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After the phase transition of a grand unified theory (GUT), its single coupling splits into the couplings of
the basic interactions. On the other side, the measurement of the Weinberg mixing angle in the electroweak
theory determines that the couplings associated to the SU(2) and U(1) symmetries were already distinct in
its symmetric phase, before the electroweak breaking. This picture is consistent as we understand that such
couplings evolve independently with the energy scale, meeting a common point together with the strong
interaction coupling at the GUT scale. From a BRST symmetry point of view, this implies that each
independent coupling should be associated to independent cocycles defined on a cohomological basis. The
problem is that, before the GUT symmetry breaking, the BRSToperator associated to this symmetric phase
predicts a single Yang-Mills coupling. This sets the question of what should be the BRST operator of the
asymmetric phase, that would allow for the splitting of this coupling but at the same time, remain
compatible with the BRST operator of the symmetric phase. In this work, we proceed to answer this
question.
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I. INTRODUCTION

The advent of a grand unified theory (GUT) is the
attempt to actually comprehend the standard model (SM)
SUð3Þ × SUð2Þ ×Uð1Þ physics inside a tied description of
these basic interactions. The goal would be to reproduce all
the SM richness from a theory with the smaller possible set
of free parameters, bringing economy and a higher predict-
ability to such a new physics. Some of its consequences are
controversial, and, for example, the predicted decay of the
proton present on the original model proposals [1] and [2,3]
is still under broad debate in the literature (see, for instance,
the review [4] or more recently, [5,6]). On the other side,
these models establish in a simple way the connection of
the electric charges of quarks and leptons. And mainly, the
project of unification is supported by the experimental
evidence that the strong, weak, and electric couplings tend

to converge on a common value at a high energy scale MG

(in fact, this was the primary theoretical intention for the
model design [7]). In this aspect, it is never excessive to
remember that the electroweak theory is not a complete
unification of the electric and weak interactions, as their
couplings remain distinct even in the symmetric phase. This
is also experimentally confirmed by the measurement of the
Weinberg angle. Then, any GUT is ultimately a theory for
the unification of all couplings, a theory with one single
coupling. Our low energy physics would appear after a phase
transition at the GUT scaleMG by a Higgs mechanism, and
since then, the basic couplings evolved independently. This
is understood as an effect of the decoupling of the heavy
gauge modes, which acquire masses proportional to MG at
the new Higgs vacuum. This means that each one of these
couplings follow an independent renormalization equation.
At this moment, we make a brief interruption to state that

the work that we will develop here is a rereading of the
theoretical construction which is behind any GUT theory
from the point of view of the BRST language. We think that
this approach is most suitable, as the BRST charge should
reflect the true invariance of the vacuum in each phase. Let
us argue for this approach and how it can give us a new
insight on this problem.
Rephrasing our initial presentation, we would say that

seeing from the standpoint of our low energy scale, it is the
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running of the couplings which allows the existence of a
GUT theory. We expect them to meet at a definite high
energy scale. They would join together in a unique
coupling, which in its turn would then follow its own
unique renormalization equation from this scale on. The
SM group structure must then be accommodated within a
simple Lie group. Now, from the perspective of the BRST
analysis, this unique coupling is naturally predicted as a
consequence of this character of the Lie group of the
symmetric phase being simple.
We can briefly summarize this line of reasoning and its

impacts. In a first approximation, we can recover the
concept of hidden symmetry, in contrast to a broken
symmetry, originally exposed by Coleman [8]. For this
intent, it is sufficient just to shift the scalar field by its
vacuum expectation value (vev), not only in the action, but
also in the BRSToperator of the symmetric phase. This will
be the operator that will sign the transition from the
symmetric to the broken phase. We will show that the
immediate effect of this shift is to characterize the so
acquired gauge mass in the usual cohomological BRST
sense. Other consequences will be the trivialization of all
cocycles containing any of the non differentiated would be
Goldstones, as they now form BRST doublets with the
nondifferentiated ghosts along the broken directions. This
means that the physical Hilbert space do not depend on
such fields (for this and other results in BRST cohomology,
we refer to [9]). The same will happen with certain
combinations of the gauge fields associated to the broken
generators and the derivated would be Goldstones, as they
now belong to BRST doublets with the derivatives of the
same ghosts. As before, such combinations of fields will
not belong to the physical space also. Comparing this result
with a pure massless Yang-Mills theory, it is well known
that in this case the BRST analysis leads to the physical
independence on the nondifferentiated gauge fields, and
observables only depend on the fields curvatures [9]. Now,
in the Higgs broken phase, this exclusion along the broken
directions happens only in this specific combination.
Consequently, we will show that, in the broken phase,
the massive broken gauge fields will appear in nontrivial
BRST cocycles through the linear independent combina-
tions with the would be Goldstones. In fact, this is
responsible for the appearance of the Higgs gauge mass
among the physical observables in the broken phase. And
also, this makes explicit what is the true physical variable in
the broken gauge directions, which is nothing more than the
well-known statement that the would be Goldstones now
represent the longitudinal degrees of freedom of the
massive gauge fields in the broken Higgs phase. Then,
from this BRST point of view, we are extending to the
quantum level the classical observation that one can rotate
the whole theory by a gauge transformation taking as gauge
parameters the would be Goldstones (see, for instance,
Ref. [10]). These scalar degrees of freedom disappear

altogether from the theory as they are incorporated as
the longitudinal massive gauge degrees.
We are now at this point where we have an understanding

of the Higgs gauge mass, but we still lack the independence
of the gauge couplings after symmetry breaking. We will
show that this is so because the BRST operator that we
extended by including the vev of the scalar field still
predicts one single gauge coupling for the whole theory.
There is only one possible nontrivial element of the
cohomology of this operator depending exclusively on
the curvature, i.e., TrF2, and it is still based on the gauge
field curvature of the symmetric phase. In this way,
independent running gauge couplings after the phase
transition are still not explained.
Our proposal to approach this question is basically to

reinterpret the quantization of the theory for the new Higgs
vacuum. In this phase, as we have seen, the would be
Goldstone fields (and their derivatives) do not play any
physical role, as it happens with the ghosts (and derivatives)
of the broken directions. So we proceed with the complete
elimination of these fields from the theory, which can be
understood as a choice of gauge, actually, the unitary gauge
[10]. This will take us to a new BRST operator of the
broken phase. This operator is nilpotent and can be used to
characterize a new cohomology for this phase. After
showing that in this way, we arrive at independent
couplings for each independent symmetry of the new
vacuum, we hope that this operator can guide us to the
concept of observable after the symmetry breaking.
In the next section, we will fix the notations and review

some basic results of the BRST cohomology of massless
Yang-Mills theory for completeness. In Sec. III, we will
show how we can characterize the emergence of the gauge
field mass as a product of the change of the BRST operator
driven by the vev of the scalar field. Also we will analyze
the physical status of the would be Goldstone and of
the broken ghost fields in view of this transition BRST
operator. Here, we will spend a few words on the ’t Hooft
gauge, responsible for simultaneously showing the renor-
malizability and unitarity of the theory, which is in fact the
great advance of the Higgs mechanism for the introduction
of masses for gauge fields. Then, in Sec. IV, we exhibit a
nilpotent operator for the unitary quantization of the broken
phase. We will study its cohomology at the level of the
action, paying special attention to the non trivial elements
depending exclusively on the gauge fields. This cohomol-
ogy will present an independent running coupling for each
remaining symmetry of the vacuum. The origin of each
counterterm will be traced back to elements of the BRST
cohomology of the symmetric phase. This will demand that
each independent running coefficient will have the neces-
sary boundary condition of matching the associated value
coming from the symmetric phase at the scale of the phase
transition. This is the BRST derivation of the different
gauge couplings matching at the GUT scale MG. At this
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point, we will also show that the necessity of the ’t Hooft
gauge demands now the addition of a second independent
symmetry, which will shape the full nilpotent BRST
symmetry at the broken phase. This will fix the coefficients
of the counterterm action. Finally, this development opens
the possibility to incorporate a new physics, as new
elements at the level of the action are allowed after the
phase transition, elements that are associated to the sym-
metric phase cohomology in higher dimensions. The
possible interpretation of such elements as condensate
candidates will be commented in our Conclusions.

II. NOTATIONS AND BRST TRANSFORMATIONS

We begin with the usual definitions for the curvature and
covariant derivative of a Yang-Mills theory coupled to a
scalar field,

FA
μν ¼ ∂μAA

ν − ∂νAA
μ þ gfABCAB

μAC
ν ;

ðDμφÞA ¼ ∂μφ
A þ gfABCAB

μφ
C: ð1Þ

The gauge field AA
μ and the scalar field φA are in the adjoint

representation of the gauge group G, and then the internal
index A varies up to the dimension of G. We assume that
this is a simple Lie group, which implies a single coupling
constant g. The standard BRST transformations for these
fields, ghost, curvature, and covariant derivative are,
respectively, given by

sAA
μ ¼ −ð∂μcA þ gfABCAB

μcCÞ ¼ −ðDμcÞA;
sφA ¼ gfABCcBφC;

scA ¼ g
2
fABCcBcC;

sFA
μν ¼ gfABCcBFC

μν;

sðDμφÞA ¼ gfABCcBðDμφÞC: ð2Þ

This is the basic structure that we assume as that prevailing
at the symmetric phase, prior to the phase transition. Before
entering in the details of this process, we now briefly
review how the cohomology of the nilpotent operator s
can be calculated [9]. These concepts will be sufficient to
explore the broken phase. We begin by making a filtration
in s,

s ¼ s0 þ s1;

s2 ¼ ðs0Þ2 þ fs0; s1g þ ðs1Þ2; ð3Þ

where s0 acts linearly on the fields,

s0AA
μ ¼ −∂μcA;

s0cA ¼ 0;

s0φA ¼ 0: ð4Þ

The nilpotency of s0 is easily confirmed from eq. (4). It
establishes that the gauge field AA

μ and the derivative of the
ghost ∂μcA form what is called a s0 doublet. A doublet
ðu; vÞ of a nilpotent operator Δ happens when

Δu ¼ v; Δv ¼ 0; ð5Þ

and neither u nor v enter in any other field transformation of
Δ. Notice that, from (4), the symmetrized derivative ∂ðμAA

νÞ
also belongs to a s0 doublet, whereas ∂½μAA

ν� is in a singlet.
This filtration is useful thanks to two basic theorems [9].
The first one states that the cohomology of s is isomorphic
to a subspace of the cohomology of s0. The second says
that the cohomology of any nilpotent operator does not
depend on doublets. Then, we can conclude that a basis for
the cohomology of s0 with any ghost number or dimension
can be constructed from polynomials containing solely
the nonderivated ghost, the scalar field and its derivatives,
and/or the antisymmetrized gauge field derivative ∂½μAA

ν�.
Expanding this basis with the quantum numbers of a four-
dimensional Lagrangian, and then using the first theorem to
complete these elements to obtain the full cohomology of s,
we arrive at the standard action of counterterms of Yang-
Mills coupled to the scalar field. To each independent
element on the cohomology of s, we associate a free
coefficient. These coefficients are the physical parameters
of the quantum action. From what we have just obtained,
we can conclude that the only possible contribution to the
counterterm Lagrangian made exclusively from gauge
fields is TrF2. Then, the fact that polynomials constructed
with the nonderivated gauge field AA

μ are excluded from the
physical space means that a gauge mass would be forbid as
an observable even if an invariant cocycle could be built
from them. As we know, one way to allow for gauge masses
is to implement a symmetry breaking mechanism. In the
following, we will show how this mechanism circumvents
this forbiddance from the BRST point of view.

III. BRST AT THE PHASE TRANSITION

The main purpose of this section is to show that we can
define a BRST operator in a simple way in a phase
transition. Spontaneous symmetry breaking does not mean
that there is not a BRST symmetry regulating all the
process, including the broken phase.
We suppose that this transition follows from the Higgs

mechanism, when the scalar field acquires a vev μ along a
direction z,

φA ¼ χA þ μδAz: ð6Þ

We call z the direction of the breaking. The shift in φ
implies hχi ¼ 0. We designate the directions in the internal
space that commute with z by lowercase letters from the
middle of the alphabet, as i,j,k... These so-called symmetric
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directions of the new vacuum may even form distinct
blocks of G, with generators commuting among them-
selves. Of course, these blocks constitute subgroups of G
and are associated to the symmetries of the new vacuum.
Moreover, in some equations, when necessary, we will use
a subindex (N) to refer to N possible distinct subgroups.
For example, TiðNÞ will refer to the generator i of the
subgroup of labelN. We also have the directions that do not
commute with z, the so-called broken directions, which we
designate by lowercase letters from the beginning of the
alphabet, as a,b,c... At this point, we specify the algebraic
result of the broken theory by saying that we allow the
structure constants of this phase to have only the following
possible non-null contributions:

fzab; fijk; fiab: ð7Þ

This may not be the most general possibility, but it is
sufficient for our purposes (this follows the Cartan decom-
position of a Lie algebra for a symmetric space when fabc

vanishes [10]). For example, the breaking of SUð5Þ into
SUð3Þ × SUð2Þ × SUð1Þ, the original Georgi-Glashow
model [1], follows this pattern.
Then, at the moment of the breaking, the BRST trans-

formation of the scalar field in (2) must now take into account
the vev hφzi ¼ μ, becoming the transition operator sv,

svχA ¼ μgfABzcB þ gfABCcBχC; ð8Þ

and from the list of available structure constants in (7), we get
that only the scalar fields in the broken directions feel the
presence of the vev,

svχa ¼ μgfabzcbþ gfabiðcbχi− ciχbÞþ gfabzðcbχz− czχbÞ:
ð9Þ

In the other directions, the scalar fields transformations
remain unchanged,

svχi ¼ gfijkcjχk þ gfiabcaχb;

svχz ¼ gfzabcaχ b: ð10Þ

Here, it is important to highlight that the operator sv is in fact
a symmetry of the whole action after the symmetry breaking,
being understood that for the other fields sv acts as s in (2),

svAA
μ ¼ −ð∂μcA þ gfABCAB

μcCÞ ¼ −ðDμcÞA;
svcA ¼ g

2
fABCcBcC: ð11Þ

This can be seen as an explicit realization of the Coleman’s
“hidden symmetry” description of a broken symmetry [8].
But the change for this hidden symmetry sv obviously has
physical consequences.

The novelty comes from the shift now present in the
transformation (9). It has the power to completely change
the cohomology. In order to understand this, we can filter sv
as in (3), and obtain s0v,

s0vAA
μ ¼ −∂μcA;

s0vcA ¼ 0;

s0vχi ¼ 0;

s0vχz ¼ 0;

s0vχa ¼ μgfabzcb: ð12Þ

From (12), we immediately see that the scalars χa are now
in doublets with the ghosts ca arranged in linearly inde-
pendent combinations with coefficients given by the fabz

(here, we are implicitly supposing that the matrix Mab ¼
fabz does not have zero modes). Besides this, we can see
that the combination μgfabzAb

μ − ∂μχ
a belongs to a doublet

with μgfabz∂μcb. At the same time, the linearly independent
combination μgfabzAb

μ þ ∂μχ
a is a singlet,

s0vðμgfabzAb
μ þ ∂μχ

aÞ ¼ 0: ð13Þ

Then, using the cohomological doublets theorem stated in
the last section, the basis for the cohomology of s0v, limited
in four dimensions, is expanded by polynomials con-
structed from this combination presented in (13), the
curvatures ∂½μAA

ν�, and the scalars, ghosts, and their deriv-

atives still belonging to s0v singlets, in particular all the
fields χi and χz (and derivatives), and the nonderivated
ghosts ci and cz.
The presence of the element in (13) in the cohomology

opens the possibility of the existence of monomials of
dimension two in the action with bilinears in the Aa. This
just means that these vectorial bosons that enter the singlets
in (13) acquire masses after the symmetry breaking. At the
same time, we interpret the scalars χa whose derivatives
appear in (13) as the would be Goldstone bosons. As they
themselves belong to doublets, we understand that none
physical observable will depend on them on the bro-
ken phase.
It is not difficult to show that (13) can be completed to

the cohomology of the full operator sv,

VA
μ ¼ μgfAbzAb

μ þ ðDμχÞA; ð14Þ

transforming covariantly as

svVA
μ ¼ gfABCcBVC

μ : ð15Þ

This kind of relation was called a “Russian-like formula” in
[11], after its functional similarity with the Russian formula
(see Ref. [9] and references therein). Basically, it represents
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a mapping of the cohomology of a filtered operator to the
cohomology of the full nilpotent operator. In our present
case, this relation will enable us to concentrate our efforts
of the cohomology analysis in the next sections to the
sector built exclusively with gauge fields.
Then, remembering the allowed fABC given in (7),

VA
μVAμ ¼ μ2g2fabzfaczAb

μAcμ þ 2gμfabzAb
μðDχÞaμ

þ ðDχÞAμ ðDχÞAμ; ð16Þ

is the invariant nontrivial cocycle of the cohomology of
the transition BRST operator sv. The first term in (16) is
the massive contribution just mentioned, and the second
contains the well-known nonphysical coupling of the
massive gauge fields and the would be Goldstones.
Here, it is important to dwell on the analysis of this point.

As we have shown, the fact that each would be Goldstone
becomes a nonphysical representation follows essentially
from their transition BRST transformations (9). Actually,
this resembles the same problem of the Yang-Mills action in
the symmetric phase, with the explicit presence of a
longitudinal mode of the gauge field which does not
represent a physical degree of freedom. This is solved by
the existence of the BRST symmetry itself, which enables a
gauge fixing procedure to eliminate this mode. From another
point of view, the invariance under a gauge symmetry
implies that not all mathematically possible gauge connec-
tions are physically distinguishable, and again the question
of a gauge fixing is central. Then, on the one hand, a gauge
fixing is demanded by the gauge symmetry, on the other it is
allowed by the BRST symmetry. The Faddev-Popov mecha-
nism follows from these principles.
Alternatively, the mechanism for the case of a sponta-

neous symmetry breaking was designed by ’t Hooft
[12,13]. Its importance relies not only on the elimination
of the nonphysical couplings shown in (16), but also for a
limit where renormalizability becomes explicit, depending
only on the choice of a gauge parameter. This ensures
unitarity and renormalizabilty at the same time. This is
essential for the theoretical framework of the Higgs
mechanism. And it is the existence of the BRST symmetry
that states that the choice of any specific value of the gauge
parameter is physically irrelevant (physical observables do
not depend on this choice [9]). We can compare with the
situation of a Yang-Mills theory with a mass term. In this
case, as the gauge symmetry is explicitly broken, we loose
the BRST symmetry altogether. This implies that it is not
possible to implement a gauge fixing, and this theory is
inevitably power-counting nonrenormalizable (there is an
elucidative argument in [14] on this point).
Coming back to the nonphysical coupling in (16), we can

introduce the term proposed by ’t Hooft,

GA ¼ ∂μAAμ þ αμgfAzbχb; ð17Þ

together with a sv doublet composed of an antighost qA and
a Lagrange multiplier bA transforming as

svqA ¼ bA; svbA ¼ 0: ð18Þ

The ’t Hooft gauge fixing can now be written as a transition
BRST trivial cocycle,

Sgf ¼ sv

Z
d4xð2qAGA − αqAbAÞ; ð19Þ

where α is the gauge parameter just mentioned. When we
integrate out the multiplier bA, the spurious nonphysical
element in (16) is eliminated. And it is the triviality of (19),
possible by the existence of the transition BRST sv as a
symmetry of the action, that is behind the independence of
the physics on α. An adequate choice of the gauge
parameter then makes the massive propagator compatible
with power counting renormalizability. Once physics is
independent on this choice, the theory is renormalizable in
any gauge.
So in (16), we understood how a phase transition can

change the cohomology. New elements can appear in the
broken phase, which were not even BRST symmetric in the
previous phase. However, this still cannot be the complete
description. As we said, all this development pursuits the
construction of a GUT, with the evidence that the single
coupling of the symmetric phase must split into the
independent couplings of the basic interactions at our
energy scale. The problem is that following the standard
calculation, the cohomology of sv in the sector made
exclusively of gauge fields is identical to the cohomology
of s; i.e., there is still only one cocycle, the same FA

μνFAμν,
and then only one possible coupling. The question is how
we can modify or reinterpret the cohomology after the
symmetry breaking scale in a way compatible with this
transition between both regimes. This is the issue for the
next section.

IV. EFFECTIVE BRST SYMMETRIES OF THE
NEW VACUUM

We begin this section remembering that from (12), we
concluded that the ghosts ca and the scalars χa belong to the
trivial sector of the theory after the symmetry breaking, as it
happens to all ghost derivatives. Actually, the would be
Goldstones only appear in the combination given in (14), as
part of the massive gauge field, the longitudinal compo-
nent. This is in agreement with the classical argument that
these Goldstones can be rotated away, being completely
eliminated from the theory. This is equivalent to a gauge
choice, the unitary gauge [15]. Then, from this point on, we
will restrict our analysis to the sector built exclusively by
the original gauge field AA

μ [soon, when we limit our
cohomology study to the level of the 4D counterterm
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action, we will understand that wherever Aa
μ appears non-

derivated it must be completed in the sense of the Russian-
like formula (14)]. The gauge freedom associated to the
symmetries of the new vacuum, due to the non-null fijk,
can be shown to be preserved in this process, and need to be
gauge fixed [15]. And although the gauge components Aa

μ

are now massive, a gauge fixing is still needed along these
directions, as the discussion on ’t Hooft gauge of the last
section specified. This means that we cannot eliminate the
ghosts ca altogether, but we can isolate them from the
BRST machinery in the first approach. In addition, we still
have the necessary link with the theory at the breaking point
determined by the transition BRST sv. Then, joining all
these considerations, the BRST quantization for the broken
phase can start from the filtration of the fields ca from
Eqs. (11) (see Ref. [9] for details on this mathematical
step). Noticing the allowed structures constants (7) for the
symmetric phase, the new BRST operator sq becomes

sqA
iðNÞ
μ ¼ −∂μciðNÞ − gNfijkðNÞAjðNÞ

μ ckðNÞ;

sqAz
μ ¼ −∂μcz;

sqAa
μ ¼ −

X
N

gNfabiðNÞAb
μciðNÞ − g0fabzAb

μcz;

sqχiðNÞ ¼ gNfijkðNÞcjðNÞχkðNÞ;

sqχz ¼ 0;

sqχa ¼ −
X
N

gNfabiðNÞχbciðNÞ − g0fabzχbcz;

sqciðNÞ ¼ 1

2
gNfijkðNÞcjðNÞckðNÞ;

sqcz ¼ 0;

sqca ¼
X
N

gNfabiðNÞcbciðNÞ þ g0fabzcbcz: ð20Þ

The main point now that one can check is that the set of
transformations (20) define a nilpotent sq operator in all the
fields of the theory indeed. This is fundamental in order to
view this set as a BRST system. In Eq. (20), we finally
needed to specify the N possible different subgroups of the
original gauge group that remain as symmetries of the new
vacuum. Then, AiðNÞ means the i component of the gauge
field associated to the subgroup N. Independence of each
subgroup means that the structure constant fijkðNÞ is only
nonvanishing if all its indices belong to the same subgroup
N, so that if TiðNÞ is a generator associated to one of these
subgroups, then

½TiðNÞ; TjðMÞ� ¼ iδðNÞðMÞfijkðNÞTkðNÞ: ð21Þ

The label N in fabiðNÞ entering the sq transformation of Aa
μ

in (20) means that the index i belongs to the subgroup N.

Summation over this label N will always be explicitly
indicated; otherwise, it is not intended. This happens, for
example, in the transformation of AiðNÞ in (20), where no
summation on N occurs.
Finally, we call attention to the distinct couplings gN

introduced for each subgroup and the coupling g0 associ-
ated to the Abelian subgroup along the symmetry breaking
direction z. The imposition that the system (20) must match
that formed by (9), (10), and (11) imply that all these
couplings gN and g0 must satisfy the boundary condition of
matching g, the coupling in the symmetric phase, at the
GUT symmetry breaking scale,

gNðMGÞ ¼ g0ðMGÞ ¼ gðMGÞ: ð22Þ

Obviously, the equivalence among the couplings cannot be
preserved at our energy scale. This indicates that they must
evolve independently after the GUT phase transition, which
means that each one must be renormalized following its
own renormalization equation [10]. In the BRST quantiza-
tion procedure, this implies that each coupling must be
associated to an independent nontrivial cocycle in the
cohomology of the BRST operator at this phase, which
is again the problem that we were facing at the end of the
last section. But now, the BRST sq for the broken phase
gives us the answer. In fact, it is immediate to confirm that
the cohomology with the quantum numbers of the four-
dimensional action calculated from the BRST transforma-
tions (20) has independent contributions of the form,

FiðNÞ
μν FiðNÞμν; ð23Þ

where

FiðNÞ
μν ¼ ∂μA

iðNÞ
ν − ∂νA

iðNÞ
μ þ gNfijkðNÞAjðNÞ

μ AkðNÞ
ν : ð24Þ

We will also have the nontrivial cocycle,

Fz
μνFzμν; ð25Þ

with

Fz
μν ¼ ∂μAz

ν − ∂νAz
μ; ð26Þ

associated to an independent Abelian coupling g0. This set
of contributions (23) and (25) indicates independent beta
functions to each coupling of the independent subgroups
that remain as symmetries of the vacuum after the phase
transition.
Once we have obtained the cohomological independence

of the physical couplings, we must stress that up to this
point this has just served us as a guideline to develop the
correct BRST system adequate to the experience at our
energy scale. From this point on, we will explore some
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possible new physics that may be achieved by the study of
the system (20). In this work, we will concentrate on the
rest of the cohomology at the level of the action built
exclusively from the vector fields. All terms in this sector
which are independent of the massive Aa

μ are described by
(23) and (25). In the broken directions, we may see some

changes. If we apply the same filtration done in Eq. (4) to
the operator sq, it indicates that Aa

μ becomes a singlet of this
filtered operator. In order to expand its cohomology upon
this sector, we must include any object built with Aa

μ and its
derivatives. The most general polynomial in this sector with
the quantum numbers of the action is

Σ ¼
Z

d4x

�
a1∂μAa

ν∂
μAaν þ a2∂μAa

ν∂
νAaμ þ aab3 Aa

μAbμ þ a4ðAa
μAaμÞ2 þ a5Aa

μAa
νAbμAbν

þ
X
N

aðNÞ
6 fabiðNÞAaμAbνfcdiðNÞAc

μAd
ν þ a7fzabAaμAbνfzcdAc

μAd
ν þ

X
N

aðNÞ
8 FiðNÞ

μν fabiðNÞAaμAbν

þ a9Fz
μνfzabAaμAbν þDabcdAaμAbμAcνAdν

�
; ð27Þ

where by Dabcd we mean all possible independent sym-
metric elements with four indices in the gauge algebra. For
example, depending on the GUT group, even the quartic
symmetric symbol dabcd obtained from the fully symmetric
trace of four generators is allowed (see Ref. [16] for details
on this symbol). They will also depend on the representa-
tion used, and their detailed analysis is beyond the scope of
this work. Anyway, we will give an example of what we
mean by independence of these terms in the end of this
section.
We will soon discuss each element written in (27) and

search for their completion in the cohomology of the full
sq. First, we notice the presence of the massive contribution
with coefficient a3. It is a nontrivial contribution of the
cohomology of sq, but as previously emphasized, it should
be understood as part of the invariant cocycle (16). On the

other hand, the elements with coefficients a4, a5, and
Dabcd, also immediately invariant under sq, cannot be
understood as coming from elements already present at
the original action of the symmetric phase. When we come
to the definition of the counterterm action, this aspect will
just be responsible for their exclusion, but at this point, their
presence means the possibility of a new physics as long as
the sq operator can be associated to an effective symmetry
of the vacuum at a low energy scale. We will have more to
say about this later in this section and in the Conclusions.
So, let us complete the other elements in (27) to obtain

the cohomology of sq. This problem can be seen from the
point of view of a consistent deformation [17]. We will
show in details an example of this process. We can begin
with the first element by calculating its variation under sq,

sq

Z
d4xð∂μAa

ν∂
μAaνÞ ¼ −

Z
d4x

�
2
X
N

gN∂μðfabiðNÞAb
νciðNÞÞ∂μAaν þ 2g0∂μðfabzAb

νÞcz∂μAaν

�
: ð28Þ

The element of first order in the couplings whose sq
transformation can compensate these in (28) is

−
Z

d4x

�X
N

gNfabiðNÞAiðNÞ
μ Ab

ν∂
μAaν þ g0fabzAz

μAb
ν∂

μAaν

�
:

ð29Þ

In its turn, the sq variation of this element gives a second
order contribution in the couplings, which can be compen-
sated by the introduction of the following second order
element:

Z
d4x

�X
N

X
M

gNgMfabiðNÞfacjðMÞAiðNÞ
μ AjðMÞ

μ Ab
νAc

ν

þ 2
X
N

gNg0fabiðNÞfaczAiðNÞ
μ Az

μAb
νAc

ν

þ ðg0Þ2fazbfazcAz
μAz

μAb
νAc

ν

�
: ð30Þ

If we join together the first element in (27) with those
in (29) and (30), we can see the formation of a covariant
derivative,

ð∇μAνÞa¼∂μAa
ν−

X
N

gNfabiðNÞAiðNÞ
μ Ab

ν−g0fabzAz
μAb

ν ; ð31Þ
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where covariance here means that it transforms as the Aa
μ

field under sq as shown in (20)

sqð∇μAνÞa ¼ −
X
N

gNfabiðNÞð∇μAνÞbciðNÞ

− g0fabzð∇μAνÞbcz: ð32Þ

Then, the nontrivial cocycle in the cohomology of sq
constructed from the element a1 in (27) assumes the simple
form,

a1

Z
d4xð∇μAνÞað∇μAνÞa: ð33Þ

Equations (31) and (33) indicate that Aa
μ is in fact a vectorial

matter field in the broken phase. Notice, however, that it is
not in any representation of the invariant groups of the new

vacuum. As we can see in (20), its transformation uses the
structure constants of the symmetric phase in the broken
directions, which appear again in the definition of the
covariant derivative (31). This seems to be related to a
necessity of recovering the full theory in the symmetric
phase. Let us show how this may happen.
Before the GUT symmetry breaking, we had the con-

tribution in the Yang-Mills action,

Z
d4xðFa

μνFaμνÞ¼
Z

d4xð∂μAa
ν −∂νAa

μþgfaBCAB
μAC

ν Þ

×ð∂μAaν−∂
νAaμþgfaDEADμAEνÞ: ð34Þ

Notice that in the right-hand side of (34) we are only adding
on the broken directions of the Yang-Mills curvature, this is
not the full Yang-Mills action yet. If we substitute the possible
structure constants (7) after the symmetry breaking, we get

Z
d4xðFa

μνFaμνÞ¼
Z

d4x

�
∂μAa

ν −∂νAa
μ−

X
N

gNfabiðNÞAiðNÞ
μ Ab

νþ
X
N

gNfabiðNÞAb
μA

iðNÞ
ν −g0fabzAz

μAb
νþg0fabzAb

μAz
ν

�
2

: ð35Þ

Finally, after (31), it is immediate to see that

Z
d4xðFa

μνFaμνÞ¼
Z

d4xð∇μAν−∇νAμÞað∇μAν−∇νAμÞa:

ð36Þ

We identify the origin of the cocycle (33) as part of the
Yang-Mills action before the GUT symmetry breaking. The
observation is that at this point of the analysis of the broken
phase, we now have independent coefficients for each
contraction, as can be understood from (27) and (33),

Z
d4xða1ð∇μAνÞað∇μAνÞa þ a2ð∇μAνÞað∇νAμÞaÞ: ð37Þ

Let us continue now with the other elements of (27). In
order to study the elements a7 and a9, we define FA¼z

μν as the
component z of FA

μν,

FA¼z
μν ¼ ∂μAz

ν − ∂νAz
μ þ gfzabAa

μAb
ν : ð38Þ

Since

sFA¼z
μν ¼ −gfzabFa

μνcb; ð39Þ

it implies

sqFA¼z
μν ¼ 0; ð40Þ

and then it is obvious that

sqð∂μAz
ν − ∂νAz

μÞ ¼ 0 ⇒ sqðfzabAa
μAb

νÞ ¼ 0: ð41Þ

From the last inference in (41), we see that the terms a7 and
a9 of (27) are already invariant under sq.
For the last elements in (27), and following the same

reasoning as before, we see that

sqF
A¼iðNÞ
μν ¼ gNfijkðNÞcjðNÞFA¼kðNÞ

μν ; ð42Þ

with

FA¼iðNÞ
μν

¼ ∂μA
iðNÞ
ν −∂νA

iðNÞ
μ þgNfijkðNÞAjðNÞ

μ AkðNÞ
ν þgNfabiðNÞAa

μAb
ν

¼FiðNÞ
μν þgNfabiðNÞAa

μAb
ν ; ð43Þ

where we used the definition (23) for FiðNÞ
μν . From (20), we

know that

sqF
iðNÞ
μν ¼ gNfijkðNÞcjðNÞFkðNÞ

μν : ð44Þ

Then, substituting (43) and (44) in (42), we arrive at the
covariant transformation that we were searching

sqðfabiðNÞAa
μAb

νÞ ¼ gNfijkðNÞcjðNÞðfabkðNÞAa
μAb

νÞ: ð45Þ

From this, one easily obtain the invariance of the last
elements a6 and a8 under sq. This finishes the proof that
each coefficient in (27) is associated to an invariant non-
trivial cocycle of sq.
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More than that, we see that if we join the terms a6, a7, a8,
and a9 of (27), together with the elements (23), (25), and
(37) that we have already proved to be in the cohomology
of sq, we recover the full structure of the original Yang-
Mills term FA

μνFAμν of the symmetric phase. What this is in
fact proving to us is that the effect of the symmetry
breaking is to split the original cocycles of the symmetric

phase into independent invariant nontrivial pieces after the
breaking.
Gathering together the nontrivial contributions (23),

(25), and (37), the already invariant elements a3 to a9
and Dabcd from (27), we display the cohomology of sq at
the broken phase in the sector of the gauge fields,

Σc ¼
Z

d4x

�
a0Fz

μνFzμν þ
X
N

aNF
iðNÞ
μν FiðNÞμν þ a1ð∇μAνÞað∇μAνÞa þ a2ð∇μAνÞað∇νAμÞa þ aab3 Aa

μAbμ

þ a4ðAa
μAaμÞ2 þ a5Aa

μAa
νAbμAbν þ

X
N

aðNÞ
6 fabiðNÞAaμAbνfcdiðNÞAc

μAd
ν þ a7fzabAaμAbνfzcdAc

μAd
ν

þ
X
N

aðNÞ
8 FiðNÞ

μν fabiðNÞAaμAbν þ a9Fz
μνfzabAaμAbν þDabcdAaμAbμAcνAdν

�
: ð46Þ

Then we see from (46) that sq leaves several free
coefficients. Actually, this is not a desired feature.
Following the BRST quantization procedure, for each of
these independent coefficients, we would associate a
physical observable of the broken phase. For example,
independent elements as a1 and a2 do not seem reasonable.
The clue to the missing piece is to recover a point
mentioned in the beginning of this section: a gauge fixing
is still needed along the broken directions. This means that
we need a propagation for the ghost ca, as can be obtained
from the expression (19) for the ’t Hooft gauge fixing. The
problem that we face now is that once the operator becomes
sq instead of sv in (19); we loose this propagator. This signs
to us that sq cannot be the whole BRST operator of the
vacuum after the symmetry breaking. Something must be
missing and sq should be completed with extra terms. Here,
we call this missing piece as the operator δ, and comparing
the sq operator of (20) with the sv of (11); we guess that δ in
general can be written as

δAiðNÞ
μ ¼−XNfiabðNÞAa

μcb;

δAz
μ¼−XzfzabAa

μcb;

δAa
μ¼−

X
N

YNfaibðNÞAiðNÞ
μ cb−YzfazbAz

μcb−∂μca;

δχiðNÞ ¼−LNfiabðNÞχacb;

δχz¼−Lzfzabχacb;

δχa¼−
X
N

KNfaibðNÞχiðNÞcb−Kzfazbχzcb−Mzμfabzcb;

δciðNÞ ¼1

2
BNfiabðNÞcacb;

δcz¼1

2
Bzfzabcacb;

δca¼0: ð47Þ

The coefficients XN , Xz, YN , Yz, LN , Lz, KN , Kz, Mz,
BN , and Bz are fixed by demanding that the full operator
sq þ δ be nilpotent on all the set of fields of the theory. This
constraint has a solution for these coefficients as

XN ¼ BN ¼ 1

YN
¼ 1

gN
;

Xz ¼ Bz ¼
1

Yz
¼ 1

g0
;

LN:KN ¼ Lz:Kz ¼ −Mz ¼ 1: ð48Þ

This allows us to interpret sq þ δ as the adequate BRST
operator for the theory after the phase transition. Although
an interesting point to be observed is that the dependence
on the inverse of the non-Abelian couplings gN suggests
that δ would loose its relevance on lower energy scales,
where the theory would be dominated by the sq part of the
BRST symmetry.
Once we obtain δ, we must impose it as a symmetry of

the action (46). Finally, the free coefficients of (46) are
fixed as

aN ¼ g2N
4
;

a0 ¼ g02

4
;

a1 ¼ −a2 ¼ aðNÞ
6 ¼ 2a7 ¼

1

2
;

aðNÞ
8 ¼ gN

2
;

aab3 ¼ fdazfdbz;

a9 ¼
g0

2
: ð49Þ
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Here, we must highlight a fundamental point that brings
mathematical consistency to this result. The sq operator is
easily seen as a zero eigenvalue filtration on the ghost ca of
the full sq þ δ nilpotent operator, equivalent to the filtration
shown in (3), with sq playing the role of s0 and δ playing
the role of s1 in that equation. Then, by the fundamental
theorem of cohomology already mentioned [9], the coho-
mology of sq þ δ is isomorphic to a subspace of the
cohomology of sq. This means that the independent
elements of (46) after imposing δ as a symmetry are in
fact independent cocycles of the cohomology of the full
BRST operator sq þ δ. Their coefficients are then inter-
preted as independent observables of the theory. Finally,
from (49), we are allowed to conclude that the couplings gN
and g0 are independent observables of the broken phase.
In the list (49), we omitted the coefficients a4, a5, and

Dabcd. As we mentioned in the beginning of this section,
the invariance under δ imposes that wherever Aa

μ appears
nonderivated it must be completed in the sense of the
Russian-like formula (14). Then, if we limit the counter-
term cohomology to the maximum uv dimension of four,
the contributions associated to a4, a5, and Dabcd are
excluded as these elements demand extra terms extrapo-
lating this boundary in order to be δ invariant. In this way,

they cannot contribute to the counterterm action. But we
guess that once we are in a lower energy regime, possibly
beyond a confining scale, these elements can origin
contributions to condensates, together with all the inde-
pendent elements of the cohomology of sq present in (46).
Now we can address the question for the gauge fixing

after the symmetry breaking. The BRST definition (19) for
the ’t Hooft gauge is implemented by using the vacuum
operator for this phase,

Sgf¼ðsqþδÞ
Z

d4xð2qAGAþαQqabaþαNqiNb
i
Nþα0qzbzÞ:

ð50Þ

Here, the GA, previously given in (51), are rewritten as

GiðNÞ ¼ ∂μA
iðNÞ
μ

Gz ¼ ∂μAz
μ

Ga ¼ ∂μAa
μ þ αQμfazbχb: ð51Þ

With independent gauge parameters for each sub-group,
αN , αz, and αQ, the gauge fixing term turns out to be

Sgf ¼
Z

d4x

�
2bi∂μAiμþ 2qiN

�
∂
2ciþ gNfijk∂μ

�
Aj
μck

�
þ 1

gN
fiab∂μ

�
Aa
μcb

��
þ 2bz∂μAzμþ 2qz

�
∂
2czþ 1

g0
fzab∂μ

�
Aa
μcb

��

þ 2bað∂μAaμþαQμfazbχbÞþ 2qa½∂2caþ gNfiab∂μ
�
Ab
μci

�
þ g0fzab∂μðAb

μczÞþ gNfaib∂μ
�
Ai
μcb

�
þ g0fazb∂μ

�
Az
μcb

�

þαQμgNfazbfbcjðχccjÞþαQμg0fazbfbczðχcczÞþαQμgNfazbfbjcðχjccÞþαQμg0fazbfbzcðχzccÞ−αQμ
2fazbfbczcc�

þαQbabaþα0bzbzþαNbibi
�
: ð52Þ

As promised, closing this section, we will present an
explicit calculation on the symmetric symbols Dabcd

appearing in (46). Let us take a toy model with a
GUT based on a SUð3Þ group. The scalar fields are in
the adjoint representation, but for convenience, we
expand them on the Gell-Mann basis of generators of
the suð3Þ algebra in a fundamental representation [18]
(this kind of expansion, in fact, is used in one of the
Higgs bosons of the minimal SUð5Þ GUT, for example).
We can break the symmetry along the z ¼ 8 direction,
leaving a SUð2Þ × Uð1Þ symmetry of the vacuum. In our
notation, the indices i will be associated to the first three
generators expanding the suð2Þ subalgebra, and the a will
represent the remaining four broken directions. In this
particular model, one can show that a possible symmetric
contribution may be expanded in the tensors of the
algebra,

diabAa
μAb

νdicdAcμAdν

¼ 1

4
ððAa

μAaμÞ2 − 4

3
ðf8abAa

μAb
νf8cdAcμAdνÞÞ: ð53Þ

This relation can be demonstrated from an identity specific
for the suð3Þ case [16],which is possible by the cancellation
of the totally symmetric dabcd for suðN < 4Þ. Our argument
is just to stress that the elementsDabcd need to be studied in
each case, and in this present simple example, they can be
discarded as, from (53); they can be written in terms of
elements already present at (46).

V. CONCLUSIONS

The action (46) with (49) displays the different couplings
associated to each group that remains an invariance of the
vacuum after the phase transition. As we have shown, they
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are associated to independent nontrivial cocycles of the
broken phase BRST operator sq þ δ. Then, following the
standard BRST quantization procedure, these couplings
now develop in an independent way with their own
renormalization equations in this phase. It is important
to recall that they are tied by the boundary condition (22),
i.e., that they all must converge to the value of the original
coupling g at the GUT phase transition scale MG.
Another feature of the solution (46) with (49) for the

cohomology problem is that all couplings can be reab-
sorbed under independent redefinitions of the gauge fields.
Physically, this associates the independence of each cou-
pling to the acquired independent renormalization of these
fields belonging to the different symmetry groups labeled

by N that remain as symmetries of the vacuum after the
phase transition.
Finally, the presence of the contributions with coefficients

a4, a5, and Dabcd in (46) must be emphasized as these
objects are not originated from any element already present
at the action before the symmetry breaking. They may be
interpreted as contributions coming from elements of supe-
rior uv dimension of the symmetric phase. They may
become relevant in a confined low energy regime, together
with all the independent elements present in (46). This seems
to be a novelty associated to a phase transition process, that
can be helpful in the definition of new observables of a
broken phase, as condensates, for example.
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