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We study the supersymmetric quantum dynamics of the cosmological models obtained by reducing
D ¼ 5 supergravity to one timelike dimension. This consistent truncation has fourteen bosonic degrees of
freedom, while the quantization of the homogeneous gravitino field leads to a 216–dimensional fermionic
Hilbert space. We construct a consistent quantization of the model in which the wave function of the
Universe is a 216–component spinor depending on fourteen continuous coordinates, which satisfies eight
Dirac-like wave equations (supersymmetry constraints) and one Klein-Gordon-like equation (Hamiltonian
constraint). The fermionic part of the quantum Hamiltonian is built from operators that generate a
216-dimensional representation of the (infinite-dimensional) maximally compact subalgebraKðGþþ

2 Þ of the
rank-4 hyperbolic Kac-Moody algebra Gþþ

2 . The (quartic-in-fermions) squared-mass term μ̂2 entering the
Klein-Gordon-like equation has several remarkable properties: (i) it commutes with the generators of
KðGþþ

2 Þ; and (ii) it is a quadratic polynomial in the fermion number NF ∼ Ψ̄Ψ, and a symplectic fermion
bilinear CF ∼ΨCΨ. Some aspects of the structure of the solutions of our model are discussed, and notably
the Kac-Moody meaning of the operators describing the reflection of the wave function on the fermion-
dependent potential walls (“quantum fermionic Kac-Moody billiard”).

DOI: 10.1103/PhysRevD.105.125006

I. INTRODUCTION

The discovery of a hidden E7 symmetry of N ¼ 8
supergravity in D ¼ 4 [1] has initiated the search of hidden
symmetries in supergravity, and superstring theories. The
hidden symmetry algebra was more generally conjectured
to be E11−D for maximal supergravity reduced to D
dimensions [2], which implied reaching the affine Kac-
Moody algebra E9 in D ¼ 2 [3], and, possibly, the hyper-
bolic Kac-Moody algebra E10 when reducing to one
timelike direction [4]. (See Ref. [5] for the definition
and basic structure of infinite-dimensional Kac-Moody
algebras.) The possible existence of a hidden, mother
E11 structure has been suggested in [6].
A new angle on the possible relevance of E10 came from

studies of the chaotic behavior, à la Belinskii-Khalatnikov-

Lifshitz (BKL) [7–9], of generic solutions of maximal
supergravity near a (spacelike) cosmological singularity
[10–12]. These studies highlighted the role of the gravitino
in the implementation of hidden hyperbolic Kac-Moody
structures [13–15]. The gravitino enters the game as a
representation of the algebra KðE10Þ, defined as the
(formal) maximally-compact subalgebra of E10, namely
the subalgebra fixed under the Chevalley involution; we use
the maximally split real forms of the considered hyperbolic
Kac-Moody algebras, and the corresponding real Chevalley
involution. The existence of finite-dimensional spinorial
representations of (infinite-dimensional) involutory subal-
gebras of hyperbolic Kac-Moody algebras discovered
through such supergravity-based works [13–16] was
extended in several directions [17–19], and notably from
a mathematical point of view [20–23].
Most studies, however, only considered the gravitino

dynamics at lowest order, where the gravitino can be treated
as a classical, Grassmanian field, undergoing a fermionic
analog [16] of the bosonic billiard dynamics. The compat-
ibility of Kac-Moody structures with the fully nonlinear
gravitino dynamics (involving up to quartic-in-fermions
terms in the Hamiltonian) has only been explored so far
within the simpler setting of the reduction of N ¼ 1,D ¼ 4
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supergravity to homogeneous cosmological models of the
Bianchi IX type [18,24,25]. In this setting, the relevant
hyperbolic Kac-Moody structures are not E10 and KðE10Þ,
but a rank-3 hyperbolic subalgebra of E10 called AE3, and
its maximally compact subalgebra KðAE3Þ. In these studies
the gravitino is treated as a fully nonlinear quantum field
(depending only on time). The results of Refs. [18,24,25]
have deepened the significance of hidden Kac-Moody
structures by showing, in particular, that: (i) the quartic-
in-fermion contribution to the quantum Hamiltonian is
invariant under the three generators Ĵα1 , Ĵα2 , Ĵα3 of KðAE3Þ
(which are associated with the three simple roots α1, α2, α3
of AE3); and (ii) the quantum dynamics of the gravitino
near the singularity can be described as a sequence of free
motions interrupted by reflections on three Toda-like
potential walls corresponding to the three simple roots
of AE3. Each such reflection is described (in the short-
wavelength limit) by the corresponding quantum reflection
operator (with i ¼ 1, 2, 3)

R̂αi ¼ ei
π
2
Ĵαi : ð1:1Þ

In addition, the latter reflection operators satisfy a gener-
alized version of the Coxeter relations satisfied by usual
hyperplane reflection operators.
The aim of the present work is to extend the work of

Refs. [18,24,25] to the case of pure supergravity in D ¼ 5,
as a step towards understanding the nonlinear aspects
of fermions in D ¼ 11 supergravity. We recall that pure
D ¼ 5 supergravity (with eight supercharges) exhibits
some similarity with D ¼ 11 supergravity [26]. It is
therefore interesting to study the compatibility of Kac-
Moody structures with the fully nonlinear gravitino dynam-
ics within the simpler setting of D ¼ 5 supergravity.
Previous works have indicated that, in this case, the relevant
hyperbolic Kac-Moody algebra behind the bosonic dynam-
ics was the rank-4 hyperbolic extension of G2, which we
will denote as Gþþ

2 [27,28]. [Contrary to E10 (but similarly
to AE3) the hyperbolic Kac-Moody Gþþ

2 is nonsimply
laced.] We therefore expect that the gravitino will enter as a
representation of the subalgebra KðGþþ

2 Þ ⊂ Gþþ
2 , fixed

under the Chevalley involution. We will indeed find that the
D ¼ 5 supergravity fermion couplings define a consistent
finite-dimensional vector-spinor representation of KðGþþ

2 Þ
(of the type defined in Ref. [19]), and we shall prove that
analogs of the results found for the KðAE3Þ structure of
D ¼ 4 supergravity cosmological models hold for the
simplest homogeneous cosmological models of D ¼ 5
supergravity (where all fields are taken to depend only
on time). In particular, the quartic-in-fermion contribution
to the quantum Hamiltonian will be shown to be invariant
under the four generators Ĵα1 , Ĵα2 , Ĵα3 , Ĵα4 , of KðGþþ

2 Þ,
associated with the four simple roots α1, α2, α3, α4 of G

þþ
2 .

II. CLASSICAL LAGRANGIAN FORMULATION

We take as starting point the second-order action of
the pure supergravity theory in D ¼ 5, as given in (the
corrected version of) Ref. [29]. In this formulation the
gravitino is described by a (complex) Dirac vector-spinor
ψμ. (This is equivalent to the alternative formulation using a
doublet of symplectic Majorana vector-spinors [30].) We
follow the normalization and notation of Ref. [29], notably
for the Levi-Civita connection ω

∘
μα̂ β̂ ¼ −ω∘ μβ̂ α̂. Here, μ is a

five-dimensional coordinate index, while hatted indices are
frame indices with respect to a local Lorentz frame eμα̂, with

associated coframe θα̂μ (eμα̂θ
β̂
μ ¼ δβ̂α̂). The Levi-Civita con-

nection (with one coordinate index, μ, and two frame
indices) is defined as

ω
∘
μα̂ β̂ ≡ ηα̂ γ̂ω

∘
μ
γ̂
β̂ ¼ −ω∘ μ β̂ α̂; ð2:1Þ

with

ω
∘
μ
α̂
β̂ ≡þθα̂νð∂μeνβ̂ þ Γν

μσeσβ̂Þ; ð2:2Þ

where Γν
μσ denote the usual Christoffel symbols of gμν.

The covariant derivatives of the frame components of a
vector, and of a vector-spinor, are respectively given by
(when using frame indices)

∇μV α̂ ¼ ∂μV α̂ þ ω
∘
μ
α̂
β̂V

β̂; ð2:3Þ

Dλ½ω∘ �ψμ̂ ¼ ∂λψμ̂ þ ω
∘
λμ̂

ν̂
ψ ν̂ þ

1

4
ω
∘
λ
ρ̂ σ̂
γρ̂ σ̂ψ μ̂: ð2:4Þ

As we use here a mostly positive signature, we had to adapt
the results of Ref. [29] (which used a mostly negative
signature). For instance, we replaced their gamma matrices
as follows: Γμ̂

CN ↦ −iγμ̂, ΓCN
μ̂ ↦ þiγμ̂. Our gamma

matrices satisfy γμ̂γν̂ þ γν̂γμ̂ ¼ 2ημ̂ ν̂ with ημ̂ ν̂ ¼ diagð−1;
þ1;þ1;þ1;þ1Þ.
Our sign convention for the covariant components of the

antisymmetric Levi-Civita tensor is ηαβγδϵ ¼
ffiffiffiffiffijgjp

εαβγδϵ
with ε01234 ¼ þ1. The antisymmetrized product of
five gamma matrices is proportional to the identity matrix
and we use (following [29]) a representation where
γμνρστ ¼ −iημνρστ, i.e., γ01234 ¼ −i

ffiffiffiffiffijgjp
, or γ0̂ 1̂ 2̂ 3̂ 4̂ ¼ −i,

so that γ0̂ 1̂ 2̂ 3̂ 4̂ ¼ þi. We define the Dirac conjugate as

Ψ̄≡Ψ†β; ð2:5Þ

with the β matrix defined such that βγμ̂β−1 ¼ −γ†μ̂. We take
a representation of the (positive-signature) gamma matrices
where γ0̂ is anti-Hermitian, while the γ î’s are Hermitian,
and choose
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β≡þiγ0̂ ¼ −iγ0̂: ð2:6Þ

Note that β is Hermitian and unipotent,

β† ¼ β; β2 ¼ 1: ð2:7Þ

The action reads S ¼ R
d5xL, with Lagrangian

density L ¼ eL (with e ¼ det eα̂μ ¼
ffiffiffiffiffijgjp

), and a
second-order Lagrangian L given (in units where
4πG5 ¼ 1) by

L ¼ 1

4
Rðω∘ Þ − 1

4
FμνFμν þ 1

6
ffiffiffi
3

p ημνλρσAμFνλFρσ þ
1

2
ðψ̄μγ

μνρDνðω∘ Þψρ −Dνðω∘ Þψμγ
μνρψρÞ

− i

ffiffiffi
3

p

4
ðψ̄μγ

μνρσψν þ ψ̄ρψσ − ψ̄σψρÞFρσ þ ψ̄ ½μγμψα�ψ̄ ½νγνψα� −
1

2
ψ̄ ½μγjνjψρ�ψ̄ ½μγjρjψν�

−
1

4
ψ̄ ½μγνψρ�ψ̄ ½μγνψρ� þ 1

4
ψ̄μψνψ̄ργ

μνρσψσ þ
3

8
ðψ̄μψν − ψ̄νψμÞψ̄μψν: ð2:8Þ

A consistent truncation of this theory consists in consid-
ering a (Bianchi-I) five-dimensional “minisuperspace”
cosmological model where all the fields (gμν, Aμ, ψμ)
depend only on time, without any spatial dependence. More
precisely, we consider a model where the four-dimensional
space is toroidally compactified (with 0 ≤ xi ≤ 1, i ¼ 1, 2,
3, 4), so that supergravity reduces to a kind of super-
symmetric quantum mechanical model for the zero modes
gμνðtÞ, AμðtÞ, and ψμðtÞ. The metric is written as

ds2 ¼ −NðtÞ2dt2 þ hijðtÞðdxi þ NiðtÞdtÞðdxj þ NjðtÞdtÞ:
ð2:9Þ

The time component A0 of the Aμ field drops out of the
dynamics (the associated Gauss constraint being identically
zero). Similarly, the shift vector NiðtÞ drops out of the
dynamics (its associated momentum constraint vanishing
identically). We henceforth set both A0 and Ni to zero. The
only constraints that will remain in our cosmological
dynamics are (i) the Hamiltonian constraint associated
with the lapse function NðtÞ, and (ii) the supersymmetry
constraint associated with ψ0ðtÞ.
As in our previous work dealing with a supersymmetric

Bianchi IX model in D ¼ 4 [25], we shall avoid
the presence of constraints linked to local Lorentz
rotations by using a local frame that is algebraically defined
in terms of the metric components gμν. We use (i, j, k ¼ 1,
2, 3, 4)

θ0̂ ¼ Ndt; θâ ¼ θâi dx
i;

e0̂ ¼
1

N
∂t; eâ ¼ eiâ∂i; ð2:10Þ

where θâj e
i
â ¼ δij. Previous work on the approach to

cosmological singularities [12] has emphasized the useful-
ness of parametrizing the gravitational degrees of freedom
by means of an Iwasawa decomposition of the spatial
coframe θâi . This means encoding the ten independent

components of the spatial metric hij by means of four
diagonal logarithmic scale factors expð−βâÞ and six off-
diagonal variable nâi (with â < i), defined so that

θâi ¼ e−β
âðN Þâi; eiâ ¼ eβ

âðN −1Þiâ; ð2:11Þ

where N is an upper-triangular, unipotent matrix; namely,

N ¼ ðN â
iÞ ¼ ðδâi þ nâiÞ ¼

0
BBBBB@

1 n12 n13 n14
0 1 n23 n24
0 0 1 n34
0 0 0 1

1
CCCCCA:

Note that the inverse matrix ðN −1Þiâ is also an unipotent
upper-triangular matrix.
As a consequence the spatial metric hij reads

hij ¼
X
â

e−2β
â
N â

iN â
j; i:e:;

ðhijÞ ¼ N TA2N ; with A≡ diagfe−βâg: ð2:12Þ

It is convenient to use as basic variables in the Lagrangian
formulation the quantities

βâ; nâi ðwith â< iÞ; Bâ; Ψâ; Ñ; ð2:13Þ

where we defined (to replace Ai, ψ i, and N)

Bâ ≡ AiðN −1Þiâ; Ψâ ≡ e−
1
2
σβψ â; Ñ ≡ Neþσβ ;

ð2:14Þ

with σβ ≡P
4
â¼1 β

â.
The Lagrangian density L ¼ eL then decomposes into

L ¼ LR þ LF2 þ LRS þ LFΨ2 þ LΨ4 ; ð2:15Þ
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where LR ¼ e
4
Rðω∘ Þ corresponds to the first (Einstein-

Hilbert) term in Eq. (2.8), LF2 ¼ − e
4
FμνFμν to the second

(Maxwell) term, LRS to the Rarita-Schwinger term on the
first line, LFΨ2 to the ψ̄ψF coupling on the second line, and
where LΨ4 corresponds to all the remaining terms, which
are quartic in ψ—the Chern-Simons term A ∧ F ∧ F on
the first line vanishes, as well as its variation. In our units
(where 4πG5 ¼ 1 and

R
d4x ¼ 1), we can consider L as the

total Lagrangian of a supersymmetric quantum mechanical
model, with corresponding action S ¼ R

dtL.
The explicit expressions of the various terms in L,

Eq. (2.15), are as follows. The Einstein term reads
(henceforth, we cease to systematically put hats on the
frame indices a ¼ â)

LR ¼ 1

4Ñ

�
Gab

_βa _βb þ 1

2

X
a<b

eþ2ðβb−βaÞðWâ b̂Þ2
�
; ð2:16Þ

where the quadratic form Gab defining the kinetic terms of
the logarithmic scale factors βa is defined as

Gab
_βa _βb ≡X

a

ð _βaÞ2 −
�X

a

_βa
�
2
; ð2:17Þ

and where we defined (for â < b̂)

Wâ b̂ ≡Wâ
b̂ ≡

X
â<i≤b̂

_nâiðN −1Þib̂: ð2:18Þ

The Maxwell kinetic term reads

LF2 ¼ 1

2Ñ

X
a

e2β
a
E2
a; ð2:19Þ

where Ea denotes the electric-field variable

Ea ≡
X
i

ðN −1ÞiâFti

¼ _Bâ þ
X̂a
i¼2

Xi−1
b̂¼1

Bb̂ _n
b̂
i ðN −1Þiâ: ð2:20Þ

The Rarita-Schwinger term reads

LRS ¼
i
2
GabðΦ†a _Φb − _Φ†aΦbÞ þ N

2
Q̃ν̂ α̂ β̂ω

∘
ν̂ α̂ β̂: ð2:21Þ

Here we replaced the rescaled gravitino Ψa by the useful
vector-spinor variable [16]

Φa ≡ γâΨâ; ðno sum on âÞ; ð2:22Þ

while the second term involves the contraction between the
Fermion bilinear

Q̃ν̂ α̂ β̂ ¼ 1

2
ðΨ̄μ̂γ

μ̂ ν̂ α̂Ψβ − Ψ̄μ̂γ
μ̂ ν̂ β̂Ψα − Ψ̄β̂γα̂ ν̂ μ̂Ψμ̂ þ Ψ̄α̂γβ̂ ν̂ μ̂Ψμ̂Þ þ

1

2
Ψ̄μ̂γ

μ̂ ν̂ ρ̂ α̂ β̂Ψρ̂

þ 1

2
ðΨ̄μ̂ðγμ̂ðηρ̂ α̂ην̂ β̂ − ην̂ α̂ηρ̂ β̂Þ þ γν̂ðημ̂ α̂ηρ̂ β̂ − ηρ̂ α̂ημ̂ β̂Þ þ γρ̂ðην̂ α̂ημ̂ β̂ − ημ̂ α̂ην̂ β̂ÞÞΨρ̂Þ; ð2:23Þ

and the Levi-Civita spin-connection, whose only non-
vanishing (frame) components are

ω
∘
0̂ â b̂ ¼ −

1

2N
ðe−ðβa−βbÞWâ b̂ − e−ðβb−βaÞWb̂ âÞ;

ω
∘
b̂ 0̂ â ¼

1

N

�
_βaδâ b̂ −

1

2
ðe−ðβa−βbÞWâ b̂ þ e−ðβb−βaÞWb̂ âÞ

�
¼ ω

∘
â 0̂ b̂: ð2:24Þ

Here the quantities Wâ b̂ (which are essentially the time
derivatives of nâi) were defined in Eq. (2.18) above. Note
that Wâ b̂ vanishes if b̂ ≤ â, so that the nonvanishing

contributions to ω
∘
are all multiplied by a factor of the

type eþðβb−βaÞ with b > a.

The ψ̄ψF coupling term, LFΨ2 , reads

LFΨ2 ¼ −i
ffiffiffi
3

p

2

X
â

eβ
â
X0̂ âEâ; ð2:25Þ

where

X0̂ â ≡ iηbcd0̂aΨ̄bγcΨd þ Ψ̄0̂Ψa − Ψ̄aΨ0̂: ð2:26Þ

At this stage, we see that the Lagrangian is the sum of four
types of terms: (i) the kinetic terms for the bosonic variables
βâ; nâi; Bâ; namely,

Lkin b ¼
1

Ñ

�
1

4
Gab

_βa _βb þ 1

8

X
a<b

eþ2ðβb−βaÞðWâ b̂Þ2

þ 1

2

X
a

e2β
a
E2
a

�
; ð2:27Þ
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(ii) the kinetic terms for the fermionic variablesΨâ; namely,

Lkin f ¼
i
2
GabðΦ†a _Φb − _Φ†aΦbÞ; ð2:28Þ

(iii) the couplings between the bosonic velocity variables
_βa, Wab, Ea and corresponding fermion bilinears,
Qa

_β
ðΨ̄;ΨÞ, Qab

W ðΨ̄;ΨÞ, Qa
EðΨ̄;ΨÞ, of the form

L _qΨ2 ¼
X
a

_βaQa
_β
ðΨ̄;ΨÞ þ

X
a<b

eβ
b−βaWabQab

W ðΨ̄;ΨÞ

þ
X
a

eβ
a
EaQa

EðΨ̄;ΨÞ; ð2:29Þ

with, for instance

Qa
_β
ðΨ̄;ΨÞ ¼ Q̃â 0̂ â

¼ i
2

X
m̂≠â

ðΨ†m̂γm̂ âΨâ −Ψ†âγâ m̂Ψm̂ þ Ψ†0̂γ0̂ m̂Ψm̂ þΨ†m̂γm̂ 0̂Ψ0̂Þ

¼ i
2

X
m̂≠â

ðΦ†m̂Φâ −Φ†âΦm̂ þ Ψ†0̂γ0̂Φm̂ þΦ†m̂γ0̂Ψ0̂Þ; ð2:30Þ

and, finally, (iv) the terms quartic in the fermions that
entered the original Lagrangian, Eq. (2.8); namely,

LΨ4 ¼ ÑLΨ4 ; ð2:31Þ

with

LΨ4 ¼ Ψ̄½μγμΨα�Ψ̄½νγνΨα� −
1

2
Ψ̄½μγjνjΨρ�Ψ̄½μγjρjΨν�

−
1

4
Ψ̄½μγνΨρ�Ψ̄½μγνΨρ� þ 1

4
Ψ̄μΨνΨ̄ργ

μνρσΨσ

þ 3

8
ðΨ̄μΨν − Ψ̄νΨμÞΨ̄μΨν: ð2:32Þ

III. CLASSICAL HAMILTONIAN FORMULATION

We have seen in the previous section that the Lagrangian
had a structure of the type

L ¼ i
2
GabðΦ†a _Φb − _Φ†aΦbÞ þ 1

2Ñ
_qkgkl _ql

þQkðΨÞ _qk þ ÑLΨ4 ; ð3:1Þ

where qk denote the bosonic variables, βâ; nâi; Bâ, where
the Qk’s are bilinear in the fermions (and depend on the
bosonic variables, notably through various exponential
factors eβ

b−βa , eβ
a
), and where the term quartic in the

fermions, LΨ4 , is given by Eq. (2.32). We recall that Φa

denote the redefined version (2.22) of the gravitino vari-
ables Ψa.
Passing to the corresponding Hamiltonian formulation,

in terms of the bosonic momenta,

pk ¼
∂L
∂ _qk

¼ 1

Ñ
gkl _ql þQkðΨÞ; ð3:2Þ

leads to a first-order action of the form

S ¼
Z

dt
�
pk _qk þ

i
2
GabðΦ†a _Φb − _Φ†aΦbÞ − ÑHtot

�
;

ð3:3Þ

with

Htot ¼ 1

2
gklðpk −QkÞðpl −QlÞ − LΨ4

¼ 1

2
gklpkpl − gklpkQl þ

1

2
gklQkQl − LΨ4 ; ð3:4Þ

where gkl denotes the inverse of the symmetric quadratic
form gkl defining the bosonic kinetic terms. As theQk’s are
bilinear in the fermions, the term 1

2
gklQkQl adds to the

original quartic-in-fermions term −LΨ4 .
The structure of the Hamiltonian action (3.3) shows that

Ñ is a Lagrange multiplier, associated with the Hamiltonian
constraint

Htot ¼ 0: ð3:5Þ

In addition, the explicit computation of Htot shows (as
guaranteed by the local supersymmetry of the original,
unreduced supergravity action) that the time componentΨ0̂

of the gravitino (and its Dirac conjugate Ψ̄0̂) appear only
linearly in Htot. They are therefore two fermionic Lagrange
multipliers, associated with two supersymmetry con-
straints, say

S ¼ 0; S̄ ¼ 0; ð3:6Þ

whose expressions will be given below.
The computation of Htot leads to an expression of the

form
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Htot ¼ Hð0Þ þHð2Þ þHð4Þ þ Ψ̄0
0̂
S þ S̄Ψ0

0̂
; ð3:7Þ

where the superscripts indicate the polynomial order in the
spatial components, Ψâ, or Ψ̄â, of the gravitino, and where
we introduced the following shifted time component of the
gravitino,

Ψ0
0̂
≡Ψ0̂ − γ0̂

X
a

γâΨâ: ð3:8Þ

The terms in Eq. (3.7) read as follows:
The purely bosonic part of the Hamiltonian reads

Hð0Þ ¼Gabπaπbþ2
X
a<b

e−2ðβb−βaÞðPabÞ2þ
1

2

X
a

e−2β
aðPaÞ2;

ð3:9Þ

where πa is the conjugate momentum to βa, Pa is the
momentum conjugate to Ba, and where Pab (with a < b) is
the following combination of the conjugate momentum pi

a
to nai and of Pa,

Pab ≡
X
a<b≤i

pi
aN b

i − BaPb: ð3:10Þ

The part of the Hamiltonian that is quadratic in fermions
reads

Hð2Þ ¼ þ2
X
a<b

e−ðβb−βaÞPabJabðΨÞ −
1ffiffiffi
3

p
X
a

e−β
a
PaJaðΨÞ;

ð3:11Þ

where JabðΨÞ and JaðΨÞ are fermion bilinears [defined in
Eqs. (3.14) below].
The part of the Hamiltonian that is quartic in fermions is

given by the following sum

Hð4Þ ¼ 1

2

X
a<b

ðJabðΨÞÞ2 þ
1

6

X
a

ðJaðΨÞÞ2 − Lcg
Ψ4 ; ð3:12Þ

where the superscript cg means that one should replace
everywhere in LΨ4 Ψ0̂ by its “coset gauge value”, Ψcg

0̂
,

obtained by setting Ψ0
0̂
to zero, i.e., in view of Eq. (3.8), by

Ψcg
0̂
¼ γ0̂

X
a

γâΨâ ¼ γ0̂
X
a

Φâ: ð3:13Þ

It was found in previous works that this coset gauge has the
property of revealing hidden Kac-Moody structures in the
fermionic dynamics.
The fermion bilinears JabðΨÞ (with a < b) and JaðΨÞ

entering both Hð2Þ and Hð4Þ have the factorized vector-
spinor structure found in Ref. [16] (and generalized in
Refs. [17,19]), namely

JabðΨÞ ¼ ðGcd − 2αðabÞc αðabÞd ÞΦ†c
�
iγab

2

�
Φd;

JaðΨÞ ¼ ðGcd − 2αðaÞc αðaÞd ÞΦ†c
�
3γa

2

�
Φd; ð3:14Þ

where αðabÞc and αðaÞc denote the (covariant) components of
the linear forms in the β’s that appear as exponents in
several pieces of the Hamiltonian, namely

αðabÞðβÞ≡ αðabÞc βc ≡ βb − βa;

αðaÞðβÞ≡ αðaÞc βc ≡ βa: ð3:15Þ

For instance, αðaÞc ¼ δac . The (Kac-Moody) meaning of the
linear forms αðabÞðβÞ, αðaÞðβÞ will be explained in the next
section. Note that in the definitions (3.14), a and b are
numerical labels (which are not summed over), while c and
d are vectorial indices in β space that are summed over as
per the Einstein convention.
Finally, the supersymmetry constraint S has the form

S ¼ Sð1Þ þ Sð3Þ; ð3:16Þ

where the linear in fermion part is

Sð1Þ ¼
X
a

πaΦa −
X
a<b

e−ðβb−βaÞPabγ
abðΦb −ΦaÞ

− i

ffiffiffi
3

p

2

X
a

e−β
a
PaγaΦa; ð3:17Þ

while the cubic in fermion part reads

Sð3Þ ¼ −
1

2

X
p̂;q̂

ðΨ̄p̂γq̂Ψq̂ − Ψ̄q̂γq̂Ψp̂Þγ0̂Ψp̂ −
1

2

X
q̂;p̂>q̂

ðΨ̄p̂γ0̂Ψq̂ − Ψ̄q̂γ0̂Ψp̂Þγp̂Ψq̂ −
i
2

X
p̂;q̂;r̂;ŝ

η0̂ p̂ q̂ r̂ ŝðΨ̄p̂γq̂Ψr̂ÞΨŝ

þ i
2

X
p̂;q̂;ŝ;r̂>ŝ

η0̂ p̂ q̂ r̂ ŝðΨ̄p̂Ψq̂ÞγŝΨr̂ þ
i
4

X
q̂;r̂;ŝ;k̂;p̂>k̂

η0̂ p̂ q̂ r̂ ŝðΨ̄k̂γq̂ r̂Ψŝ þ Ψ̄ŝγq̂ r̂Ψk̂Þðγk̂Ψp̂ þ γp̂Ψk̂Þ

þ i
4

X
q̂;r̂;ŝ;p̂

η0̂ p̂ q̂ r̂ ŝðΨ̄p̂γq̂ r̂Ψŝ þ Ψ̄ŝγq̂ r̂Ψp̂Þγp̂Ψp̂: ð3:18Þ
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IV. INTERMEZZO ON THE HYPERBOLIC
KAC-MOODY ALGEBRA G + +

2 AND ITS
MAXIMALLY COMPACT SUBALGEBRA KðG+ +

2 Þ
The bosonic part of the Hamiltonian,

Hð0Þ ¼Gabπaπbþ2
X
a<b

e−2ðβb−βaÞðPabÞ2þ
1

2

X
a

e−2β
aðPaÞ2;

ð4:1Þ

can be viewed (when remembering the constraintHð0Þ ¼ 0)
as describing the dynamics of a massless particle (sub-
mitted to the constraint gkl _qk _ql ¼ 0), with coordinates
qk ¼ ðβâ; nâi;BâÞ [or, equivalently, ðhij;AiÞ] moving in
a 14-dimensional curved (Lorentzian-signature) spacetime,
with metric ds2 ¼ gkldqkdql defined by

ds2 ¼ Gabdβadβb þ
1

2

X
a<b

eþ2ðβb−βaÞðdnaiðN −1ÞibÞ2

þ 1

2

X
a

e2β
aðdBa þ BbdnbiðN −1ÞiaÞ2: ð4:2Þ

In terms of the coordinates hij, Ai, this metric reads

ds2 ¼ 1

4
ðhikhjl − hijhklÞdhijdhkl þ

1

2
hijdAidAj: ð4:3Þ

Though the latter spacetime metric admits as a 20-
dimensional symmetry group the semidirect product
of GLð4Þ transformations (Λi

j) with R4 translations
(Ai ↦ Ai þ ci), its dynamics is chaotic, and describes
the BKL-type chaos of general solutions of the Einstein-
Maxwell theory near a cosmological singularity [31].
The finite-dimensional model defined by Eq. (3.9) is a

truncation of an infinite-dimensional model describing the
dynamics of a massless particle on the coset space(time)
Gþþ

2 =KðGþþ
2 Þ, where Gþþ

2 is the hyperbolic Kac-Moody
group defined by the (untwisted) hyperbolic extension of
the exceptional Lie group G2, and where KðGþþ

2 Þ denotes
the maximally compact subgroup of Gþþ

2 , defined as the
fixed point of the Chevalley involution (see below). The
original motivation for considering such an hyperbolic
Kac-Moody coset is the fact that the four linear forms

αð1ÞðβÞ ¼ β1;

αð12ÞðβÞ ¼ β2 − β1;

αð23ÞðβÞ ¼ β3 − β2;

αð34ÞðβÞ ¼ β4 − β3; ð4:4Þ

entering the four dominant potential walls [among the
Toda-like potentials e−2ðβb−βaÞ, e−2β

a
of the bosonic

Hamiltonian Eq. (3.9)] that determine its chaotic behavior,

can be identified with the four simple roots ofGþþ
2 . Indeed,

the four linear forms αiðβÞ ¼ αiaβ
a, i ¼ 1, 2, 3, 4, with

α1 ≡ αð1Þ, α2 ≡ αð12Þ, α3 ≡ αð23Þ, α4 ≡ αð34Þ, viewed as
forms in β space, with metric Gab (so that we have the
scalar product hαi; αji≡ αi aGabαj b) have squared lengths
equal to

hα1; α1i ¼
2

3
; hαi; αii ¼ 2 for i ¼ 2; 3; 4: ð4:5Þ

The associated Cartan matrix (which define Gþþ
2 ),

Aij ¼ 2
hαi; αji
hαi; αii

; ð4:6Þ

is given by

ðAijÞ ¼

0
BBB@

2 −3 0 0

−1 2 −1 0

0 −1 2 −1
0 0 −1 2

1
CCCA: ð4:7Þ

The corresponding Dynkin diagram is represented in
Eq. (4.8),

ð4:8Þ

The Chevalley-Serre-Kac presentation is then defined by
the four slð2Þ triplets ðei; hi; fiÞ, i ¼ 1, 2, 3, 4 (associated
with the four simple roots αi), satisfying the standard
defining relations of a Kac-Moody algebra associated
with Aij,

½hi; hj� ¼ 0; ½ei; fj� ¼ δijhj;

½hi; ej� ¼ Aijej; ½hi; fj� ¼ −Aijfj ð4:9Þ

together with the crucial Serre relations

adðeiÞ1−AijðejÞ ¼ 0; adðfiÞ1−AijðfjÞ ¼ 0: ð4:10Þ

Summarizing the present section so far, the linear forms
αðabÞðβÞ, αðaÞðβÞ entering the (Bianchi-I-reduced) bosonic
Hamiltonian (3.9) suffice to characterize the hyperbolic
Kac-Moody algebra Gþþ

2 . Similarly to the decomposition
of E10 associated with eleven-dimensional supergravity
[11,12], one can decompose the Lie algebra of Gþþ

2 with
respect to the glð4Þ subalgebra defined by the gravity-
related roots αðabÞðβÞ (together with the Cartan element h1)
[28]. One adds to this level-0 subalgebra (Ka

b) the level-1
generators Ea and Fa associated with the electric-related
roots þαðaÞðβÞ and −αðaÞðβÞ. The rest of the algebra is then
defined by taking commutators, starting with the level-2
defined by E½ab� ≡ ½Ea; Eb�, the level 3 defined by
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E½abc� ≡ ½Ea; E½bc��, etc. It it then checked [28] that the
bosonic dynamics defined by Eq. (3.9) is equal to the
reduction of the infinite-dimensional coset dynamics on
Gþþ

2 =KðGþþ
2 Þ obtained by setting to zero the momenta

corresponding to all the positive roots of levels l ≥ 2
(similarly to the truncation of E10=KðE10Þ beyond level
1 [11,12]).
The general conjecture made in Refs. [11,12] is that there

is a gravity-coset correspondence under which the dynam-
ics of any supergravity theory would be equivalent to a
corresponding hyperbolic Kac-Moody coset dynamics,
having the same asymptotic cosmological billiard. The
purpose of the present work is to obtain new evidence for
such a correspondence by focussing on the fermionic sector
of 5D supergravity, and particularly on the terms quartic in
fermions, which have been neglected in most of the
previous investigations of the gravity-coset conjecture. In
this respect, we need to consider in detail the coset analog
of the R-symmetry, i.e., the symmetry group under which
the coset fermions are conjectured to rotate. This group is
supposed (in each coset model) to be the maximally
compact subgroup of the considered Kac-Moody group.
In the case of 5D supergravity, this is KðGþþ

2 Þ, whose Lie
algebra is defined as the fixed point of the Lie algebra of
Gþþ

2 under the Chevalley involution. The Chevalley invo-
lution θ is defined by its action on the Chevalley-Serre-Kac
basis,

θðhiÞ ¼ −hi; θðeiÞ ¼ −fi; θðfiÞ ¼ −ei: ð4:11Þ

The θ-fixed subalgebra KðGþþ
2 Þ of Gþþ

2 is then generated
by the four Lie-algebra elements

xi ≡ ei − fi: ð4:12Þ

Previous work on supergravity in D ¼ 11 has shown that
the gravitino field belonged to a finite-dimensional repre-
sentation of the (infinite-dimensional) Lie algebra KðE10Þ
[13–15]. Analog results were found for other supergravity
theories [27]. In our present context, we therefore expect
that the 5D gravitino Ψa will belong to a finite-dimensional
representation of KðGþþ

2 Þ. The main results of the present
work will indeed be to show not only that this is true, but to
further show that the OðΨ4Þ term in the (quantum)
Hamiltonian is invariant under the KðGþþ

2 Þ rotations
defining the representation of the quantized gravitino. In
order to investigate technically this issue we will need to
characterize the conditions defining a representation
of KðGþþ

2 Þ.
A linear representation of KðGþþ

2 Þ is characterized by a
vector space on which acts four linear operators Ji
satisfying the same defining relations as the four abstract
Lie-algebra elements xi ¼ ei − fi defined above. As each
operator Ji (corresponding to xi) is associated to the
specific simple root αi, it will be convenient to label the

linear operators Ji by the same label as the associated
simple root of Gþþ

2 , as listed in Eq. (4.4). Therefore, we
will denote them simply as J1, J12, J23, and J34, respec-
tively associated with αð1ÞðβÞ, αð12ÞðβÞ, αð23ÞðβÞ,
and αð34ÞðβÞ.
The set of defining (Serre-Berman) relations that the four

operators J1, J12, J23, J34 must satisfy is [20,32]

ad4ðJ1ÞJ12 − 10 ad2ðJ1ÞJ12 þ 9J12 ¼ 0; ð4:13Þ

ad2ðJ12ÞJ1 − J1 ¼ 0; ð4:14Þ

ad2ðJ12ÞJ23 − J23 ¼ 0; ð4:15Þ

ad2ðJ23ÞJ12 − J12 ¼ 0; ð4:16Þ

ad2ðJ23ÞJ34 − J34 ¼ 0; ð4:17Þ

ad2ðJ34ÞJ23 − J23 ¼ 0; ð4:18Þ

½J1; J23� ¼ ½J1; J34� ¼ ½J12; J34� ¼ 0: ð4:19Þ

Note that in the present work we will be dealing with
Hermitian-like rotation operators Ji, instead of the anti-
Hermitian ones xi used in mathematical contexts. In other
words, a Ji rotation will be of the type expð ffiffiffiffiffiffi

−1
p

θiJiÞ,
instead of expðθiadxiÞ.
Several different representations of KðGþþ

2 Þ play a
role in our present 5D supergravity context. First, there
are representations associated with classical (i.e.,
Grassmannian-valued) fermions, of spin 1

2
and 3

2
. Second,

there are representations of KðGþþ
2 Þ associated with

quantum fermions. Let us describe now the representations
of classical spinors, of spin 1

2
and 3

2
.

Note first that the relations involving only the Jab’s
among Eq. (4.13) express the fact that the Jab’s are usual
SOð4Þ rotation operators. The four (complex) components
of a spin 1

2
Dirac field Ψ define a representation space for

the Jab’s if we define their action in the usual Spinð4Þ way,
namely

Jsab ¼ i
γab

2
; 1 ≤ a < b ≤ 4: ð4:20Þ

We defined here not only the three simple-root generators
J12, J23, J34 (associated with the symmetry-wall simple
roots), but also the three others needed to describe the
rotations in all the two-planes ab of R4; the factor i is
needed because we are working with Hermitian-like
operators. It is then easy to check that if we tentatively
define the generators Ja associated with the electric roots
αðaÞðβÞ ¼ βa as
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Jsa ¼
Csγa

2
; 1 ≤ a ≤ 4; ð4:21Þ

the defining relations Eq. (4.13) will be satisfied if the
factor Cs is equal to

Cs ¼ �1; or Cs ¼ �3 ðfor a spinor representationÞ:
ð4:22Þ

Indeed, the first defining relation can actually be factorized
as

ðad2ðJ1Þ − 32Þðad2ðJ1Þ − 12ÞJ12 ¼ 0: ð4:23Þ

We can then define two types of four-dimensional spinor
representations of KðGþþ

2 Þ (with Cs ¼ �1, or Cs ¼ �3).
Let us now consider the possible vector-spinor repre-

sentations of KðGþþ
2 Þ, i.e., matrices Jab, Ja, acting on the

sixteen components of a gravitinolike object Φa ¼ γaΨa.
Both the vector index a ¼ 1, 2, 3, 4, and the hidden Dirac-
spinor index, of Φa take four values. Here we consider the
actions on Φa rather than on Ψa because it was found in
Ref. [16] that this reveals a hidden factorized structure for
the vector-spinor representations associated with KðE10Þ
and KðAE3Þ. We found that such a factorized structure also
holds for KðGþþ

2 Þ, in spite of the fact that Gþþ
2 is not

simply laced (remember that the simple root α1 has length-
squared 2

3
). More precisely, we define, for any one of the

simple roots (and more generally for any of the basic
gravitational or electric roots entering the levels 0 and 1),
the action of Jα on a vector spinor ΦaA as

ðJvsα ·ΦÞaA ≡ ðδab − 2αaαbÞðJsαÞABΦbB; ð4:24Þ

where αa ≡Gacαc, and where Jsα is the above-defined
action of Jα in the (four-dimensional) spinor representation.
Here, for clarity, we have explicitly indicated the (usually
implicit) spinor indices A, B. We then found (in agreement
with Ref. [19]) that the vector-spinor matrices ðJvsα ÞaAbB
satisfy the defining relations (4.13) if, and only if, the factor
Cs entering the electric operator (4.21) is taken to be

Cs ¼ �3 ðfor a vector-spinor representationÞ: ð4:25Þ

The value Cs ¼ �1 fails to define a vector-spinor repre-
sentation of KðGþþ

2 Þ when inserted in Eq. (4.24). Note that
this is precisely the value Cs ¼ 3 that appeared in the
supergravity-derived bilinear Ja, Eq. (3.14). We shall
explain below, after quantizing the supergravity dynamics,
the meaning of the quantum avatars of the bilinears in
Eq. (3.14) as generators of a 216-dimensional representation
of KðGþþ

2 Þ, in which lives the quantum state of our
cosmological model.

V. QUANTIZATION

The classical Hamiltonian action of our supersymmetric
cosmological model has the form (with N a

i ≡ δai þ nai)

S¼
Z

dt

�
πa _β

aþpi
a
_naiþPa _Baþ

i
2
GabðΦ†a _Φb− _Φ†aΦbÞ

− ÑðHcgþΨ0
0̂
Sþ S̄Ψ0

0̂
Þ
�
: ð5:1Þ

Here we use Einstein’s summation convention. The indices
a, i of the (strictly) upper triangular matrix nai, and
therefore those of its canonical conjugate pi

a are restricted
to the range a < i. The contribution Hcg to the total
Hamiltonian has the structure

Hcg ¼ Hð0Þ þHð2Þ þHð4Þ; ð5:2Þ

where the explicit values of the terms Hð0Þ, Hð2Þ, Hð4Þ were
given above. The action (5.1) features three independent
Lagrange multipliers: Ñ, ÑΨ̄0

0̂
, and ÑΨ0

0̂
, where Ψ0

0̂
is the

shifted value of Ψ0̂, defined in Eq. (3.8). These Lagrange
multipliers reflect the presence of three local-in-time gauge
symmetries: (i) invariance under reparametrization of the
time variable; and (ii) the two local-in-time supersymme-
tries ϵ0ðtÞ, ϵ̄0ðtÞ. These gauge symmetries allow one to
choose at will the values of the Lagrange multipliers Ñ
and ÑΨ0

0̂
. It is convenient to choose the coset gauge where

Ñ ¼ 1 and Ψ0
0̂
¼ 0.

The action (5.1) defines a constrained dynamics, with
first-class constraints

Hcg ≈ 0; SA ≈ 0; S̄A ≈ 0; ð5:3Þ

where we explicitly indicated the spinor index A, which
takes four values.
The classical (i.e., Grassmannian) consistency of super-

gravity implies that the constraints (5.3) close under the
Poisson(-Dirac) brackets defined by the kinetic terms

fβa; πbgP ¼ δab; fnai; pj
bgP ¼ δabδ

j
i ;

fBa; PbgP ¼ δab; fΦaA;Φ†bBgP ¼ 1

i
GabδAB: ð5:4Þ

A crucial classical identity (which we checked to hold) is
the fact that the Poisson brackets of the supersymmetry
constraints close as follows:

fSA;SBgP ¼ 0;

fS†
A;S

†
BgP ¼ 0;

fSA;S
†
BgP ¼ LðΦÞ†CABSC − LðΦÞCABS†

C þ 1

i
δABHcg; ð5:5Þ
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where LðΦÞCAB is linear in Φ and does not contain Φ†, nor
any of the bosonic dynamical variables.
We quantize the constrained dynamics defined by the

action (5.1) à la Dirac, i.e., by (i) replacing Poisson-Dirac
brackets by appropriate (anti)commutators, (ii) verifying
that this allows one to construct operators providing a
deformed version of the classical algebra of constraints, and
(iii) imposing the quantum constraints Ĉ ¼ ðĤ; ŜA; Ŝ

†
AÞ as

conditions restricting physical states jΨi: ĈjΨi ¼ 0.
For the bosonic degrees of freedom we adopt a

Schrödinger picture. The wave function of the Universe
is seen as a function of the fourteen configuration-space
variables βa, nai, and Ba. The corresponding basic con-
jugate quantum momenta operators are represented as

π̂a ¼
ℏ
i
∂βa ;

p̂i
a ¼

ℏ
i
∂nai ;

P̂a ¼ ℏ
i
∂Ba

: ð5:6Þ

In the following, we shall often set ℏ ¼ 1. The momentum-
like combination Pab, Eq. (3.10), associated with the
symmetry walls αðabÞ are then defined as

P̂ab ≡
X
a<i≤b

p̂i
aN b

i − BaP̂
b

¼
X
a<i≤b

N b
ip̂i

a − P̂bBa: ð5:7Þ

As indicated, there are no ordering ambiguities in defining
P̂ab because they are defined only for a < b. These
operators satisfy an algebra which coincides (modulo a
factor iℏ) with the classical one. For instance, we have

fP12; P23gP ¼ P13; and ½P̂12; P̂23� ¼ iℏP̂13: ð5:8Þ

Similarly

fP12; P1gP ¼ −P2; and ½P̂12; P̂
1� ¼ −iℏP̂2

fP12; P2gP ¼ 0; and ½P̂12; P̂
2� ¼ 0: ð5:9Þ

The fermionic operators have to obey anticommutations
relations dictated by their kinetic term. These anticommu-
tation relations take an especially simple form when using
the objects Φa and Φ†a (rather than Ψa and Ψ̄a); namely,

fΦ̂aA; Φ̂bBg ¼ 0; fΦ̂†aA; Φ̂†bBg ¼ 0;

fΦ̂aA; Φ̂†bBg ¼ ℏGabδAB; ð5:10Þ

where, now, the curly brackets (without a P subscript)
denote an anticommutator.

When decomposing the Hermitian-conjugated quantum
fermionic operators Φ̂Aa, Φ̂†aA into their (formally)
Hermitian parts, ϕ̂Aa

1 ≡ 1
2
ðΦ̂Aa þ Φ̂†aAÞ, ϕ̂Aa

2 ≡ 1
2i ðΦ̂Aa−

Φ̂†aAÞ, the 32 fermionic operators, ϕ̂Aa
i , i ¼ 1, 2, are found

to satisfy a Clifford algebra in a real 32-dimensional space
endowed with the quadratic form 1

2
ℏδijGabδAB, which has

signature 24þ; 8−. Thus the gravitino operators can be
represented by 216 × 216 ¼ 65536 × 65536 Dirac matrices1

and the wave function of the Universe can be viewed as a
65536-dimensional spinor of Spin(24,8), depending on the
fourteen configuration-space variables βa, nai and Ba:
Ψ ¼ Ψσðβa;φbÞ, with σ ¼ 1;…; 65536.

VI. QUANTUM CONSTRAINTS AND THEIR
CONSISTENCY

A crucial issue in the quantization of our system is to
promote the classical constraints (5.3) into corresponding

quantum operators, say ŜA,
ˆ̄SA, and Ĥ, so as to impose

them, à la Dirac, on the state jΨi,

ŜAjΨi ¼ 0; ˆ̄SAjΨi ¼ 0; ĤjΨi ¼ 0: ð6:1Þ

However, such a quantization scheme will be consistent
only if we can define an ordering such that the quantum

constraints operators ŜA,
ˆ̄SA, and Ĥ do close on themselves

by satisfying a quantum version of the classical identities
(5.5). Let us indicate how we succeeded in defining such an
ordering and then in proving its quantum consistency.
The structure of the classical supersymmetry constraint

is, sketchily,

S ∼ πΦþ
X
α

e−αðβÞPαΦþΦ†ΦΦ: ð6:2Þ

There are no ordering ambiguities in the dependence of S
on bosonic variables because (i) the bosonic variables
commute with the fermionic ones, (ii) the wall forms αðβÞ
commute with the momentalike variables Pα, and (iii) we
have seen that the Pα’s have no internal ordering ambi-
guities. Finally, the only ordering ambiguity in the defi-
nition of Ŝ is contained in the last, cubic-in-fermions term
Φ†ΦΦ. The ordering of the latter term is, however,
uniquely fixed by the natural requirement of respecting
the symmetry between the Φ’s and the Φ†’s that is present
in the basic quantization conditions (5.10).
Starting from the classical (Grassmannian) expression of

the cubic contribution,

Sð3Þ
A ¼ þσC̄½AB�

A Ψ̄C̄ΨAΨB; ð6:3Þ

1In view of the signature 24þ; 8−, these matrices can be chosen
to be real.
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we define its quantum version by

Ŝð3Þ
A ≡ −σC̄½AB�

A Ψ̂A
ˆ̄ΨC̄Ψ̂B: ð6:4Þ

Here, the calligraphic indices A, B, C̄ denote combined
vector-spinor indices aA, bB, cC (with an additional bar on
the indices pertaining to a Ψ̄), and we use the Einstein
summation convention on these indices. The coefficients

σC̄½AB�
A are numerical factors (involving products of gamma

matrices) that are defined so as to be antisymmetric in AB.

When reexpressing Ŝð3Þ
A in terms of the ΦA ≡ΦaA’s and

Φ†A ≡Φ†aA’s we have

Ŝð3Þ
A ¼ cAABCΦ̂

AΦ̂†BΦ̂C; ð6:5Þ

with corresponding numerical coefficients cAABC ¼ −cACBA.
We henceforth use such an ordering.2

We have checked that this ordering enforces a symmetry
under which Φa and Φ̃a ≡Φ†a are swapped: Φ ↔ Φ†.
This is most easily seen by using a representation where γ0,
γ1, γ2, γ3 are real while γ4 ¼ −iγ0γ1γ2γ3 is purely imagi-
nary. In such a representation the numerical coefficients
cAABC entering Eq. (6.5) are found to be purely imaginary.
This ensures that

ðcAABCΦ̂
AΦ̂†BΦ̂CÞ† ¼ ðcAABCÞ�Φ̂†CΦ̂BΦ̂†A

¼ −cAABCΦ̂
†CΦ̂BΦ̂†A ¼ þcAABCΦ̂

†AΦ̂BΦ̂†C; ð6:6Þ

where we used ðcAABCÞ� ¼ −cAABC together with the anti-
symmetry cAABC ¼ −cACBA and a relabeling of indices,
C ↔ A (which are summed over).
Defining SA in the way just explained, we have shown

that the following quantum versions of the classical
identities (5.5) hold. First,

fŜA; ŜBg ¼ 0;

fŜ†
A; Ŝ

†
Bg ¼ 0; ð6:7Þ

and, second,

fŜA; Ŝ
†
Bg ¼ iℏ

2
½LðΦ̂Þ†CAB; ŜC� −

iℏ
2
½LðΦ̂ÞCAB; Ŝ†

C�
þ ℏδABĤ0; ð6:8Þ

where LðΦ̂ÞCAB ¼ LC
ABAΦ̂

A is the same linear form in Φ̂ that
entered the classical identity (5.5). (The LC

ABA being purely
numerical coefficients made of gamma matrices.) Note the

presence of quantum anticommutators (f; g) on the left-
hand side, and the presence of quantum commutators (½; �)
on the right-hand side. The quantum operator Ĥ0 appearing
on the last right-hand side is a (formally) Hermitian
operator (Ĥ0 ¼ Ĥ†

0), which is a quantum version of the
classical Hamiltonian Hcg. It has the structure

Ĥ0 ¼ Ĥð0Þ þ Ĥð2Þ þ Ĥð4Þ
0 ; ð6:9Þ

where the bosonic part reads

Ĥð0Þ ¼Gabπ̂aπ̂bþ2
X
a<b

e−2ðβb−βaÞðP̂abÞ2þ
1

2

X
a

e−2β
aðP̂aÞ2;

ð6:10Þ

the part quadratic in fermions reads

Ĥð2Þ ¼ þ2
X
a<b

e−ðβb−βaÞP̂abĴabðΨÞ −
1ffiffiffi
3

p
X
a

e−β
a
P̂aĴaðΨÞ;

ð6:11Þ

where the quantum bilinears Ĵα are the quantum avatars of
Eqs. (3.14); namely,

ĴabðΨÞ ¼ ðGcd − 2αðabÞc αðabÞd ÞΦ̂†c
�
iγab

2

�
Φ̂d;

ĴaðΨÞ ¼ ðGcd − 2αðaÞc αðaÞd ÞΦ̂†c
�
3γa

2

�
Φ̂d; ð6:12Þ

and where the quartic-in-fermions part Ĥð4Þ
0 is a uniquely-

defined (Hermitian) ordered version of the classical expres-
sion (3.12). There are no ordering ambiguities in the

definition (6.12) of the Ĵα’s (because the matrices iγab

2

and 3γa

2
are traceless). Actually, one can also check that the

only ordering ambiguity in a Hermitian-ordered version of
Eq. (3.12) lies in a double Wick contraction, corresponding
to an additive c-number ambiguity. Anyway, what is
important at this stage is that the existence of the last
identity, Eq. (6.8), uniquely defines Ĥ0 and, in particular,

Ĥð4Þ
0 . If we define an empty state j0i− as being annihilated

by all the Φ̂’s,

ΦaAj0i− ¼ 0; ð6:13Þ

we found that

Ĥð4Þ
0 j0i− ¼ c0ℏ2j0i−; ð6:14Þ

where

2Actually, any other ordering will lead to the same final
physical results because we have shown that any ordering of the
cubic terms can be absorbed in a linear shift of the π’s of the type
πa ↦ π0a ¼ πa þ iδπa, where δπa are some real numbers.
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c0 ¼ −
743

24
; ð6:15Þ

which characterizes the c-number ordering ambiguity in the
quantization path leading from the classical Hð4Þ to Ĥ0.
The identity Eq. (6.8) has the advantage of featuring only

manifestly Hermitian building blocks. However, it is, by
itself, not of the form needed for proving the consistency of
our Dirac quantization scheme. Indeed, the quantum
constraints, Eq. (6.1), which are of the form ĈiΨ ¼ 0, will
close on themselves only if all the (anti)commutators
between the quantum constraint operators Ĉi close on this
same set of constraints in the following way

½Ĉi; Ĉj�� ¼
X
k

L̂k
ijĈk; ð6:16Þ

with the constraint operators Ĉk appearing on the right of
the coefficient operators L̂k

ij. This is not the case for the
identity (6.8), which contains commutators on the right-
hand side. However, we have shown that the difference
between the anticommutator of LðΦ̂Þ†CAB with ŜC, and the
one of LðΦ̂ÞCAB with Ŝ†

C, is such that it leads to an identity of
the required form, modulo a redefinition of the quantum
Hamiltonian Ĥ entering the last term. More precisely, we
found that Eq. (6.8) implies the identity

fŜA; Ŝ
†
Bg ¼ iℏLðΦ̂Þ†CABŜC − iℏLðΦ̂ÞCABŜ†

C þ ℏδABĤ1;

ð6:17Þ

where the new Hamiltonian Ĥ1 reads

Ĥ1 ¼ Ĥ0 − 2iϖaπ̂a: ð6:18Þ

Here the real vector ϖa (living in β space, or Cartan space)
has the following components (a ¼ 1, 2, 3, 4)

ϖa ¼ 1

4
f1; 2; 3; 4g; ð6:19Þ

or, in covariant form (i.e., in root space)

ϖa ≡Gabϖ
a ¼ −

1

4
f9; 8; 7; 6g: ð6:20Þ

The Hamiltonian Ĥ0 which appeared in the identity
Eq. (6.8) was (formally) Hermitian, while the shifted
Hamiltonian Ĥ1 entering the new identity Eq. (6.17) is
formally non-Hermitian. A similar situation arose in our
previous work [25]. Like in the latter case, a simple
redefinition of the wave function of the universe allows
us to work again with a formally hermitian Hamiltonian.
Indeed, if we writes the quantum-state wave function
hβa;φb; σjΨi ¼ Ψσðβa;φbÞ as

Ψσðβa;φbÞ ¼ e−ϖaβ
aΨ0

σðβa;φbÞ; ð6:21Þ

the terms involving the differential operator π̂a ¼ ℏ
i ∂βa in

Ĥ1 ¼ Gabπ̂aπ̂b − 2iϖaπ̂a þ…

¼ −ℏ2Gab
∂βa∂βb − 2ℏϖa

∂βa þ…

¼ −ℏ2Gabð∂βa þϖaÞð∂βb þϖbÞ þ ℏ2ϖ2 þ…; ð6:22Þ

where we defined

ϖ2 ≡Gabϖaϖb ¼ −
70

16
; ð6:23Þ

take the following form when reexpressed through their
action on Ψ0

σðβa;φbÞ,

Ĥ1Ψσðβa;φbÞ ¼ e−ϖaβ
a
Ĥ0

1Ψ0
σðβa;φbÞ; ð6:24Þ

where

Ĥ0
1 ¼ −ℏ2Gab

∂βa∂βb þ ℏ2ϖ2 þ…

¼ Gabπ̂0aπ̂0b þ ℏ2ϖ2 þ…: ð6:25Þ

In the last expression the notation π̂0a denotes the differ-
ential operator ℏ

i ∂βa when acting on the primed wave
function.
Finally, Ĥ0

1 can be written as

Ĥ0
1 ¼ Ĥ0ð0Þ þ Ĥð2Þ þ Ĥ0ð4Þ

1 : ð6:26Þ

Here

Ĥ0ð0Þ ¼Gabπ̂0aπ̂0bþ2
X
a<b

e−2ðβb−βaÞðP̂abÞ2þ
1

2

X
a

e−2β
aðP̂aÞ2;

ð6:27Þ

Ĥð2Þ is given by the same expression (6.11) as above, and
the last contribution is given by

Ĥ0ð4Þ
1 ¼ Ĥð4Þ

0 þ ℏ2ϖ2 ¼ Ĥð4Þ
0 −

70

16
ℏ2: ð6:28Þ

In view of our previous result (6.14), we conclude that the

vacuum value of the new Hamiltonian Ĥð4Þ
1 is equal to

Ĥ0ð4Þ
1 j0i− ¼ c1ℏ2j0i−; ð6:29Þ

where

c1 ¼ c0 þϖ2 ¼ −
743

24
−
70

16
¼ −

106

3
: ð6:30Þ
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VII. KAC-MOODY STRUCTURE (G ++
2 , KðG ++

2 Þ) OF
THE QUANTUM SUPERGRAVITY DYNAMICS

A. Summary of the quantum supergravity dynamics

Summarizing the results obtained so far, the quantum
supergravity dynamics of our five-dimensional cosmologi-
cal model is described by a 216-dimensional spinorial wave
function Ψ ¼ Ψσðβa; nai; BaÞ (where the spinorial index σ
takes 216 ¼ 65536 values) that must satisfy the 8 × 216

constraints

ŜAjΨi ¼ 0; ŜA†jΨi ¼ 0: ð7:1Þ

Here, each of the ŜA’s and ŜA†’s is represented by a 216 ×
216 matrix of first-order differential operators in the four-
teen bosonic variables βa, nai, Ba. More precisely the
structure of ŜA is

ŜA ¼
X
a

π̂aΦ̂aA −
X
a<b

e−ðβb−βaÞP̂abðγabÞABðΦ̂bB − Φ̂aBÞ

− i

ffiffiffi
3

p

2

X
a

e−β
a
P̂aðγaÞABΦ̂aB þ ŜA

ð3Þ; ð7:2Þ

where π̂a, P̂ab, P̂
a are the first-order derivative operators

defined in Eq. (5.6), while the sixteen Φ̂aA are 216 × 216

“gamma matrices” satisfying the Clifford algebra (5.10).
The last term ŜA

ð3Þ in Eq. (7.2) (which is analogous to a

matrix-valued mass term M̂ in a Dirac equation
γμP̂μΨþ M̂Ψ ¼ 0) is cubic in the Φ̂aA’s and independent
of bosonic degrees of freedom. It is defined by the ordering
displayed in Eq. (6.5), with Ŝ†A

ð3Þ being correspondingly

ordered. Note also that the momenta entering Ŝ†A contain
π̂†a, which is defined as usual as being π̂†a ≡ π̂a.
Similarly to the fact that the first-order Dirac equation

γμP̂μΨþmΨ ¼ 0 entails the second-order Klein-Gordon
equation ημνP̂μP̂νΨþm2Ψ ¼ 0, the first-order (supersym-
metry) constraints (7.2) imply a quantum (Hamiltonian)
constraint that is second-order in the bosonic quantum
momenta π̂a, P̂ab, P̂a. The ordering of this quantum
Hamiltonian constraint is fully determined by the above-
defined ordering of the supersymmetry constraints. When
acting on the rescaled wave function

Ψ0
σðβa;φbÞ ¼ eþϖaβ

aΨσðβa;φbÞ; ð7:3Þ

the quantum Hamiltonian constraint reads

Ĥ0
1Ψ0ðβa;φbÞ ¼ 0; ð7:4Þ

where Ĥ0
1 is a Klein-Gordon-like operator of the form

Ĥ0
1 ¼ Gabπ̂0aπ̂0b þ 2

X
a<b

e−2ðβb−βaÞðP̂abÞ2

þ 1

2

X
a

e−2β
aðP̂aÞ2 þ Ĥð2Þ þ μ̂2: ð7:5Þ

Here π̂0a ≡ ℏ
i ∂βa when acting on Ψ0

σðβa;φbÞ, the bilinear
coupling to the fermions Ĥð2Þ is given by

Ĥð2Þ ¼ þ2
X
a<b

e−ðβb−βaÞP̂abĴabðΨÞ −
1ffiffiffi
3

p
X
a

e−β
a
P̂aĴaðΨÞ;

ð7:6Þ

while the “squared mass term” μ̂2 is quartic in the fermions
Φ and Φ†, and independent of the bosonic degrees of
freedom βa, nai , Ba. When one is far from all the walls (and
on their positive sides), i.e., when all the linear forms βa,
and βb − βa (with a < b) are much larger than 1, one can
neglect all the exponential terms, so that the Hamiltonian
constraint reduces to a simple Klein-Gordon-like equation
in the four-dimensional β space,

ðGabπ̂0aπ̂0b þ μ̂2ÞΨ0ðβaÞ ¼ 0: ð7:7Þ

However, the squared-mass term μ̂2 ≡ Ĥ0ð4Þ
1 in the latter far-

wall Klein-Gordon equation is not a c number, but an
operator in the quantum fermionic space, i.e., a 216 × 216

matrix acting on the spinor index σ of the wave func-
tion Ψ0

σ .

B. Kac-Moody structures in the quantum constraints

Having summarized the quantum dynamics of our five-
dimensional supergravity cosmological model, we can now
highlight the hyperbolic Kac-Moody structures it contains.
First, both the supersymmetry constraints, and the

Hamiltonian one, involve exponential terms of the form
e−αIðβÞ (in Ŝ and Ŝ†) or e−2αIðβÞ (in Ĥ0

1). Here, the αIðβÞ’s
are certain linear forms in the logarithmic scale factors βa

parametrizing the diagonal degrees of freedom of the
spatial metric hij. There are ten such linear forms. Six
of them, namely

αðabÞðβÞ≡ βb − βa ðwith a < bÞ; ð7:8Þ

are called “symmetry walls forms”, and are linked to the
off-diagonal degrees of freedom of the spatial metric hijðtÞ,
while the remaining four “electric wall forms”, namely

αðaÞðβÞ≡ βa; ð7:9Þ

are linked to the time-dependent electric potential AiðtÞ.
When endowing the four-dimensional β space with the
Lorentzian-signature metric Gab defining the kinetic terms
of the βaðtÞ’s, Eq. (2.17), the wall forms αðabÞðβÞ and
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αðaÞðβÞ can be identified with real roots of the hyperbolic
Kac-Moody algebra Gþþ

2 . In addition, the four linear forms
αð12ÞðβÞ, αð23ÞðβÞ, αð34ÞðβÞ, αð1ÞðβÞ that can be identified
with the four simple roots ofGþþ

2 are the ones that enter the
four dominant potential walls when considering the
BKL-type chaos of general solutions of the (Einstein-
Maxwell-like) bosonic dynamics of 5D supergravity near
a cosmological singularity. [Indeed, in the Weyl chamber
defined by the positivity of αð12ÞðβÞ, αð23ÞðβÞ, αð34ÞðβÞ,
αð1ÞðβÞ, i.e., in the domain 0 < β1 < β2 < β3 < β4, the
other exponential potentials are subdominant; e.g., as
αð13ÞðβÞ ¼ αð12ÞðβÞ þ αð23ÞðβÞ, we have the subdominance
property e−α

ð13ÞðβÞ ¼ e−α
ð12ÞðβÞe−αð23ÞðβÞ.]

Besides the appearance of some of the roots of Gþþ
2 ,

including the crucial simple roots (which suffice to generate
the full root lattice of Gþþ

2 ), the other Kac-Moody-related
features exhibited by our quantum dynamics concern the
fermionic sector. There are two such features.
On the one hand, the bilinear coupling to the fermions

Ĥð2Þ, Eq. (7.6), associates to each one of the wall roots
αIðβÞ ¼ ðαðabÞðβÞ; αðaÞðβÞÞ, a coupling term of the generic
form

e−αIðβÞP̂αI ĴαI ; ð7:10Þ

where P̂αI is a quantum momentum associated with the
bosonic variable αIðβÞ (and contributing to the bosonic part
of the Hamiltonian a term ∝ e−2αIðβÞðP̂αIÞ2), while ĴαI is a
fermion bilinear. The important point here is that, when
normalizing3 the various fermion bilinears ĴαI as in
Eq. (6.12), they do satisfy the Serre-Berman relations
Eq. (4.13) as operators acting on the 216-dimensional
Clifford representation space of the quantum fermions
Φ,Φ†. This follows from the fact that the Fock quantization
(for fermions, as is relevant here) has functorial properties
in that it maps classical generators Jα acting on some
vectors v, members of some n-dimensional vector space V,
onto quantum operators Ĵα acting on the Fock space built
by piling up the successive antisymmetric powers of V (up
to the maximum power V∧n allowed by antisymmetry); in
our case, n ¼ 16 and the space V is that of classical
vector-spinors vaA. More precisely, given a linear
endomorphism Jα of V [explicitly given, in some
basis ei of V, by a matrix ðJαÞij acting on the vector
index of v ¼ viei, i.e., ðJα · vÞi ¼ ðJαÞijvj], the Fock
space is C ⊕ V ⊕ V∧2 ⊕ � � �V∧n, and the quantized
Ĵα ¼ Φ†

i ðJαÞijΦj, with fΦ†
i ;Φjg ¼ δji , decomposes as a

direct sum of operators acting on each (fermionic) level,
from NF ¼ 0, up to NF ¼ n. More precisely, at level NF ¼
0 (Fock vacuum, j0i−), Ĵα acts like 0, at level NF ¼ 1, Ĵα
acts on V like Jα, and at level NF ¼ 2, Ĵα acts on V∧2 like

ĴαjNF¼2 ¼ ðJα ⊗ 1Þ ⊕ ð1 ⊗ JαÞ: ð7:11Þ

Explicitly, the meaning of the latter equation is that ĴαjNF¼2

acts on a (factorized)4 element u ∧ v ∈ V∧2 as
ðJα · uÞ ∧ vþ u ∧ ðJα · vÞ. At the fermionic level NF,
Ĵα decomposes as a sum of NF terms of the same type
as indicated in Eq. (7.11), e.g.,

ĴαjNF¼3 ¼ ðJα ⊗ 1⊗ 1Þ⊕ ð1⊗ Jα ⊗ 1Þ⊕ ð1⊗ 1⊗ JαÞ:
ð7:12Þ

This nice functorial nature of the map transforming a
classical operator Jα into a corresponding quantized one Ĵα
allows one to transport many properties satisfied by Jα into
corresponding properties of Ĵα.
For instance, classical commutators ½Jα1 ; Jα2 � are mapped

onto their corresponding quantum ones, namely

½Ĵα1 ; Ĵα2 � ¼ d½Jα1 ; Jα2 �: ð7:13Þ

This functorial property ensures, in particular, that, if we
have, say, ½Jα1 ; Jα2 � ¼ cJα3 , the corresponding quantum
commutators satisfy ½Ĵα1 ; Ĵα2 � ¼ cĴα3. This guarantees, in
particular, that the Serre-Berman relations, Eq. (4.13),
are preserved by the quantization. An important conse-
quence is that the root operators ĴαI entering the quantized
Hamiltonian Ĥð2Þ generate a 216-dimensional representa-
tion ofKðGþþ

2 Þ, the maximally compact subalgebra ofGþþ
2

fixed by the Chevalley involution. We will indicate below
another important consequence of these functorial proper-
ties concerning the reflection operators of quantum fer-
mions in the short-wavelength limit of the cosmological
dynamics.
In addition, we have also explicitly proven that the

term quartic in fermions in the quantum Hamiltonian
constraint, namely μ̂2 in Eq. (7.5), commutes with all the
root operators ĴαI ,

½ĴαI ; μ̂2� ¼ 0; for I ¼ ðabÞ; ðaÞ: ð7:14Þ

Quite remarkably, the latter commutation property is rooted
in a hidden simple structure of the quartic-in-fermion term.
Indeed, we found that μ̂2 can be expressed in terms of two
simple fermion-bilinears N̂F and ĈF, which separately
commute with the root operators ĴαI . Namely,

3As discussed in Appendix B of [16] the appropriate Kac-
Moody-related normalization of the momentum PαI depends on
the squared-length α2I ¼ GabαIaα

I
b of the considered root. The

normalization induced by the supergravity dynamics happens to
be appropriate for a Kac-Moody interpretation.

4A generic element of V∧2 is a linear combination of such
factorized elements.
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μ̂2 ¼ 14

3
−
1

2
ðN̂F − 8Þ2 − 1

4
ðĈ†

FĈF þ ĈFĈ
†
FÞ

¼ −
106

3
þ 9N̂F −

1

2
N̂2

F −
1

2
Ĉ†
FĈF; ð7:15Þ

with

N̂F ≡GabΦ̂a†Φ̂b ≡GabΦ̂aA†δABΦ̂bB; ð7:16Þ

and

ĈF ≡GabΦ̂aACABΦ̂bB: ð7:17Þ

Equation (7.16) defines the quantum fermion number, with
eigenvalues NF ¼ 0; 1;…; 16. In Eq. (7.17) the 4 × 4
matrix CAB is the “charge conjugation” matrix of the
(spatial) γi matrices, defined so that it is Hermitian,
C† ¼ C, and satisfies CγiC−1 ¼ −γTi ; CAB is an antisym-
metric matrix in all representations of the γ matrices. We
then have

Ĉ†
F ≡ GabΦ̂aA†CABΦ̂bB†: ð7:18Þ

As already said, both N̂F and ĈF (and therefore also Ĉ†
F)

commute with all the Ĵab’s and Ĵa’s. Note that while N̂F is a
sesquilinear form N̂F ∼Φ†Φ that is Hermitian, ĈF is a
symplectic bilinear form in the Φ’s (which would vanish if
theΦ’s would commute rather than anticommute). It is also
to be noted that

N̂F − 8 ¼ 1

2
GabðΦ̂a†Φ̂b − Φ̂aΦ̂b†Þ; ð7:19Þ

is odd under the up-down fermion symmetry where one
swaps Φ ↔ Φ†. The first line in Eq. (7.15) then shows that
μ̂2 is also invariant under the swapping Φ ↔ Φ†; the up-
down fermion symmetry was used above as part of our
definition of the ordering of the supersymmetry constraints.
From the mathematical point of view, as already men-

tioned above, any four operators J1, J12, J23, J34 (acting as
endomorphisms of some vector space) satisfying the Serre-
Berman relations, Eq. (4.13), define a representation of the
(formally) maximally compact subalgebra KðGþþ

2 Þ of
Gþþ

2 . We can therefore summarize the results of the present
section by saying that the fermions of our quantized
supersymmetric cosmological model live in a 216-dimen-
sional representation of KðGþþ

2 Þ, and that all the building
blocks entering the dynamics of the fermions, i.e., the
various terms defining Ĥð2Þ ∼Φ†Φ and Ĥð4Þ ∼Φ†ΦΦ†Φ
have a direct meaning in terms of the simple-root gen-
erators Ĵ1, Ĵ12, Ĵ23, Ĵ34 of KðGþþ

2 Þ.

VIII. SOLUTIONS OF THE QUANTUM
CONSTRAINTS

In this final section we briefly discuss some aspects of
the solutions of our quantized cosmological model, i.e., the
solutions of the supersymmetry constraints (7.1). We recall
that the latter supersymmetry constraints entail the
Hamiltonian constraint, say Eq. (7.4).
Let us first focus on the structure of the solutions far

from all the walls, i.e., in a domain of the βa’s where we can
neglect all the exponential terms e−ðβb−βaÞ and e−β

a
in the

ŜA’s, and their squares in Ĥ. In this limit the supersym-
metry constraints reduce to

�
Φ̂aA ℏ

i
∂βa þ ŜA

ð3Þ

�
jΨðβÞi ¼ 0; ð8:1Þ

�
Φ̂aA† ℏ

i
∂βa þ ŜA†

ð3Þ

�
jΨðβÞi ¼ 0; ð8:2Þ

while the Hamiltonian constraint reads

�
Gab

�
ℏ
i
∂βa − iϖa

��
ℏ
i
∂βb − iϖb

�
þ μ̂2

�
jΨðβÞi ¼ 0;

ð8:3Þ

where ϖa ≡Gabϖ
a ¼ − 1

4
f9; 8; 7; 6g. In these equations

we have formally considered that the operator π̂a was
Hermitian, and we have used the original, nonrescaled
wave function ΨðβÞ, rather than the rescaled wave function
Ψ0ðβÞ, Eq. (7.3), used in Eq. (7.4).

A. Spectrum of μ̂2

To solve the Hamiltonian constraint we can look for
solution states jΨi that are eigenstates of the μ̂2 operator. It
is therefore interesting to first discuss the eigenvalues and
eigenstates (in fermionic space) of μ̂2. The explicit expres-
sion (7.15) of μ̂2 show that μ̂2 commutes with N̂F. The
latter operator defines the fermion number with respect to
the Fock vacuum of the Φ’s, i.e., the empty state j0i− such
that

Φ̂aAj0i− ¼ 0: ð8:4Þ

Starting from this empty state, the NF ¼ 1 states are
obtained by acting on j0i− with any of the sixteen
anticommuting fermionic creation operator Φ̂aA†, etc.
The number of states at level NF is then equal to
ð 16NF

Þ ¼ ð 16
16−NF

Þ, i.e., 16 for NF ¼ 1 (and NF ¼ 15), 120

for NF ¼ 2, 14, etc., with a maximum value ð16
8
Þ ¼ 12870

for NF ¼ 8. The filled state, say j0iþ, at level NF ¼ 16 is
unique and such that
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Φ̂aA†j0iþ ¼ 0: ð8:5Þ

The explicit expression (7.15) of μ̂2 allows one to prove that
μ̂2 also commutes with the operators ĈF and Ĉ†

F,

½μ̂2; ĈF� ¼ 0; ½μ̂2; Ĉ†
F� ¼ 0: ð8:6Þ

This is seen by using the easily checked commutation
relations

½N̂F; cCF� ¼ −2cCF; ð8:7Þ

½N̂F; cCF
†� ¼ þ2cCF

†; ð8:8Þ

½cCF
†; cCF� ¼ þ4N̂F − 32: ð8:9Þ

Noting that Ĉ†
F increases the value of NF by 2, while ĈF

decreases NF by 2, and that they both commute with μ̂2, we
can use Ĉ†

F and ĈF as ladder operators to map some
subeigenspaces of μ̂2 at fermion level NF onto correspond-
ing eigenspaces of μ̂2 at fermion levels nF � 2, with the
same value of μ2. This yields the following spectrum of μ̂2

when NF varies between 0 and 8 (with symmetric results
when N0

F ¼ 16 − NF),

NF ¼ 0; 16 μ2 ¼ −
106

3

				
1

NF ¼ 1; 15 μ2 ¼ −
161

6

				
16

NF ¼ 2; 14 μ2 ¼ −
106

3

				
1

; −
58

3

				
119

NF ¼ 3; 13 μ2 ¼ −
161

6

				
16

; −
77

6

				
544

NF ¼ 4; 12 μ2 ¼ −
106

3

				
1

; −
58

3

				
119

; −
22

3

				
1700

NF ¼ 5; 11 μ2 ¼ −
161

6

				
16

; −
77

6

				
544

; −
17

6

				
3808

NF ¼ 6; 10 μ2 ¼ −
106

3

				
1

; −
58

3

				
119

; −
22

3

				
1700

; þ 2

3

				
6188

NF ¼ 7; 9 μ2 ¼ −
161

6

				
16

; −
77

6

				
544

; −
17

6

				
3808

; þ 19

6

				
7072

NF ¼ 8 μ2 ¼ −
106

3

				
1

; −
58

3

				
119

; −
22

3

				
1700

; þ 2

3

				
6188

; þ 14

3

				
4862

Here the numbers indicated after the eigenvalues of μ̂2

denote the dimensions of the corresponding eigenspaces.
For instance, the one-dimensional eigenspace μ2 ¼ − 106

3

at level NF ¼ 2 is obtained by acting on the unique
NF ¼ 0 state by cCF

†. In other words, if we define the
function

fðnÞ≡ −
106

3
þ 9n −

1

2
n2; ð8:10Þ

the possible eigenvalues of μ̂2 at a given level NF are of the
form fðnÞ, with degeneracy ð16n Þ − ð 16

n−2Þ, where the integer
n runs over the values NF;NF − 2; NF − 4;….

B. Far-wall solutions of the quantum constraints at low
(and high) fermion levels

The above-determined spectrum of μ̂2 yields a necessary
constraint on possible solution wave functions, but is far
from sufficient to determine whether such solutions exist at
some given fermion level NF. The reasoning given below
Eq. (11.21) of Ref. [25] shows that one can look for
solutions having a given NF level. We must tackle the
supersymmetry constraints, Eqs. (8.2)–(8.2). We succeeded
in doing so for the levels NF ¼ 0, 1, 2, 3 and their up-down
symmetric partners NF ¼ 16, 15, 14, 13.
The main result at the levels NF ¼ 0, 1, 2, 3 (and

NF ¼ 16, 15, 13) is that there exist solutions of the type
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jΨðβÞi ¼ expðiπaβaÞjΨð0Þi; ð8:11Þ

only for certain specific, discrete values of the momenta πa.
At the level NF ¼ 0, jΨð0Þi must be proportional

to j0i−, while πa must take the specific value
πNF¼0
a ¼ i

4
f19; 16; 13; 10g. Note that the corresponding

value π0a parametrizing the rescaled wave function
jΨ0ðβÞi, namely

π0a ¼ πa − iϖa; ð8:12Þ

is also purely imaginary and is fixed to the specific value

π0NF¼0
a ¼ if7; 6; 5; 4g: ð8:13Þ

It is easily checked that Gabπ0NF¼0
a π0NF¼0

b is equal to
−μ2NF¼0 ¼ þ 106

3
, as it should be.

At the level NF ¼ 1, we found that there does not exist
any solution of the supersymmetry constraints.
At the level NF ¼ 2, there exist only five possible,

discrete values of the momenta πa, all of them being purely
imaginary. The corresponding linear space of solutions is
six-dimensional, because one value of πa (namely

πð1Þa ¼ i
4
f11; 8; 9; 6g) admits a two-dimensional space of

solutions for the spinor factor jΨð0Þi. The other possible

values of πa at NF ¼ 2 are: πð2Þa ¼ i
4
f19; 16; 13; 10g ¼

πNF¼0
a (with spinor part cCF†j0i), πð3Þa ¼ i

4
f7; 12; 9; 6g,

πð4Þa ¼ i
4
f11; 8; 5; 10g and πð5Þa ¼ i

4
f23; 12; 9; 6g. The val-

ues of μ2 corresponding to the five possible momenta at
level NF ¼ 2 are ðμ2Þð1Þ ¼ ðμ2Þð3Þ ¼ ðμ2Þð4Þ ¼ ðμ2Þð5Þ ¼
− 58

3
and ðμ2Þð2Þ ¼ − 106

3
.

At the level NF ¼ 3, there exists only one possible,
discrete value of πa, namely πNF¼3

a ¼ i
4
f5; 8; 3; 6g (with

μ2NF¼3 ¼ − 77
6
), with a corresponding four-dimensional

eigenspace for the spinor part jΨð0Þi.
There exist corresponding mirror solutions at NF ¼ 16,

14, 13 with correspondingly equal values of πa. More
generally the up-down symmetry in fermion space guar-
antees that one can map any solution at any level NF into a
corresponding solution at level 16 − NF. Indeed, under the
transformation where5 Φ ↦ Φ̃≡Φ† (and therefore
Φ† ↦ Φ̃† ≡Φ) our ordering, Eq. (6.5), shows that
S ↦ S̃, where S̃ ∼ πΦ̃þ cΦ̃Φ̃†Φ̃ is simply equal to S†.
Then, using Eq. (6.6) [and ðπ̂Þ† ≡ π̂], one finds that
S† ↦ S̃†, where S̃† is simply equal to S. Thereby any
solution jΨðβÞi at some levelNF ¼ n constructed by acting
on the empty state j0i− with n creation operators
Φ†A ¼ Φ†aA, say

jΨðβÞi ¼ XA1A2���An
ðβÞΦ†A1Φ†A1 � � �Φ†An j0i−; ð8:14Þ

with coefficients XA1A2���An
ðβÞ ¼ X½A1A2���An�ðβÞ, can be

automatically mapped into a corresponding mirror solution
at level NF ¼ 16 − n obtained by acting on the filled state
j0iþ (which is annihilated by the Φ̃A’s) with the operators
Φ̃†A ≡ΦA, namely

jΨ̃ðβÞi ¼ XA1A2���An
ðβÞΦA1ΦA2 � � �ΦAn j0iþ: ð8:15Þ

Note that this mirror solution at level 16 − n involves
the same coefficients XA1A2���An

ðβÞ. In particular, when
considering plane wave solutions, XA1A2���An

ðβÞ ¼
eiπaβ

a
XA1A2���An

ð0Þ, this up-down symmetry maps a
momentum πa at level n into the same momentum πa at
level 16 − n.
In addition to this up-down symmetry of the space of

solutions of the constraints, there is an additional Z2

symmetry mapping any solution at level NF into a
corresponding solution at the same level. This second
symmetry is rooted in the reality structure of the super-
symmetry constraints, namely in the fact that the numerical
coefficients cAABC entering Eq. (6.5) are purely imaginary
(in a suitable quasi-Majorana representation). Indeed, when
decomposing the supersymmetry constraints SjΨðβÞi ¼ 0,
S†jΨðβÞi ¼ 0, with a state of the form Eq. (8.14), on the
Fock states Φ†A1Φ†A1 � � �Φ†Ak j0i− at levels k ¼ n − 1 and
k ¼ nþ 1, one gets a system of first-order differential
equations for the coefficients XA1A2���An

ðβÞ of the symbolic
form (using ℏ ¼ 1)

1

i
∂βXðβÞ þ GδcXðβÞ ¼ 0: ð8:16Þ

Here, the numerical coefficients ∼Gδc coming from the
cubic-in-fermions contributions involve the coefficients
c ¼ cAABC entering Eq. (6.5), multiplied by the real coef-
ficients GabδAB coming from the use of the anticommuta-
tion relations Eqs. (5.10). The explicit form of the
supersymmetry constraints, Eq. (8.16), are given in
Appendix B. Using the pure-imaginary nature of the
cAABC’s, we see that (after multiplying them by i) the
supersymmetry constraint equations yield a system of real
partial differential equations for the wave function
XA1A2���An

ðβÞ. Therefore, to any given (generally) complex
solution XA1A2���An

ðβÞ at level n, one can associate a
solution having the complex-conjugated wave function
X�
A1A2���An

ðβÞ. For instance, under this map a plane wave
solution of momentum πa at level n is transformed into a
corresponding solution at the same level with momentum
−π�a. For generic solutions at the intermediate levels 4 ≤
n ≤ 12 such an involutory map acts nontrivially on the
space of solutions. On the other hand, it acts trivially on the
solutions discussed above at levels n ¼ 0, 2, 3 and n ¼ 13,

5Here, we omit for simplicity the hats on the various quantum
operators.
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14, 16, which are purely real (up to an arbitrary overall
complex factor).

C. Short-wavelength continuous far-wall solutions of
the quantum constraints for 4 ≤ NF ≤ 12

It was found in the study of the quantum cosmological
dynamics of D ¼ 4, N ¼ 1 supergravity [18,25], that
continuous solutions of the supersymmetry constraints
(with real π0a’s taking all possible values on its allowed
mass shell Gabπ0aπ0b ¼ −μ2) exist only in the middle of
fermionic space, namely NF ¼ 2, 3, 4. These solutions
were also shown to be continuously connected to their
short-wavelength analogs, obtained by taking the limit
π0a ≫ 1. In the latter limit, one can neglect the cubic term
ŜA
ð3Þ in the supersymmetry constraint, and the correspond-

ing finite value of the quartic term μ2 ¼ Oðℏ2Þ. We shall
here assume that such a general feature holds also in our
present D ¼ 5, N ¼ 2 supergravity case.
Under this (plausible) assumption, we can complete our

explicit study of the discrete solutions existing at low (and
high) values of NF by delineating the general structure of
the continuous-π0 solutions existing for the remaining
values, namely 4 ≤ NF ≤ 12. There might also exist addi-
tional discrete solutions; e.g., related by the ladder oper-
ators ĈF, Ĉ

†
F, to the discrete solutions discussed above.

When considering, short-wavelength states, jΨðβÞi ¼
expðiπaβaÞjΨð0Þi, with πa ≫ 1, or equivalently, for the
rescaled wave function jΨ0ðβÞi ¼ expðiπ0aβaÞjΨð0Þi with
π0a ¼ πa − iϖa, the supersymmetry constraints yield

Φ̂aAπ0ajΨð0Þi ¼ 0; ð8:17Þ

Φ̂aA†π0ajΨð0Þi ¼ 0; ð8:18Þ

which imply the (Hamiltonian-constraint) consequence

Gabπ0aπ0b ¼ 0: ð8:19Þ

Let us associate to any real (co)vector va in (the dual of the)
β space the fermionic operators (putting the spinor index A
down for convenience)

Φ̂v
A ≡ vaΦ̂a

A; Φ̂v†
A ≡ vaΦ̂

a†
A : ð8:20Þ

Given two covectors u and v, the so-defined fermionic
operators satisfy the (Clifford) relations

fΦ̂u
A;Φ̂

v†
B g¼u ·vδAB; fΦ̂u

A;Φ̂v
Bg¼0; fΦ̂u†

A ;Φ̂v†
B g¼0;

ð8:21Þ

where u · v≡Gabuavb.
Given some π0a on the (Hamiltonian-constraint) light

cone π02 ¼ Gabπ0aπ0b ¼ 0, we can complete π0a into a null
frame π0a, na, t1a, t2a in the (dual) four-dimensional

Lorentzian β space. Here, π0a, na are both null, 0 ¼ π02 ¼
n2 (with the relative normalization π0 · n ¼ 1), while the
two complementary vectors t1a, t2a are transverse to the null
direction π0a, i.e., satisfy 0 ¼ π0 · t1 ¼ π0 · t2. One can also
require that t1 and t2 are orthogonal to n, and between
themselves, and (being necessarily spacelike) are normal-
ized to unity. From the basic relations (8.21), and the fact
that the supersymmetry constraints read Φ̂π0

A jΨð0Þi ¼ 0,
Φ̂π0†

A jΨð0Þi ¼ 0, one easily sees that the lowest value of NF

where there can exist a short-wavelength solution is
NF ¼ 4, and that, for this value, there is, for any
given (null) π0 a one-dimensional space of solutions of
the type6

C expðiπ0aβaÞΦ̂π0†
1 Φ̂π0†

2 Φ̂π0†
3 Φ̂π0†

4 j0i−: ð8:22Þ

Then, at the NF ¼ 5 level, there will be (for any given null
π0) an eight-dimensional space of solutions generated by
acting on the state in Eq. (8.22) with any of the eight

independent raising operators Φ̂t1†
A , and Φ̂t2†

B , involving the
two transverse vectors t1 and t2 constructed above. At the
NF ¼ 6 level, there will be a 8×7

2
¼ 28-dimensional space

of solutions obtained by acting on the state in Eq. (8.22)

with a product of two raising operators of the form Φ̂t1†
A , or

Φ̂t2†
B . One can continue generating such solutions up to the

maximum value NF ¼ 12, corresponding to acting on the

state in Eq. (8.22) with the eight different operators Φ̂t1†
A ,

or Φ̂t2†
B .

D. Reflection of short-wavelength solutions
on potential walls

Let us finally briefly discuss another consequence of our
assumption that there exist solutions of the quantum
supersymmetry constraints that are continuously connected
to the approximate solutions which one obtains by working
in the Wentzel-Kramers-Brillouin (WKB), short-wave-
length approximation. This approximation being the
quasi-classical approximation (ℏ → 0), we further expect
that such solutions will also correspond to the approxima-
tion where the spin degrees of freedom are described by
anticommuting Grassmann variables (fΦ†;Φg ¼ 0) rather
than (as we did above) by quantum operators satisfying a
Clifford-algebra relation fΦ†;Φg ¼ OðℏÞ.
In the Grassmann-fermion approximation, it was

generally shown (even in the nonsimply-laced case of
relevance here) in Ref. [16] that the law of evolution of a
fermion field Φi (where we use here, for generality, a
generic index i to label the representation space in which
lives the considered fermion field) under Hamiltonians

6See Eq. (19) of Ref. [33] for the analogs of these short-
wavelength solutions in D ¼ 11 supergravity.
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containing, in addition to the usual Toda-like bosonic
dynamics,

Hð0Þ ¼ 1

2
Gabπaπb þ

X
I

e−2αIðβÞP2
αI ; ð8:23Þ

fermion couplings of the related Toda-type; namely,

Hð2Þ ≈
X
I

e−αIðβÞPαI ĴαI ; ð8:24Þ

where

ĴαI ¼ Φ†
i ðJαIÞijΦj; ð8:25Þ

could be approximately integrated, and led to a “Fermionic
Billiard” picture. More precisely, the latter Fermionic-
Billiard picture is based on the fact that the approximate
integration of the law of evolution of the fermion field near
each separate wall7; namely,

∂tΦi ≈ ie−αIðβÞPαIðJαI ÞijΦj; ð8:26Þ

leads to a transformation linking the incident value of the
Grassmann-valued Φi to its reflected value given by a
classical, fermionic reflection operator of the form

Rclassical
αI ¼ ei

π
2
εαI JαI ; ð8:27Þ

where εαI ¼ � denotes the sign of the momentum PαI . In
Eq. (8.27), JαI denotes the matrix ðJαIÞij acting on the
representation space defined by a classical homogeneous
gravitino, and the resulting classical reflection operator
Rclassical

αI , obtained by exponentiating ðJαIÞij, is also a
matrix (or endomorphism) in the representation space of
the classical (i.e., Grassmannian) fermion field Φi.
When working, as we do here, with quantized fermions,

i.e., when replacing the Grassmann fermion field Φi by a
linear operator Φ̂i acting in a fermionic Fock space, we can
use the functorial character of the Fock-type quantization
[illustrated in our case by the definition, Eq. (6.12), of the
quantized ĴαI , and the fact that they have the same algebraic
properties as their classical analogs, ðJαIÞij] to map the
classical reflection matrix Rclassical

αI onto a corresponding
reflection operator acting in the representation space of the
quantized fermion.
In other words, under our assumption that the quasi-

classical limit of our quantum supersymmetric cosmo-
logical model does continuously connect quantum states

to quasiclassical states, we conclude that, in the short-
wavelength limit, the spinor factor, jΨð0Þi [stripped of the
plane-wave factor expðiπ0aβaÞ], of the quantum plane-wave
solution states discussed in the previous subsection,

jΨ0ðβÞi ¼ expðiπ0aβaÞjΨð0Þi ð8:28Þ

(see, e.g., Eq. (8.22) in the NF ¼ 4 subspace), considered
as states in the 216-dimensional representation space of the
quantized gravitino, will be transformed, upon reflection on
each (symmetry or electric) potential wall, by the quantum
reflection operator

Rquantum
αI ¼ ei

π
2
εαI ĴαI : ð8:29Þ

The latter operator is a linear endomorphism of the 216-
dimensional quantum spinor space. We note in passing that
the validity of the assumptions made here [and the validity
of the final result Eq. (8.29)] has been explicitly checked in
Ref. [18] in the case of the (Bianchi IX) D ¼ 4, N ¼ 1,
supergravity model.
Using again the simple functorial nature of Fock quan-

tization, we can finally write down some of the relations
satisfied both by the classical, and the quantum, reflection
operatorsRαI . Let us recall that, motivated by the structure
of the fermionic billiards arising in the near-singularity
behavior of supergravity, Ref. [16] introduced, when work-
ing within specific finite-dimensional representations of the
maximally compact subalgebras of physically relevant
hyperbolic Kac-Moody algebras (namely, K½E10� ⊂ E10,
and K½AE3� ⊂ AE3) the notion of spin-extended
Weyl groups, generated by fermion reflection operators
associated with the simple roots αi of the considered Kac-
Moody algebra, say G. See Ref. [20] for a mathematical
definition of spin-extended Weyl groups (for general
simply-laced Kac-Moody algebras) as a part of the defi-
nition of spin-covers of maximal compact Kac-Moody
subgroups.
As here we are in a setting where we constructed finite-

dimensional representations (for a nonsimply-laced case) of
KðGþþ

2 Þ, we can define spin-extensions of the Weyl group8

of Gþþ
2 as the group of linear operators generated by (to be

explicit)

Rαi ¼ ei
π
2
Jαi ; ð8:30Þ

where i labels the simple roots [in our case
i ¼ ð1Þ; ð12Þ; ð23Þ; ð34Þ], and where the linear operator
Jαi is taken in one of the finite-dimensional representations
defined above. Specifically, we can take Jαi in the 16-
dimensional vector-spinor representation Eq. (3.14) [cor-
responding to the classical reflection operators (8.27)], or in

7The billiard approximation consists in treating both the
bosonic and the fermionic dynamics as a free far-wall evolution
interrupted by time-localized interactions with well-separated
potential walls. 8See Ref. [34] for a study of the (ordinary) Weyl group ofGþþ

2 .
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the 216-dimensional quantum vector-spinor representation
defined in Eq. (6.12).
The last point we wish to make here is that, in both these

representations, the four reflection operators, ri ¼ Rαi ,
listed in Eq. (8.30), associated with the four simple roots
of Gþþ

2 , satisfy the following generalized Coxeter relations

r8i ¼ 1; ð8:31Þ

together with the “braid relations” (see Refs. [20,35])

rirjri �� �¼ rjrirj � �� with mij factors on each side: ð8:32Þ

Here, i, and j, with i ≠ j, are labels for the nodes of the
Dynkin diagram of the considered Kac-Moody group. The
positive integers mij entering the braid relations (8.32) are
defined from the corresponding values of the nondiagonal
elements of the Cartan matrix aij (which are negative
integers, while aii ¼ 2); namely (see [35]),

mij ¼ f2; 3; 4; 6; 0g if aijaji ¼ f0; 1; 2; 3;≥ 4g
ðrespectivelyÞ: ð8:33Þ

Note that in our case the values i ¼ ð1Þ, j ¼ ð12Þ have
aijaji ¼ 3, corresponding to mij ¼ 6. In that case the braid
relation, Eq. (8.32), explicitly reads

rð1Þrð12Þrð1Þrð12Þrð1Þrð12Þ ¼ rð12Þrð1Þrð12Þrð1Þrð12Þrð1Þ: ð8:34Þ

The validity of Eq. (8.31) for the 16-dimensional vector-
spinor classical representation is easily checked to follow
from the half-integral nature of the eigenvalues of the basic

gamma matrices iγab

2
and γa

2
entering their definitions.

Indeed, let us look again at the definition of the classical
action of Jα in the 16-dimensional vector-spinor represen-
tation

ðJα:ΦÞaA ≡ ðδab − 2αaαbÞðJsαÞABΦbB; ð8:35Þ

where Jsab ¼ i γ
ab

2
while Jsa ¼ 3γa

2
.

The eigenvectors vaA of Jα can be looked for in
factorized form, namely vaA ¼ vaξA where va is an
eigenvector of the matrix δab − 2αaαb [say
ðδab − 2αaαbÞvb ¼ λvva] while ξA is an eigenvector of
the spin part Jsα [say ðJsαÞABξB ¼ λsξ

B]. The eigenvalue
of Jα corresponding to vaA ¼ vaξA is equal to the product
λvs ¼ λvλs. The four eigenvectors of δab − 2αaαb are (i) any
vector parallel to αa with eigenvalue 1 − 2hααi. and
(ii) three vectors orthogonal to αa with eigenvalue 1.
Using the fact that the squares of the matrices iγab and
γa are equal to the unit matrix, one finds that the four

eigenvalues of Jsab ¼ i γ
ab

2
are fþ 1

2
;þ 1

2
;− 1

2
;− 1

2
g, while the

four eigenvalues of Jsa ¼ 3γa

2
are fþ 3

2
;þ 3

2
;− 3

2
;− 3

2
g. Using

the fact that the squared roots hααi ¼ Gabαaαb are equal to
2 for the long symmetry roots αðabÞ, but equal to 2

3
for the

short electric roots, one finds that the corresponding vector

eigenvalues λðabÞv ’s are f−3; 1; 1; 1g, while the λðaÞv ’s are
f− 1

3
; 1; 1; 1g. As a consequence the sixteen product eigen-

values λvs ¼ λvλs have the values f� 3
2
;� 1

2
;� 1

2
;� 1

2
; g for

the symmetry walls, and the values f� 1
2
;� 3

2
;� 3

2
;� 3

2
; g

for the electric walls. [Note the cancellation of the 1
3
coming

from the anomalous hααi ¼ 2
3
by the extra factor Cs ¼ 3 in

the definition of Jsa.]
When passing from the 16-dimensional classical-

gravitino representation to the 216-dimensional quantum-
gravitino representation, the explicit forms of the action of
Ĵα at various fermion levels [see Eqs. (7.11) and (7.12)]
show that the eigenvalues at level NF ¼ n are given by
sums λNF¼n ¼ λ1 þ λ2 þ � � � þ λn, corresponding to a fac-
torized eigenvector v1 ∧ v2 ∧ � � � ∧ vn, where each vp is
itself of the factorized form vaAp ¼ vapξAp under the condition
that these wedge products do not vanish; the full spectrum
of the Ĵα’s, with their multiplicities is found in Appendix A.
This result immediately shows that all the eigenvalues of Ĵα
will be half-integral (or integral). This guarantees that the
eighth power of R̂α ¼ ei

π
2
Ĵα is equal to 1.

We have verified the validity of the braid relations
(8.32) for the classical, 16-dimensional, vector-spinor
representation of the Jα’s by a direct computation. For
instance,

R1R12R1R12R1R12 ¼ R12R1R12R1R12R1; ð8:36Þ

while

R12R23R12 ¼ R23R12R23: ð8:37Þ

These results can then be lifted to the full 216-dimensional
quantum-gravitino representation by using the functorial
nature of the Fock-representation expressions Eqs. (7.11),
(7.12). Indeed, they imply that the exponentiated operators,
X̂α ¼ exĴα , act, when considered at any given level,9 NF, as
a product of corresponding classical exponentiated factors.
For example, at level 2, we have

exĴαðu ∧ vÞ ¼ ðexJαuÞ ∧ ðexJαvÞ: ð8:38Þ

Such a general product action applies in particular to the
reflection operators R̂α ¼ ei

π
2
Ĵα , and thereby also to the

relevant braid operators which are made of products of
R̂α’s. As a consequence, the equality of two braid classical
combinations, e.g., Eq. (8.36), entails the equality

9Ĵα commutes with N̂F and therefore any function of Ĵα acts
within any fixed-NF space.
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of the corresponding quantum combination at all levels, so
that, e.g.,

R̂1R̂12R̂1R̂12R̂1R̂12 ¼ R̂12R̂1R̂12R̂1R̂12R̂1; ð8:39Þ

holds in the 216-dimensional quantum-gravitino represen-
tation.

IX. CONCLUSIONS

Let us summarize our main results on the supersym-
metric quantum dynamics of the cosmological models
obtained by reducing D ¼ 5 supergravity to one timelike
dimension, i.e., by considering the consistent truncation
where the spatial metric, hij, the vector potential, Ai, and
the spatial components of the gravitino, ψ iA, depend only
on time.
(1) We constructed a consistent quantization of this

model, with the fourteen bosonic coordinates
quantized à la Schrödinger (p ¼ ℏ

i
∂

∂q), while the
suitably redefined spatial gravitino field ΦaA ¼
ðdet hÞ14γaθai ψ iA satisfies simple anticommutation
relations fΦ̂aA; Φ̂†bBg ¼ ℏGabδAB. Here, Gab is
the inverse of the metric Gab in the Cartan space
of Gþþ

2 : Gab
_βa _βb ≡P

að_βaÞ2 − ðPa
_βaÞ2, where

the βa’s are the logarithmic scale factors of the
spatial metric hij, see Eq. (2.12). In other words, the
wave function of the Universe is a 216–component
spinor of Spin(24,8) which depends on the fourteen
bosonic configuration variables hij, Ai (with i ¼ 1,
2, 3, 4). The latter variables are usefully replaced by
the four logarithmic scale factors, βa, the six off-
diagonal Iwasawa variables N a

i (with a < i), and
the four electric variables Ba ≡ AiðN −1Þia.

(2) Quantum states jΨi are described by wave functions
Ψσðβa;N a

i; BaÞ (where the spin index σ takes 216

values) that must satisfy the eight (Dirac-like)
supersymmetry constraints ŜAjΨi ¼ 0, Ŝ†

AjΨi ¼ 0,
as well as the Hamiltonian constraint ĤjΨi ¼ 0. We
have checked the consistency of the algebra of
constraints [see Eqs. (6.7), (6.8), and (6.17)] when
using an ordering ensuring an up-down symmetry
in fermion space (i.e., symmetry under swap-
ping Φ ↔ Φ†).

(3) The hyperbolic Kac-Moody algebra Gþþ
2 shows up

in the bosonic sector in the fact that the bosonic part
of the Hamiltonian describes a null geodesic over the
symmetric space Gþþ

2 =KðGþþ
2 Þwhen setting to zero

some higher-level Kac-Moody terms formally cor-
responding to some spatial gradient terms on the

supergravity side [28]. The root structure of Gþþ
2 is

reflected in the bosonic Hamiltonian through the
presence of a Toda-like structure,

Hð0Þ ¼ Gabπaπb þ 2
X
a<b

e−2ðβb−βaÞðPabÞ2

þ 1

2

X
a

e−2β
aðPaÞ2; ð9:1Þ

where πa is the conjugate momentum to βa, Pa is the
momentum conjugate to Ba, and where Pab is a
momentumlike variable associated with N a

i. Here
αðabÞðβÞ ¼ βb − βa, and αðaÞðβÞ are linear forms in
the β’s which correspond to (real) roots of Gþþ

2 . In
particular, they feature the four simple roots
α1 ¼ αð1Þ, α2 ¼ αð12Þ, α3 ¼ αð23Þ, α4 ¼ αð34Þ defin-
ing the Cartan matrix, Eq. (4.7), of Gþþ

2 .
(4) The KðGþþ

2 Þ structure associated with the fermions
shows up in the fermionic sector in several ways.
The part Ĥð2Þ of the quantum Hamiltonian that is
bilinear in the fermions reads

Ĥð2Þ ¼ þ2
X
a<b

e−ðβb−βaÞP̂abĴabðΨÞ

−
1ffiffiffi
3

p
X
a

e−β
a
P̂aĴaðΨÞ: ð9:2Þ

This fermion-quadratic contribution associates to
each one of the wall roots, αIðβÞ ¼ ðαðabÞðβÞ;
αðaÞðβÞÞ, entering the bosonic Hamiltonian, a cor-
responding fermion bilinear ĴαI. The latter quantum
fermion bilinears generate a 216-dimensional
representation of KðGþþ

2 Þ. Indeed, the four oper-
ators Ĵαi , i ¼ 1, 2, 3, 4, corresponding to the four
simple roots of Gþþ

2 , satisfy the Serre-Berman
relations, Eq. (4.13).

(5) In the short-wavelength limit, the propagating-wave
solutions of the constraints that exist in the middle of
the fermionic Fock space (4 ≤ NF ≤ 12) transform,
upon reflection on each of the (symmetry or electric)
potential wall delimiting the boundary of the billiard
chamber (identified with the Weyl chamber ofGþþ

2 ),
under the corresponding four quantum reflection
operators

R̂αi ¼ ei
π
2
Ĵαi : ð9:3Þ

These quantum reflection operators satisfy the gener-
alized Coxeter relations given in Eqs. (8.31)–(8.32).
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These relations define a spinorial extension of the
Weyl group of Gþþ

2 .
(6) The quartic-in-fermion contribution to the quantum

Hamiltonian μ̂2 ≡ Ĥ0ð4Þ
1 (as defined in Sec. VI)

satisfy two remarkable KðGþþ
2 Þ-related properties.

First, it is invariant under the generators Ĵαi , i ¼ 1, 2,
3, 4 of KðGþþ

2 Þ, and second, it happens to be
expressible [see Eq. (7.15)] in terms of two
KðGþþ

2 Þ-invariant fermion bilinears, the (sesqui-
linear) fermion number, N̂F ≡ GabΦ̂a†Φ̂b, and the
bilinear ĈF ≡GabΦ̂aACABΦ̂bB, which involves the
“charge conjugation” matrix CAB of the (spatial) γi
matrices (CγiC−1 ¼ −γTi ).

The invariance of N̂F and ĈF under the Ĵαi ’s stems
from the invariance of the two corresponding bilinear
forms HðΦ1;Φ2Þ ¼ GabΦaA†

1 δABΦbB
2 and JðΦ1;Φ2Þ ¼

GabΦaA
1 CABΦbB

2 under the action of the generators of
KðGþþ

2 Þ in the 16-dimensional space defined by the
(classical) vector-spinor representation; here, we consider
this representation from a mathematical point of view, i.e.,
within the vector space of complex-valued vector-spinors
ΦaA. The quantum representation being correspondingly
built by Fock quantization, as discussed in Sec. VII. The
sesquilinear formH is Hermitian, with signature ð12þ; 4−Þ,
while the bilinear form J is symplectic. The fact that the
representatives of the generators of the (infinite-dimen-
sional) algebra KðGþþ

2 Þ within this 16-dimensional repre-
sentation leave these two forms invariant indicates that the
image of KðGþþ

2 Þ within this representation is the inter-
section of the Lie algebra of the pseudounitary group
Uð12; 4Þ and of the symplectic group Spð16;CÞ. By
definition, this intersection is the Lie algebra spð6; 2Þ of
the quaternionic pseudo-unitary group Spð6; 2Þ. The image
Lie algebra spð6; 2Þ of Lie½KðGþþ

2 Þ� has real dimension
136 (as can be directly checked by looking at the general
solution of the invariance conditions, u†H þHu ¼ 0,
uTJ þ Ju ¼ 0, of H and J under an infinitesimal
GLð16;CÞ transformation δΦ ¼ u ·Φ).
Our results open new perspectives that we hope to

explore in future work. The most promising one is that
our finding that the quartic-in-fermions term commutes
with the generators of the involutory subalgebra KðGþþ

2 Þ
(which generalizes the similar property found for N ¼ 1,
D ¼ 4 supergravity [25]), raises the hope that such

a property will also hold for the maximal supergravity
N ¼ 8 in D ¼ 4, or N ¼ 1 in D ¼ 11, i.e., that the
quartic-in-fermions term in the Hamiltonian is invariant
under KðE10Þ. Let us note in this respect that, as shown by
Eq. (3.12), the quartic-in-fermions term in the Hamiltonian
is the sum of the original fermion-quartic part of the
Lagrangian and of a sum of the squares of the JαI bilinears
corresponding to the roots explicitly appearing in the
Lagrangian (the latter terms being generated by the
Legendre transform associated to the velocity dependence
of the couplings of N a

i and Ai to fermions). Though our
analysis has truncated away the couplings to spatial
derivatives, it has retained all the velocity-dependent
couplings; a similar analysis can be implemented for
D ¼ 11 supergravity. This suggests that the value of μ2

obtained in such one-time-dimension reductions is relevant
to the exact supergravity dynamics. Therefore, finding a
value of μ2 that is invariant under the relevant involutory
algebra is a strong signal of a hidden Kac-Moody-related
symmetry. In previous Kac-Moody-coset analyses, it was
argued that μ2 is naturally given by a quadratic Casimir,
1
2

P
α J

2
α, involving a formal sum over the infinite number of

positive roots [25,36]. It will be therefore important to see
whether an extension of our analysis to the D ¼ 11-
supergravity fermion sector leads to a μ2 that is invariant
under KðE10Þ.
If this is the case, besides being a clear confirmation of a

hidden KðE10Þ symmetry, it will also probably imply that

μ̂2 ≡ Ĥ0ð4Þ
1 is a c number, rather than a fermionic operator,

because we have checked that there are no nontrivial
KðE10Þ-invariant (symplectic) bilinears of the type,
CF ¼ GabΦaCΦb ¼ GabΦaACABΦbB, that allowed expres-
sions of the type Eq. (7.15) to exist. In D ¼ 4, μ̂2 was
quadratic in CF with C ¼ γ5 ¼ γ0γ1γ2γ3, while in D ¼ 5,
CF involved the spatial charge conjugation matrix. We
recall that, like inD ¼ 4, the gravitino is a Majorana spinor
in D ¼ 11.
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APPENDIX A: SPECTRUM OF THE QUANTIZED J OPERATORS

1. Ĵ½ab� spectrum

NF ¼ 0; 16 λ ¼ 0j1;

NF ¼ 1; 15∶ λ ¼ � 3

2

				
2

; � 1

2

				
6

NF ¼ 2; 14∶ λ ¼ �3j1; �2j12; �1j27; 0j40
NF ¼ 3; 13∶ λ ¼ � 7

2

				
6

; � 5

2

				
36

; � 3

2

				
94

; � 1

2

				
144

NF ¼ 4; 12∶ λ ¼ �4j15; �3j76; �2j222; �1j372; 0j450
NF ¼ 5; 11∶ λ ¼ � 9

2

				
20

; � 7

2

				
120

; � 5

2

				
366

; � 3

2

				
712

; � 1

2

				
966

NF ¼ 6; 10∶ λ ¼ �5j15; �4j132; �3j466; �2j966; �1j1527; 0j1776
NF ¼ 7; 9∶ λ ¼ � 11

2

				
6

; � 9

2

				
92

; � 7

2

				
402

; � 5

2

				
1020

; � 3

2

				
1812

; � 1

2

				
2388

NF ¼ 8∶ λ ¼ �6j1; �5j36; �4j249; �3j764; �2j1599; �1j2400; 0j2772 ðA1Þ

2. Ĵa spectrum

NF ¼ 0; 16 λ ¼ 0j1;

NF ¼ 1; 15∶ λ ¼ � 3

2

				
6

; � 1

2

				
2

NF ¼ 2; 14∶ λ ¼ �3j15; �2j12; �1j13; 0j40
NF ¼ 3; 13∶ λ ¼ � 9

2

				
20

; � 7

2

				
30

; � 5

2

				
36

; � 3

2

				
144

; � 1

2

				
80

NF ¼ 4; 12∶ λ ¼ �6j15; �5j40; �4j55; �3j180 � 2j207; 1j228; 0j370
NF ¼ 5; 11∶ λ ¼ � 15

2

				
6

; � 13

2

				
30

; � 11

2

				
50

; � 9

2

				
170

� 7

2

				
290

; � 5

2

				
360

; � 3

2

				
666

; � 1

2

				
612

NF ¼ 6; 10∶ λ ¼ �9j1; �8j12; �7j27; �6j96; �5j235; �4j340
� 3j720; �2j900; �1j1005; 0j1336

NF ¼ 7; 9∶ λ ¼ � 19

2

				
2

; � 17

2

				
8

; � 15

2

				
30

; � 13

2

				
108

; � 11

2

				
192

; � 9

2

				
470

� 7

2

				
780

; � 5

2

				
990

; � 3

2

				
1590

; � 1

2

				
1550

NF ¼ 8∶ λ ¼ �10j1; �9j4; �8j25; �7j60; �6j174; �5j396
� 4j585; �3j1140; �2j1425; �1j1600; 0j2050 ðA2Þ
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APPENDIX B: EXPLICIT FORM OF THE
SUPERSYMMETRY CONSTRAINTS

In this appendix we use a slightly different notation from
the one used in the text. Vector indices are denoted a; b; � � �
(as in the text), while spinor indices are denoted α; β; � � �.
The composite indices combining these two types of
indices (denoted A ¼ aA in the text) are denoted here as
A ¼ aα. When a spinor, or a composite index, belongs to
some Φ† we dot it to indicate its origin, e.g.,

ðΦ̂aαÞ† ¼ Φ̂†a _α ¼ ðΦ̂AÞ† ¼ Φ̂† _A. The right-hand side
Gabδαβ (with ℏ ¼ 1) of the third (nontrivial) anticommu-
tation relations Eq. (5.10) is denoted ΔA _B, i.e.,

fΦ̂A; Φ̂† _Bg ¼ ΔA _B: ðB1Þ

Though, with our normalization ΔA _B ¼ Gabδαβ is real and
symmetric, it is useful (for keeping track of Hermitian
conjugations in contracted indices) to denote its complex
conjugate as ðΔA _BÞ⋆ ¼ ΔB _A. We also denote the (purely
imaginary) numerical coefficients cαABC ¼ −cαCBA entering
Eq. (6.5) as σα_B½AC� ¼ −σα_B½CA�, so that Sα reads

Sα ¼ −i∂βaΦ̂aα þ σα_P½BC�Φ̂
BΦ̂† _PΦ̂C: ðB2Þ

The following contraction of the σ coefficients plays a
distinguished role,

σα _P½BC�ΔB _P ¼ −iνcδαγ : ðB3Þ

Here C ¼ cγ and the four components of the vector ν
are νa ¼ − 1

4
f19; 16; 13; 10g.

With this notation, the explicit form of the supersym-
metry constraint SαjXi ¼ 0, when acting on a plane-wave
state of fermion level k written as

jXi ¼ eiπaβ
a
X _A1��� _Ak

Φ̂† _A1 � � � Φ̂† _Ak j0i−; ðB4Þ

reads

kððπa − iνaÞΔaα _PX _P _A1��� _Ak−1
− ðk − 1Þσα½ _A1j½BC�Δ

C _P

× ΔB _QX _P _Q j _A2��� _Ak−1�Þ ¼ 0: ðB5Þ

The corresponding explicit form of the constraint
S† _αjXi ¼ 0 reads

ððπa1 þ iνa1Þδ _α_α1X _A2��� _Akþ1

þ kσ� _αB _A1
_A2
ΔB _PX _P _A3��� _Akþ1

Þ½ _A1
_A2��� _Akþ1� ¼ 0; ðB6Þ

where the last subscript indicates antisymmetrization
with respect to the composite indices _A1

_A2 � � � _Akþ1 (with
_A1 ¼ a1 _α1).
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