PHYSICAL REVIEW D 105, 125008 (2022)

Superspace first-order formalism for massless arbitrary
superspin supermultiplets

Konstantinos Koutrolikos”
Brown Theoretical Physics Center, Box S, 340 Brook Street, Barus Hall,
Providence, Rhode Island 02912, USA
Department of Physics, Brown University, Box 1843, 182 Hope Street,
Barus & Holley 545, Providence, Rhode Island 02912, USA

® (Received 18 April 2022; accepted 26 May 2022; published 15 June 2022)

A new description of free massless superfields of arbitrary superspin Y (Y > 1/2) is proposed.
Following the first-order philosophy, we relax some of the properties (reality, gauge redundancy) of the
unconstrained higher spin prepotentials and we construct first and half order invariants quantities. These
are used to write trivially invariant actions. Additional auxiliary superfields that play the role of spin
connections are used to enforce a new local symmetry that restores the degrees of freedom.
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I. INTRODUCTION

The general Ostrogradskiy procedure reduces the order of
derivatives in the Lagrangian (or Hamiltonian) description of
a theory by introducing new variables. A specific application
of this procedure is known as first order formalism. The
power of this method has been epitomized in the frame
formulation of gravity and supergravity. Not only is the first-
order formalism necessary for the gauge theory approach to
gravitation but it is also recommended for the path integral
quantization. By using the frame field and not the metric in
the path integral, one avoids the complication of preserving
the correct spacetime signature and additionally the gravi-
tational and matter Lagrangians take a polynomial form
which is crucial for nonperturbative effects.

For higher spin theories, the first order formalism is
particularly useful. For a spin s gauge field the simplest
gauge invariant object, field strength, carries s derivatives
and thus cannot be used for writing a two derivative action.
In the metriclike description of higher spin gauge fields
[1,2], this problem is addressed by introducing a tower
of higher spin connections [3] and identify appropriate
reductions of the gauge symmetry group that allow the
construction of invariant quantities with two derivatives—
Frosdal’s equations of motion. Alternatively, one can use
the first order formalism. By introducing additional aux-
iliary degrees of freedom it is possible to construct invariant
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quantities with only one derivative which can be used to
write the two derivative higher spin Lagrangian as a second
order polynomial and make it manifestly gauge invariant.
This first-order description of higher spin gauge fields was
developed by Vasiliev [4,5].

The metriclike description offers a more geometric
viewpoint to higher spin theory that extends our spin 2
intuition, provides a very economic description in terms of
the number of fields it requires and has been used to
construct various consistent higher spin interactions [6—12].
On the other hand, the framelike description generalizes the
gauge approach to higher spins, provides an economy of
ideas that underlie YM, GR and higher spin, and it has been
the most successful approach toward constructing consis-
tent interactions among higher spins [13-28].

Of course, understanding interactions involving higher
spins is a necessary condition for understanding string
theory as string interactions allow the exchange of higher
spin states. From this perspective one should consider
supersymmetric higher spin theories as for most formula-
tions of string theory supersymmetry is a necessary
ingredient. Manifestly supersymmetric theories of higher
spins have been constructed using the superspace analog of
the metriclike description [29-35] and various cubic
interactions of them with matter supermultiplets have been
found [36-44]. Moreover, cubic interactions among higher
spin supermultiplets of arbitrary superspin Y and super-
multiplets with half-integer [(s + 1/2) — Y — Y] or integer
superspins [s — Y — Y] have also been constructed [45,46].
These interactions are of the Abelian type because the cubic
superspace Lagrangian is of the form L£; ~®;W,Ws,
where @, is the set of superfields that describe the super-
spin Y, and W,, W5 are the gauge invariant superfield
strengths for superspins Y, Y3 respectively.
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It would be desirable to consider cubic interactions of the
non-Abelian type £ ~ ®; D, W;. This class of interactions
are in general more interesting because they have the
potential to generate nontrivial deformations of the gauge
symmetry that may also deform the gauge algebra. Such
cubic interactions have been recently constructed for higher
spin theories with on-shell supersymmetry [47]. An impor-
tant subclass of such interactions are the electromagnetic
interactions of higher spin multiplets, [Y — Y — 1/2] where
the two higher spin supermultiplets form a doublet under
U(1)—must come in pairs of opposite charges—and couple
to the vector supermultiplet. In [48] such non-Abelian
interaction was constructed for the nonminimal supergravity
supermultiplet [3/2 —3/2 — 1/2]. This was achieved by
developing a first order description of the nonminimal
supergravity supermultiplet in superspace.

In conventional superspace description of supergravity
the superframes are constrained superfields in order to
eliminate the extra degrees of freedom they carry. Solving
these constraints while maintaining supersymmetry mani-
fest is possible by expressing the superframe in terms of a
set of unconstrained prepotential superfields, which include
a complex vector superfield H,,. This solution also
introduces new redundancies for the prepotentials in
addition to superspace general covariance and superlocal
Lorentz rotations. All these symmetries can be used to
eliminate all prepotentials except the real part of the vector
prepotential H . In [48]—while attempting to streamline
the construction of non-Abelian cubic interactions of the
supergravity supermultiplet—the complex nature of the
vector prepotential was restored, (H,; — H,;) while at
the same time a new local symmetry (6, Hos = 1uis Nag =
7ae) Was introduced in order to remove the added auxiliary
degrees of freedom. This symmetry corresponds to the
linearized coordinate transformation of the superframe’s
vector prepotential.

This approach naturally leads to the development of a
first-order formalism for linearized supergravity without
using the conventional constrained superframes but instead
it utilizes the unconstrained superfields of free theory.
Following the first order philosophy:

(i) We introduced new degrees of freedom by complex-

ifying the linearized supergravity superfield

H ax Hm'l ( 1 )

(i) The relaxed gauge transformation of H,, allowed us
to define a simpler gauge invariant quantities 7 g,

T poie = DgHoa + Cpala (2)

where y, is the compensating superfield.

(iii) Z 44 satisfies various identities which can be inter-
preted as Bianchi identities for additional sym-
metries. These symmetries correspond to the
symmetries discussed above and are implemented

in the action by the introduction of a pair of
auxiliary, connectionlike superfields Qg,q, Wqa

S= / A WP QA WPGT o 1 QP Ty Ay e,
(3)

where 7 g, depends only on derivatives of Z ;.
(iv) One of these additional symmetries is local and
algebraic in nature. Hence it is used to eliminate the
extra degrees introduces in (i). After integrating out
Qpai and W, we recover the linearized super-
gravity action described by the prepotential super-
field H,;, = H,; + Hey and the compensator y,.

One approach toward constructing consistent inter-
actions of higher superspins in superspace would be to
generalize the conventional supergravity description by
considering higher rank superframes and superconnections.
Such superfields, like supergravity, will carry too many
degrees of freedom and must be constrained in order to
describe just the irreducible higher superspins. However,
unlike supergravity, it is not currently known if such set of
constraints exist and how to determine them. An idea is to
use the higher rank superframes and superconnections in
combination with higher rank symmetry generators to
define generalized supercovariant derivatives. Their super-
algebra will form a supersymmetric higher spin algebra and
can be used to define generalized supertorsions and super-
curvatures. The hope is that there is a set of constraints for
the generalized supertorsions and supercurvatures which
are compatible with supersymmetry algebra, the super-
Jacobi identities and describe higher superspin irreducible
representations.

A different approach is to bypass all the above and
consider the unconstrained prepotential superfields [49] used
in the formulation of the free higher superspin theory—which
is the starting point for cubic interactions—and develop a first
order formalism similar to the one developed in [48] for the
supergravity supermultiplet and described above.

In this work, we show that indeed such a first order
formulation of all irreducible 4D, N =1 higher spin
supermultiplets exist. We find that for half integer superspin
supermultiplets (s + 1, s + 1/2) there are two first order
descriptions which correspond to the minimal and non-
minimal descriptions of the supermultiplet. For integer
superspins (s + 1/2,s) (s > 1) there is a unique first order
description.

II. HALF-INTEGER SUPERSPIN

The half-integer superspin supermultiplet Y = s+ 1/2
on-shell describes the propagation of massless j = s + 1
and j = s 4 1/2 spins. The superspace realization of this
supermultiplet is given by the equivalence class [H y(5)q(s)]
of an independently symmetric, real (s,s) SL(2,C)
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superfield tensor H
relation (for s > O)

s) [50] defined by the equivalence

N — —

Ha()ats) ~ Hatwas) +7Pia, Lats-1)ats) = TP Layits-1)
4)

This redundancy was initially postulated in [30] and it was
later shown in [31] to be a consequence of demanding a
smooth transition between the Lagrangian description of
massive half-integer superspins [34] and the Lagrangian
description of massless half-integer superspins. The sim-
plest gauge invariant, superfield strength, is
Wa(2x+l) = D2D(azb\+| aaz‘\. . 'aaﬁl . H{l(s))('l(x) (5)

and was constructed first in [51].

Following the procedure in [48], we introduce new
degrees of freedom by complexifying the superfield
H (5)a(s) and its L-

Hy(5)a(s) = Has)als) (6a)

1
5LH(1(X)('1(A') = ED(({\ La(s—l))&(x). (6b)
The effect of this on the higher spin fields generated by
Ha(s)a(s) 18 to relax the symmetrization of their spacetime
indices and introduce nonsymmetric fields, in a manner
analogous to [4].

First order formalism, being a special case of the
Ostrogradskiy procedure, is based on the factorization of
the operators [] = 9"9,, and 9,,0" that appears in the second
order Fronsdal equation of motion. In superspace, the
corresponding operators are §,/D’D?D; = —D/D, DDy,
6,/ D,D*Df = -D,D,D'D’, and D,D,D’D’. Based on
these factorizations, we attempt to construct a first-order
invariant for Hy()a(s) by considering the following:

Tpatsyis—1) =D DyHa(sjats) T Cﬂ DD H (- 1))pi(s-1)-
(7)
The transformation of /,(4)4(s—1) under (6b) is
aLlﬁa(v)d(Y 1)
A+ . I
= =7 DD Lagiats) = D™ Aagstitoin)]
5 G [D’Dyiya@—z)w(s—l)
~ L
+ s ya(s=2))y a(s—1)
1 _
" =2y Pl a3t (8)

where the two extra parameters /_\a(s—l)('l(s +1) and
/_\a(s—3)d(s—l) correspond to additional symmetries emerging
due to the anticommuting nature of the spinorial covariant
derivatives. If we insist on demanding a first-order invariant
quantity, then it becomes obvious from the above that we
must consider two cases. Either choose A = 0 and introduce
a fermionic compensating superfield y,(s)q(s—1) With trans-
= D?Lo(s)a(s-1) + D Ay 1)a(s—1)
or A = —1 and consider a different compensating superfield
Xa(s—1)i(s=2)  WIth S a(s—1)a(s—2) = DU D% Ly(s)a(s-1) +
DDA Lagy)ats-1) + Tz Dits Mato-1)its-3)-

The two cases will correspond respectively to the non-
minimal and minimal formulation of half-integer super-
spins as described in [31]. It is very satisfying that just the
requirement of a first order description determines all
different variant formulations of the theory and generates
all required superfields for each one of them. The two
L-invariant building blocks are

formation N a(s)a(s—1)

A= O:Iﬁa(s)d(s—l) = D&xz-/fa(s)é‘(s)’

1
Iﬂa(x)a(v D/}H + C/)’(a)(a(s 1))a(s) (9)

A = =1Ly g)a(5-1) = D¥DpHe(s)a(s)

1 _
=51 Cp@ DD Hplas-1))acs)

1

= 1 O D Zats—2)as-1)  (10)

It is interesting to observe that for supersymmetric theories
Ostrogradskiy’s procedure does not stop at first order
operators. Because of the supersymmetry algebra some
of the first order operators can be further factorized and one
can construct 1/2-order invariants. An example is

(11)

which is invariant under (6b). For the A =0 case (9),
Ka(s+1)a(s) 1s not an independent invariant quantity as it is
captured by the symmetric part of Z z,(5)5(;) Which is also an
1/2-order L-invariant. On the other hand, for the A = —1
case (10) Ky(s41)a(s) 1s @ new and independent L-invariant
quantity which must be used together with Z ;(5)(s—1) In
order to derive the first order action.

It becomes evident that the difference between the two
formulations of 4D, N' = 1 half-integer superspins is that
there is a fundamental half-order invariant in one case and
all higher order invariants are generated by its derivatives.
In the other case, there are two independent invariants of
half and first order respectively.
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A. First order formalism of nonminimal half-integer
superspin supermultiplets

The advantage of having a half or first order L-invariant
building block as Z g, 4)a(s)

]
= DyHa(s)its) + 7 Cptakat-1as) - (12)

7 Pa(s)a(s) —
is that the we can write actions S = S[Z] which are trivially
L-invariant. However, there are a couple more symmetries
that we want to impose. The first one is the A redundancy in
the definition of the compensator y,(s)a(s—1)

O\ a(s)a(s—1) = D Ag(sr1)a(s—1) (13)

1 . -
5/\1/}(1(0(.1(&) = - ; C/i(ursl)(l“rI Aa(s—l))('l(erl) (14)
The second is a new local symmetry that we have to
impose in order to remove the extra degrees of freedom
introduced in the theory via complexification (6a):

jﬁa(&as leI/iasa +f2DI/iasa

+ DD, 5

5}']7—[(1(3')('1(3‘) = Na(s)a(s) = ﬁ(l(x)(’l(s‘) (15)

= iDpla(s)a(s)- (16)

This is a direct generalization to higher spins of the
transformation introduced in [48] which corresponds to a
change of coordinates transformation of superframe’s
linearized vector prepotential.

The above symmetries will be implemented by an
appropriate set of auxiliary superfields which play the role
of generalized superconnections. Because 7 g, )q(s) 1S @
half-order invariant in order to write an action we require a
pair of them (Wli(z(x)&(x)v Qﬂa(x)&(x))

ina(s)r'l(s) ’

1L pa(s)asr)

§= / AW Qp a5 + WP T g3

+ Q[)’(l(x)&(x) j/ia(s)('l(s)} +c.c. (17)

where J gq(s)4(5) 18 @ 3/2-order invariant—not to be con-
fused with the 1.5-order formalism of (super)gravity—that
can be expressed purely in terms of derivatives of Z ,(5)a(s)

) TS DYT

0 DL ats-1yyits) + 2 DpDia Zutyits-1) + 53 Die Dy atsyits-1)

d d2
+ 5 Cota DDl Liptats—1yits-1) + 17 Cpte D D' L pats-npyis—) (18)
[
and Z oo pya(s) = Cﬁ“SIﬂa(s)d(s). Checking the invariance
of (17) under symmetries (14) and (16) is a little more pa(s)its) = ~OL pas)ats) (20a)
involved. This is the usual trade of first order formalism.
The process is simplified by assigning
01 a(1a(s) = 0, 20b
/dS {5wﬁasa Iﬂa(s)a()+5gﬂasa jﬁasas L==Ba(s)a(s) ( )
+ WO [8Q () + 6L pa(s)a(s)] | o
+ PO EWo()05) + 0T patsyis]} +ec. (19) Onypa(s)its) = 57 Cpla, D Aats-1pigsn), - (200)
appropriate transformations to the auxiliary superfields. We
can eliminate the last two lines in the variation (19) by 5.0 = —iD . 20d
choosing the following: 7 ha(s)als) Pals)afs): (20d)
|
5Wﬂa(s)a(s) = _5\7/}a(s)a(s) (213)
S Wa(s)ats) = 0s (21b)
fi —_— s+ 1 1 -
AW patsyits) = 5 CpaD D Agtsyassn) T { f3 = =92 | 7DpD (D" Avaits-1)
s+ 1 1 s+1d
- < 4 gB) sl D(('ll\DzA/)’a(s)('l(x—l) s S';‘ Cﬂ((l DY D(a D A\/)y|(t (s=1))a(s—1))» (21C)
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= ig _
8 Wpatwits) = ~i(f2 + Fa)D*Dyttasyacs) + 1(2f3 = fa = 92)DpD atwits) + -7 Cpter DD Myats-1ics
ldl C DyDZ D D D}/ ldz C D DJ’D}’ o1d
_F Play Myla(s-1))a ()+ (a, PP Na(s)|7)a(s-1)) +m BlaDa, Hiyla(s—1))|7la(s=1))- ( )
|
Using Egs. (19), (20d), and (21d) we find that the  Jpu(sa(s)
n-invariance of the action (5,5 = 0) requires: 2ot ) |
= —¢|D*Lp51a0s) =~ DD T s
(s +2)? a(s)Bals)
= J4 = O’ =4 -2 . _ 2 2
fa fa g1 92 f3—=2f4 - DﬁDﬂIam/m(Y) + éDﬁD(a Ia(s)d(s—l))
gs = 0, dl = 4f3 — 2f4, d2 = 0 (22) : ' (S + 2) s
252
T o7 25t e P P patenaon |- (26)

For A-invariance we substitute (20a) and (21a) in (19). The
terms generated in 5, S are not all linearly independent and
their coefficients cannot vanish independently. This is
resolved by the following identity of Z g, (s)4(s)

B 1
S (s+1)!
BERLU
s (s 1) %

s+2 1
s (s+1)!

D(a,,, DDy La(s—1))a(s)

At

DUDPL g1 (s))i(s)

2 D a,

I(al\ﬂa(‘\'))&(s) (23)

which precisely recombines the above terms in linearly
independent groups. This is a higher spin generalization of
a corresponding identity found in [48]. Using (23), we can
enforce A-invariance, (5,5 = 0) to find:

s+ 1 s+ 1\2
f1=0, f3— gz+< )dlz(),
s s
s+2 s+1 s+1)(s+2
oy =212 S R BHDERD g (g

The system of equations (22) and (23) uniquely determines
all coefficients up to an overall scaling factor

s+ 1
:0’ :—C’ g s = C
fi f: =20 fa
0 o2 0
g =0, 92——<s+2> c, g3 =Y,
g =22 d 25
1_<s+2>c’ »=0 ( )

and fix the 3/2-order invariant quantity 7 gu(s)a(s):

The equations of motion for ua(s) and Weg(s)as)
generated by (17) are

Qﬁa (s)a(s) Wﬂa (s)a(s) — _jﬂa(s)a(s)’ (278.)

(27b)

Wats)ats) * pas)ats) = —ZL pa(s)i(s)»

and they are consistent with transformations (21a) and
(20a). After integrating them out of action (17), we find:

S[Z)=c / d®z {I/"” DL g i) + C-C.

25° Pa(s)a(
- (s +2)? 2L DﬁDa\I (s)a(s—1) T C.C.
4(s +1) .
- pa()i(s) D, DAL .
(s +2)? * DD L o))
— Pa(s)a(s _/} = ]
27 Pa(s)a(s)H DpZ o)
452 o -
+ G +2)2I (s=Da(s)py SDézl‘Ia(s){'l(S—l)}. (28)

By substituting Eq. (12) in the above, we recover the action
for massless, nonminimal, arbitrary half-integer superspin
supermultiplet Sy_y12)[H o(s)a(s)s Xa(s)a(s-1 )] as written in
[31] with the identification H y(5)4(5) = Ha(s)a(s) + H (s

The equations of motion for superﬁelds Ha(s)d(s) and

Xa(s—1)a(s) are respectively:

ity = DD patyae) + VDT oy (29)
Evvat) = D Tatonits) + DD L 40
+ ﬁ “Die, La(s)its-1))

+ i ;D”“ DT it (30)
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and they satisfy the following Bianchi identities which
capture the invariance under L, # and A symmetries

D% 53(?)&@) = nggl—l)d(s) [L — invariance] (31a)
Sf:(?)d(x) = 5‘(%))&(3) [# — invariance]  (31b)
D(dwrlg(l(s—])(-l(s)) =0 [A - invariance] (31¢)

Identities (31a) and (31c) are not new as they have the same
form as the Bianchi identities of the S[Ha(s)d(s)’){a(s)d(s—l)]
theory. However, they acquire a new interpretation due to
the existence of this half-order formulation of the theory.
Equation (31a) is a consequence of the ability to write the
action purely in terms of 7 g4 (,)4(5)- Identity (31c) is just a
repackaging of property (23) of this basic building block.
Identity (31b)—which was previously trivially true because
superfield H,(5)4(5) 18 real—is now understood as the
Bianchi identity for a new local symmetry (15) which
provides a higher spin generalization off linearized changed
of coordinates.

B. First order formalism of minimal half-integer
superspin supermultiplets

For the A = —1 case and according to Egs. (10) and (11)
there are two invariants. Equation (10) gives the first-order
invariant Z g, (s)4(s—1) and (11) gives the half-order invariant
K o(s+1)a(s)- Based on their respective definitions, it is clear
that the symmetric part of Z z4(,)4(;—1) does not capture new
information since it can be written as the derivative of
Katst+1acs):

i y
o3 D1 v = D Kpawa - (32)

However, the antisymmetric part Z ,(,_)4(;—1) defined as:

To(s-1yi(s-1) = CP L g syis—1)
s+ 1

= DD Hs)ags) = —

DD Ho(s)as)

s+1 1
Ty oI Do, Ja(s=2))a(s-1) (33)
is an independent first-order invariant. Therefore, we
consider the S = S[Z, K] class of actions which are func-
tionals of Zy(,_1)4(s-1) and Kpy(s11)a(s) and thus automati-
cally L-invariant.

By construction Z,(,_1)a(s—1) and Kgiei1)ars) are also
invariant under the A-redundancy of y,,_1)a(s-2):

1

O\ a(s—1)a(s=2) = MD(ds_zAa(S—])d(s—fi))’ (34a)

5/\1-/))(1(‘\‘)(.1(‘\‘—1) =0, (34b)

N a(s+1)a(s) = O (34c)

However, under #-symmetry (6a) they transform as:

AT s+ 1 a, TH
57/:[(1(s—1)()(s—1) = —iD*%D Na(s)a(s) — L D%D Na(s)a(s)
(35a)
i
OnKatsnats) = (7)1 Pl Tels)its): (35D)

These symmetries will be imposed on the action via three
auxiliary superfields. One auxiliary superfield @y(s_1)a(s-1)
will couple to the first order invariant Z ,;_4(;—1) and two
more auxiliary superfields (W (s11)a(s)» Qa(s+1)a(s)) for the
half-order invariant Ky, 1)4(s)- The general action takes
the form:

S:/dSZ{cla)a(s_l)(.l(s_l)wa(s—1)[1(3‘—1)

¢ ¢ =~ —1)a(s—
+?2wa(s_l)a(s_])wa(s—l)d(s—l)+wa(s DS oo 1)age1)

FWEHENEIQu s 1yas) + WO Kot 1)as)

+ Qa(Hl)d(x)j(z(erl)(;,(S) } +c.c. (36)

where J (1 1)a(s) 18 @ 3/2-order invariant constructed out of
the derivatives of KCp(si1)a(s):

d _
ja(s+l)d(s) =d, er(s+l)o'z(s> + (s—|— l)!D XHD(UC;H’CQ(A‘))(J(&H)
ds o
7D D(zx IIC N 37
+ (S + 1)' (e * a(s))a(s+1) ( )

The transformations of the three auxiliary superfields
are chosen such that the variation of action (36) is
simplified by eliminating all the terms proportional to
w(l(x—l)&(s—l)vQ(I(A‘Jrl)&(s) and W(l(erl)('l(.s')_Similar to (19):

OWg(s—1)a(s—1) = —ﬁéga(km@—n

+ ﬁ 8L os-na-:  (38a)
0L Wq(s-1)a(s-1) = 0, (38b)
OADg(s-1)a(s—-1) = 0, (38¢)
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20 —Hey
5ﬂa)(z(s—l)(’l(x—l) =1 4C12 Y D%D Na(s)als)
2%6‘] — Cy _ .
+1 4012 _c 5 D%D °n, (s)a(s) (38d)
Qs+ Dis) = —Oq(s41)i(s)» (39a)
5LQ(1(S+1)('1(.3‘) =0, (39b)
OAQu(s+1)a(s) = 0, (39¢)
i
3, Q0 (51 1)a(s) = _mD(aS“r/a(s))&(s) (39d)
5W(1(.&'+1){1(A‘) = _6k7a(s+l)r'1(s)’ (403')
S Wa(s+1)a(s) = 0, (40b)
5AW11(S+1)('1(A‘) =0, (40C)
di+d; =
O Wa(s+1)a(s) = 1 Gt : (agi1 Ma(s))a(s)
d—dy
= 1 Dl D et
el N 40d
TPt D Dy (40d)
Using Egs. (38c), (39d), and (40d), we find that

n-invariance of action (36) requires:

2s J 1 [s+1
c; =c, Cy = c, ,
! 2 s+ 1 ! 4c K

1 (s+1 1 (s+1)*
d R N e A 41
2" 4c ( s > 3T 2053 (s +2)° (41)

which fix the 3/2-invariant 7 4, 1)4(s) to be

I (s+1
ja(H»l)iI(s) = 4C( P > DZK(I(A‘+1)(’I(A‘)

1 s+1\3_, _
+4C(s+1)!< s )D‘H]D<"J+1’Ca<s>>&<s+1)

1 (s+1)* _
D DaHlIC .
2c(s+1)!s%(s +2)? (@511 a(s))a(s+1)

(42)

The equations of motion for the auxiliary superfields are:

1 (s+1)°
WDo(s-1)a(s—1) = 26’ 25+ 1 a(s—=1)a(s—1)
Is(s+1)-
26‘ 25+ 1 Ia(v Da(s—1)» (43)
Qu(s+1)ats) = ~Ka(s+1)a(s)» (44)
Wais+1)a(s) = =T a(s+1)als)- (45)

Because of their algebraic nature, we can integrate them out
of (36) in order to find the S[Z, K] action:

1 s+ 1 _
S = d®z { < ) JCats+ha DZKO((S+1)U',(S) +c.cC.

4c K

_2<s+
s

> ,Ca q+l (l ‘)D(I‘HDQ ) ,C 5 a S+1)

(s +1D*
— 4 et AD,, | Dy
(S +2) . a(s)a(s+1)
(S + 1)2 a(s—1)a(s—
—T—HI (s=1)a( I)Ia(s—l)o't(s—l) +c.c.
S(S + l) a(s—1)a(s—1)7
+2 25 +1 I( D I)Ia(s—l)d(s—l)} (46)

By substituting Egs. (11) and (33) back in the above action,
we recover precisely the minimal half-integer superspin
supermultiplet action Syy—g. 1/2) [Ha(s>d(s)’la(x—])d(x—2)} as writ-
ten in [31] with the identification Hy(g)u(s) = Ha(s)a(s) +
Hags)is)-

The equations of motion for superfields H,s)s(s) and
Ja(s—2)a(s—1) are respectively:

(H)
ga(s)('l(s)

2s+1
52

IDPD?K p(s)i(s) + DDy i)

1
+—D
sls!

1 - s =
———D(4,D(q, ml—a(s—l))d(s—l))_Ia(s—l))d(s—l)) (47)

_ Ky _
(@D, {—s 1 Lats=1its-1) —Ia(s—n)a(s—l))}
sls!

S
s+1

)
ga(s—Z)o't(s—l)

= D% { To(s-1)i(s=1) — Ia(s—l)o'z(s—l):|

(48)

and they satisfy the following Bianchi identities for the
invariance under L, # and A symmetries:
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— pa ™)
OfD»é'()

a(s)a(s) [L — invariance]

+ ﬁﬁ(dp(asl E%—z))a(m))
+2 ; 1 ﬁ]}(aﬂﬁ(d; g%-z))&(s—m)v (49a)
5%))0',(3) = E'%))d(s), [n — invariance] ~ (49b)
Das_z‘égz)s—z)a(s—l) =0. [A — invariance]  (49c)

Identities (49a) and (49c) are consequences of the action
being written purely in terms of the L and A-invariant half
and first order quantities KCy(s;1)4(s) and Zg(o—1)a(5-1)-

III. INTEGER SUPERSPIN

The integer superspin supermultiplet Y = s on-shell
describes the propagation of the massless spins j = s +
1/2 and j = s. Its superspace realization is given by the
equivalence class [¥,(5(,-1)] of a (s,s—1) SL(2,C)
superfield tensor W,()4(,—1) Which is independently sym-
metric in both types of spinorial indices. The superfield
strength that describes the physical degrees of freedom,

constructed in [51], is
Wa(a) = DD, 00, “--00,, “ " Puspyis—1)  (50)

For s > 1, the general redundancy which respects this
superfield strength and defines the equivalence class is [52]:

~ 1
Woisas—1) ~ Ya(s)as-1) + ED(ax La(s=1))a(s=1)
1 _
+ o1 Da,  Aa(s)a(s-2)) (51)

In this case, the highest propagating spin is a fermion and
thus its equation of motion is the, higher spin generalization
of the massless Dirac equation. In general, for these
equations of motion the Ostrogradskiy procedure cannot
be applied since they are already first order and the partial
derivative operator cannot be further factorized. However,
as mentioned previously, for supersymmetric theories such
factorization of first order differential operators is possible
due to the supersymmetry algebra. The Dirac equation for
Wo(s)a(s—1) 18 0(0,“‘5‘3‘1’0,(3_1))&(5) = 0. In superspace, this will
include terms DasD(aJlPa(s_l))d(s) and D(aSDaJlPa(s—l))o'z(s)-
Therefore, we consider the following two candidates for
half-order invariants:

Lopacs-1) = D ¥asyats-1) (52a)

Lo(s—1)i(s-1) = D pas—1)a(s-1)- (52b)

For s = 1, the real part of (52b) {2Re[l] =D*¥,, +D*¥,}
and also Iaﬁ of (52a) are A-invariant for an appropriate
reduction of the A, symmetry A,=iD,A,A=A.
Following this will lead to the half-order formulation of
the Ogievetsky-Sokatchev description of the (3/2,1)
supermultiplet [53]. However, this cannot be generalized
to s > 1. An alternative approach that can be extended to
higher spin supermultiplets is to instead restrict the
la(s—1)a(s—1) Symmetry:

la(s—l)&(s—l) = D(l“‘La(s)('z(x—l)' (53)

By introducing a complex, bosonic, compensating super-
field V(s—1)a(s—1) With transformation & Ve(,—1)a(s-1) =
D% Lg(s)a(s—1)» We find an elementary half-order, L-invari-
ant building block:

Tpa(s—1)ats=1) = Ppa(s—1)a(s=1) = DpVa(s=1)as=1)-  (54)
Under the A-redundancy, 7 g,(s_1)4(s—1) transforms as:

1 -

ONL pa(s—1)a(s—1) = mes,lAﬂa(s—wa(s—z))- (55)

Moreover compensator Ve(,_1)a(s—1)> in addition to its
L-transformation, it can be assigned a local algebraic
symmetry similar in nature to (15)

Sy Va(s-1)a(s—1) = Ma(s—1)a(s—1)> (56a)

5nIﬁa(s—1)o'z(s—1) = _iDﬂna(s—l)d(s—l) (56b)
with a real parameter 74, 1)a(s—1) = Ma(s—1)a(s—1)- Similar to
the discussion in the previous section, the class of actions
S = S[Z] is trivially L-invariant and the invariance with
respect to symmetries (55) and (56b) will be enforced by
two auxiliary superfields Wya(s_1)a(s—1)> $2pa(s—1)a(s—1)- The
general action has the form

S — / Bz {WP=DENQ  ags-1)
+ Wﬂa(s—l)ét(S—l)Iﬁa(S_l)g‘,(s—l)
+ QO T o} + e (57)

where J g4(5-1)a(s—1) 18 @ general 3/2-order invariant con-
structed out of the derivatives of Z g, (s_1)a(s—1)-
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_ - S Siny
T pats—1)is-1) = C1D*Lgas—nyats—1) T 2D Lpa(s-yags—1) + 3DsDPL oo pypagsmty + 4D DL o pypasm)

4, _2 b - dy - _
+ m C[))((l\._l D Ia(s—Z))('z(S—l) + mD/)’D(&S_l-,z-a(s—l)('l(s—2)) + WD(&P] D/i-z-a(s—l)&(s—2))

fi P

T Cplas DD, Lpiats-2)yats-2) + 5= 1)i(s = 1)1 Pl Dia . D'Zyias-2as2)  (58)

|
and O pa(s=)a(s-1) = —OL pa(s=1)a(s—1) (60a)

To(s—2)i(s-1) = CP1 L g 1)i(s-1)

8.8%a(s-1)a(s—1) = 0, (60b)
= D% Va(s—l)d(s—l (59)

1 _
Action (57) is identical in form with action (17), hence OApa(s—1)a(s—1) = —meHAﬁa(x_l)&(s_g)), (60c)

its variation will take the same form as (19). The trans-
formation laws for Wy, 1)4(s-1) and Cp4(s-1)a(s—1) are

then chosen in a similar manner, by eliminating the terms of 5;1Qﬂa(s—l)éz(s—1) = iDpna(s—1)a(s-1)» (60d)
the variation which are proportional to the auxiliary super-
fields. Therefore for Qgg(s_1)a(s—1) We get: and likewise for W, (s_1)a(s-1):
|
5W/}a(s—l)éc(s—1) = _6\7/3(1(.?—1)('1(5—1)’ (613)
St Wa(s—1)a(s—1) = 0, (61b)

— € 21 C3 -/'} N )
W pats-vats=1) = = 727y P Pl Msats-nats-2) = 727y Do P Aag-appats-)

__ G4 D2A .

+ (s—1)! Ch(a,.,D'D Aa(s—Z))ﬁr'z(s—l)’ (61c¢)
S Wia(s—1)a(s—1) = i(ca + C4)D2Dﬂ7]a(s_1)d(s_1) +i(=2c3+ ¢4 + dZ)D/JDzﬂa(s—l)a(s_l)

. d3 S = . dl _

= i 57D DD Mats—1)lato-2)) — i 7737 Ot DD Mipiate—2)ito-1)
(s —1)! (s=1)!

N 32 . 2 = =

+1 G- 1) Cha,, D' DMy ja(s-2))i(s—-1) = li(s — 1 Cp(a. Do D' DI yja(s—2)plas—y)  (61d)

Using Egs. (61d) and (60d) we find that the n-invariance =~ The rest are eliminated by choosing the coefficients:

of action (57) requires

-1
¢; =0, c3 =0, dy = : e (dy+2c4) (64)

CH + Cqp = 0, dz = 4C3 — 2C4, d1 = 0,
dy =0, f1=d,, f,=0 (62)  The two systems (62) and (64) give

For A-invariance, some of the terms generated in the =0, ca=-c, 3=0, c=c,

variation of the action by substituting (6lc) and (60c) ¢4, =0, d,=-2¢, d3 =0, f;=-2¢c, f,=0
vanish due to the following identities: (65)

D" Lys2a-1) = 0 DLaaas1) = 0. (63)  and determine J o(s1yas1y
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T pa(s=1)a(s—1)

= —¢ Dzzﬂa(‘g—l)ix(s—]) - DﬁDﬁj—a(s—l)/.ﬁl(S—l)

2
T 105D Zats-1)its-2)

2
+ !2C[)’({1\ ]D D (&g ]I|}/|(1(\ 2))a(s=2) | - (66)

We integrate out the auxiliary superfields W, 1)4(5-1)
and  C4(s-1)a(s—1) Using their respective equations of
motion

Wﬂas Da(s jﬁas Da(s—1)» (673)

Qpats—1)a(s-1) = —L pa(s—1)a(s-1) (67b)

to find the action S[Z] written purely in terms of
L pa(s—1)a(s-1)"

S = C/dSZ{Iﬂa(S_l)d(s_l)DZIﬂa(s_l)d(S_l) +c.c.

Ba(s—1)a(s—1) ST 7
= 27Pe DS IDIDRT ey
+ 21'/7’{1(? Da(s= 1)D/}Da‘ II(I(s l)a(s—2) +c.c.
+ 47(s=2)a(s= I)D”l‘*‘Ddl‘fll'a(s_na(S—z)} (68)

By substituting (54), this action becomes exactly the
integer superspin action S(Y:.\') [qj(l(s)&(s—l)v Va(s—l)(’l(s—l)]
of [31] with the identification Va(s—l)&(s—l) = V{l(x—l)&(s—l) +

T}a(x—l)fl(s—l)'
The equations of motion for superfields ¥, )q(,—1) and
Va(s-1)a(s—1) are respectively:

(¥) _1s lsin, 7 _
ga(s)(}(x—l) = ED L (aals—1))a(s=1) = ED D(a.\Ia(s—l))/id@—l)

56—y D P Latnic-2) (69)

and

£V

a(s=)a(s=1) — DﬁDZIﬁa(s—l)o’z(s—l) + DD’ (

a(s=1)pa(s—1)
(70)

It is straightforward to show that they satisfy the following
identities which play the role of Bianchi identities for the
invariance under L, n and A symmetries

2 0(¥) 1 V) -
D 5(1(5 (l ) + D (lsg(l(s l))a(s—l) - 0, (7121)

— &M

)
3 a(s—1)a(s—1)’

a(s—1)a(s—1) (71b)

3. W) _
D(”s—lga(s)d(s—l) =0.

(71¢)

The interpretation of this equations is now clear. Identity
(71a) reflects that the half-order description of this system
exist and the action for integer superspins can be written
purely in terms of a basic building block Z g, 1)a(s—1)-
Equation (71c) is a repackaging of the properties (63) of
T pa(s—1)a(s—1)- Finally, Eq. (71b) is a manifestation of the
additional local symmetry (56a).

IV. SUMMARY AND CONCLUSIONS

In this work, we have shown that higher spin super-
multiplets can be described using a first or even half order
formalism. Following the conventional first-order
approach, we start with the set of unconstrained superfields
that participate in the Lagrangian description of the free
theories and we relax some of their characteristic proper-
ties. For non-supersymmetric higher spin fields one relaxes
the symmetry of their indices. For higher spin superfields
this corresponds to relaxing their reality and corresponding
gauge redundancies.

In this configuration, we find first and half order gauge
invariants which are used to write trivially invariant actions.
However, in order to maintain the degrees of freedom of the
theory a new local symmetry is introduced. This symmetry
is a higher spin generalization of the linearized general
covariance in supergravity which reduces the complex
prepotential to a real one. Checking the invariance of the
action under this new symmetry is more involved but it is
possible due to various identities of the basic invariant
building blocks. These identities are promoted to play the
role of Bianchi identities.

The procedure is simplified by introducing auxiliary
superfields that play the role of connections in the sense
that they impose the new local symmetry and their
equations of motion are algebraic in nature that allows
their integration out of the action.

For half-integer superspins (s > 0) we find two varieties
of first order description. In the first one, there is a
fundamental half-order building block Z 4 (,)4(s) (12) and
the action (17) requlres a pair of auxiliary superﬁelds
Qpa(s)a(s) and Weg()a(s)- Their integration yields action
(28) which is equlvalent to the action for the nonminimal
half-integer superspin supermultiplet. This result general-
izes to higher spins the first order description of non-
minimal supergravity supermultiplet found in [48]. The
second variety, allows for the construction of two inde-
pendent building blocks, Zy(s_1)4(s—1) (33) and Ky(ei1)a(s)
(11) which are first and half order respectrvely The action
(36) requires three auxiliary superfields @y (s—1)a(5—1)s
Q(sr1)as) and Wey(ss1)a(s)- Their integration generates
action (46) which is equlvalent to the minimal half-integer
superspin action.
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The first order description of integer superspins (s > 1)
parallels the nonminimal half-integer superspin description.
There is a half-order invariant Z g, (;_1)4(s-1) (54) and the
action (57) is written with the help of two auxiliary
superfields a5 1)a(s—1) and Wpg(s_1)a(s—1)- Their integra-
tion yields action (68) which is equivalent to the known
integer superspin action.

The hope is that the existence of these descriptions will
simplify the investigation of manifestly supersymmetric
higher spin interactions. Moreover for nonsupersymmetric

higher spins, first order formalism allows the study of higher
spin dualities [54,55]. Our results may allow the examination
of similar higher superspin dualities in superspace.
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