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The BMS (Bondi–van der Burg–Metzner–Sachs) symmetry arises as the asymptotic symmetry of flat
spacetime at null infinity. In particular, the BMS algebra for three-dimensional flat spacetime (BMS3) is
generated by the super-rotation generators that form a Virasoro subalgebra with central charge cL, together
with mutually commuting super-translation generators. The super-rotation and supertranslation generators
have nontrivial commutation relations with another central charge cM. In this paper, we study a free scalar
theory in two dimensions exhibiting BMS3 symmetry, which can also be understood as the ultrarelativistic
limit of a free scalar CFT2 in the flipped representation. Upon canonical quantization on the highest weight
vacuum, the central charges are found to be cL ¼ 2 and cM ¼ 0. Because of the vanishing central charge
cM ¼ 0, the theory features novel properties: there exist primary states which form a multiplet, and the
Hilbert space can be organized by an enlarged version of BMS modules dubbed the staggered modules. We
further calculate correlation functions and the torus partition function, the latter of which is also shown
explicitly to be modular invariant. Is it interesting to note that our model has vanishing cM, a feature also
shared by the so-called flat space chiral gravity in Bagchi et al. [Flat-Space Chiral Gravity, Phys. Rev. Lett.
109, 151301 (2012)].
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I. INTRODUCTION

As the first example of unified space and time,
Minkowski spacetime is in some sense the starting point
of both quantum field theory and general relativity: it is
usually the spacetime background for Lorentzian invariant
quantum field theories, and it also provides the simplest
solution to Einstein equation. Yet it is still a mystery what
the full-fledged quantum theory of gravity on asymptoti-
cally Minkowski spacetime should be.
In quest of quantum gravity, one fruitful effort over the

past two decades has been holographic duality, whose most
well-known incarnation is the AdS=CFT correspondence
[1–3]. The AdS=CFT correspondence states that gravity in
asymptotically anti–de Sitter (AdS) spacetime is equivalent
to quantum field theory with conformal invariance, and it
has become a thriving research field involving many
interdisciplinary studies including string theory, black hole

physics, condensed matter physics, quantum chromody-
namics, and quantum information theory.
It is a tantalizing idea to extend the success of the

AdS=CFT correspondence to asymptotically flat space-
time. To this end, asymptotic symmetries play an important
role. Recall that in AdSdþ1=CFTd, one basic item in the
holographic dictionary is that the asymptotic symmetry of
the bulk theory agrees with the global symmetry of the dual
field theory, and both are the conformal symmetry in d
dimensions. For instance, under the Brown-Henneaux
boundary conditions [4], the asymptotic symmetry for
Einstein gravity with negative cosmological constant − 1

l2

agrees with that of a CFT2 (conformal field theory) with
central charges cL ¼ cR ¼ 3l

2G, where G is Newton’s con-
stant in three dimensions. The symmetry argument is
especially powerful in the case of AdS3=CFT2, using
which one can provide a microscopic explanation of the
Bekenstein-Hawking entropy of the black holes using
Cardy’s formula [5,6]. The asymptotic symmetry for
four-dimensional Minkowski spacetime in Einstein gravity,
first studied by Bondi–van der Burg–Metzner–Sachs
(BMS) [7,8], is the so-called BMS symmetry. The original
BMS symmetry only contains generators that are smooth
on S2. In a recent resurgence [9–12], the extended version
of BMS group also admits generators that are singular at the
south or north poles. The extended BMS symmetry in four
dimensions is related to Weinberg’s soft theorem and the
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memory effect [13], and has recently prompted the study of
celestial CFTs, see [14–16].
A simpler version of the BMS group appears in three

dimensions [17–19]. Under certain boundary conditions at
null infinity, the asymptotic symmetry for flat spacetime in
Einstein gravity is generated by the superrotations Ln and
supertranslations Mn, where n can be arbitrary integers.
The BMS algebra is

½Ln; Lm� ¼ ðn −mÞLmþn þ
cL
12

nðn2 − 1Þδmþn;0;

½Ln;Mm� ¼ ðn −mÞMmþn þ
cM
12

nðn2 − 1Þδmþn;0;

½Mn;Mm� ¼ 0: ð1:1Þ

The superrotation generators form a Virasoro subgroup,
with central charge denoted by cL. The supertranslation
generators Mn commute with each other but have a non-
trivial commutation relation with the Virasoro generators
with central charge cM. The BMS3 algebra (1.1) is
isomorphic to the Galilean conformal algebra (GCA) in
two dimensions [20–22]. While the GCA can be obtained
from the nonrelativistic (NR) limit of the two-dimensional
conformal algebra, the BMS3 algebra is the ultrarelativistic
(UR) limit, and thus is also an example of a Carrollian
algebra [23,24]. Like their CFT2 cousins, field theories
invariant under BMS or Galilean conformal symmetries are
highly constrained. In particular, symmetry and other
consistency conditions make it possible to initiate a boot-
strap program [25–30].
It is reasonable to conjecture that the holographic dual of

Einstein gravity in asymptotically flat three-dimensional
spacetimes is a quantum field theory invariant under the
BMS3 symmetry (BMSFT). As evidence, the torus parti-
tion function for BMSFTs has been argued to be modular
invariant and a Cardy-like formula can be used to explain
the entropy of cosmological solutions with Cauchy hori-
zons [31,32]. Furthermore, entanglement entropy and its
holographic dual has been calculated in [33–37]. Other
interesting properties in flat holography include geometric
Witten diagrams [38], quantum energy conditions [39], etc.
Despite this progress, we know little about the putative

dual field theory other than properties that can be implied
by the symmetries. In particular, it is important to know if a
field theory with BMS invariance really exists at the full
quantum level. Thus, it is necessary to construct and study
in detail an explicit model of BMSFT. Besides the
motivation from flat holography, a model of BMSFT is
also interesting from a purely field theoretic perspective, as
it provides a playground for further understanding
both nonrelativistic and ultrarelativistic quantum systems.
A Liouville-like theory with BMS symmetries has
been constructed in [40,41], which can be obtained from
the ultrarelativistic limit of ordinary Liouville theory, or

alternatively from the geometric action for the BMS3
group [42].
In this paper, we study a free scalar BMSFT model in

two dimensions with the action

S ¼ 1

4π

Z
dσdτ ð∂τϕÞ2: ð1:2Þ

The classical theory is invariant under the BMS symmetry
(1.1) with zero central charges. This model also appears in
the tensionless limit of string theory [43], and a

ffiffiffiffiffiffiffi
TT̄

p
deformation of a free scalar CFT2 [44].
After canonical quantization and a choice of the vacuum

compatible with the highest weight representation, the
BMS algebra of the model (1.2) has central charges

cL ¼ 2; cM ¼ 0: ð1:3Þ

Due to the nontrivial commutation relations between Lm
and Mn, the action of M0 is not necessarily diagonal, and
there can exist multiplets on which the action of M0 is a
Jordan cell with all the diagonal components equal and
denoted by ξ. Multiplets are thus labeled by the conformal
weight Δ, which is the eigenvalue of L0, and the boost
charge ξ, which comes from the Jordan cell of M0. The
model (1.2) has the following key features:
(1) The fundamental primary operators are

I; O¼ðO0¼ i∂yϕ;O1¼ i∂xϕÞ; Vα¼∶eαϕ∶;

ð1:4Þ

where I is the identity operator, O is a primary
multiplet with Δ ¼ 1, ξ ¼ 0, and Vα is the vertex
operator with Δ ¼ 0, ξ ¼ − α2

2
. Correlation functions

between these operators can be calculated explicitly.
(2) States are organized in terms of an enlarged version

of BMS highest weight module dubbed the stag-
gered BMS module.

(3) The torus partition function can be calculated
and is found to be modular invariant, confirming
earlier statements based on symmetry arguments
[31,32,35,45].

The appearance of primary multiplets and staggered
modules are both unexpected. In [21,28], it has been
noticed that the commutation relations (1.1) between M0

and Ln imply that the action of M0 is not diagonal within a
BMS highest weight module, and descendants have to form
multiplets: in particular, the current T, which generates the
superrotations, and the current M, which generates the
supertranslations form a multiplet with conformal weight
Δ ¼ 2 and boost charge ξ ¼ 0. While the algebra (1.1)
implies that multiplets at the level of BMS descendants are
inevitable, there is no a priori reason that multiplets for
primary operators have to exist as well. Our model thus
provides the first example of this novel representation.
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The appearance of the staggeredmodule is closely related
to the subtletywith cM ¼ 0, at which point it was argued that
the BMS highest weight module is truncated to the Virasoro
module in [21]. Instead of a truncation, however, here the
BMS highest weight module is enlarged. The reason for this
is that there is an extra quasiprimary K with conformal
weight Δ ¼ 2 in our model that was not assumed to exist in
the general argument [21]. The new quasiprimaryK forms a
BMS triplet together with the Virasoro stress tensor T and
supertranslation stress tensor M. This structure is reminis-
cent of logarithmic CFTs [46–51], where the Virasoro stress
tensor acquires a logarithmic partner whose presence makes
the action of L0 nondiagonal. In that case, multiplets also
appear and the states are also organized into staggered
modules [46,51]. It would be interesting to further under-
stand the staggeredmodule from a general analysis, and also
to study the implications to holography. We will leave these
questions for further study.
Apart from the intrinsic discussion as a two dimensional

BMSFT, the model (1.2) with the central charges (1.3) can
also be obtained from a free scalar CFT2 by two steps.
From a free scalar CFT2 with c ¼ 1, c̄ ¼ 1, we can
construct the so-called flipped representation of the con-
formal algebra with central charges c ¼ 1, c̄ ¼ −1. Then
our BMSFT model can be obtained from the UR limit of
the CFT2 in the flipped representation. Note that this
flippling þ UR limit is different from the direct UR limit
discussed in [19,41].
Finally, let us briefly comment on the potential gravity

dual to this model. It is not directly applicable to Einstein
gravity, as the latter has the central charges cL ¼ 0, cM ¼ 3

G.
To find BMS3 with nonvanishing cL [52,53], we considered
topologically massive gravity, which is three-dimensional
Einstein gravity plus a gravitational Chern-Simons term
[54,55]. Let the coupling in the Chern-Simons term μ, the
central charges are given by

cL ¼ 3

μG
; cM ¼ 3

G
: ð1:5Þ

To get vanishing cM, we need to take the limit where only
the Chern-Simons term persists, which is the so-called flat
space chiral gravity theory as discussed in [56].
This paper is organized as follows. Section II is a general

analysis of BMSFTs. In Sec. II A, we first briefly review
the general properties of BMSFTs, in Sec. II B we discuss
the representations, and introduce a novel highest weight
representation where the action of M0 is a Jordan cell,
and in Sec. II C we calculate the correlators. In Sec. III, we
study the free BMS scalar model in detail. We introduce the
classical theory and write down its symmetries in
Sec. III A, perform a canonical quantization with the
highest weight vacuum in Sec. III B, and calculate corre-
lation functions in Sec. III C. In Sec. IV, we arrive at the key

result of this paper, the staggered BMSmodule. We find the
operators outside the ordinary BMS highest weight module
and organize them into the staggered module. We further
illustrate the properties of this module by diagrams. In
Sec. V, we review the UR limit from two-dimensional CFTs
to BMSFTs, and point out a subtlety on the consistent plane
UR limit. Then we take the UR limit of the free relativistic
scalar model in the flipped vacuum with the central charges
c ¼ 1, c̄ ¼ −1 to get the free BMS scalar in the highest
weight representation. In Sec. VI, we calculate the torus
partition function of the free BMS scalar model in the
highest-weight representations, and find that it is invariant
under modular S transformations.

II. GENERAL PROPERTIES OF BMSFTs

In this section we discuss generic features of BMSFTs.
We first provide a short review of the BMS algebra in
Sec. II A. Section II B is dedicated to the representation
theory where we introduce a novel type of highest-weight
representations, where the primary states lie in multiplets.
In Sec. II C we calculate the correlation functions for
general quasiprimary multiplets, paying special attention to
multiplets with ξ ¼ 0 that we will encounter later in the free
scalar model.

A. Quick review

A BMSFT (BMS-invariant field theory) is a two dimen-
sional quantum field theory invariant under the following
BMS transformation:

σ → fðσÞ; τ → f0ðσÞτ þ gðσÞ: ð2:1Þ

Note that although the theory is not Lorentz invariant, there
is still a notion of time and space. For BMSFT, σ should be
regarded as a spatial direction, whereas τ is a timelike
direction. This interpretation will become clearer if we view
BMSFT as the UR limit of a CFT2, to be described
momentarily.
Now let us consider a BMSFTon a cylinder parametrized

by the coordinates ðτ; σÞ with the identification

σ ∼ σ þ 2π: ð2:2Þ

Then the infinitesimal BMS transformation is generated by
the Fourier modes:

ln ¼ ieinσ∂σ − neinστ∂τ; ð2:3Þ

mn ¼ ieinσ∂τ: ð2:4Þ

Under the Lie bracket, the generators (2.4) form the BMS
algebra
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½ln; lm� ¼ ðn −mÞlmþn; ð2:5Þ

½ln;mm� ¼ ðn −mÞmmþn; ð2:6Þ

½mn;mm� ¼ 0: ð2:7Þ

The generators that implement the transformations (2.4) on
the fields will be denoted as Lm and Mn, and they form the
centrally extended BMS algebra,

½Ln; Lm� ¼ ðn −mÞLmþn þ
cL
12

nðn2 − 1Þδmþn;0;

½Ln;Mm� ¼ ðn −mÞMmþn þ
cM
12

nðn2 − 1Þδmþn;0;

½Mn;Mm� ¼ 0; ð2:8Þ

where cL and cM are central charges. As a side remark, it is
found that the asymptotic symmetry of Einstein gravity in
asymptotically flat three-dimensional spacetime is BMS3
with cL ¼ 0, cM ¼ 3

G [18], while gravitational theories
where both central charges do not vanish can be con-
structed by adding a Chern-Simons term [52,53,56].
The general form of the BMS transformation (2.1) allows

the map

x ¼ eiσ; y ¼ iτeiσ: ð2:9Þ

By analytic continuation, x can be viewed as a holomorphic
coordinate on the plane. The above map (2.9) is usually
regarded as the map from the cylinder to the plane [43],

using which we can further discuss the state-operator
correspondence. For later convenience, we also write down
the BMS generators on the plane,

ln ¼ −xnþ1∂x − ðnþ 1Þyxn∂y; ð2:10Þ

mn ¼ −xnþ1∂y: ð2:11Þ

Let T be the Noether current of the translational
symmetry along x, and M be the Noether current of the
translational symmetry along y. The BMS charges on the
plane can then be written as

Ln ¼
1

2πi

I
ðxnþ1T þ ðnþ 1ÞxnyMÞ; ð2:12Þ

Mn ¼
1

2πi

I
xnþ1M; ð2:13Þ

where
H
denotes the contour integration around the origin

on the complexified x plane.

T ¼
X
n

Lnx−n−2 −
X
n

ðnþ 1ÞyMn−1x−n−2; ð2:14Þ

M ¼
X
n

Mnx−n−2: ð2:15Þ

From the algebra (2.8) we expect the following operator
product expansions (OPEs) between the following currents:

Tðx0; y0ÞTðx; yÞ ∼ cL
2ðx0 − xÞ4 þ

2Tðx; yÞ
ðx0 − xÞ2 þ

∂xTðx; yÞ
x0 − x

−
2cMðy0 − yÞ
ðx0 − xÞ5 −

4ðy0 − yÞMðx; yÞ
ðx0 − xÞ3 −

ðy0 − yÞ∂yTðx; yÞ
ðx0 − xÞ2 ;

Tðx0; y0ÞMðx; yÞ ∼ cM
2ðx0 − xÞ4 þ

2Mðx; yÞ
ðx0 − xÞ2 þ

∂xMðx; yÞ
x0 − x

;

Mðx0; y0ÞMðx; yÞ ∼ 0: ð2:16Þ

The transformation laws of the currents under the BMS
transformation

x̃ ¼ fðxÞ; ỹ ¼ f0ðxÞyþ gðxÞ ð2:17Þ

are given by1

M̃ðxÞ ¼ f02Mðx̃Þ þ cM
12

ff; xg;

T̃ðx; yÞ ¼ f02Tðx̃; ỹÞ þ 2f0ðg0 þ yf00ÞMðx̃Þ þ cL
12

ff; xg

þ cM
12

�
y
d
dx

ff; xg þ f02
∂3g
∂f3
�
: ð2:18Þ

In Eq. (2.18), f; g denotes the usual Schwarzian derivative,
and the last term is the so-called BMS Schwarzian
derivative [34,35],

ff; xg ¼ f000

f0
−
3

2

�
f00

f0

�
2

; ð2:19Þ

1The transformation law (2.18) is consistent with the OPE
(2.16) and successive transformations. Equation (2.18) is also
compatible with [35], after we match the conventions
Jthere ¼ There − y∂xMhere. We also note that the results of [34]
differ from ours in the term proportional to cM. For the trans-
formation law, please see also [40].
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f02
∂3g
∂f3 ¼ f0−1

�
g000 − g0

f000

f0
− 3f00

�
g0

f0

�0�
: ð2:20Þ

B. Representations

In this subsection we discuss the representations of the
BMS algebra (2.8). In the literature, two types of repre-
sentations have been discussed, the highest weight repre-
sentation and the induced representation [57]. The induced
representation is unitary and can be obtained from a
ultrarelativistic limit of the highest weight representation
of CFT2s. The highest weight representation of BMS
algebra is analogous to that of Virasoro, which enables
one to adapt techniques of CFT2 for BMSFT. Despite of the
fact that the highest weight representation is non-unitary,
several interesting results have been worked out in the
highest weight representation including the general struc-
ture of correlation function, characters, torus partition
function, entanglement entropy, bootstrap, and so on. We
will focus on the highest weight representation in this
section, and leave the discussion of induced representation
to the Appendix B. In the following, we first review the
usual highest weight representation discussed previously in
the literature [57], which we refer to as the singlet version.
Then we will introduce a novel multiplet version of the
highest weight representation. In Sec. III we will see that
the multiplet version representation arises naturally in the
free scalar model (1.2).
In this subsection we discuss the highest weight repre-

sentations of the BMS algebra (2.8), which are not unitary.
We first review the usual highest weight representation
discussed previously in the literature [57], which we refer
to as the singlet version. Then we will introduce a novel
multiplet version of the highest weight representation. In
Sec. III we will see that the multiplet version representation
arises naturally in the free scalar model (1.2).

1. Highest weight representations: The singlet

The singlet version of the highest weight representation
of the BMS algebra [57] is a straightforward generalization
of the highest weight representation of the Virasoro
algebra. This amounts to considering the BMS module
on the plane that consists of primary operators and their
descendants. A primary operators at the originO ¼ Oð0; 0Þ
can be labeled by the eigenvalues ðΔ; ξÞ of ðL0;M0Þ

½L0; O� ¼ ΔO; ½M0; O� ¼ ξO: ð2:21Þ

Δ and ξ are referred to as the conformal weight and the
boost charge of the operator, respectively. The highest
weight conditions are

½Ln;O� ¼ 0; ½Mn;O� ¼ 0; n > 0: ð2:22Þ

The descendant operators can be obtained by acting L−n,
M−n, with n > 0 successively on the primary operators.
The primary operator together with its descendants form a
highest weight module.

2. Highest weight representations: The multiplet

In any unitary theory, if two Hermitian operators
commute, then we can go to a basis in which the
commuting operators are simultaneously diagonalized.
Therefore it is natural to consider highest weight repre-
sentations in CFT2, and organize states into Virasoro
modules. For BMSFT, however, several subtleties arise
in the highest weight representation of the form (2.21) and
(2.22). As noticed in [21], the Kac determinant for the
highest weight representation with ξ ≠ 0 is negative, and
hence the representation is not unitary. In a state space
equipped with an indefinite inner product, a Hermitian
operator is not necessarily diagonalizable. In addition, it
has been observed in [57] that if we organize the highest
weight module in terms of quasiprimaries and their global
descendants, the quasiprimaries will generically form
multiplets, on which the action of L0 and M0 cannot be
simultaneously diagonalized within a BMS module even
assuming the primary state is a common eigenstate of L0

and M0. These observations then open up the possibility
that the action of L0 and M0 is not diagonal even on the
primary states. This feature is very similar to logarithmic
CFTs [46–51]. In this case, the representation matrix can be
written in the Jordan canonical form. Similar to the
discussion in [48], we can choose a basis so that the action
of L0 is diagonal and the action of M0 is block diagonal,
with each block being a Jordan cell. The primary operators
in a Jordan chain form a multiplet, which, together with
their descendants, form a reducible but indecomposable
module. If there are r operators related to each other in a
Jordan chain, the multiplet they form will be referred to as
having rank r, the same rank as the Jordan block. The
primary operators with diagonal action under M0 will be
referred to as singlets or rank-1 multiplets.
Thus operators of BMSFT can be organized into highest-

weight primary multiplets and their descendants. A highest-
weight primary multiplet O with rank r is defined by

½L0;Oa� ¼ ΔOa; ½M0;Oa� ¼ ðξOÞa; a¼ 0; � � � r− 1;

½Ln;Oa� ¼ 0; ½Mn;Oa� ¼ 0; n > 0; ð2:23Þ

where Oa denotes the ath component of the multiplet O,
and ξ is a Jordan cell with rank r and diagonal component ξ,
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ξ ¼

0
BBBBB@

ξ

1 ξ

. .
. . .

.

1 ξ

1
CCCCCA

r×r

: ð2:24Þ

The off-diagonal element can also be chosen to be any
arbitrary constant, which amounts to introducing a relative
scaling among different components.
Similar to CFT2, it is also useful to introduce the notion

of quasiprimary multiplets, which satisfy (2.23) but only
with n ¼ 1 rather than arbitrary positive integers.
Quasiprimary multiplets are highest weight states under
the action of the global subgroup of the BMS3 group, which
is isomorphic to the Poincaré group in three dimensions.

C. Correlation functions

Discussions on the correlation functions for quasipri-
mary operators of the Galilean conformal algebra can be
found in [21,27]. The results in [21] directly apply to
BMSFT, as the algebras of Galilean conformal field theory
(GCFT) and BMSFT are isomorphic. Interestingly, it has
been found that multiplets appear generically in GCFTs and
BMSFTs [28], a feature also shared by logarithmic CFTs
[46,47,50]. Detailed discussions of multiplets in GCFT/
BMSFT can be found in [28], which focuses on quasipri-
maries with nonvanishing boost charge, i.e., ξ ≠ 0. As we
will show later in Sec. III, however, our free scalar model
also contains a multiplet at the level of primary operators,
and it has ξ ¼ 0. In the following, we will first review the
correlation functions for singlets and multiplets in the ξ ≠ 0
sector, and then provide results for the ξ ¼ 0 sector.

1. Singlets

The singlet version of BMS primary operators at the
origin is defined by (2.21) and (2.22). The operators at
other positions can be obtained by acting with the trans-
lation operator U ¼ exL−1þyM−1,

Oðx; yÞ ¼ UOð0; 0ÞU−1: ð2:25Þ

Using the Baker-Campbell-Hausdorff (BCH) formula, the
transformation law for the primary operators are

½Ln;Oðx;yÞ�¼ðxnþ1∂xþðnþ1Þxny∂y

þðnþ1ÞðxnΔþnxn−1yξÞÞOðx;yÞ; ð2:26Þ

½Mn;Oðx; yÞ� ¼ ðxnþ1∂y þ ðnþ 1ÞxnξÞOðx; yÞn ≥ −1;

ð2:27Þ

and they can be integrated to derive the transformation laws
under the finite transformation (2.17),

Õðx̃; ỹÞ ¼ jf0j−Δe−ξ
g0þyf00

f0 Oðx; yÞ: ð2:28Þ

By requiring the vacuum to be invariant under the global
symmetry, the two-point function (G2) and three-point
function (G3) of primary operators are, respectively,

G2ðx1; x2; y1; y2Þ ¼ dδΔ1;Δ2
δξ1;ξ2 jx12j−2Δ1e−2ξ1

y12
x12 ; ð2:29Þ

G3ðx1; x2; x3; y1; y2; y3Þ ¼ c123jx12j−Δ123 jx23j−Δ231 jx31j−Δ312

× e−ξ123
y12
x12e−ξ312

y31
x31e−ξ231

y23
x23 ;

ð2:30Þ

where d is the normalization factor of the two-point
function, c123 is the coefficient of the three-point function
that encodes dynamical information of the BMSFTs, and

xij ≡ xi − xj; yij ≡ yi − yj;

Δijk ≡ Δi þ Δj − Δk; ξijk ≡ ξi þ ξj − ξk: ð2:31Þ

2. Multiplets

Similar to the discussion of the singlet, local operators
corresponding to the highest weight multiplets (2.23) are
defined by

Oðx; yÞ ¼ UOð0; 0ÞU−1; U ¼ exL−1þyM−1 ; ð2:32Þ

where Oðx; yÞ denotes a multiplet with rank r, whose
components are denoted by Oaðx; yÞ with a ¼ 0; � � � r − 1.
The BCH formula now leads to the following transforma-
tion law:

½Ln;Oðx; yÞ� ¼ ½ðxnþ1∂x þ ðnþ 1Þxny∂yÞ þ ðnþ 1ÞðxnΔþ nxn−1yξÞ�Oðx; yÞ;
½Mn;Oðx; yÞ� ¼ ðxnþ1∂y þ ðnþ 1ÞxnξÞOðx; yÞ; for n ≥ −1; ð2:33Þ

where ξ is the Jordan cell (2.24). Note that the action
of L0, L−1, and M−1 on the highest weight multiplets
remains diagonal, while the action of L1, M0, and M1

contains nondiagonal parts. From (2.33), we can get
the TO-OPE and MO-OPE for the primary multiplet
Oðx; yÞ,
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Tðx̃; ỹÞOðx; yÞ ∼ ΔO
ðx̃ − xÞ2 −

2ðỹ − yÞξO
ðx̃ − xÞ3 þ ∂xO

x̃ − x

−
ðỹ − yÞ∂yO

ðx̃ − xÞ2 ;

Mðx̃; ỹÞOðx; yÞ ∼ ξO
ðx̃ − xÞ2 þ

∂yO

x̃ − x
; ð2:34Þ

where we organize the expansion in ascending order of the
total power of (x̃ − x) and (ỹ − y), meanwhile put terms
with higher power of (ỹ − y) behind.
As proved in [28,58], from an equality for singlets, we

can always get the analog multiplet version by applying the
following replacement rule:

Fðξ; OÞ →
Xa
k¼0

1

k!
∂k
ξFðξ; Oa−kÞ; ð2:35Þ

where Fðξ; OÞ denotes any expression which explicitly
depends on the operator O and its boost charge ξ, and the
replacement should be performed on both sides of
the equality. In particular, the finite transformation law
for the multiplet can be obtained from (2.28) by applying
this replacement rule, and the result is

Õaðx̃; ỹÞ ¼
Xa
k¼0

1

k!
jf0j−Δ∂k

ξe
−ξg

0þyf00
f0 Oa−kðx; yÞ: ð2:36Þ

a. Quasiprimaries.—Quasiprimary operators transform
covariantly under the global part of the BMS3 symmetry,
which is isomorphic to the Poincaré group in three
dimensions. The infinitesimal transformations satisfy the
rule (2.33), but now with n ¼ −1, 0, 1, and the OPE with
the stress tensor takes the form

Tðx0; y0ÞOðx; yÞ ∼ � � � þ ΔO
ðx0 − xÞ2 −

2ðy0 − yÞξO
ðx0 − xÞ3 þ ∂xO

x0 − x

−
ðy0 − yÞ∂yO

ðx0 − xÞ2 ;

Mðx0; y0ÞOðx; yÞ ∼ � � � þ ξO
ðx0 − xÞ2 þ

∂yO

x0 − x
; ð2:37Þ

where � � � denotes terms more singular than ðx0 − xÞ−3.
Terms of order ðx0 − xÞ−3 do not appear due to the
conditions coming from M1 and L1. If Δ ¼ 2, then the
scaling of each term in the right-hand side must be the same
as ðx0 − xÞ−4 from dimensional analysis. On the other hand,
the weight of operators should be bounded from
below. This means that the most singular term in the
OPE must be of order ðx0 − xÞ−4. Further using the relation
L−1M ¼ M−1T, we conclude that quasiprimary multiplets
with Δ ¼ 2 have to satisfy

Tðx0; y0ÞOðx; yÞ ∼ c
2ðx0 − xÞ4 −

2c0ðy0 − yÞ
ðx0 − xÞ5 þ ΔO

ðx0 − xÞ2

−
2ðy0 − yÞξO
ðx0 − xÞ3 þ ∂xO

x0 − x
−
ðy0 − yÞ∂yO

ðx0 − xÞ2 ;

Mðx0ÞOðx; yÞ ∼ c0

2ðx0 − xÞ4 þ
ξO

ðx0 − xÞ2 þ
∂yO

x0 − x
; ð2:38Þ

where c and c0 are constant vectors with the same rank as
O. From the OPE (2.16), it is straightforward to see that the
stress tensor ð2M;TÞ form a rank-two multiplet, with the
conformal weight Δ ¼ 2 and boost charge ξ ¼ ð0

1
0
0
Þ. In

this case, we have

c ¼ ðcM; cLÞT; c0 ¼ ð0; 2cMÞT: ð2:39Þ

b. Two-point functions.—Let us first consider two-point
functions hOiaOjbi, where Oia belongs to a rank-ri
multiplet Oi, and Ojb belongs to a rank-rj quasiprimary
multipletOj. The two-point functions can be determined by
the Ward identities with respect to global symmetries. It is
always possible to choose a basis so that the operators
belonging to different multiplets have vanishing two-point
functions. The Ward identities with M−1 and L−1 imply
that the two-point functions only depend on x12 and y12.
Further using Ward identities with M0, M1, L0, and L1,
we get

hOiaðx1; y1ÞOjbðx2; y2Þi ¼ δijjx12j−2Δi e−2ξi
y12
x12Dab

�
y12
x12

�
;

ð2:40Þ

where the function Dabðy12x12
Þ satisfies the following differ-

ential equations

D0
ab þDa−1;b þDa;b−1 ¼ 0; ð2:41Þ

ðx1 þ x2ÞD0
ab þ 2x1Da−1;b þ 2x2Da;b−1 ¼ 0: ð2:42Þ

In the above equation we have omitted the argument of
Dab, and prime denotes derivative with respect to the
argument y12

x12
. Combing the above two equations, we learn

thatDab depends on the label a and b only through the sum
aþ b,

Da;b−1¼Da−1;b¼���¼Db;a−1¼Db−1;a; a;b¼1;� ��r−1;

ð2:43Þ

and Dab vanishes whenever one of the indices is 0,

Da0 ¼ D0b ¼ 0; a; b ¼ 0 � � � r − 2; ð2:44Þ
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where ri ¼ rj ¼ r. We denote q≡ aþ bþ 1 − r, and then
the most general solution of (2.41) satisfying the conditions
(2.43) and (2.44) is given by

Dab¼
8<
:
0 for q≡aþbþ1−r<0Pq

k¼0dðrþq−kÞ 1k!
�
−2y12
x12

�
k
for q≥0

;

ð2:45Þ

where dðrþq−kÞ are r undetermined integration constants,
which can be further fixed by redefining the operators in the
multiplet. To do so, we need to find the most general linear
transformations O → RO, where R is a r × r matrix, which
leaves the Jordan cell ξ invariant, namely

ξR ¼ Rξ: ð2:46Þ

The solution can be written as

Rab ¼
�
ca−b if a ≥ b

0 otherwise
; ð2:47Þ

which contains r arbitrary constants ck; k ¼ 0;…; r − 1.
These (r − 1) independent parameters ck; k ¼ 1;…; r − 1
can be used to eliminate r − 1 degrees of freedom in (2.45),
and leave an overall normalization related to the diagonal
element c0. This simplifies the two-point functions to the
following canonical form,

hOiaðx1;y1ÞOjbðx2;y2Þi

¼
8<
:
0 for q<0

δijdrjx12j−2Δi e−2ξi
y12
x12 1

q!

�
−2y12

x12

�
q
; otherwise

; ð2:48Þ

where dr is the overall normalization.

c. In states and out states.—Using the state-operator cor-
respondence2 on the plane,

jOai ¼ lim
y→0
x→0

Oaðx; yÞj0i; ð2:49Þ

we can define out states as the Hermitian conjugate of the
operator inserted at infinity,

hOaj ¼ lim
y→0
x→∞

Xa
k¼0

h0jOa−kðx; yÞ
1

k!
∂k
ξe

2ξyxx2Δ; ð2:50Þ

where we have used the transformation rule (2.36) to move
the operator from the origin to the point x ¼ ∞, y ¼ 0.
Note that the operators on the right-hand side of (2.50) are
to be understood as acting to the right. For all singlets

including the vacuum, the definition of the out state (2.50)
is the same as in CFT2. For multiplets, however, the out-
state hOaj becomes a mixture of operators in the multiplet
with indices no bigger than a.
The inner product between different components of a

rank-r multiplet primary can then be calculated using
(2.48) as

hOajObi¼ lim
x1→∞;x2→0;
y1→0;y2→0

1

k!
∂k
ξe

2ξ
y1
x1x2Δ1

Xa
k¼0

hOa−kðx1;y1ÞObðx2;y2Þi;

¼δaþb;r−1: ð2:51Þ

Unlike the case for singlets, for multiplets the two-point
function (2.48) is different from the inner product (2.51).
This is a characteristic feature of multiplets. From (2.51),
we can see that the r-dimensional matrix hOajObi has two
different eigenvalues �1, within which the eigenvalue −1
has algebraic multiplicity br=2c. This means that if the
theory contains highest weight multiplets, there must be
primary states with negative norm in the theory. Note that
this is to be distinguished from earlier discussions of
unitarity for the highest weight singlets [20], where
descendent states with negative norms have been found
assuming primary states have positive norms. Thus, we
have found another indication that BMSFT in the highest
weight representation is not unitary. In Sec. VI, we will
introduce a dual basis which is linear combination of the
out state (2.50) so that their inner products with the in-
states are diagonal. The dual basis is useful to define
the trace.

d. Three-point functions.—The three-point functions
involving multiplets can also be determined by the Ward
identities. For three multiplets Oi; i ¼ 1, 2, 3, the general
form of the three point function is given by

hOiaOjbOkci ¼ ABCijk; ð2:52Þ

where i, j, and k label the multiplets, while a, b, and c label
the components within a multiplet, and

A ¼ exp

�
−ξ123

y12
x12

− ξ312
y31
x31

− ξ231
y23
x23

�
; ð2:53Þ

B ¼jx12j−Δ123 jx23j−Δ231 jx31j−Δ312 ; ð2:54Þ

Cijk;abc¼
Xa−1
n1¼0

Xb−1
n2¼0

Xc−1
n3¼0

cðn1n2n3Þijk

ðpiÞn1ðpjÞn2ðpkÞn3
n1!n2!n3!

; ð2:55Þ

with

pi ¼ ∂ξi lnA: ð2:56Þ
2See Appendix A for more details of radial quantization and

the state-operator correspondence.
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Note that the three point function (2.52) factorizes into a
term Awhich depends on the boost charges, a term Bwhich
depends on the conformal weights, and a structure constant
term Cijk;abc. Both A and B are determined by kinematics,
while Cijk;abc encodes interactions. Note that Oia, Ojb, Okc

can belong to different multiplets of rank r1, r2, r3,

respectively. The coefficient cðn1n2n3Þijk encodes the dynami-
cal information of the theory. When r1 ¼ r2 ¼ r3 ¼ 1, the
three-point function reduces to (2.30).

D. Multiplets with ξ = 0

The case with ξ ¼ 0 turns out to be a bit subtle. On the
one hand, the action of M0 ∼ ∂y acts trivially on singlets
with ξ ¼ 0. As a result, correlation functions for singlets
with ξ ¼ 0 do not depend on y and they reduce to
correlators in chiral CFTs.
On the other hand, if multiplets exist, then the action of

M0 is still nontrivial because of existence of off-diagonal
elements, and we expect the correlators to have nontrivial
dependence on y. To calculate the correlation functions at
ξ ¼ 0, we should take the ξ → 0 limit of the correlation
functions of the ξ ≠ 0 case. If there are derivatives with
respect to ξ, such as in the three-point function (2.52), one
should take the derivatives first and then take ξ → 0.
As an example, the two-point correlation functions for

rank-2 multiplet with ξ ¼ 0 can be written as

hO1O1i ¼ −
1

x2Δ
2y
x
;

hO0O1i ¼
1

x2Δ
;

hO0O0i ¼ 0: ð2:57Þ
In Sec. III, we will see that such a multiplet with ξ ¼ 0
appears in our free scalar model.
To recapitulate, in this section we have introduced the

multiplet version of the highest weight representation of the
BMS algebra. The action of M0 on the primary states is
block diagonal, as described by (2.23). The OPE between a
rank r multiplet and the stress tensor (2.34) also acquires a
nondiagonal term, which mixes different components within
the multiplet. Further more, two-point (2.48) and three-point
(2.52) correlation functions for multiplets have also been
worked out using the BMS symmetry. It is very interesting to
further study four-point functions, which allows a formu-
lation of bootstrap program with BMS multiplets, similar to
the discussion of BMS bootstrap for singlets [26]. The
results for multiplets are more complicated, and related
discussions will be reported elsewhere [30].

III. BMS FREE SCALAR MODEL

In this sectionwe study a free scalarmodelwhich hasBMS
invariance. In Sec. III A we introduce the classical theory
and discuss the classical BMS invariance. In Sec. III B

we perform canonical quantization, and in Sec. III C we
discuss primary operators and correlation functions.

A. The classical theory

1. On the cylinder

We start with the action on a cylinder parametrized by
ðσ; τÞ with σ ∼ σ þ 2π,

S ¼ 1

4π

Z
dσdτ ð∂τϕÞ2: ð3:1Þ

The action also appears as part of the worldsheet action in a
tensionless limit of string theory [43,59–61]. In this paper,
however, we will study the model (3.1) as a quantum field
theory itself, without embedding it into a larger theory. The
equation of motion reads

∂2
τϕ ¼ 0: ð3:2Þ

The solutions to the equation of motion (3.2) satisfying the
periodic boundary condition on the cylinder can be written
in terms of the mode expansion as

ϕðσ; τÞ ¼
X∞
n¼−∞

e−iσnðAn þ iτBnÞ: ð3:3Þ

The reality condition then implies the adjoint relation

A†
n ¼ A−n; B†

n ¼ −B−n: ð3:4Þ

The conjugate momentum to the field ϕ is given by

Π ¼ δS
δ∂τϕ

¼ 1

2π
∂τϕ; ð3:5Þ

and the Poisson bracket is

fϕðσ; τÞ;Πðσ0; τÞg ¼ δðσ − σ0Þ: ð3:6Þ

It is not difficult to check that this action is invariant
under the BMS transformations (2.1). For infinitesimal
transformations parametrized by ε̃ðσÞ and εðσÞ,

σ → σ0 ¼ σ þ εðσÞ; ð3:7Þ

τ → τ0 ¼ τ þ ε0ðσÞτ þ ε̃ðσÞ; ð3:8Þ

the field ϕ transforms as a scalar,

δεðσÞϕ ¼ −εðσÞ∂σϕ − ε0ðσÞτ∂τϕ;

δε̃ðσÞϕ ¼ −ε̃ðσÞ∂τϕ: ð3:9Þ

The corresponding Noether currents can be obtained from
the standard Noether procedure,
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2πjεðσÞ ¼ −ðεðσÞT þ ε0ðσÞτMÞdσ − εðσÞMdτ; ð3:10Þ

2πjε̃ðσÞ ¼ −ðε̃ðσÞMÞdσ; ð3:11Þ

where the currents T and M are defined as

T ¼ −∂σϕ∂τϕ; ð3:12Þ

M ¼ −
1

2
∂τϕ∂τϕ: ð3:13Þ

The conservation laws are given by

djεðσÞ ¼ djε̃ðσÞ ¼ 0; ð3:14Þ

which can also be expressed in terms of the currents as

∂τT ¼ ∂σM; ∂τM ¼ 0: ð3:15Þ

The conservation laws allow us to define the conserved
charges as

QεðσÞ ¼
Z
σ-cycle

jεðσÞ ¼ −
1

2π

Z
2π

0

dσðεðσÞT þ ε0ðσÞτMÞ

∼ −
1

2π

Z
2π

0

dσ εðσÞðT − τ∂σMÞ;

Qε̃ðσÞ ¼
Z
σ-cycle

jε̃ðσÞ ¼ −
1

2π

Z
2π

0

dσ ε̃ðσÞM: ð3:16Þ

In additional to the BMS symmetries, we also note that
there is an affineUð1Þ symmetry, realized by τ-independent
shifts of the field ϕ parametrized by ΛðσÞ,

ϕðσ; τÞ → ϕ̃ðσ; τÞ ¼ ϕðσ; τÞ þ ΛðσÞ: ð3:17Þ

The associated Noether current and conserved charge are

2πjΛðσÞ ¼ iΛðσÞJðτ; σÞdσ; ð3:18Þ

Jðτ; σÞ ¼ JðσÞ ¼ i∂τϕ; ð3:19Þ

QΛðσÞ ¼
Z
σ-cycle

jΛðσÞ ¼
i
2π

Z
2π

0

dσΛðσÞJðσÞ: ð3:20Þ

Interestingly, we note that the current J is proportional to
the canonical momentum Π, and that its Sugawara stress
tensor is proportional to the current M,

Π ¼ −
i
2π

J; M ¼ 1

2
J2: ð3:21Þ

As a consistency check, we find that these charges
indeed implement the transformation (3.9) and (3.17) via
the Poisson bracket (3.6),

fQεðσÞ;ϕðτ; σÞg ¼ −εðσÞ∂σϕ − τε0ðσÞ∂τϕ ¼ δεðσÞϕðτ; σÞ;
ð3:22Þ

fQε̃ðσÞ;ϕðτ; σÞg ¼ −ε̃ðσÞ∂τϕ ¼ δε̃ðσÞϕðτ; σÞ; ð3:23Þ

fQΛðσÞ;ϕðτ; σÞg ¼ ΛðσÞ: ð3:24Þ

Furthermore, the currents transform as

δε;ε̃;ΛTðτ; σÞ ¼ −2ε0T − εT 0 − ε0τ∂τT

− 2ε00τM − 2ε̃0M − ε̃M0 þ iΛJ0; ð3:25Þ

δε;ε̃;ΛMðτ; σÞ ¼ −2ε0M − εM0; ð3:26Þ

δε;ε̃;ΛJðτ; σÞ ¼ −ε0J − εJ0: ð3:27Þ

To find the symmetry algebra, we need to first find the
symmetry generators, which are mode expansion of the
conserved charges (3.16) and (3.20), and can be obtained
by expanding the symmetry parameters εðσÞ, ε̃ðσÞ, and
ΛðσÞ in terms of the Fourier modes,

εn ¼ ε̃n ¼ einσ; Λn ¼ ieinσ: ð3:28Þ

The resulting symmetry generators are

Ln ≔ Qεn ¼ −
1

2π

Z
2π

0

dσεnðT − τ∂σMÞ;

Mn ≔ Qε̃n ¼ −
1

2π

Z
2π

0

dσε̃nM;

Jn ≔ QΛn
¼ −

1

2π

Z
2π

0

dσΛn∂τϕ: ð3:29Þ

These charges form an algebra under Poisson bracket,

fQεmðσÞ; QεnðσÞg ¼ −iðm − nÞQεmþnðσÞ; ð3:30Þ

fQεmðσÞ; Qε̃nðσÞg ¼ −iðm − nÞQε̃mþnðσÞ;

fQε̃mðσÞ; Qε̃nðσÞg ¼ 0;

fQεmðσÞ; QΛnðσÞg ¼ inQΛmþnðσÞ;

fQε̃mðσÞ; QΛnðσÞg ¼ 0;

fQΛmðσÞ; QΛnðσÞg ¼ 0: ð3:31Þ

Under the canonical quantization replacementf·; ·g → −i½·; ·�,
we get the BMS algebra without central terms at the classical
level, namely

½Lm; Ln� ¼ ðm − nÞLmþn;

½Lm;Mn� ¼ ðm − nÞMmþn;

½Mm;Mn� ¼ 0: ð3:32Þ
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Note that the affine Uð1Þ symmetry and the Virasoro algebra
generated by Lns together form a Virasoro-Kac-Moody
algebra,

½Lm; Jn� ¼ −nJmþn;

½Mm; Jn� ¼ 0;

½Jm; Jn� ¼ 0: ð3:33Þ

2. Mapping to the plane

Under the plane to cylinder map (2.9), the solution (3.3)
to the equation of motion rewritten on the plane is

ϕðx; yÞ ¼ AðxÞ þ yBðxÞ; ð3:34Þ

where

AðxÞ ¼
X
n

Anx−n; BðxÞ ¼
X
n

Bnx−n−1: ð3:35Þ

The Noether currents T and M corresponding to trans-
lations along x and y are

T ¼ −∂xϕ∂yϕ; ð3:36Þ

M ¼ −
1

2
∂yϕ∂yϕ: ð3:37Þ

The conserved charges on the plane are

Ln ¼
1

2πi

I
ððnþ 1ÞxnyM þ xnþ1TÞdx;

Mn ¼
1

2πi

I
dxxnþ1M: ð3:38Þ

The internal Uð1Þ current is

J ¼ ∂yϕ; ð3:39Þ

and the charges are given by

Jn ¼
1

2πi

Z
dxxn∂yϕ: ð3:40Þ

As a consistency check, theses charges on the plane (3.38)
and (3.40) are consistent with those on the cylinder (3.29)
under the coordinate transformation (2.9).

B. Canonical quantization

In this subsection we perform canonical quantization to
the scalar model (3.1). This amounts to replacing the
Poisson bracket (3.6) with the canonical commutation
relation

½ϕðσ1; τ0Þ;Πðσ2; τ0Þ� ¼ iδðσ1 − σ2Þ ¼ i
X
n

1

2π
e−inðσ1−σ2Þ;

ð3:41Þ

which can be equivalently written in terms of the mode
operators

½An; Bm� ¼ δnþm;0; ½An; Am� ¼ ½Bn; Bm� ¼ 0: ð3:42Þ

The commutation relations (3.42) are valid both on the
cylinder and on the plane. Henceforth later discussions will
be carried out on the plane, unless otherwise specified.
The quantum version of the classical Noether currents

Tðx; yÞ, MðxÞ, and JðxÞ that generate translations along
x and y and the internal Uð1Þ symmetry now become
operators:

Tðx; yÞ ¼ −∶∂xϕ∂yϕ∶;

MðxÞ ¼ −
1

2
∶∂yϕ∂yϕ∶; JðxÞ ¼ ∂yϕ; ð3:43Þ

where the definition of the normal order ∶ � � � ∶ depends on
the choice of the vacuum, which will be specified momen-
tarily. Here we would like to keep the normal ordering
implicit. The currents can be expanded in Laurent series as

T ¼
X
n

Lnx−n−2 −
X
n

ðnþ 1ÞyMn−1x−n−2; ð3:44Þ

M ¼
X
n

Mnx−n−2; ð3:45Þ

J ¼
X
n

Jnx−n−1; ð3:46Þ

which can be inverted to define infinitely many
charges as

Ln ¼
X∞
k¼−∞

∶kAkBn−k∶;

Mn ¼ −
1

2

X∞
k¼−∞

∶BkBn−k∶; Jn ¼ Bn; ð3:47Þ

with the Hermitian conjugates given by

L†
n ¼ L−n; M†

n ¼ M−n; J†n ¼ −J−n: ð3:48Þ

The charges are the quantum version of the classical
charges (3.38) and (3.40) on the plane.

1. Vacuum in the highest weight representation
and the state space

Note that so far we have not specified the vacuum for the
model (3.1). We are interested in the vacuum this is
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invariant under the global symmetries generated by L0;�1

and M0;�1. That is, the vacuum has to satisfy

L�1;0j0i ¼ M�1;0j0i ¼ 0: ð3:49Þ

To describe the vacuum in canonical quantization, we need
to translate these conditions in terms of Ans and Bms. As
½An; B−n� ¼ 1, An and B−n cannot annihilate the vacuum
simultaneously. If we let Bk0 j0i ¼ 0 for a given positive
integer k0, then A−k0 j0i ≠ 0. Note that the expressions of
L�1 (3.47) contain a term −k0A−k0Bk0�1. If we require L�1

to annihilate the vacuum term by term, Bk0�1 has to
annihilate the vacuum. We can keep using this argument
until we arrive at B0. Similar arguments also apply to other
cases, and we learn that

(i) if there exists some positive k0 such that Bk0 j0i ¼ 0,
then Bkj0i ¼ 0 for all k ≥ 0;

(ii) if there exists some positive k0 such that
B−k0 j0i ¼ 0, then B−kj0i ¼ 0 for all k ≥ 0;

(iii) if there exists some positive k0 such that Ak0 j0i ¼ 0,
then Akj0i ¼ 0 for all k > 0;

(iv) if there exists some positive k0 such that
A−k0 j0i ¼ 0, then A−kj0i ¼ 0 for all k > 0.

Obviously, neither i. and iv. nor ii. and iii. can happen
simultaneously. Therefore there are altogether two physi-
cally different choices3 for the vacuum that is compatible
with both the commutation relations and the symmetry
condition (3.49). Let us start with entry i. listed above,
namely

Bkj0i ¼ 0; A−kj0i ≠ 0; ∀ k ≥ 0: ð3:50Þ

Then we have two feasible choices, case ii. or case iii.
Choosing i. and ii. leads to the so-called induced vacuum,
which we will describe in detail in Appendix B, while
choosing i. and iii. leads to the highest weight vacuum, as
discussed below.
Here in this section, we will focus on the choice with i.

and iii., which combine as the following conditions:

Anj0i ¼ 0; n > 0;

Bnj0i ¼ 0; n ≥ 0: ð3:51Þ

It leads to the following normal ordering prescription via
creation and annihilation operators,

∶AnBm ≔
�
AnBm; n ≤ 0

BmAn; n > 0
: ð3:52Þ

From the vacuum condition (3.51), and the normal ordering
(3.52), it is not difficult to verify that, on the plane,

Mnj0i ¼ 0; Lnj0i ¼ 0; n ≥ −1: ð3:53Þ

In other words, the vacuum (3.51) is (i) a highest weight
state (singlet) with zero conformal weight and boost charge
and (ii) invariant under the global part of the BMS algebra.
Therefore the choice of the vacuum (3.51) is the proper
vacuum in the highest weight representation.
Note that Jn ¼ Bn, then (3.51) and (3.53) imply that this

vacuum is also the highest weight vacuum of the Virasoro-
Kac-Moody algebra (3.33). If the free scalar BMSFT is part
of the world sheet theory of tensionless strings, then the
vacuum (3.51) is the vacuum of a single string with zero
momentum in the ϕ direction of the target space. The
momentum can be turned on by considering an eigenstate
of B0, which satisfies

J0jαi ¼ B0jαi ¼ αjαi;
Anjαi ¼ 0; Bnjαi ¼ 0; n > 0: ð3:54Þ

This can be viewed as a coherent state in the Fock space
basis, and one can check that this state is also a highest
weight state with

Δ ¼ 0; ξ ¼ −
α2

2
: ð3:55Þ

For α ≠ 0, the momentum eigenstate are not annihilated by
translational generators, M−1jαi ≠ 0; L−1jαi ≠ 0. Other
states in the theory can be obtained by acting creation
operators on zero mode states jαi.
Putting everything together, we now describe the state

space of the free BMS scalar with the choice of the vacuum
(3.51). Let ⃗i≡ ði1; i2 � � �Þ; ⃗i≡ ðj1; j2 � � �Þ, then the state
space is spanned by

j⃗i; j⃗;αi ≔ Ai1
−1A

i2
−2 � � �Bj1

−1B
j2
−2 � � � jαi: ð3:56Þ

2. The quantum BMS algebra

Now we consider the action of other charges on the
vacuum, and calculate the resulting algebra. With some
straightforward but tedious calculation, we find that the
generators (3.47) indeed form the BMS algebra (2.8) with
central charges

cL ¼ 2; cM ¼ 0: ð3:57Þ

Additionally, the Uð1Þ charges Jn together with Ln form a
Uð1ÞVirasoro-Kac-Moody algebra (3.33), with a vanishing
Kac-Moody level.
Before moving on, we briefly comment on operators on

the plane versus on the cylinder. On the plane, the normal
ordering (3.52) implies the vacuum expectation values of
the stress tensors on the plane vanishes

3The other two choices can be obtained from these two by
switching the sign.
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hTðx; yÞi ¼ hMðx; yÞi ¼ 0; ð3:58Þ

and hence all the vacuum expectation values of the BMS
charges are zero. Using the transformation law (2.18) under
the plane-to-cylinder map (2.9), the zero-mode generator of
the Virasoro algebra on the cylinder has a shift:

Lcyl
0 ¼ Lpl

0 −
1

12
: ð3:59Þ

The above results can also be obtained by assuming
symmetric ordering in Lcyl

0 , then the Casimir energy can
then be obtained from ζ-function regularization.

C. Primary operators and correlation functions

In this subsection we calculate the Green’s function, list
the fundamental primary operators, and calculate their
correlation functions.
With the mode expansion (3.34) of the fundamental field

ϕ and the choice of the vacuum in the highest weight
representation (3.51), we can define the Green’s function
of ϕ as

hϕðx1;y1Þϕðx2;y2Þi¼h0jXðϕðx1;y1Þϕðx2;y2ÞÞj0i
−h0j∶ϕðx1;y1Þϕðx2;y2Þ∶j0i; ð3:60Þ

where Xð� � �Þ denotes radial order on the complexified x
plane, related to the time order on the Lorentz cylinder, as
explained in Appendix A. Additionally, ∶ � � � ∶ denotes the
normal order (3.52), which is compatible with the highest
weight vacuum (3.51). From the commutation relation of
the modes An and Bn, we learn that only the cross terms
contribute, and that the Green’s function is given by

hϕðx1; y1Þϕðx2; y2Þi ¼ −
y1 − y2
x1 − x2

: ð3:61Þ

This provides the following OPE for the fundamental
field

ϕðx1; y1Þϕðx2; y2Þ ∼ −
y1 − y2
x1 − x2

: ð3:62Þ

The OPEs of other operators can then be obtained from
(3.62) via Wick contractions. In particular, we note that the
OPEs among the stress tensors read

Tðx0; y0ÞTðx; yÞ∼ 1

ðx0 − xÞ4 þ
2Tðx; yÞ
ðx0 − xÞ2 −

4ðy0 − yÞMðx; yÞ
ðx0 − xÞ3

þ ∂xTðx; yÞ
x0 − x

−
ðy0 − yÞ∂yTðx; yÞ

ðx0 − xÞ2 ;

Tðx0; y0ÞMðx; yÞ∼ 2Mðx; yÞ
ðx0 − xÞ2 þ

∂xMðx; yÞ
x0 − x

;

Mðx0; y0ÞMðx; yÞ∼ 0: ð3:63Þ

These OPEs are consistent with the BMS algebra (2.8),
which has been calculated directly in the previous sub-
section from the mode expansion of T andM in terms of Ln
and Mn and the commutation relation of An and Bn. In
particular, the central charges cL ¼ 2 and cM ¼ 0 can be
read from the most singular terms.

1. Primary operators

Now let us find the primary operators in the free BMS
scalar field theory. According to the general discussion in
Sec. II, BMS primary operators in a generic multiplet have
the defining property that the OPEs with the stress tensors
T and M have to be of the form (2.34). This can be used to
find all the primary operators in the free BMS scalar field
theory. We first consider

O0ðx; yÞ≡ i∂yϕðx; yÞ; O1ðx; yÞ≡ i∂xϕðx; yÞ: ð3:64Þ

where the prefactor i makes the operators Hermitian. Their
OPEs with the stress tensor read

Tðx0; y0ÞO0ðx; yÞ ¼
O0

ðx0 − xÞ2 þ
∂xO0

x0 − x
;

Tðx0; y0ÞO1ðx; yÞ ¼
O1

ðx0 − xÞ2 þ
∂xO1

x0 − x
þ −2ðy0 − yÞO0

ðx0 − xÞ3 þ −ðy0 − yÞ∂yO1

ðx0 − xÞ2 ;

Mðx0; y0ÞO0ðx; yÞ ¼ 0;

Mðx0; y0ÞO1ðx; yÞ ¼
O0

ðx0 − xÞ2 þ
∂yO1

x0 − x
: ð3:65Þ
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Comparing to (2.34), we learn that O ¼ ðO0; O1ÞT is a
rank-2 multiplet with weight Δ ¼ 1 and vanishing boost
charge ξ ¼ 0.
In addition, there exist “vertex operators” in this free

BMS scalar model, which are operators of the form

Vαðx; yÞ≡ ∶eαϕðx;yÞ∶: ð3:66Þ

From their OPEs with the stress tensor,

Tðx0; y0ÞVαðx; yÞ ¼
∂yVα

x0 − x
−
ðy0 − yÞ∂yVα

ðx0 − xÞ2 þ α2ðy0 − yÞVα

ðx0 − xÞ3 ;

ð3:67Þ

Mðx0; y0ÞVαðx; yÞ ¼
∂yVα

x0 − x
þ − α2

2
Vα

ðx0 − xÞ2 ; ð3:68Þ

we can read that the vertex operators are singlet primary
operators with Δ ¼ 0 and ξ ¼ −α2=2. It is interesting to
note that α can be either real or purely imaginary, since
there are no constraints on the boost charges other than
reality. This is different from the usual case of relativistic
theory for free scalars which are 2D CFTs, where unitarity
requires positive conformal weights hence purely imagi-
nary αs.
To summarize, we find that ðO0; O1Þ is a rank-2 primary

multiplet with weight Δ ¼ 1 and boost charge ξ ¼ ð0
1
0
0
Þ.

Additionally, the vertex operator Vα with α ∈ R ∪ iR is a
singlet primary operator with Δ ¼ 0 and ξ ¼ −α2=2.

2. Operator basis

Given the state space as described by (3.56), we can find
the basis of local operators via the state operator corre-
spondence (2.49).
Let us first look at the states that correspond to the Vertex

operators Vαs, which by definition are highest weight states
carrying exactly the same quantum numbers as the zero
mode state jαis. Therefore we identify

jαi ¼ lim
x→0;y→0

Vαðx; yÞj0i: ð3:69Þ

Now let us consider the weight 1 primary operators
O1 ¼ i∂xϕ, O0 ¼ i∂yϕ as defined in (3.64). One finds

lim
x→0;y→0

O1j0i ¼ iA−1j0i; ð3:70Þ

lim
x→0;y→0

O0j0i ¼ iB−1j0i: ð3:71Þ

Their descendants are then

∂kO1j0i ¼ i∂kþ1
x ϕðx; yÞj0i ¼ iðkþ 1Þ!A−k−1j0i; ð3:72Þ

∂kO0j0i ¼ i∂k
x∂yϕðx; yÞj0i ¼ iðkþ 1Þ!B−k−1j0i: ð3:73Þ

That is, the states with a single creation operator A−k
correspond to the operator ∂k

xϕðx; yÞ, and the states with
single B−k correspond to the operator ∂k−1

x ∂yϕðx; yÞ. This
relation also works for the composite states, namely

∶∂k1
x ϕ∂k2

x ϕ� � �∂l1−1
x ∂yϕ∂l2−1

x ∂yϕ∶∼A−k1A−k2 �� �B−l1B−l2 � �� :
ð3:74Þ

Putting all the above together, we learn that the state
space are generated by acting operators of the form (3.74)
on the zero mode states jαis, the latter of which correspond
to vertex operators. Therefore we conclude that in the BMS
free scalar model, there exists a complete basis of local
operators,

fVα; ∶∂k1
x ∂δ1

y ϕ � � � ∂kn
x ∂δn

y ϕeαϕ∶g
n ∈ Zþ; kn þ δn ≥ 1; kn;∈ N; δn ¼ 0; 1; α ∈ R ∪ iR;

ð3:75Þ

which, when inserted at the origin, give all states in the state
space spanned by (3.56). As a special case, the identity
operator corresponds to I ¼ V0. The only fundamental
primary operators are f∂xϕ; ∂yϕ; Vα ¼ eαϕ; α ∈ R ∪ iRg.

3. Correlation functions

Correlation functions can be obtained from the OPEs.
Let us first consider the rank-2 multiplet (3.64). The two-
point functions are given by

hO0ðx1; y1ÞO0ðx2; y2Þi ¼ 0; ð3:76Þ

hO0ðx1; y1ÞO1ðx2; y2Þi ¼
1

x212
; ð3:77Þ

hO1ðx1; y1ÞO1ðx2; y2Þi ¼ −
2y12
x312

; ð3:78Þ

where x12 ¼ x1 − x2, y12 ¼ y1 − y2. The two-point func-
tions above agree with the general result for a ξ ¼ 0 rank-2
multiplet (2.57). All three-point functions within the
multiplet vanish, namely,

hOaðx1; y1ÞObðx2; y2ÞOcðx3; y3Þi ¼ 0: ð3:79Þ

Next, the vertex operator Vα (3.66) satisfies the follow-
ing OPE,

Vαðx0; y0ÞVβðx; yÞ ∼ e−αβ
y0−y
x0−xVαþβ; ð3:80Þ
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which implies the correlation functions,

hVαðx1; y1ÞVβðx2; y2Þi ¼
�
eα

2y1−y2
x1−x2 ; αþ β ¼ 0

0; αþ β ≠ 0
: ð3:81Þ

Using the state operator correspondence, this implies that
zero mode background satisfy the following orthonormal
condition

hα0jαi ¼ δα0;−α: ð3:82Þ

More generally, we have

�Yn
k¼1

Vαkðxk; ykÞ
	

¼ exp

�Xn
i<j

ð−αiαjÞ
yi − yj
xi − xj



; ð3:83Þ

which do not vanish only when the following condition is
obeyed: X

k

αk ¼ 0: ð3:84Þ

The above condition can also be understood from the
charge conservation of the internal Uð1Þ symmetry (3.47).
The vacuum is charge neutral as J0j0i ¼ B0j0i ¼ 0, while
the vertex operator Vα carries global Uð1Þ charge α,

½J0; Vα� ¼ αVα: ð3:85Þ

Therefore the condition (3.84) is just the condition for
charge conservation. Note that the multiplet ðO0; O1ÞT is
already charge neutral under the global Uð1Þ symmetry, so
there are no additional constraints for correlations among
these operators.
Finally, let us consider the OPEs between the ðO0; O1ÞT

multiplet and the vertex operators,

O0ðx0; y0ÞVαðx; yÞ ∼ −
iα

x0 − x
Vαðx; yÞ; ð3:86Þ

O1ðx0; y0ÞVαðx; yÞ ∼
iαðy0 − yÞ
ðx0 − xÞ2 Vαðx; yÞ; ð3:87Þ

which means that the two-point functions between them
always vanish. Using Wick’s theorem, we find that the
nonvanishing three-point functions are

hO0ðx1ÞVαðx2; y2ÞV−αðx3; y3Þ ¼
−iα
x12

eα
2y23
x23 þ iα

x13
eα

2y23
x23 ;

ð3:88Þ

hO1ðx1;y1ÞVαðx2;y2ÞV−αðx3;y3Þ¼
iαy12
x212

eα
2y23
x23 −

iαy13
x213

eα
2y23
x23 :

ð3:89Þ

We end this section with the following concluding
remarks:
(1) The quantum theory of the free scalar BMSFT (3.1)

depends on the choice of the vacuum. We find a
self-consistent highest weight vacuum, where the
free BMS scalar has the central charges cL ¼ 2
and cM ¼ 0.

(2) We calculate the correlators in the highest weight
vacuum. The primary operators consist of fI;O ¼
ðO0 ¼ i∂yϕ; O1 ¼ i∂xϕÞ; Vα ≕ eαϕ∶jα ∈ R ∪ iRg,
where O is a primary multiplet with Δ ¼ 1, ξ ¼ 0
and Vαs are vertex operators.

(3) In the context of tensionless string theory, different
types of vacua have been discussed, including the so-
called induced vacuum, flipped vacuum and oscil-
lator vacuum. The induced vacuum is related to our
discussion in Sec. III. 2. 1 with choice i. and ii., a
detailed discussion of which will be postponed to
Appendix B. The so-called flipped vacuum in [62] is
similar to our highest weight vacuum (3.51), but
without requiring B0j0i ¼ 0, and hence is not invari-
ant under the action of L−1 and M−1. The oscillator
vacuum is not invariant under the global subgroup of
the BMS group either. Thus our highest weight
vacuum provides a new starting point for the study
of the free scalar BMSFT (3.1) as a quantum theory.

IV. THE ENLARGED BMS MODULE

In the last section we found a basis of the state space
(3.56) in terms of annihilation and creation operators An,
Bn, and a basis of the local operators (3.75) in terms of the
composite operators constructed from O0, O1. In this
section, we will see how to organize the states and local
operators in terms of BMS modules. Because this model
has cM ¼ 0, novel features appear, and it turns out the states
have to be organized into an enlarged BMS module, which
is similar to the so-called staggered module of logarithmic
CFTs [46–51].

A. Truncation at cM = 0?

In this subsection we revisit the general analysis of
BMSFTs with cM ¼ 0 [21], which states that the BMS
module has a truncation as a Virasoro module. We will
show that this statement is true provided that there are no
extra quasiprimary operators with Δ ¼ 2 other than T and
M. In this case, the theory does not allow multiplets either.
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From the OPE of the stress tensor in a generic BMS field
theory (2.16), we learn that the stress tensor T andM form a
rank-2 multiplet O ¼ f2M;TgT with conformal weight
Δ ¼ ð2

2
Þ and boost charge ξ ¼ ð0

1
0
0
Þ. An interesting special

case is when cM ¼ 0, which actually occurs in the free
BMS scalar. In this case, the state M−2j0i has a vanishing
inner product with both itself and the state L−2j0i. If we
assume that there are no other level 2 states in the vacuum
module,M−2j0i will be a null state as it is orthogonal to all
states. By considering the inner products of the higher
descendant states, one can similarly arrive at the conclusion
that Mi

−n � � � j0i; n > 0 are all null states. Then the vacuum
is invariant under the action of all the Mns for arbitrary
integer n. This leads to further constrains on the two-point
functions,

hMnjOiðx1; y1ÞOjðx2; y2Þj0i
¼ h0jMnOiðx1; y1ÞOjðx2; y2Þj0i ¼ 0; ∀ n ∈ Z; ð4:1Þ
where we have used the fact thatM is the top component of
the rank-two multiplet so that the out state hMnj is h0jMn
according to the definition (2.50). Using the Ward identity,
the above condition leads to the following differential
equations,

h0jMðxÞOiðx1;y1ÞOjðx2;y2Þj0i

¼
X
k¼1;2

� ∂yk

x−xk
þ ξk
ðx−xkÞ2

�
h0jOiðx1;y1ÞOjðx2;y2Þj0i¼0:

ð4:2Þ
Two-point functions have to satisfy (4.2) in addition to

the six conditions coming from the global symmetries
which leave the vacuum invariant. Plugging the solution
(2.48) into (4.2), one can check that the allowed solutions
have to be y independent and meanwhile have ξ ¼ 0. On
the other hand, according to the discussion in Sec. II C 2, a

multiplet with rank r > 1, there always exists 0 ≤ a; b < r
satisfying q ¼ aþ bþ 1 − r > 0, such that hOaObi has y
dependence even if ξ ¼ 0 (2.48). Therefore the existence of
multiplets is not compatible with (4.2), and such a theory
only admits singlets with ξ ¼ 0.
From the above argument, one may draw the conclusion

that the highest weight representation of the BMS algebra
has a truncation to the one of the Virasoro algebra [21],
with no appearance of multiplets. In the free scalar model,
however, we have explicitly constructed a multiplet with
ξ ¼ 0. To understand the apparent discrepancy, let us recall
that in the general analysis above, we have assumed that
there are no other states in the vacuum module at level two
other than L−2j0i and M−2j0i. On the other hand, in the
free scalar model, there exists a new quasiprimary that is
not orthogonal to M−2j0i, and hence the aforementioned
truncation does not happen. We will illustrate this point in
more detail in the following subsection.

B. Enlarged BMS module in the free scalar model

In the general analysis above, we have assumed that the
only weight 2 quasiprimary operators in the vacuum
module are the stress tensor T and M. However, in the
free BMS scalar model, we find that there is another weight
2 state −A−1A−1j0i, which corresponds to the operator

K ≡ −
1

2
∶∂xϕ∂xϕ∶: ð4:3Þ

The existence of (4.3) violates the assumption in the
subsection above, so that the obstruction (4.2) of having
highest weight multiplets disappears, and the truncation to
the Virasoro module will not happen. In fact, the new
operator (4.3) will enlarge the highest weight module in our
free scalar model. To see this explicitly, we first calculate
the OPEs using the ϕϕ OPE (3.62), and the results are as
follows:

Mðx0; y0ÞKðx; yÞ ∼ 1

2ðx0 − xÞ4 þ
T

ðx0 − xÞ2 þ
∂yK

ðx0 − xÞ ;

Tðx0; y0ÞKðx; yÞ ∼ −2ðy0 − yÞ
ðx0 − xÞ5 −

2ðy0 − yÞT
ðx0 − xÞ3 þ 2K

ðx0 − xÞ2 þ
∂xK

ðx0 − xÞ −
ðy0 − yÞ∂yK

ðx0 − xÞ2 : ð4:4Þ

Comparing (3.63) and (4.4) with the defining properties of
quasiprimary multiplets (2.38), we find that the operators
T ¼ f2M;T;Kg actually form a rank-3 quasiprimary
multiplet with weight and charge,

Δ ¼

0
B@

2

2

2

1
CA; ξ ¼

0
B@

0 0 0

1 0 0

0 1 0

1
CA: ð4:5Þ

One can also explicitly calculate the inner products
between states which correspond to different components
of T, and verify that they indeed satisfy (2.51), namely

hTjTiab ¼ δaþb;2; ð4:6Þ

which clearly shows that M−2j0i is not a null state. The
vacuum is still invariant under the global part of the BMS
group generated by fL0;�1;M0;�1g, but the action of other
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Mns provides no further constraints on the correlation
functions. In this case, the representation of the BMS
algebra does not truncate to that of a Virasoro algebra as
was argued in [21]. Instead, the representation of the BMS
algebra is enlarged to the so-called staggered module which
we will describe below.
For completeness, we also provide the OPE between K

and other primary operators here,

Kðx0; y0ÞO0ðx; yÞ ∼
O1

ðx0 − xÞ2 þ
∂xO1

ðx0 − xÞ þ
ðy0 − yÞ∂xO0

ðx0 − xÞ2 ;

ð4:7Þ

Kðx0; y0ÞO1ðx; yÞ ∼
−2ðy0 − yÞO1

ðx0 − xÞ3 −
2ðy0 − yÞ∂xO1

ðx0 − xÞ2

−
2ðy0 − yÞ2∂xO0

ðx0 − xÞ3 ; ð4:8Þ

Kðx0;y0ÞVαðx;yÞ∼−
α2ðy0−yÞ2Vα

2ðx0−xÞ4 −
ðy0−yÞ∂xVα

ðx0−xÞ2 : ð4:9Þ

1. The representation

In Sec. III, we discussed the operator basis where the
primary operators were found to be I,O, and Vαs, and other
operators should be organized into one of the three families.
We have just learnt that ð2M;T;KÞ form a quasiprimary
triplet, which means that K should belong to the vacuum
module.4 However, in the usual BMS highest weight
representation, the vacuum module only contains the
composite operators of T and M. To accommodate the
new operatorK, the ordinary highest weight module should
be enlarged to the so-called staggered BMS module, which
is an indecomposable representation of the BMS algebra,
defined as the semidirect product of two ordinary highest
weight representations. While it is interesting to analyze
this enlarged module at cM ¼ 0 from a more general point
of view, in this paper we restrict our discussion to the free
scalar model, and illustrate how states are organized into
the new module below.
The staggered BMS module can be constructed as

follows, starting from a primary state O, or more generally
a primary multiplet O, we can first construct the ordinary
BMS module by applying L−n;M−n with n > 0 succes-
sively. To enlarge the module, we add one more state that
corresponds to the composite operator ∶KO∶, and construct
its BMS descendants by acting with L−n;M−n successively.
We will refer to states descended from O (including O
itself) as the main branch, and states from ∶KO∶ as
the first side branch. Similarly, the composite operators

∶KKO∶; ∶KKKO∶, etc., and their BMS descendants form
the second side branch, the third side branch, etc. As a
result, the primary operators O and the composite operators
∶KnO∶ are all seeds of the enlarged module, from which
we can build infinite many branches of states by acting with
the raising operators of the BMS algebra. In order to form a
single BMS module instead of separate modules, the
branches must be bonded together. As wewill see explicitly
momentarily, it is M0 that sews the states in different
branches together. Consequently, states at each level will be
grouped into several multiplets, and states within each
multiplet are related by the action ofM0. Interestingly, if we
apply the lowering operators Ln;Mn; n ≥ 1 to states in the
side branches, we may obtain states in the main branch,
whereas states in the main branch will only flow within the
main branch. Key features of the staggered module include
the following:
(1) Removing the side branches, we are left with the

main branch, which is the usual highest weight
module.

(2) The first side branch can be viewed as a highest
weight module if we mod out the main branch; the
second side branch can be viewed as a highest
weight module if we mod out both the main branch
and first side branch; similarly, the (nþ 1)th side
branch can be viewed as a highest weight module if
we mod out the first to the nth side branches as well
as the main branch.

(3) The seed of a side branch can be mapped to the seed
of the main branch by lowering operators, whereas
there are no raising operators to map the seed of the
main branch to seeds of the side branches.

The full structure of the staggered module is schematically
depicted in Fig. 1, where the black dot represents
the primary O, red dot represents the new seeds
∶KO∶; ∶KKO∶;…, each vertical squiggly arrow represents
a branch descended from a seed operator, and the blue
arrows represents the action of M2 which maps the seeds
from different branches. This structure is very similar to
logarithmic CFTs with c ¼ 0 [46–51], where the Virasoro
stress tensor is accompanied by a logarithmic partner
and the Virasoro module is also enlarged to a staggered
module.
In the following, we use diagrams to illustrate different

modules in the free scalar model, where we use solid dots
for states, downward arrows for raising operators L−n;M−n

FIG. 1. Staggered module.

4We will not distinguish the notion of states and operators, and
hence of BMS modules and operator families in this section.
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with n > 0, horizontal arrows for M0, and upward arrows
for lowering operators Ln, Mn with n > 0. We also use
different colors to distinguish different generators. The
Virasoro generators are in black and the supertranslations
generatorsMn are all in blue. States that can be viewed as a
Virasoro descendant of the primary are colored in black,
states that are BMS descendants but not Virasoro descend-
ants are colored in blue, and new states related to the
operator K are all in red. At each level, we always put the
states with more B−ns to left. As the action ofMn decreases
the number of A−ns and increases the number of B−ns, all
the blue arrows representing Mn should always point left.
In our convention, states that are linked by horizontal blue
lines are within a multiplet.

2. The vacuum module

Let us first consider the vacuum module up to states with
Δ ¼ 3, as depicted in Fig. 2. Up to this level, the vacuum
module only contains two seeds, the vacuum at level zero
and the quasiprimary state jKi at level two. Other states in
the module can be generated from the seeds by the raising
operators L−n and M−n with n > 0 represented by down-
ward arrows. Now let us comment on the states at each
level. There is a unique state at level zero, the vacuum state,
which is represented by the black dot in the middle of the
first line. There are no states at level one, as both L−1 and
M−1 annihilate the vacuum. The three states at level 2
form a rank 3 quasiprimary multiplet, of which two states
B2
−1j0i ∼ jMi and A−1B−1j0i ∼ jLi are in the main branch,

and the new state A2
−1j0i ∼ jKi, represented by the red

dot on the right end, seeds the first side branch. The four
states at level 3 split into two multiplets: a singlet
L−1jTi − 3M−1jKi, and a triplet consisting of L−1jMi,
L−1jTi þM−1jKi, and L−1jKi. Note that we have omitted
the links representing the direct action of L−3;M−3 in the
figure, since they can, respectively, be expressed in terms of
L−1L−2 and L−1M−2.
Finally, applying lowering operators, which run

upwards, will add further links between states. For
example, there is a blue arrow pointing to northwest on

the lower left part of Fig. 2, illustrating the relation
M1ðL−1jTiÞ ∼ jMi. An interesting feature is that usually
arrows for Lns run double directions, while those for Mns
do not. For example, actingM2 on the new seed jKiwill get
the vacuum, but there is no raising operator that maps the
vacuum to the K state. In addition, the K state is annihilated
by the Virasoro lowering modes Ln; n > 1, represented by
dashed lines. For simplicity, we have omitted all null states
except for those at level zero, which are represented by the
symbol ×. From Fig. 2, it is clear that the vacuum module
does not only contain the Virasoro descendants that are
represented by black dots, but also contain the M descend-
ants colored in blue, and the novel K states colored in red.
Thus, instead of a truncation, we have an enlargement of
the BMS highest weight representation.

3. The O module

Now let us consider the module seeded by the primary
multiplet O ¼ ðO0; O1ÞT , which has conformal weight
Δ ¼ 1. The O module also shares the key features of a
staggered module, although it is more complicated than the
vacuum module. To make the picture clear, we split the O
module into two figures. Figure 3 contains the primary
multiplet O and their SLð2;RÞ descendants, L−1O with
Δ ¼ 2 and L2

−1O with Δ ¼ 3. States at each level form a
multiplet as indicated by the horizontal blue lines. Note that
Fig. 3 does not contain new states corresponding to the
presence of the operator K. In Fig. 4, the two states
with Δ ¼ 1 are also the primary multiplet O, and the four
states with Δ ¼ 3, which from left to right are
M−2jO0i; L−2jO0i; L−2jO1i, and jKO1i, form a rank 4
multiplet. Again, the new state jKO1i colored in red
provides a seed for the enlargement of the representation.
Putting the vacuum module and the O module together,

we summarize, up to Δ ¼ 3, the number of states, quasi-
primary states, primary states, and also the organization of
the multiplets in the table in Fig. 5. In the last line, we use
numbers in bold font to indicate the rank of the multiplets.
For example, 3þ 2 means that the five states with Δ ¼ 2
split into a multiplet of rank 3 and a multiplet of rank 2.

FIG. 3. O module, part I: states with Δ ¼ 1: jO0i; jO1i; states
with Δ ¼ 2: L−1jO0i; L−1jO1i; states with Δ ¼ 3:
L2
−1jO0i; L2

−1jO1i.

FIG. 2. The vacuum module: the vacuum state with Δ ¼ 0;
states with Δ ¼ 2 form a quasiprimary multiplet, from left to
right: jMi; jTi; jKi; states with Δ ¼ 3 from left to right:
L−1jMi; L−1jTi;M−1jKi; L−1jKi. The four states at level 3 split
into two multiplets: a singlet L−1jTi − 3M−1jKi, and a triplet
consisting of L−1jMi, L−1jTi þM−1jKi, and L−1jKi.
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To recapitulate, we have learnt that BMS field theories
with cM ¼ 0 are special and subtle. In a general BMS field
theory, the stress tensors T,M are in a multiplet. Depending
on the details of the theories, there are two possibilities for
the representation theories as follows:

(i) If T, M are the only quasiprimary operators with
Δ ¼ 2, then the highest weight representation of the
BMS algebra reduces to that of the Virasoro algebra.
In particular, BMS multiplets should not appear, and
all states should have vanishing boost charge ξ ¼ 0.

(ii) If there are other quasiprimary fields with Δ ¼ 2, so
that the multiplet containing T, M is enlarged, then
the highest weight representation of the BMS
algebra is also enlarged. BMS primary multiplets
can appear, and the truncation does not happen.

For the BMS free scalar model with cM ¼ 0, we indeed find
an extra quasiprimary operator K, which provides a seed to
enlarge the ordinary highest weight module. We have also
explicitly found a rank-2 primary multiplet O. It would be
interesting to study general BMS field theories with
cM ¼ 0. In particular, the associativity of the operator
algebra can be used to constrain the stress tensor multiplet,
which can help us to systematically classify this class of
theories. We leave this to further work.

V. ULTRARELATIVISTIC LIMIT FROM CFT2

So far we have been discussing the free scalar model as
an intrinsic BMSFT. Alternatively, it is also useful to make
connections to relativistic CFT2s. Starting from the highest
weight representation of a CFT2, we can construct the so-
called flipped representation as we will describe momen-
tarily. Then BMSFT in the highest representation can be
obtained as the Ultrarelativistic limit of CFT2 in the flipped
representation. In this section, we will first revisit the

flippingþ UR limit of the CFT2 on the cylinder discussed
in [21,26,33,45], and point out a subtlety in the limit on the
plane. Then we will discuss the free BMS scalar model as a
flippingþ UR limit of a free scalar CFT. Starting from a
CFT2, one can also take the NR limit to obtain a Galilean
conformal theory, which we will discuss in Appendix C.
For the BMS algebra and field theories as the UR limit of
CFT2s, please also see [19,40].

A. General discussion on the UR limit

1. UR limit on the cylinder

Consider a CFT2 on the cylinder parametrized by σ, t
with the periodicity condition

σ ∼ σ þ 2π: ð5:1Þ

The infinitesimal conformal transformations are
generated by

lþn ¼ i
2
eiðσþtÞnð∂σ þ ∂tÞ; l−n ¼ −

i
2
e−iðσ−tÞnð∂σ − ∂tÞ:

ð5:2Þ

Conformal transformations are implemented in CFT2 by
the Virasoro generators Lþ

n ; L−
n , which form two copies of

the Virasoro algebra

½Lþ
n ; Lþ

m� ¼ ðn −mÞLþ
mþn þ

c
12

nðn2 − 1Þδmþn;0;

½L−
n ; L−

m� ¼ ðn −mÞL−
mþn þ

c̄
12

nðn2 − 1Þδmþn;0;

½Lþ
n ; L−

m� ¼ 0: ð5:3Þ

The UR limit on the cylinder is defined as

t ¼ ϵτ; ϵ → 0 ð5:4Þ

so that the speed of light goes to zero, which is the reason
why this limit is called the ultrarelativistic limit. Under this
limit the conformal transformations become BMS trans-
formations generated by

ln ¼ lþn − l−−n ¼ ieinσð∂σ þ inτ∂τÞ;
mn ¼ ϵðlþn þ l−−nÞ ¼ ieinσ∂τ: ð5:5Þ

Correspondingly, the Virasoro algebra (5.3) becomes the
BMS algebra (2.8) via a Wigner-Inönü contraction [63],

Ln ¼ Lþ
n − L−

−n; Mn ¼ ϵðLþ
n þ L−

−nÞ: ð5:6Þ

with the central charges related by

FIG. 4. O module, part II: states with Δ ¼ 1: jO0i; jO1i; states
with Δ ¼ 3: M−2jO0i; L−2jO0i; L−2jO1i; jKO1i.

FIG. 5. States up to Δ ¼ 3.
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cL ¼ c − c̄; cM ¼ ϵðcþ c̄Þ: ð5:7Þ

2. UR limit on the plane

It is also useful to spell out the UR limit on the plane,
which we use extensively in the free scalar model. This
limit turns out to be more subtle, and our discussion below
is different from previous discussions in the literature
[20,21,25]. Before the limit, the map from cylinder para-
metrized by ðσ; tÞ to plane parametrized by ðz; z̄Þ is given
by

z ¼ eiðσþtÞ; z̄ ¼ e−iðσ−tÞ; ð5:8Þ

and the CFT2 generators become

lþn ¼ −znþ1∂z; l−n ¼ −z̄nþ1∂ z̄: ð5:9Þ

Our goal is to find a limit of the coordinates which will give
well-defined BMS generators and thus a BMS algebra
under the contraction (5.6). One naive guess is to take a
limit similar to the one on the cylinder (5.2)

z ¼ ϵyþ x; z̄ ¼ −ϵyþ x; ϵ → 0: ð5:10Þ

As discussed in [21], an analogy of (5.10) does work in the
nonrelativistic case and it leads to a well-defined GCA,
which we review in Appendix C. However, under the naive
limit (5.10), the generators become

ln ¼ −
x1−n þ x1þn

2ϵ
∂y; mn ¼

x1−n − x1þn

2
∂y ð5:11Þ

and hence do not have a well-defined UR limit. To get finite
generators, we find that the proper UR limit on the plane
should be chosen as

z ¼ ϵyþ x; z̄−1 ≡ z̃ ¼ −ϵyþ x; ϵ → 0: ð5:12Þ

Note that in terms of the ðz; z̃Þ coordinates, the CFT2

generators on the plane can be rewritten as

−l−−n ≡ l̃−n ¼ z̄−nþ1∂ z̄ ¼ −z̃nþ1∂ z̃: ð5:13Þ

This allows us to define BMS generators similar to (5.5)

ln ¼ lþn þ l̃−n ¼ −xnþ1∂x − ðnþ 1Þxny∂y;

mn ¼ ϵðlþn − l̃−n Þ ¼ −xnþ1∂y: ð5:14Þ

As a consistency check, one can easily verify that the UR
limit on the plane (5.12) can also be obtained from the UR
limit on the cylinder (5.4) via the BMS plane-to-cylinder
map (2.9).

3. Representations

Starting from a CFT2 with highest weight representa-
tions, the UR limit leads to the induced vacuum. On the
other hand, two-dimensional conformal algebra allows
other representations as well. In [26,45], two types of
vacua before the UR limit have been discussed, the highest
weight vacuum and the so-called flipped vacuum, which,
respectively, become the induced vacuum and the highest
weight vacuum under the UR limit. We will consider the
“flipped vacuum → highest weight vacuum” here, and
postpone the discussion on the “highest weight vacuum →
induced vacuum” to Appendix B.
The flipped representation in CFT2 can be understood as

the highest weight representation in the flipped coordinates
(5.12) before the UR limit, or equivalently, as an auto-
morphism of the right-moving Virasoro algebra,

L−
n → L̃n ¼ −L−

−n; c̄ → ¯̃c ¼ −c̄; ð5:15Þ

as suggested by (5.13). Starting from an ordinary CFT2

with central charges c; c̄, and the usual highest weight
representation with conformal weight h; h̄, the resulting
flipped representation satisfies

Lþ
0 O ¼ hO; L−

0O ¼ −h̄O; ð5:16Þ

Lþ
n O ¼ L−

−nO ¼ 0; n > 0: ð5:17Þ

Under the UR limit (5.6), the flipped representation
becomes the highest weight representation of the BMS
algebra,

L0O ¼ ΔO; M0O ¼ ξO; ð5:18Þ

LnO ¼ MnO ¼ 0; n > 0; ð5:19Þ

where

Δ ¼ hþ h̄; ξ ¼ ϵðh − h̄Þ: ð5:20Þ

Note that the above looks very similar to the NR
limit (C11).

B. UR Limit of the relativistic free scalar model

In this subsection we show that our free scalar BMSFT
(3.1) can be obtained from the UR limit of a free scalar
CFT2. Consider the free scalar model on the cylinder,

S¼ 1

4π

Z
dσdtðð∂tΦÞ2−ð∂σΦÞ2Þ; ðσ;tÞ∼ðσþ2π;tÞ:

ð5:21Þ

Under the UR limit (5.4) together with the corresponding
rescaling of the field,
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t ¼ ϵτ; Φ ¼ ffiffiffi
ϵ

p
ϕ; ϵ → 0; ð5:22Þ

the action (5.21) becomes the BMS scalar action (3.1) on
the cylinder ðσ; τÞ ∼ ðσ þ 2π; τÞ, which we reproduce here,

S ¼ 1

4π

Z
dσdτð∂τϕÞ2: ð5:23Þ

The equation of motion of the relativistic scalar (5.21) can
be solved in terms of the mode expansion

Φ ¼ ϕ0 þ π0tþ
iffiffiffi
2

p
X
n≠0

1

n
ðane−inðσþtÞ − ā−ne−inðσ−tÞÞ;

ð5:24Þ

with the canonical commutation relations

½an;am�¼ ½ān;ām�¼nδnþm;0; ½an;ām�¼0; ½ϕ0;π0�¼ i:

ð5:25Þ

Comparing with the mode expansion of the BMS free
scalar on the cylinder (3.3) we obtain the relation between
modes before and after the UR limit

An ¼ lim
ϵ→0

iffiffiffi
2

p
n
ffiffiffi
ϵ

p ðan − ā−nÞ;

Bn ¼ lim
ϵ→0

−i
ffiffiffi
ϵ

pffiffiffi
2

p ðan þ ā−nÞ; n ≠ 0; ð5:26Þ

A0 ¼
ϕ0ffiffiffi
ϵ

p ; B0 ¼ −i
ffiffiffi
ϵ

p
π0: ð5:27Þ

As a consistency check, one can verify that under such
relation the commutation relations before the UR limit
(5.25) indeed become (3.42) after the limit (5.22). Besides,
the central charges in the flipped representation of the
relativistic free scalar are c ¼ 1; c̄ ¼ −1, due to (5.15).
After the UR limit, the central charges become cL ¼ 2,
cM ¼ 0, due to (5.7).
This model also enables us to show explicitly why the

UR limit on the plane should be (5.12) instead of the naive
limit (5.10). If the latter is taken, then the plane mode
expansion will contain a zero mode part −i logðxÞπ0, which
does not exist in the BMS mode expansion (3.34). This
issue, on the other hand, does not appear if we take the
proper UR limit (5.12), where the zero mode term in
question now becomes −i yx π0, which further becomes the
y
x B0 term in the BMS mode expansion under (5.26).
Therefore, the UR limit (5.12) is compatible not only with
the plane to cylinder map (2.9), but also with the UR limit
of the mode expansion.

1. Flipped → highest weight representation

As we discussed in general in Sec. VA 3, if we take the
UR limit of a CFT from the flipped representation, we will
obtain a highest weight representation in the BMSFT. Now
we want to apply this to our relativistic free scalar model.
We will provide evidence that this resulting representation
of the BMS free scalar theory is just the representation that
we discussed in Sec. III, by showing that the vacuum
obtained from this limit agrees with the one (3.62) obtained
from intrinsic BMSFT quantization method.
As mentioned earlier, the flipped representation is

derived from the usual highest weight representation
by the automorphism (5.15) of the right-moving
Virasoro. In the free scalar model, this automorphism
can be realized at the level of creation and annihilation
operators,

ān → ā−n: ð5:28Þ

Under this automorphism, the “ground” state j0i in the
flipped representation is specified by

anj0i ¼ ā−nj0i ¼ 0; n ≥ 0: ð5:29Þ

Using the relation (5.26) of the modes under the UR
limiting procedure, we obtain that the resulting vacuum in
the BMS theory satisfies

Anj0i ¼ 0; n > 0; ð5:30Þ

Bnj0i ¼ 0; n ≥ 0: ð5:31Þ

We recognize this as the BMS highest weight vacuum
defined in (3.51). Since we have the same vacuum, all the
calculations based on the vacuum should be the same.
In particular, the Green’s function on the plane in the

flipped representation reduces to that of BMSFT (3.61).
To do so, we first compute the Green’s function in CFT2 by
summing over all the modes (5.24) on the flipped vacuum
(5.29). Using the commutation relations (5.25), this
amounts to summing over the h0Fjana−nj0Fi and
h0Fjā−nānj0Fi terms with n > 0, together with a zero-
mode term. Further using the map from cylinder to plane
(5.8), the Green’s function on the flipped vacuum can be
written as

hΦðz1; z̄1ÞΦðz2; z̄2ÞiF ¼ −
1

2

�
log

�
1 −

z2
z1

�
− log

�
1 −

z̄1
z̄2

�

þ logðz1z̄1Þ
�
; ð5:32Þ

or more conveniently, in the z̃ ¼ z̄−1 coordinate, as
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hΦðz1; z̃1ÞΦðz2; z̃2ÞiF ¼ −
1

2
ðlogðz1 − z2Þ − logðz̃1 − z̃2ÞÞ:

ð5:33Þ

Under the plane UR limit (5.12), the above Green’s
function indeed becomes that of the BMSFT in the highest
weight vacuum (3.61).
We have just shown that the highest weight representa-

tion of our free BMS scalar model comes from the UR limit
of the flipped representation in the 2D free relativistic
massless scalar model. In the literature, it has also been
stated that the UR limit of the highest weight representation
in CFT2 leads to the induced representation in BMSFTs.
We will discuss this other limit in Appendix B.

VI. TORUS PARTITION FUNCTION

In this section we explicitly calculate the torus partition
function for the free scalar BMSFT, and show that it is
modular invariant as expected from the general analysis of
[31,32,35,45].

A. Modular invariance of BMSFT

In this subsection we review the derivation of modular
invariance for BMSFTs, which helps us to set up the
conventions. Those who are already familiar with this story
can skip this subsection. The torus partition function for
BMSFTs has been shown to be modular invariant, by
taking a limit of CFT2 in [32,45], or intrinsically as in
[31,35]. We review the argument of modular invariance for
BMSFT, following the intrinsic argument as in Appendix A
in [35]. We consider a torus which is determined by two
identifications on a two-dimensional plane,5

ðcanonicalÞ spatial circle∶ ðτ; σÞ ∼ ðτ; σ þ 2πÞ; ð6:1Þ

thermal circle∶ ðτ; σÞ ∼ ðτ − 2πib; σ − 2πiaÞ; ð6:2Þ

with a ∈ R; b ∈ R. Since the change of orientation of the
complexifed σ can be realized by the symmetry
ða; bÞ → ð−a;−bÞ, we will only consider a > 0 without
loss of generality. The partition function on the above torus
is formally a path integral over all fields satisfying
boundary conditions specified by the two identifications.
Alternatively, the torus partition function can be written as a
trace over the state space which is determined by the spatial
circle, weighted by the evolution along the thermal circle,

Zða; bÞ ¼ Tre−2πaðL0−
cL
24
Þ−2πbðM0−

cM
24
Þ; ð6:3Þ

where the translational generators are defined on the
cylinder with the spatial circle (6.1), which we refer to

as the canonical circle. We have also taken the Casimir
effect (3.59) into account.
More generally, a torus can be described by the funda-

mental region on the plane

ðτ; σÞ ∼ ðτ; σÞ þmβ⃗S þ nβ⃗T; ð6:4Þ

where m and n are integers, so that the torus is completely
determined by a pair of vectors β⃗S, β⃗T on the plane. For
instance, the torus (6.1) has a canonical spatial circle
β⃗S ¼ ð0; 2πÞ, and a thermal circle β⃗T ¼ ð−2πib;−2πiaÞ.
The transformations acting on the plane that leave the torus
invariant form the modular group, SLð2;ZÞ=Z2. The action
of SLð2;ZÞ is given by

�
a b

c d

� 
β⃗S

β⃗T

!
¼
 
β⃗0S
β⃗0T

!
; ð6:5Þ

with

ad − bc ¼ 1; a; b; c; d ∈ Z: ð6:6Þ

The reason to mod Z2 is because the simultaneous inversion
of all the matrix elements does not change the torus. The
modular group is generated by the T and S transformations,
with

T ¼
�
1 1

0 1

�
; S ¼

�
0 −1
1 0

�
: ð6:7Þ

In particular, the modular S transformation swaps the
spatial and thermal circles. From the path integral point
of view, the torus partition function only depends on the
torus and hence should be invariant under the action of the
modular group, namely

Zβ⃗S
ðβ⃗TÞ≡Trβ⃗Se

−iðMβ⃗S
0
;L

β⃗S
0
Þ·β⃗T ¼Zβ⃗S

0 ðβ⃗ 0
TÞ¼Z−β⃗T

ðβ⃗SÞ; ð6:8Þ

where the trace is taken over the state space, and the

translational operators Mβ⃗S
0 ; Lβ⃗S

0 are both defined on the

spatial circle specified by β⃗S, as the subscript and super-
script suggest. Note that the modular group is the isometry
group acting on the modular parameters, and hence is
independent of the theory. In general, the relation (6.8) is a
relation between theories with state spaces defined on
different spatial circles. For two-dimensional quantum field
theories with enough symmetries, such as such as CFT2,
BMSFT, and WCFT, a symmetry transformation can be
found to transform the torus such that the spatial circle is
transformed back to the original one specified by β⃗S again.
For BMSFT on the canonical spatial circle (6.1), such a
transformation is a BMS symmetry of the form (2.1),
given by5It is useful to embedR2 into C2 in the subsequent discussions.
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fðσÞ ¼ −
i
a
σ; gðσÞ ¼ −

ib
a2

σ; ð6:9Þ

under which the identifications β⃗0S ¼ ð−2πib0;−2πia0Þ;
β⃗0T ¼ ð0; 2πÞ after the swapping of the cycles becomes

ðτ; σÞ ∼ ðτ; σ − 2πÞ ∼
�
τ þ 2πib

a2
; σ −

2πi
a

�
: ð6:10Þ

Finally, using the transformation rules (2.18) for the finite
BMS transformation (6.9), one can relate the partition
functions before and after the S transformation, and find
that it is modular invariant

Zða; bÞ ¼ Z

�
1

a
;−

b
a2

�
: ð6:11Þ

Note that the modular group will keep a > 0.

B. Torus partition function for the free scalar model

In this subsection we explicitly calculate the torus
partition function for the free scalar model. The result
depends on the choice of the vacuum. We will perform the
calculation in the highest weight vacuum and postpone that
of the induced vacuum to Appendix B.

1. Intrinsic calculation in the highest weight vacuum

To calculate the torus partition function (6.3), we need to
specify both the state space and the explicit definition of the
trace. For the highest weight vacuum, the state space is
spanned by (3.56)

j⃗i; j⃗; αi ¼ Ai1
−1A

i2
−2 � � �Bj1

−1B
j2
−2 � � � jαi: ð6:12Þ

Using the conjugation relations (3.4), the basis for the out
states can be written as

h⃗i; j⃗j ¼ ð−1Þjhαj � � �Bj2
2 B

j1
1 � � �Ai2

2 A
i1
1 ; ð6:13Þ

where the overall sign ð−1Þj is determined by

j≡X
k

jk: ð6:14Þ

It is not difficult to verify that inner products between states
with different zero mode charges are orthogonal with each
other, while the inner products between different states with
the same zero mode charge form a nondiagonal matrix Nα,
namely

hi⃗0; j⃗0;α0ji⃗; j⃗;αi¼δα;α0Nα;i⃗ j⃗;i⃗0 j⃗0 ; N
α;i⃗ j⃗;i⃗0 j⃗0 ¼δ

i⃗0;j⃗ δj⃗0;i⃗: ð6:15Þ

The fact that the inner product matrix between the out states
(6.13) and the in states (6.12) is not diagonal requires a

more careful definition of the trace. In order to do so, it is
useful to introduce a dual basis as

∨h⃗i; j⃗; αj≡ X
fi⃗0;j⃗0g

ðN−1
α Þ⃗

i j⃗;i⃗0 j⃗0 hi⃗0; j⃗0; αj; ð6:16Þ

where N−1
α denotes the matrix inverse of Nα whose matrix

elements are defined in (6.15). One can easily verify that
the dual basis is indeed orthonormal to the basis (6.12),
such that

∨h⃗i; j⃗; αji⃗0 j⃗0; αi ¼ δ⃗
i;j⃗;i⃗0;j⃗0δα;α0 : ð6:17Þ

Then the trace in the partition function (6.3) can be
defined by

Zða;bÞ¼Trðe−2πaðL0−
cL
24
Þ−2πbðM0−

cM
24
ÞÞ

¼
X
i⃗;j⃗;α

∨hi⃗; j⃗;αje−2πaðL0−
cL
24
Þ−2πbðM0−

cM
24
Þji⃗; j⃗;αi: ð6:18Þ

Note that the action of M0 on j⃗i; j⃗; αi is to take the
eigenvalue of the boost charge, combined with changing
one of the A−k to B−k, so that

M0ji⃗; j⃗;αi ¼−
α2

2
ji⃗; j⃗;αi

þ
X
fik≥1g

ikji1;…; ik− 1;…; j1;…; jkþ 1; � � � ;αi:

ð6:19Þ

From the definition of the dual basis, all terms except the
first one have vanishing inner products with the dual state
∨h⃗i; j⃗; αj, and then the expectation value of M0 on this state
is just the boost charge of the zero mode

∨h⃗i; j⃗; αjM0 j⃗i; j⃗; αi ¼ −
α2

2
: ð6:20Þ

The action of Mn
0 can be analyzed in a similar way and we

learn that the only nontrivial contribution to the expectation
value of e−2πaðL0−

cM
24
Þ comes from the zero mode part. As the

zero mode backgrounds jαi all have vanishing conformal
weights, the only nontrivial contribution to the operator
e−2πaðL0−

cM
24
Þ comes from the nonzero mode part. Then the

torus partition function factorizes into a product of the zero
mode part Z0ðbÞ and the oscillator part Z̃ðaÞ,
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Zða; bÞ ¼ Z0ðbÞZ̃ðaÞ;

Z0ðbÞ≡
Z

dαhαje−2πbðM0−
cM
24
Þjαi

¼
Z

∞

−∞
dαe

2πbα2
2 þ

Z
i∞

−i∞
dαe

2πbα2
2 ;

Z̃ðaÞ ¼
X
⃗i;j⃗

∨h⃗i; j⃗je−2πaðL0−
cL
24
Þj⃗i; j⃗i: ð6:21Þ

In the expression of the zero mode part, we have used the
fact that jαi has zero conformal weight and boost charge
ξ ¼ − α2

2
. Note that the boost charge can be any real

numbers, so that we have to integrate along both the real
axis and the imaginary axis. The integral can be calculated
by analytic continuation from ReðbÞ ¼ 0. We get the zero
mode contribution,

Z0ðbÞ ¼
Z

∞

−∞
dαðeπbα2 þ e−πbα

2Þ ¼
ffiffiffiffiffiffi
2

jbj

s
: ð6:22Þ

Next, we calculate the contribution from the nonzero
modes. Note that either the A−k or the B−k operator raises
the weight of L0 by k, which enables us to split the total
eigenvalue into a sum of contributions from the A and B
modes separately, so that we have

Z̃ðaÞ≡ q−
1
12

Y∞
k¼1

�X∞
ik¼0

qkik
��X∞

jk¼0

qkjk
�

¼ q−
1
12

Y∞
k¼1

1

ð1 − qkÞ2 ¼
1

η2ðiaÞ ; ð6:23Þ

where ηðiaÞ is the Dedekind-η function

ηðiaÞ ¼ q
1
24

Y∞
k¼1

ð1 − qkÞ; q ¼ e−2πa: ð6:24Þ

Finally, combing the zero mode part (6.22) and the
oscillator part (6.23) we obtain the torus partition function
in the highest weight vacuum,

Zða; bÞ ¼
ffiffiffiffiffiffi
2

jbj

s
1

η2ðiaÞ : ð6:25Þ

As a consistency check, let us now compute how the
torus partition function transforms under the modular S
transformation,

a →
1

a
; b → −

b
a2

: ð6:26Þ

Using the transformation property of the eta function

η

�
i
1

a

�
¼ ffiffiffi

a
p

ηðiaÞ; ð6:27Þ

we indeed obtain the relation (6.11), and hence confirm
with the general argument [31,32,35,45] that the BMSFT
torus partition function is modular invariant.

2. From the UR limit

In this subsection, we calculate the torus partition
function from the UR limit of a free scalar CFT2 in the
flipped representation. To do so, we first need to work out
the CFT2 partition function in the flipped vacuum. Recall
that the torus partition function in the highest weight
vacuum of the free scalar CFT2 reads

ZCFT
H ¼q−

c
24q−

c̄
24ffiffiffiffiffiffiffiffi

Imτ
p

Y∞
k¼1

X∞
nk¼0

qknk q̄knk ¼ 1ffiffiffiffiffiffiffiffi
Imτ

p 1

ηðτÞη̄ðτ̄Þ ; ð6:28Þ

where

c ¼ c̄ ¼ 1; q ¼ e2πiτ; q̄ ¼ e2πiτ̄: ð6:29Þ

One can use (5.28) to map the highest weight vacuum to the
flipped vacuum, or equivalently

τ̄ → −τ̄: ð6:30Þ

Using the above map, we obtain the torus partition function
in the flipped vacuum,6

ZCFT
F ¼q−

c
24q̄−

c̄
24ffiffiffiffiffiffiffiffi

Imτ
p

Y∞
k¼1

X∞
nk¼0

qknk q̄−knk ¼ 1ffiffiffiffiffiffiffiffi
Imτ

p 1

ηðτÞηðτ̄Þ: ð6:31Þ

Under the ultrarelativistic limit (5.4), the modular para-
meters become

τ ¼ ãþ ibϵ: ð6:32Þ

To get the result in the Lorentzian theory, we should further
take the analytic continuation ã → ia. Taking the limit
ϵ → 0with this taken into account, we find that the CFT2 in
the flipped representation torus partition function (6.31)
indeed becomes that of the free scalar BMSFT in the
highest weight vacuum (6.25), namely

ZCFT
F →

1ffiffiffi
ϵ

p ZBMS
H ; ð6:33Þ

6In the discussion below, we only consider the case where
Imτ > 0 for simplicity. After taking the UR limit, it turns to the
case a > 0. To get the other case a < 0, one should start with
Imτ < 0, by a similar consideration. Note that the absolute value
of b also follows from this reasoning.
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where the overall factor comes from the rescaling of the
field (5.22).

ACKNOWLEDGMENTS

We would like to thank Luis Apolo, Arjun Bagchi, Bin
Chen, Reiko Liu, Wenxin Lai, Zhefei Yu, and Yufan Zheng
for useful discussions. We would like to specially thank Bin
Chen and Reiko Liu for helpful discussions on the
staggered module, and Luis Apolo for reading the draft
thoroughly and for his valuable comments. W. S. would
like to thank the Okinawa Institute of Science and
Technology (OIST) QuantumGravity group, and workshop
on “String theory and related physics” where some partial
results of this work were presented and helpful comments
were received. The work is partially supported by
National Natural Science Foundation of China Grant
No. 11735001, National Key Research and Development
Program of China Grant No. 2020YFA0713000, and
Beijing Municipal Natural Science Foundation Grant
No. Z180003.

APPENDIX A: RADIAL
QUANTIZATION IN BMSFT

In this Appendix, we provide a prescription of radial
quantization in BMSFTs. We first review the procedure in
relativistic quantum field theory as reviewed in [64], and
then extend it to BMSFTs.

1. Analytic continuation from Euclidean theory to
Lorentzian theory

Let us start with the Euclidean correlation function of a
relativistic quantum field theory.

hO1ðtE1 ÞO2ðtE2 Þi¼h0jO1ð0Þe−HðtE
1
−tE

2
ÞO2ð0Þj0iθðtE1 − tE2 Þ

þh0jO1ð0Þe−HðtE
2
−tE

1
ÞO2ð0Þj0iθðtE2 − tE1 Þ;

ðA1Þ
which is automatically time ordered as e−HδtE is unbounded
for δtE < 0. To get correlation functions in the Lorentzian
theory, one needs to first analytically continue the time
direction to the complex plane, with the Euclidean time as
the imaginary part,

t0 ¼ −itE þ t; ðA2Þ

so that the Lorentzian theory corresponds to the real-time
theory with tE ¼ 0, and the Euclidean theory corresponds
to the imaginary-time theory with t ¼ 0. In the correlators
(A1), one can turn on a real part twith the imaginary part tE
fixed, so that the ordering is still controlled by tE. As a final
step, we need to take the limit tE ¼ 0 along a chosen
trajectory

tE ¼ λF ðtÞ; λ → 0; ðA3Þ
where F ðtÞ is some function of t. Then the ordering in tE is
transferred to t. For example, to get the usual time-ordered
correlators in Lorentzian quantum field theory, we can
choose

tEi ¼ λti; with λ → 0; ðA4Þ

so that the ordering in the imaginary time tE is the same as
that of the real time.

2. Radial quantization in CFT2

Now let us consider a CFT2 on the Euclidean cylinder
ðσ; tEÞ, with the identification

ðσ; tEÞ ∼ ðσ þ 2π; tEÞ: ðA5Þ

After the analytic continuation tE → tE þ it, the complex
coordinates become

w ¼ σ − itE → σ þ t − itE; ðA6Þ

w̄ ¼ σ þ itE → σ − tþ itE; ðA7Þ

and the cylinder to plane map becomes

z ¼ eiw ¼ eiðσþtÞetE ; z̄ ¼ e−iw̄ ¼ e−iðσ−tÞetE : ðA8Þ

After the analytical continuation, z and z̄ are no longer
complex conjugate to each other, and effectively we have
extended the theory from C to C2. The Euclidean theory
can be obtained by imposing z� ¼ z̄, while the Lorentz
theory corresponding to taking jzj ¼ jz̄j ¼ 1. In the
Euclidean theories with t ¼ 0, the infinitely past tE →
−∞ on the cylinder becomes the origin on the plane.
Therefore radial quantization at fixed radius on the
Euclidean plane corresponds to canonical quantization at
fixed time tE on the cylinder, As a result, radial ordering on
the Euclidean plane corresponds to Euclidean time ordering
on the cylinder, which after a prescription in the form of
(A3) provides an ordering in the real time t.

3. Radial quantization in BMSFT

Now we provide a prescription of radial quantization and
time ordering in BMSFT. From a CFT2 on the cylinder with
complexified time, we take the UR limit t → ϵτ, with tE
fixed, so that

w ¼ σ þ ϵτ − itE; ðA9Þ

w̄ ¼ σ − ϵτ þ itE: ðA10Þ

Under the UR limit ϵ → 0, the cylinder to plane map can be
defined as
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x≡ lim
ϵ→0

z¼eiσþtE ; y¼ lim
ϵ→0

z− z̄�

2ϵ
≡ lim

ϵ→0

eiw−eiw̄
�

2ϵ
¼ ixτ:

ðA11Þ

This is equivalent to the cylinder to plane map (5.12) on the
unit circle where the latter is defined.
This way we extend the BMSFT to a theory defined on

(C ×R) where y
x ∈ iR and x takes arbitrary value on the

complex planeC, with etE as the radius. The pure Euclidean
theory corresponds to taking τ ¼ 0 on the complexified
cylinder (A9) and (A10), or equivalently y ¼ 0 on the
complex plane (A11). The Lorentzian theory corresponds
to taking tE ¼ 0 in (A9) and (A10), or equivalently on the
jxj ¼ 1 circle.
In the Euclidean theory, we can perform radial quanti-

zation, which again is equivalent to canonical quantization
on the cylinder. Correlation functions are radial ordered.
Starting from the Euclidean theory on the plane para-
metrized by x, we can obtain the Lorentzian theory by
the following steps. First, we fix tE, and turn on y by using
the translational generator M−1 as in (2.25), so that the
operators and correlators will all depend on the holomor-
phic coordinate x, as well as another complex coordinate y.
In most part of this paper, we consider the BMSFT on the
manifold parametrized by complex coordinates x and y.
Next, we impose the relation tE ¼ λτ, so that the origin on
the Euclidean plane is mapped to past infinity
on the Lorentzian cylinder τ ¼ −∞. This enables us to
establish the operator-state correspondence as in (2.49).
Furthermore, the radial ordering XðO � � �OÞ on the
Euclidean plane also corresponds to time ordering of the
Lorentzian theory. The final step to get the Lorentzian
theory is to take the limit λ → 0, so that the theory is
restricted on the unit circle. In many discussions, we will
not take this final step explicitly.

APPENDIX B: COMMENTS ON THE INDUCED
REPRESENTATION

In this section we make some comments on the induced
representation.
Since the BMS algebra is the semidirect sum of the

Virasoro algebra and an Abelian ideal generated by Mns,
one can consider a representation induced from that of the
ideal. In particular, we are interested in the special case
when the operators in an indecomposable representation
satisfy the following conditions

½L0; O� ¼ ΔO; ½M0; O� ¼ ξO;

½Mn;O� ¼ 0; ∀ n ≠ 0; n ∈ Z: ðB1Þ

Especially, the induced vacuum denoted as j0Ii should
satisfy

L0j0Ii ¼ Mnj0Ii ¼ 0; ∀ n ∈ Z: ðB2Þ

As was discussed in [65–67], the induced representation is
unitary. It is also possible to discuss multiplets in the
induced representation, where either L0 or M0 is assumed
to be nondiagonalizable, featuring Jordan blocks. We leave
this interesting generalization to future study. In this
section, we comment on the induced vacuum for the free
BMS scalar model. We find an intrinsically defined vacuum
that behaves as a direct product state, whereas another
induced vacuum from the UR limit of a relativistic scalar is
singular.

1. Induced vacuum from intrinsic discussion

In Sec. III B 1, we discussed how to find a vacuum that is
annihilated by L0;�1, M0;�1, and meanwhile can be
described intrinsically by the An, Bn modes. We note that
there are two different choices, one of which is the highest
weight vacuum. Now we turn to the other choice. Choosing
conditions i. and ii., we get another vacuum satisfying

Bnj0Ii ¼ 0; ∀ n ∈ Z: ðB3Þ

This means that all the Ans are creation operators, and all
the Bns are annihilation operators. Using these conditions,
we learn that the action of Ln, Mn on this vacuum is
given by

Lnj0Ii ¼ 0; Mnj0Ii ¼ 0; ∀ n ∈ Z: ðB4Þ

This vacuum satisfies (B2), hence it is an induced vacuum.
To study the property of this vacuum, we calculate the
Green’s function with respect to x ordering on this
vacuum as

hϕðx1; y1Þϕðx2; y2Þi ¼ −2πiðy1θðx1 − x2Þ
þ y2θðx2 − x1ÞÞδðx2 − x1Þ: ðB5Þ

The correlator above tells us that there is no correlation
between two points with different spatial coordinates x on
the plane, or σ on the cylinder. In other words, this vacuum
behaves as a direct product of states living at each point of
the spatial slice.

2. Induced vacuum from the UR limit

Note that the condition (B3) is equivalent to

∶BnBm∶j0Ii ¼ 0; ∀ n;m ∈ Z; ðB6Þ

which means that every term inMn annihilates the vacuum.
There may exist different vacua satisfying (B2), but not the
condition above. The induced vacuum from the UR limit
[26] provides an example of this type. More explicitly,
taking the UR limit (5.4) and (5.6) of the usual highest
weight representation in CFT2,
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Lþ
0 O ¼ hO; L−

0O ¼ h̄O; ðB7Þ

Lþ
n O ¼ L−

nO ¼ 0; n > 0; ðB8Þ

we can get the induced representation of BMS algebra (B1)
with

Δ ¼ h − h̄; ξ ¼ ϵðhþ h̄Þ: ðB9Þ

a. In the free scalar model

Now we apply this process to the free scalar. The highest
weight vacuum before the UR limit is specified by

anj0HiCFT ¼ 0; ānj0HiCFT ¼ 0; n > 0: ðB10Þ

From the relation between modes (5.26), one might
conclude that under the UR limit ϵ → 0, the BMS induced
vacuum becomes the vacuum specified by (B3). However,
the UR limit has to be taken more carefully. The reason is as
follows. Consider a basis constructed by applying Ans and
Bns successively on the UR limit of the highest weight
vacuum. By calculating the Gram matrix, we find that none
of the basis states become null, and furthermore we cannot
find any simple linear combinations of such basis that
become null. For example, h0HjA−nBnj0HiCFT ¼ 1

2
;

∀ n ≠ 0, so that (B3) is not satisfied, and therefore the
UR limit of the highest weight vacuum is different from the
induced vacuum from intrinsic discussion. In fact, it is
unclear if it is possible to express the UR limit of the
highest weight vacuum intrinsically in terms of modes Ans
and Bns.
Nevertheless, let us try to study some properties of the

induced vacuum from its parent CFT2 theory and the
limiting procedure. To calculate the Green’s function of ϕ,
we exploit the relation (5.26) and perform the calculation in
terms of the modes an, ān. This is equivalent to taking the
UR limit directly from the Green’s function in the relativ-
istic free scalar. As a result, we get the Green’s function for
the BMS scalar ϕ on the cylinder

hϕðσ1; τ1Þϕðσ2; τ2Þi ¼ −
1

2ϵ
logð2 − 2 cos σ12Þ ðB11Þ

where the divergence comes from the rescaling of the field
in the limit (5.22). Similarly, the UR limit of Green’s
function on the plane

hϕðx1;y1Þϕðx2;y2Þi¼
1

ϵ
hΦΦi

¼−
1

2ϵ

�
logðx1−x2Þþ log

�
1

x1
−
1

x2

��
:

ðB12Þ

Putting the issue of divergence aside, the Green’s function
on the plane has the property that it depends on
both complex coordinates x1 and x2, instead of the differ-
ence x1 − x2. This is because the induced vacuum (B1) is
not necessarily translationally invariant on the x plane. The
divergence of the Green’s function on both the cylinder
and the plane reflects the difficulty in finding this
induced vacuum intrinsically in terms of annihilation
creation operators of our BMSFT model. The divergence,
however, is potentially related to the divergence in the
one-loop partition of three-dimensional gravity discussed
in [68].

b. Torus partition function

We will consider the torus partition function (6.3) of
BMS free scalar in the induced vacuum from the UR limit.
Since we cannot deal with it intrinsically using the An, Bn
modes, it is convenient to express the state space in an
orthonormal basis of the CFT2,

j⃗i; j⃗; αiCFT ¼ ai1−1 � � � āj1−1 � � � jαiCFT; ðB13Þ

where jαiCFT is the zero mode contribution in the CFT2

highest weight vacuum. The behavior under L0, M0 can be
calculated from (5.6),

L0jαiCFT ¼ 0; M0jαiCFT ¼ −
α2

2
: ðB14Þ

Moreover from (5.6), the action of the BMS generators L0,
M0 on these states are

½L0; am� ¼ −mam; ½L0; ām� ¼ −mām; ðB15Þ

½M0; am� ¼ ½M0; ām� ¼ 0: ðB16Þ

Then a similar calculation as in Sec. VI leads to the torus
partition function on the induced vacuum,

Z ¼
ffiffiffiffiffiffi
2

jbj

s Y∞
k¼1

�X∞
ik¼0

qkik
��X∞

jk¼0

q−kjk
�
: ðB17Þ

The summation in either the first or the second parenthesis
becomes divergent as long as a is real. The similar
divergence appears in the calculations of the character of
the BMS induced module [69] and the one-loop partition
function of the asymptotic flat Einstein gravity in three-
dimensional spacetime [68], where a imaginary part of a is
introduced as a regulator to do the summation.
We end this section with the following comments:
(i) The BMS algebra is the semidirect sum of the

Virasoro algebra and an Abelian ideal generated
by the Mns, so one can consider a representation
induced from that of the ideal. We are interested in a
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special kind of induced representation defined by
(B1), with the vacuum specified by the condition
(B2). Note that there may be more than one vacua
satisfying this condition (B2).

(ii) From the mode expansion of our free BMS scalar
model (3.34), one can define an induced vacuum
intrinsically (B3) obeying (B2), which behaves as a
direct product state.

(iii) Another vacuum satisfying (B2) comes from the
UR limit of free scalar model, as the original
general discussion. This vacuum cannot be ex-
pressed intrinsically in terms of the modes An,
Bn. It leads to a different theory whose Green’s
function and torus partition function are both di-
vergent as ϵ → 0.

APPENDIX C: NR LIMIT FROM CFT2

Here we review the NR limit of CFT2 for completeness.
We will see that the NR limit on the plane is quite different
from the UR limit on the plane.

1. NR limit on the cylinder

Starting with the same setup as in Sec. VA 1, the NR
limit is

σ ¼ ϵs; ϵ → 0; ðC1Þ

so that the speed of light goes to infinity, which is the
reason why this limit is called the nonrelativistic limit. The
theory is defined on ðs; tÞ after the NR limit. Compared
with the UR limit on the cylinder (5.4), the NR limit
rescales the σ direction instead of the t direction. Under this
limit the conformal transformations become the GCA
transformations generated by

ln ¼ tn þ t̄n ¼ ieinτð∂τ þ inσ∂σÞ;
mn ¼ ϵðtn − t̄nÞ ¼ ieinτ∂σ: ðC2Þ

The Virasoro algebra (5.3) becomes the GCA algebra,
which is isomorphic to (2.8) via another Wigner-Inönü
contraction [63],

Ln ¼ Tn þ T̄n; Mn ¼ ϵðTn − T̄nÞ; ðC3Þ

with the central charges related by

cL ¼ cþ c̄; cM ¼ ϵðc − c̄Þ: ðC4Þ

2. NR limit on the plane

We use the map (5.8) to go to the plane ðz; z̄Þ before the
NR limit, with the CFT2 generators given by (5.9). Now we
can take the plane NR limit (5.10) safely to get the GCA
generators,

ln ¼ tn þ t̄n ¼ −xnþ1∂x − ðnþ 1Þxny∂y;

mn ¼ ϵðtn − t̄nÞ ¼ −xnþ1∂y; ðC5Þ

which is consistent with the GCA cylinder-to-plane map

x ¼ eiτ; y ¼ ieiτσ: ðC6Þ

a. Representation

We can consider the usual highest weight representation
in CFT2,

Lþ
0 O ¼ hO; L−

0O ¼ h̄O; ðC7Þ

Lþ
n O ¼ L−

nO ¼ 0; n > 0: ðC8Þ

Under the NR limit (C3), the highest weight representation
becomes the highest weight representation of the GCA
algebra,

L0O ¼ ΔO; M0O ¼ ξO; ðC9Þ

LnO ¼ MnO ¼ 0; n > 0; ðC10Þ

where

Δ ¼ hþ h̄; ξ ¼ ϵðh − h̄Þ: ðC11Þ

The flipped representation in CFT2 satisfies

Lþ
0 O ¼ hO; L−

0O ¼ −h̄O; ðC12Þ

Lþ
n O ¼ L−

−nO ¼ 0; n > 0: ðC13Þ

Under the NR limit (C3), one gets the induced representa-
tion of the GCA algebra.

L0O ¼ ΔO; M0O ¼ ξO; ðC14Þ

MnO ¼ 0; n ≠ 0; ðC15Þ

where

Δ ¼ h − h̄; ξ ¼ ϵðhþ h̄Þ: ðC16Þ

b. The free scalar model

At the level of representation, the UR limit of the flipped
representation shares the same features as those of the NR
limit of the highest weight representation. However, our
BMSFTmodel (3.1) is different from the NR limit of a CFT2.
Starting from a free scalar model in the relativistic theory

(5.21), the NR limit (C1) along with the field rescaling
Φ ¼ ffiffiffi

ϵ
p

ϕ leads to a nonrelativistic theory with action
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S ¼ 1

4π

Z
dsdτð−ð∂sϕÞ2Þ: ðC17Þ

Note that the above action is similar to but different from
that of our BMSFT model (3.1). First, the kinematic term
has the wrong sign, and a further Wick rotation of the
field ϕ → iϕ is needed to fix the sign. Second, the

derivative in the kinematic term is in different directions
from the BMS scalar action (3.1). As we perform
canonical quantization along the spatial circle, the
canonical quantization of the two limits will be
different. Third, after the NR limit, the spatial cycle
becomes noncompact, whereas in the UR limit the circle
remains compact.
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