Let us consider the situation that the Khronon and the

iso-Khronon are aligned, i.e., ϕa ∼ τa (obviously, this
implies the isotropy of ϕa in the internal space). It
immediately follows that −ðX½aτb�Þ ¼ 0. Then, one can
deduce the two consequences of the conservation equation
DXa ¼ 0 (see [20]). Firstly, the 3-form Xa is a purely
spatial volume form. Secondly, its volume integral is a
constant. However, in this case the physical effect of
vacuum excitation vanishes, even though the 3-form Xa
may exist as a nontrivial 3-form. This is most easily seen in
the time gauge τa ¼ τδa0 , where we may write X0 ¼ X⋆e0
for some scalar X, and XI ¼ 0, and obtain that dX0 ¼ 0.
Notationwise, ⋆ is the internal dual, and the capital latin
letters are used for the spatial Lorentz indices. But firstly,
we see that the timelike coframe e0 is purely longitudinal
e0 ¼ 0, since e0 ¼ Dτ0 ¼ dτ ¼ −dσ. Secondly, the only
nonvanishing component of �Xa is �X0 ¼ �XϵIJKeI ∧
eJ ∧ eK=6 ¼ Xð�⋆e0Þ=6 ¼ Xe0 is also longitudinal. So
the Hvac in (65) vanishes. Thus, the components of Xa that
satisfy the self-duality condition with respect to the Cartan
Khronon τa do not result in vacuum magnetization or
polarization. In particular, if the iso-Khronon ϕa picks up
the time direction preferred by the symmetry-breaking field
τ, the effect of Xa is trivialized.
When this is not the case, the theory predicts also novel

gravitational effects due to the vacuum excitation. From
(77) we see that the Yang-Mills fields contribute to the
energy-momentum and thus source gravity as usual.
However, there is different kind of contribution in (78).
Though it appears to be similar to the effect of dark matter,
under closer inspection it turns out that this is not the case.
Again, it is useful to adapt the system into the time gauge
τa ¼ τδa0. In this gauge, the components of the self-dual
curvature reduce to the triad of curvature two-forms RI . The
independent components of the anti-self dual curvature are
then encoded into the triad of torsion 2-forms TI . In the
end, the field equations (77) and (78) can be reexpressed in
the gauge-fixed form,

RI ∧ eI ¼ −iθ0 − iM0; ð79Þ

RI ∧ dτ þ iϵIJKRJ ∧ eK ¼ −θI; ð80Þ

TI ∧ dτ − iϵIJKTJ ∧ eK ¼ 2Trðϕ½IX0�Þ: ð81Þ

The two first equations above are the energy and the
momentum equations, respectively. As expected, the dark
matter 3-form is associated with effectively pure energy
density, and its effective pressure is identically zero. The
new effect of the excitation 3-form Xa is apparent in the last
equation, where it appears as a source of torsion. Thus, the
Yang-Mills vacuum excitation can generate nontrivial
gravitational “hypermomentum” [62]. This effect disap-
pears when the 3-form Xa is aligned with the iso-Khronon
such that ϕa ∼ Xa. The phenomenological implications of
the Yang-Mills hypermomentum would be very interesting
to explore, but we must leave that for future studies. The
possible fundamental origin of hypermomentum could
provide new motivation for the previously developed con-
sistent phenomenological parameterisations, e.g., [63,64].

E. Scalar fields

The scalar field action in a singular metric regime runs
into the same problem as the Yang-Mills action. Similarly, a
first order theory can be defined for the field ϕ by
introducing an auxiliary field Gabc with totally antisym-
metric indices,

S ¼
Z ��

1

4
GabcGabc þUðϕÞ

�
ϵijklei ∧ ej ∧ ek ∧ el

þ Gabcea ∧ eb ∧ ec ∧ dϕ

�
; ð82Þ

again producing a 2-step kinetic cycle. Scalar field theory
has been studied extensively, including in first order
formulations, and the action here is given just for general
context in the spirit of the derivative order-lowering
procedure. A deeper study and overview could prove to
be insightful, particularly in regards to cosmology and
quantum field theory, e.g., symmetry breaking and the
Higgs mechanism. Varying by ϕ and Gabc produces
respectively,

dðGabcea ∧ eb ∧ ecÞ þU0ðϕÞϵabcdea ∧ eb ∧ ec ∧ ed ¼ 0;

ð83Þ

1

4
Gabcϵijklei ∧ ej ∧ ek ∧ elþea ∧ eb ∧ ec ∧ dϕ¼ 0; ð84Þ

which is the prototype wave equation and the auxiliary
equation. Everything goes by the usual procedure outlined
earlier, enforcing
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�dϕ ¼ 1

3!
dkϕϵkabcea ∧ eb ∧ ec; ð85Þ

and yielding the wave equation,

−d � dϕþ U0ðϕÞϵabcdea ∧ eb ∧ ec ∧ ed ¼ 0: ð86Þ

Therefore all bosonic actions have a pregeometric first
order formalism readily available. The interest is then of
building a good theory of pregeometry.

IV. PATH TO UNIFICATION

First order formalism in gravity, that is the Palatini
formulation in terms of (co)frames and connections, is well
known and has been extensively studied, while the Yang-
Mills analogue does not appear to be as popular. It is worth
emphasizing how similar these theories appear to the
exterior formulation of complex self-dual GR, while the
remaining anti-self-dual component is appealing for uni-
fication attempts.
Complex GR considers the complexified tensor bundle,

TC ¼ ⨁
r;s
Tr
sðMÞ ⊗ C; ð87Þ

over a real manifoldM; see e.g., Ref. [65] for an overview.
The structure group becomes SOð1; 3ÞC ≅ SOð4ÞC, while
the fields become complex-valued, i.e., sections of a
complex bundle. In addition to investigating Hodge dual-
ization and its eigenforms, we can define a dualization
operation ⋆ in the complexified Lie algebra soð1; 3ÞC
such that

⋆ωab ¼
1

2
ϵab

cdσcd; ð88Þ

decomposing the Lie algebra into self-dual anti-self-dual
components,

soð1; 3ÞC ¼ soð1; 3ÞþC ⊕ soð1; 3Þ−C; ð89Þ

such that

soð1; 3Þ�C ¼ fω ∈ soð1; 3Þj⋆ω ¼ �iωg: ð90Þ

The corresponding projector is

P� ¼ 1

2
ð1 ∓ i⋆Þ: ð91Þ

Note soð1; 3Þð�Þ
C are simple Lie algebras, while soð1; 3ÞC is

semisimple. Significantly, the Palatini action,

SC ¼ 1

2κ

Z
�ðea ∧ ebÞ ∧ Rab; ð92Þ

decomposes into

SC ¼ SþC þ S−C

¼ i
2κ

Z
ea ∧ eb ∧ þRab −

i
2κ

Z
ea ∧ eb ∧ −Rab; ð93Þ

and it suffices to consider only one of the actions in the
decomposition, as the stationary points of SC and S�C lie
over the same coframe fields. Note this decomposition is
enabled due to the Hodge dualization in an orthonormal
coframe agreeing with the dualization defined in soð1; 3ÞC,
so � and ⋆ can be switched in the action as

�ðea ∧ ebÞ ∧ Rab ¼ ðea ∧ ebÞ ∧ ⋆Rab: ð94Þ

Solutions with degenerate tetrads in the polynomial Palatini
formulation of gravity have been explored in e.g., [66–69].
Working with the self-dual action is also the basis for
Ashtekar’s variables [70,71], establishing phase-space cor-
respondence with SUð2Þ Yang-Mills theory.
The natural continuation is with the cosmological con-

stant Λ, which makes the similarity with Yang-Mills theory
plain. The complete first order Λ-Einstein-Yang-Mills
theory action is then

S ¼ 1

2

Z
TrG

�
κ−1ð−2Λϵabcdea ∧ eb ∧ ec ∧ ed

þ ea ∧ eb ∧ iþRabÞ

þ
�
1

2
ϵabcdua ∧ eb ∧ uc ∧ ed þ ua ∧ eb ∧ ηabF

��
;

ð95Þ

which in the case of traceless Yang-Mills generators, in
e.g., semisimple gauge groups, simplifies to

S ¼ 1

2

Z
TrG

�
ðiκ−1ea ∧ eb þ ua ∧ ebÞ ∧

�
þRab þ ηabF

þ ϵabcd

�
2iΛec ∧ ed þ 1

2
uc ∧ ed

���
; ð96Þ

although the use of purely self-dual surface elements
þðea ∧ ebÞ in the GR action is conceivable as well. The
Yang-Mills action can include a dimensionless constant,
which is here set to unity. The many terms in the action can
be grouped in various ways. For instance, in principle ηab
could be put together with the vector potential A → ηabA,
as to correspond to trace components in a connection-like
1-form,

ω̃ab ¼ þωab þ ηabA; ð97Þ

and furthermore,
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R̃ab ¼ dðþωab þ ηabAÞ þ ðþωac þ ηacAÞ ∧ ðþωc
b þ δcbAÞ

¼ þRab þ ηabF: ð98Þ

When restricting to the case G ¼ Uð1Þ, although not
semisimple, R̃ab is precisely the (self-dual projection of
the) Weyl extension of the Lorentz curvature. However,
when considering the more complete unification along the
lines e.g., SOð3; 13Þ → SOð1; 3Þ × SOð10Þ [72,73], which
appears quite natural and attractive in this context [23], the
generalization of the Weyl 1-form A into the adjoint of a
non-Abelian algebra such as the SOð10Þ forces to rethink
the most conventional GraviGUT schemes. The division
into the surface element ea ∧ eb, resp. ua ∧ eb, and gauge
curvature þRþ F is clear, however. If Λ ¼ 1

4
κ−1, then the

replacements,

iκ−1ea ∧ eb → ua ∧ eb; þRab → ηabF ð99Þ

would transform the gravitational action to aYang-Mills one.
It would be noteworthy to formulate this as a rigorous gauge
principle, similar to how fermionic fields couple to gauge
bosons, but this does not appear simple or unambiguous.
The value of the cosmological constant is a problem, or

alternatively a hint of the precise structure of the underlying
theory. Generally it is expected to be of QFT origin, but the
calculated value so far is sharply disconnected from meas-
urement; see e.g., Ref. [74] for an overview. However, if it is
to believed that gravity forms a unified theory with the
Standard Model (or a suitable extension), then this analysis
supports a fundamental origin for the cosmological constant,
possibly related to symmetry breaking.
The gauge group trace really only applies to the Yang-

Mills term, but it is formally possible to introduce traceless
Lorentz generators in the vector representation,

ðJabÞcd ¼ i
2
ðηacηbd − ηadηbcÞ; ð100Þ

so that the Lorentz trace of the product,

TrðJabJuvÞ ¼ ðJabÞijðJuvÞji ¼ δ½ua δ
v�
b ; ð101Þ

and the total action involves both traces,

S ¼ 1

2

Z
Tr

�
ðea ∧ ebÞðiκ−1Jab þ GabÞ ∧

�
þRijJij þ F

þ ðec ∧ edÞϵijcd
�
2iΛJij þ 1

4
Gij

���
; ð102Þ

implying that the proper path forward would be through
some Lie algebra scheme, particularly when separating the
(here) Λ ¼ 1

8
κ−1 component. In this case, introducing an

infinitesimal-like transformation,

kijab ¼ iκ−1δai δ
b
j þ

1

4
Gijη

ab þ 1

4
ηijGab; ð103Þ

yields the action,

S ¼ 1

2

Z
Tr½ðea ∧ ebÞkabij ∧ ðþRij þ ηijF

þ kijuvðec ∧ edÞϵcduvÞ�; ð104Þ

and the interpretation is that Gab is an infinitesimal-like
surface excitation, or the surface element ea ∧ eb is trans-
formed, such that the invariant part corresponds to gravity
and the change to Yang-Mills theory.
It is ambiguous which is the best interpretation for the

auxiliary field, thus also leaving ambiguity in how exactly a
unified formulation should arise. In the various formulations
in this paper, the new field can be construed as either a
0-form or 1-form field and potentially physically mean-
ingful or not; as a Yang-Mills charged coframe; as a linear
transformation between Lorentz and Yang-Mills algebra; as
Lagrangemultiplier-like fields; as dynamical components of
the dual field strength; as substructure of the electromagnetic
excitation; as an additional set of vectors to the Khronon of
Ref. [9]; as an infinitesimal Yang-Mills charged surface
excitation. At the very least, in a gravity—Standard Model
unification, it can be assumed that the first order formulation
represents the symmetry broken phase.
In another approach, the three leftover anti-self-dual

generators could be mapped to Yang-Mills generators [20].
For instance, it is possible to introduce a Yang-Mills
charged “mixing matrix” zab, in particular the complex
setting of electromagnetic Uð1Þ theory already appears in
the complexified gravity formulation. So it could be
defined

A ¼ zab−ωab; F ¼ dðzab−ωabÞ: ð105Þ

In so simple a formulation, this is not a proper unified
theory as commonly understood [72], i.e., roughly where
the vacuum expectation value of a given order parameter
selects commuting subgroups of a larger gauge group.
Alternatively, if instead the target was SUð2Þ of the weak
interaction, this could be adapted to some alternative of
graviweak unification. The idea would be to split the left-
and right-handed gauge groups for the weak and the
gravitational interaction as had been considered e.g., in
the contexts of Refs. [20,75]; a proper graviweak formalism
had been developed earlier [76], considering SOð4ÞC and
the soldering form as an order parameter.
The theory of gravity is quite rich in similar theories. In

addition to Palatini formalism, Plebanski formalism [77],

SPlebanski ¼
Z �

Bab ∧ Rab −
1

2
ϕabcdBab ∧ Bcd

�
; ð106Þ
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has to be noted as well. In comparison, the surface element
is replaced with a single 2-form ea ∧ eb → Bab and fixed
by essentially a Lagrange multiplier,

ϕabcd ¼ ϕcdab ¼ −ϕbacd; ð107Þ

which enforces that on-shell Bab agrees with þðea ∧ ebÞ;
see also Refs. [78,79] and the references therein. Plebanski
theory was likewise utilized in unification [80], where the
embedding into a larger gauge group and the addition of an
extra term produces GR with a Yang-Mills action. In some
spin foam approaches to quantum gravity, one considers
only the first term in the Plebanski action (106) and may
then at a suitable point impose the so-called simplicity
constraint that reduces the two-form to the exterior product
of the tetrad one-forms [81]. While this establishes an
appealing connection between gravity and topological QFT
without local degrees of freedom, the tetrad is a quite
complicated, mixed-index 16-component object that is
completely alien to standard Yang-Mills theory. The insight
of Ref. [9] that the tetrad should rather emerge as a
covariant derivative of a (Lorentz-charged) Higgs-like
scalar is not new, but goes back, via Akama [11] and
others to the original generalization of F. Klein’s geomet-
rical framework to describe symmetries of physics by É.
Cartan [82]. Since we can reduce the Lorentz-charged
scalar to a Dirac bispinor, the possibility arises that the
metric structure could be reduced to a property of matter
fields. Further, the dynamics for this metric structure could
arise solely from the quantum fluctuations of matter fields,
as famously shown by Sakharov [83]. Perhaps all the
fundamental interactions emerge in a similar fashion from a
purely material origin?
To recapitulate the above-described “series of further and

yet further simplicity constraints” that connects the topo-
logical BF theory to what we may call the Dirac-Cartan
Khronon gravity,

Bab → ea ∧ eb → þðea ∧ ebÞ → þðDτa ∧ DτbÞ
→ þðDðψ̄γaψÞ ∧ Dðψ̄γbψÞÞ: ð108Þ

Let us just in passing mention that the gravity theory [9] has
the remarkable formulation, which is both quartic in the
primordial spinor and quartic in the gauge-covariant
derivative,8

S ¼ i
Z

ðψ̄γaψÞDþDþDDðψ̄γaψÞ: ð109Þ

A partial integration and a couple of steps back in the chain
(108) brings this into the familiar self-dual Palatini form.

Throughout this article, we have had in mind that the more
fundamental formulation of gravity should be considered in
terms of the primordial ψ rather than ea. As we saw in
Sec. III D, coupling to Khronon gravity can reveal further
properties of the pregeometric Yang-Mills theory.
Of course, any unification attempt with gravity and

particle physics is constrained by various theorems, includ-
ing the commonly cited Coleman-Mandula theorem [84],
which implies that the symmetry group of the underlying
QFT can only be the direct product of the Poincaré and an
internal symmetry group. Although the assumptions of the
Coleman-Mandula theorem appear natural, the common
implication is not unavoidable. Reference [80] avoids it as
the Coleman-Mandula theorem requires the S-matrix sym-
metries include global Poincare invariance, while the
proposal held no global symmetries; likewise in the broken
phase of Ref. [76], the residual symmetry is precisely the
required global Lorentz and local internal symmetry—the
Coleman-Mandula theorem requires the existence of a
Minkowski metric, while in the pregeometric regime with
a vanishing soldering form, there is no explicit metric on
the manifold. This also agrees with our discussion, imply-
ing that first order theory arises naturally in the broken
phase.

V. CONCLUSION

The appearance of Hodge dualization in the actions
describing matter and gravity can be avoided by using the
first order formalism. For gravity, this proceeds from
Palatini to a self-dual formulation. Spinor fields themselves
require no inverse metric when explicitly working with
soð1; 3Þ indices. For the remaining bosonic scalar and
Yang-Mills actions, the polynomial first order formulation
then goes through a two-step process, such that the usual
wave or Yang-Mills equations appear on shell, while
reference to Hodge dualization is in effect replaced with
soð1; 3Þ-dualization, with no necessity of the inverse
metric. To this end we present several exterior form actions
suitable for the pregeometric regime that reproduce results
of previous works. Further we propose the novel frame-
work offered by vector substructure. Consistency at the
quantum level has been earlier investigated in usual index-
notation approaches, and, depending on the precise for-
mulation, is either immediately applicable or expected to
hold barring the gravitational sector. Notably, we draw a
new connection between the fundamental axiom of charge
conservation (and thus the appearance of the electromag-
netic excitation) in the premetric program and a funda-
mental field in the pregeometric program.
Generalizing previous Cartan-geometric results for dark

matter and gravity, first order Yang-Mills formalism admits
the description where a single Lorentz vector is introduced,
rather than a 1-form, producing a novel theory. This applies
to both Abelian and non-Abelian theories, requires intro-
ducing the least amount of extra degrees of freedom and

8In our convention, the operator D acts only to the right. In an
alternative convention, e.g., Dðψ̄γaψÞ in (108) would read

ψ̄γaD
↔
ψ .
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produces interesting effects. In the Uð1Þ theory of electro-
magnetism, the new terms can be interpreted as vacuum
magnetization and polarization, while the generalization of
such an interpretation to non-Abelian theory is not conven-
tional. It is unlikely that more minimal schemes of this
method exist, at least in four dimensions and excepting
possible internal changes to the vector, as the method
depends on coupling to Levi-Civita symbols via a Lorentz
index. At the very least, the vector approach has a
consistent phase with usual Yang-Mills theory, and
deserves further investigation, e.g., in Cartan geometry.
Comparing with first order formalism in the theory of

gravity, there appears a strong case for some kind of dual or
unified description of gravitation with gauge theories in
complexified theory. However, the precise path remains yet
ambiguous, not in small part due to the many possible
interpretations of the auxiliary field. It is attractive to
interpret it as some Yang-Mills charged coframe, but it
could likewise be a transformation between Lie algebras or
some excitation. Likewise in this duality, the value of the
cosmological constant is curious. It remains to be seen
whether this is coincidental or insightful, and what might
resolve the problems.
In the context of the results obtained, a natural direction

appears to investigate Lie algebras and symmetry breaking,
and perhaps dimension-dependence of this formulation. By
thework of Ashtekar [70,71], we know that the Hamiltonian
form of self-dual GR is closely related to Yang-Mills theory.
Likewisewe see that the Lagrangian of self-dualGRwith the
cosmological constant is very similar to that of first first-
order Yang-Mills theory. Starting in a complexified first
order theory seems promising, with the usual theories
possibly only appearing in the end after symmetry breaking
and applying suitable reality conditions.
Let us wrap up the article. By construction, QFT is an

effective framework that should robustly approximate
physics up to a given energy scale [1]. A first order
reformulation of the Standard Model could be a natural
step towards a possibly more fundamental theory. Further,
there are rather compelling arguments, beginning from the
elementary, classical reasoning that is the basis of the
premetric program, and extending to today’s cutting-edge
speculations about the nature of quantum gravity, that the
metric tensor is an emergent field that may even vanish in
its ground state. In this cross-lighting, it may seem
surprising that a more systematic investigation of pregeo-
metric first order Yang-Mills theory has not yet been
undertaken in the Literature.
Our basic finding is that the field excitation tensor H

effectively becomes a fundamental field of the gauge

theory, on the same footing as the connection A that gives
rise to the field strength tensor F ¼ dAþ A ∧ A. We
considered several formulations of this principle, sug-
gesting several new directions to pursue, but they can be
all classified according to which kind of field is considered
to be the variational degree of freedom.

(i) The standard formulation imposes H ¼ �F without
dynamical variation. In the premetric language, this
is the axiom of constitutive law. The premetric
framework itself does not predict the form of the
theory. Thus we proposed a variety of novel pre-
geometric action principles, which uniquely deter-
mine the first order Yang-Mills theory.

(ii) The coframe variation considers ua, and results in
H ≈ ua ∧ ea. Whilst perhaps uneconomical, such
theories suggest interesting connections to bimetric
gravity on one side, and to geometric formulations
of QCD on the other.

(iii) The group element Gab as a variational degree of
freedom results in H ≈Gabea ∧ eb. This approach
allows the interpretation of the unified theory (104)
as a surface excitation of a topological action.

(iv) The vector substructure ϕa results in a relation
H þ X ≈ Dϕa ∧ ea, where X is an extra 2-form,
that (at least in the electromagnetic case) allows the
interpretation in terms of vacuum magnetization and
polarization, as well as its surprising analogy with
the cosmological dark matter.

(v) The spinor substructure ψ is an alternative to the
vector substructure, based on that ϕa ≈ ψ̄γaψ . This
is the approach we intend to study at more depth in
the future.

The unification of the primordial spinor gravity (109) and
the pregeometric Yang-Mills theory reduced to a spinor
substructure might be a step towards the lower-level QFT
that we have been seeking. In a complementary approach,
ascending from the first principles towards the higher level
of a dynamical QFT, progress is being made indeed (rather
than e.g., qubits) in terms of fermions [85]. Each brick
bridging the gap between these levels is paving the way for
a new paradigm.
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[38] J. B. Jiménez, L. Heisenberg, and T. S. Koivisto, Universe 5,

173 (2019).
[39] H. B. Lawson and M.-L. Michelsohn, Spin Geometry

(Princeton University Press, Princeton, NJ, 1989).
[40] D.W. Muhwezi and J. T. Wheeler, Nucl. Phys. B966,

115389 (2021).

[41] T. G. Złośnik and H. F. Westman, Classical Quantum
Gravity 34, 245001 (2017).

[42] M. B. Halpern, Phys. Rev. D 16, 1798 (1977).
[43] M. B. Halpern, Phys. Rev. D 16, 3515 (1977).
[44] T. W. B. Kibble, J. Math. Phys. (N.Y.) 2, 212 (1961).
[45] R. L. Arnowitt, S. Deser, and C.W. Misner, Gen. Relativ.

Gravit. 40, 1997 (2008).
[46] S. Deser, Classical Quantum Gravity 23, 5773 (2006).
[47] N. Kiriushcheva and S. V. Kuzmin, Classical Quantum

Gravity 24, 1371 (2007).
[48] S. Okubo and Y. Tosa, Phys. Rev. D 20, 462 (1979).
[49] S. Okubo and Y. Tosa, Phys. Rev. D 23, 1468(E)

(1981).
[50] D. G. C. McKeon, Can. J. Phys. 72, 601 (1994).
[51] P. M. Lavrov, Phys. Lett. B 816, 136182 (2021).
[52] N. Kiriushcheva, S. V. Kuzmin, and D. G. C. McKeon, Can.

J. Phys. 90, 165 (2012).
[53] F. T. Brandt, J. Frenkel, and D. G. C. McKeon, Phys. Rev. D

98, 025024 (2018).
[54] D. G. C. McKeon, F. T. Brandt, J. Frenkel, and S. Martins-

Filho, Phys. Rev. D 101, 085013 (2020).
[55] A. S. Cattaneo, P. Cotta-Ramusino, F. Fucito, M. Martellini,

M. Rinaldi, A. Tanzini, and M. Zeni, Commun. Math. Phys.
197, 571 (1998).

[56] O. V. Pavlovsky, Nucl. Phys. B, Proc. Suppl. 104, 254
(2002).

[57] S. F. Hassan, A. Schmidt-May, and M. von Strauss, Phys.
Lett. B 726, 834 (2013).

[58] S. F. Hassan and R. A. Rosen, J. High Energy Phys. 02
(2012) 126.

[59] H. Reinhardt, in Proceedings of the Quark Confinement and
the Hadron Spectrum II, edited by N. Brambilla and G. M.
Prosperi (World Scientific, Singapore, 1997), pp. 203–209,
10.1142/9789814530507.

[60] F. A. Lunev, J. Math. Phys. (N.Y.) 37, 5351 (1996).
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