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We investigate the properties of a four-dimensional conformal field theory possessing a fermionic
higher-spin current Qαð2kÞ _α. Using a computational approach, we examine the number of independent
tensor structures contained in the three-point correlation functions of two fermionic higher-spin currents
with the conserved vector current Vm and with the energy-momentum tensor Tmn. In particular, the k ¼ 1

case corresponds to a “supersymmetrylike” current, that is, a fermionic conserved current with identical
properties to the supersymmetry current which appears in N ¼ 1 superconformal field theories. However,
we show that in general, the three-point correlation functions hQQVi and hQQTi are not consistent with
N ¼ 1 supersymmetry.
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I. INTRODUCTION

Correlation functions of conserved currents are among the
most important observables in conformal field theory. It is a
well-known fact that conformal symmetry determines the
general form of two- and three-point correlation functions
up to finitely many parameters; however, it remains an open
problem to understand the structure of three-point functions
of conserved currents for arbitrary spin. The systematic
approach to study correlation functions of conserved cur-
rents was undertaken in [1,2] (see also Refs. [3–12] for
earlier results), and was later extended to superconformal
field theories in diverse dimensions [13–26].1 The most
important examples of conserved currents in conformal field
theory are the energy-momentum tensor and vector currents;
their three-point functions were studied in [1]. However,
more general conformal field theories can possess higher-
spin conserved currents. As was proven by Maldacena and
Zhiboedov in [28], all correlation functions of higher-spin
currents are equal to those of a free theory. This theoremwas
originally proven in three dimensions and was later

generalized in [29–31] to four- and higher-dimensional
cases. The general structure of the three-point functions
of conserved higher-spin, bosonic, vector currents was
found by Stanev [32] and Zhiboedov [33]; see also [34]
for similar results in the embedding formalism [35–40] (and
[41,42] for supersymmetric extensions). There are also some
novel approaches to the construction of correlation functions
of conserved currents which carry out the calculations in
momentum space, using methods such as spinor-helicity
variables [43–49].
The study of correlation functions in conformal field

theory has mostly been devoted to bosonic operators with
vector indices (except for supersymmetric settings); fer-
mionic operators have practically not been studied.2 Our
interest in studying three-point functions of fermionic
operators is twofold: first, any conformal field theory
possessing fermionic operators naturally breaks the
assumptions of the Maldacena-Zhiboedov theorem [28]
discussed above. Indeed, the main assumption of the
Maldacena-Zhiboedov theorem was that the conformal
field theory under consideration possesses a unique con-
served current of spin two, the energy-momentum tensor.
However, in [28] it was also shown that if a conformal field
theory possesses a conserved fermionic higher-spin current,
then it has an additional conserved current of spin two.
Hence, it is not clear whether correlation functions of
fermionic higher-spin currents must coincide with those in
a free theory. Second, fermionic operators are interesting
due to their prevalence in supersymmetric field theories.
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1The approach of [1,2] performs the analysis in general
dimensions and did not consider parity-violating structures
relevant for three-dimensional conformal field theories. These
structures were found later in [27].

2Recently, in [34], correlation functions involving fermionic
operators were studied; however, these operators were not
conserved currents.
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In fact, there is a natural question: if a conformal field
theory possesses a conserved fermionic current, is it
necessarily supersymmetric?
The aim of this paper is to study correlation functions of

the conserved fermionic higher-spin currents3

Qαð2kÞ _α; Q̄α _αð2kÞ; ð1:1Þ

which obey the conservation equations

∂
α _αQααð2k−1Þ _α ¼ 0; ∂

α _αQ̄α _α _αð2k−1Þ ¼ 0: ð1:2Þ

The casek ¼ 1 in (1.1) is quite interesting as it corresponds to
currents of spin-3

2
which possess the same index structure and

conservation properties as the supersymmetry currents.
Indeed, one might expect that a conformal field theory
possessing conserved spin-3

2
primary operators is super-

symmetric. One way to explore this issue is to study the
correlation functions involving such operators to see if they
are consistent with supersymmetry. In particular, we must
study the general form of the three-point functions involving
combinations of the operators Qαð2Þ _α; Q̄α _αð2Þ [i.e., (1.1) for
k ¼ 1], the energy-momentum tensor Tmn, and the vector
currentVm. Recall that in any superconformal field theory the
supersymmetry current and the energy-momentum tensor are
components of the supercurrent multiplet, Jα _αðzÞ, where
z ¼ ðxm; θα; θ̄ _αÞ is a point in four-dimensional (4D)
Minkowski superspace. This implies that in supersymmetric
theories the three-point functions

hQ̄α _αð2Þðx1ÞQβð2Þ_βðx2ÞTmnðx3Þi;
hQαð2Þ _αðx1ÞQβð2Þ_βðx2ÞTmnðx3Þi ð1:3Þ

must be contained in the three-point function of the super-
current hJα _αðz1ÞJβ _βðz2ÞJγ _γðz3Þi, which was shown in [14] to
be fixed up to two independent tensor structures. Similarly, in
supersymmetric theories the vector current Vm is a compo-
nent of the flavor current multiplet, LðzÞ. Hence, the three-
point functions

hQ̄α _αð2Þðx1ÞQβð2Þ_βðx2ÞVmðx3Þi;
hQαð2Þ _αðx1ÞQβð2Þ_βðx2ÞVmðx3Þi ð1:4Þ

must be contained in the three-point function of the super-
current and the flavor current hJα _αðz1ÞJβ _βðz2ÞLðz3Þi, which
was shown to be fixed up to a single tensor structure [14].
In this paper, we study the general form of the three-point

functions (1.3) and (1.4) and extend the results to theoperators
(1.1), using only the constraints of conformal symmetry;
supersymmetry is not assumed. The analysis is highly non-
trivial and requires significant use of computational methods.

To streamline the calculations we develop a hybrid formalism
which combines the approach of Osborn and Petkou [1] and
the approach based on the contraction of tensor indices with
auxiliary vectors/spinors. This method is widely used
throughout the literature to construct correlation functions
of more complicated tensor operators. Our particular
approach, however, has some advantages as the correlation
function is completely described in terms of a polynomial
which is a function of a single conformally covariant three-
point building block, X, and the auxiliary spinor variables
u; ū; v; v̄; w; w̄. Hence, one does not have to work with the
spacetime points explicitly when imposing conservation
equations. To find all solutions for the polynomial, we
construct a generating functionwhich produces an exhaustive
list of all possible linearly dependent structures for fixed (and
in some cases, arbitrary) spins. The possible structures form a
basis inwhich the polynomialmay be decomposed, and are in
correspondence with the solutions to a set of six linear
inhomogeneous Diophantine equations, which can be solved
computationally for any spin.
Using the methods outlined above, we find that the three-

point functions (1.3) and (1.4), in general, are not consistent
with supersymmetry as they are fixedup tomore independent
tensor structures than the three-point functions hJJJi and
hJJLi. This means, based on the constraints of conformal
symmetry alone, that the existence of spin-3

2
supersymmetry-

like conserved currents in a conformal field theory does not
necessarily imply that the theory is superconformal.Wewant
to stress that our analysis is based only on symmetries and
does not take into account other features of local field theory.
We do not know how to realize a local nonsupersymmetric
conformal field theory possessing conserved spin-3

2
currents,

neither do we have a proof that it is impossible.
Our paper is organized as follows: in Sec. II, we discuss

the general formalism to construct two- and three-point
functions in conformal field theory. First, we review the
constructions of Osborn and Petkou [1] and introduce our
hybrid generating function formalism based on contrac-
tions of tensor operators with auxiliary spinors. We con-
struct a generating function which, for a given choice of
spins, generates all possible linearly dependent solutions
for the correlation function. In Secs. III and IV, we find the
most general form of the three-point functions (1.4). Our
conclusions are that the three-point function hQ̄QVi
depends on three independent tensor structures (here and
in all other cases the tensor structures are found explicitly)
and the three-point function hQQVi depends on a single
tensor structure. In Secs. Vand VI, we find the most general
form of the three-point functions (1.3). Our conclusions are
that the three-point function hQ̄QTi depends on four
independent tensor structures and the three-point function
hQQTi depends on a single tensor structure. Most of our
analysis in Secs. III–VI was performed for an arbitrary k.
However, due to computational limitations certain results
were proven only for small values k. Nevertheless, we3We use the standard notation ΦαðmÞ _αðnÞ ¼ Φðα1���αmÞð _α1��� _αnÞ.
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believe that the results stated above hold for all values
of k. Finally, in Sec. VII, we discuss whether our results
are consistent with supersymmetry for k ¼ 1, when Q
possesses the same properties as the supersymmetry
current. We show that, in general, the results obtained in
Secs. III–VI are not consistent with supersymmetry. Our
four-dimensional notation and conventions are summarized
in the Appendix.

II. CONFORMAL BUILDING BLOCKS

In this section we will review the pertinent aspects of the
group theoretic formalism used to compute correlation
functions of primary operators in four-dimensional con-
formal field theories. For a more detailed review of the
formalism as applied to correlation functions of bosonic
primary fields, the reader may consult [1]. Our 4D con-
ventions and notation are those of [50]; see the Appendix
for a brief overview.

A. Two-point functions

Consider 4D Minkowski space M1;3, parametriZed by
coordinates xm, where m ¼ 0; 1; 2; 3 are Lorentz indices.
Given two points, x1 and x2, we can define the covariant
two-point function

xm12 ¼ ðx1 − x2Þm; xm21 ¼ −xm12: ð2:1Þ

Next, following Osborn and Petkou [1], we introduce the
conformal inversion tensor, Imn, which is defined as
follows:

ImnðxÞ ¼ ηmn − 2
xmxn
x2

; ImaðxÞIanðxÞ ¼ δnm: ð2:2Þ

This object played a pivotal role in the construction of
correlation functions in [1], as the full conformal group
may be generated by considering Poincaré transformations
supplemented by inversions. However, in the context of this
work, we require an analogous operator for the spinor
representation. Hence, we convert the vector two-point
functions (2.1) into spinor notation using the conventions
outlined in the Appendix:

x12α _α ¼ ðσmÞα _αx12m; x _αα12 ¼ ðσ̃mÞ _ααx12m;

x212 ¼ −
1

2
x _αα
12x12α _α: ð2:3Þ

In this form the two-point functions possess the following
useful properties:

x _αα
12x12β _α ¼ −x212δαβ; x _αα12x12α _β ¼ −x212δ _α_β: ð2:4Þ

Hence, we find

ðx−112 Þ _αα ¼ −
x _αα
12

x212
: ð2:5Þ

We also introduce the normalized two-point functions,
denoted by x̂12,

x̂12α _α ¼
x12α _α

ðx212Þ1=2
; x̂ _αα12 x̂12β _α ¼ −δβα: ð2:6Þ

From here we can now construct an operator analogous to
the conformal inversion tensor acting on the space of
symmetric traceless tensors of arbitrary rank. Given a two-
point function x, we define the operator

IαðkÞ _αðkÞðxÞ ¼ x̂ðα1ð _α1 � � � x̂αkÞ _αkÞ; ð2:7Þ

along with its inverse

Ī _αðkÞαðkÞðxÞ ¼ x̂ð _α1ðα1 � � � x̂ _αkÞαkÞ: ð2:8Þ

The spinor indices may be raised and lowered using the
standard conventions as follows:

IαðkÞ
_αðkÞðxÞ ¼ εα1γ1 � � � εαkγkI γðkÞ _αðkÞðxÞ; ð2:9aÞ

Ī _αðkÞαðkÞðxÞ ¼ ε _α1 _γ1 � � � ε _αk _γk Ī _γðkÞαðkÞðxÞ: ð2:9bÞ

Now due to the property

IαðkÞ _αðkÞð−xÞ ¼ ð−1ÞkIαðkÞ _αðkÞðxÞ; ð2:10Þ

we have the following useful relations:

IαðkÞ _αðkÞðx12ÞĪ _αðkÞβðkÞðx21Þ ¼ δðβ1ðα1 � � � δ
βkÞ
αkÞ; ð2:11aÞ

Ī _βðkÞαðkÞðx12ÞIαðkÞ _αðkÞðx21Þ ¼ δð
_β1
ð _α1 � � � δ

_βkÞ
_αkÞ: ð2:11bÞ

The objects (2.7) and (2.8) prove to be essential in the
construction of correlation functions of primary operators
with arbitrary spin. Indeed, the vector representation of the
inversion tensor may be recovered in terms of the spinor
two-point functions as follows:

ImnðxÞ ¼ −
1

2
Trðσ̃mx̂σ̃nx̂Þ: ð2:12Þ

Now let ΦA be a primary field with dimension Δ, where A
denotes a collection of Lorentz spinor indices. The two-
point correlation function of ΦA and its conjugate Φ̄Ā is
fixed by conformal symmetry to the form

hΦAðx1ÞΦ̄Āðx2Þi ¼ c
IA

Āðx12Þ
ðx212ÞΔ

; ð2:13Þ
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where I is an appropriate representation of the inversion
tensor and c is a constant complex parameter. The denom-
inator of the two-point function is determined by the
conformal dimension of ΦA, which guarantees that the
correlation function transforms with the appropriate weight
under scale transformations. For example, in the case of the
fermionic current field Qαð2kÞ _α, the two-point function is
uniquely fixed to the following form:

hQαð2kÞ _αðx1ÞQ̄_βð2kÞβðx2Þi ¼ c
Iαð2kÞ

_βð2kÞðx12ÞĪ _α
βðx12Þ

ðx212ÞΔðQÞ ;

ð2:14Þ

where in this case ΔðQÞ is fixed by conservation of Q ðQ̄Þ
at x1 (x2). It is not too difficult to show that ΔðQÞ ¼ kþ 5

2
.

B. Three-point functions

Given three distinct points in Minkowski space, xi, with
i ¼ 1, 2, 3, we define conformally covariant three-point
functions in terms of the two-point functions as in [1]

Xij ¼
xik
x2ik

−
xjk
x2jk

; Xji¼−Xij; X2
ij¼

x2ij
x2ikx

2
jk

; ð2:15Þ

where ði; j; kÞ is a cyclic permutation of (1,2,3). For
example, we have

Xm
12 ¼

xm13
x213

−
xm23
x223

; X2
12 ¼

x212
x213x

2
23

: ð2:16Þ

There are several useful identities involving the two-point
and three-point functions along with the conformal inver-
sion tensor; for example, we have the useful algebraic
relations

Imaðx13ÞIanðx23Þ ¼ Imaðx12ÞIanðX13Þ;

Imnðx23ÞXn
12 ¼

x212
x213

X13m; ð2:17aÞ

Imaðx23ÞIanðx13Þ ¼ Imaðx21ÞIanðX32Þ;

Imnðx13ÞXn
12 ¼

x212
x223

X32m; ð2:17bÞ

and the differential identities

∂ð1ÞmX12n ¼
1

x213
Imnðx13Þ;

∂ð2ÞmX12n ¼ −
1

x223
Imnðx23Þ: ð2:18Þ

The three-point functions also may be represented in spinor
notation as follows:

Xij;α _α¼ðσmÞα _αXm
ij; Xij;α _α ¼ðx−1ik Þα_γx_γγij ðx−1jk Þγ _α: ð2:19Þ

These objects satisfy properties similar to the two-point
functions (2.4). Indeed, it is convenient to define the
normalized three-point functions X̂ij and the inverses
ðX−1

ij Þ,

X̂ij;α _α ¼
Xij;α _α

ðX2
ijÞ1=2

; ðX−1
ij Þ _αα ¼ −

X _αα
ij

X2
ij
: ð2:20Þ

Now given an arbitrary three-point building block X, it is
also useful to construct the following higher-spin operator:

IαðkÞ _αðkÞðXÞ ¼ X̂ðα1ð _α1 � � � X̂αkÞ _αkÞ; ð2:21Þ

along with its inverse

Ī _αðkÞαðkÞðXÞ ¼ X̂ð _α1ðα1 � � � X̂ _αkÞαkÞ: ð2:22Þ

These operators have properties similar to the two-point
higher-spin inversion operators (2.7) and (2.8). There are
also some useful algebraic identities relating the two- and
three-point functions at various points, such as

Iα _αðX12Þ ¼ Iα_γðx13ÞĪ _γγðx12ÞI γ _αðx23Þ;
Ī _αγðx13ÞI γ _γðX12ÞĪ _γαðx13Þ ¼ Ī _ααðX32Þ: ð2:23Þ

These identities (and cyclic permutations of them) are
analogous to (2.17a) and (2.17b), and also admit higher-
spin generalizations, for example,

Ī _αðkÞγðkÞðx13ÞI γðkÞ_γðkÞðX12ÞĪ _γðkÞαðkÞðx13Þ ¼ Ī _αðkÞαðkÞðX32Þ:
ð2:24Þ

In addition, similar to (2.18), there are also the following
useful identities:

∂ð1Þα _αX _σσ
12 ¼ −

2

x213
Iα

_σðx13ÞĪ _α
σðx13Þ;

∂ð2Þα _αX _σσ
12 ¼ 2

x223
Iα

_σðx23ÞĪ _α
σðx23Þ: ð2:25Þ

These identities allow us to account for the fact that
correlation functions of primary fields obey differential
constraints which can arise due to conservation equations.
Indeed, given a tensor field T AðXÞ, there are the following
differential identities which arise as a consequence of
(2.25):

∂ð1Þα _αT AðX12Þ ¼
1

x213
Iα

_σðx13ÞĪ _α
σðx13Þ

∂

∂X _σσ
12

T AðX12Þ;

ð2:26aÞ
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∂ð2Þα _αT AðX12Þ ¼ −
1

x223
Iα

_σðx23ÞĪ _α
σðx23Þ

∂

∂X _σσ
12

T AðX12Þ:

ð2:26bÞ

Now concerning three-point correlation functions, letΦ,Ψ,
and Π be primary fields with scale dimensions Δ1, Δ2, and
Δ3, respectively. The three-point function may be con-
structed using the general ansatz

hΦA1
ðx1ÞΨA2

ðx2ÞΠA3
ðx3Þi

¼ I ð1Þ
A1

Ā1ðx13ÞI ð2Þ
A2

Ā2ðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

HĀ1Ā2A3
ðX12Þ; ð2:27Þ

where the tensorHĀ1Ā2A3
encodes all information about the

correlation function and is highly constrained by the
conformal symmetry as follows:

(i) Under scale transformations of Minkowski space
xm ↦ x0m ¼ λ−2xm, the three-point building blocks
transform as Xm ↦ X0m ¼ λ2Xm. As a consequence,
the correlation function transforms as

hΦA1
ðx01ÞΨA2

ðx02ÞΠA3
ðx03Þi

¼ðλ2ÞΔ1þΔ2þΔ3hΦA1
ðx1ÞΨA2

ðx2ÞΠA3
ðx3Þi; ð2:28Þ

which implies that H obeys the scaling property

HĀ1Ā2A3
ðλ2XÞ ¼ ðλ2ÞΔ3−Δ2−Δ1HĀ1Ā2A3

ðXÞ;
∀ λ ∈ Rnf0g: ð2:29Þ

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) If any of the fields Φ, Ψ, and Π obey differential
equations, such as conservation laws in the case of
conserved current multiplets, then the tensor H is
also constrained by differential equations. Such
constraints may be derived with the aid of identities
(2.26a) and (2.26b).

(iii) If any (or all) of the operators Φ, Ψ, and Π coincide,
the correlation function possesses symmetries under
permutations of spacetime points, e.g.,

hΦA1
ðx1ÞΦA2

ðx2ÞΠA3
ðx3Þi

¼ ð−1ÞϵðΦÞhΦA2
ðx2ÞΦA1

ðx1ÞΠA3
ðx3Þi; ð2:30Þ

where ϵðΦÞ is the Grassmann parity of Φ. As a
consequence, the tensor H obeys constraints which
will be referred to as “point-switch identities.”
Similar relations may also be derived for two fields
which are related by complex conjugation.

The constraints above fix the functional form of H
(and therefore the correlation function) up to finitely
many independent parameters. Hence, using the general

formula (2.31), the problem of computing three-point
correlation functions is reduced to deriving the general
structure of the tensor H subject to the above constraints.

C. Comments regarding differential constraints

An important aspect of this construction which requires
further elaboration is that it is sensitive to the configuration
of the fields in the correlation function. Indeed, depending
on the exact way in which one constructs the general ansatz
(2.31), it can be difficult to impose conservation equations
on one of the three fields due to a lack of useful identities
such as (2.26a) and (2.26b). To illustrate this more clearly,
consider the following example: suppose we want to
determine the solution for the correlation function
hΦA1

ðx1ÞΨA2
ðx2ÞΠA3

ðx3Þi with the ansatz

hΦA1
ðx1ÞΨA2

ðx2ÞΠA3
ðx3Þi

¼ I ð1Þ
A1

Ā1ðx13ÞI ð2Þ
A2

Ā2ðx23Þ
ðx213ÞΔ1ðx223ÞΔ2

HĀ1Ā2A3
ðX12Þ: ð2:31Þ

All information about this correlation function is encoded
in the tensor H; however, this particular formulation of the
problem prevents us from imposing conservation on the
field Π in a straightforward way. To rectify this issue we
reformulate the ansatz with Π at the front

hΠA3
ðx3ÞΨA2

ðx2ÞΦA1
ðx1Þi

¼ I ð3Þ
A3

Ā3ðx31ÞI ð2Þ
A2

Ā2ðx21Þ
ðx231ÞΔ3ðx221ÞΔ2

H̃Ā3Ā2A1
ðX32Þ: ð2:32Þ

In this case, all information about this correlation function
is now encoded in the tensor H̃, which is a completely
different solution compared to H. Conservation on Π can
now be imposed by treating x3 as the first point with the aid
of identities analogous to (2.25), (2.26a), and (2.26b). What
we now need is a simple equation relating the tensorsH and
H̃, which correspond to different representations of the
same correlation function. If we have equality between the
two ansatz above, after some manipulations we obtain
the following relation:

H̃Ā3Ā2A1
ðX32Þ ¼ ð−1Þϵðx213ÞΔ3−Δ1

�
x221
x223

�
Δ2

I ð1Þ
A1

Ā1ðx13Þ

× Ī ð2Þ
Ā2

A0
2ðx12ÞI ð2Þ

A0
2

Ā0
2ðx23Þ

× Ī ð3Þ
Ā3

A3ðx13ÞHĀ1Ā
0
2A3

ðX12Þ; ð2:33Þ

where ϵ is either 0 or 1 depending on the Grassmann
parity of the fields Φ, Ψ, and Π; since the overall sign is
somewhat irrelevant for the purpose of this calculation we
will absorb it into the overall sign of H̃. In general, this
equation is quite impractical to work with due to the
presence of both two- and three-point functions; hence,
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further simplification is required. Let us now introduce
some useful definitions; suppose HðXÞ (with indices
suppressed) is composed out of a finite basis of linearly
independent tensor structures PiðXÞ, i.e., HðXÞ ¼P

i aiPiðXÞ where ai are constant complex parameters.
We define H̄ðXÞ ¼ P

i āiP̄iðXÞ, the conjugate of H, and
also HcðXÞ ¼ P

i aiP̄iðXÞ, which we will call the comple-
ment of H. As a consequence of (2.23), the following
relation holds:

Hc
A1A2Ā3

ðX32Þ
¼ ðx213X2

32ÞΔ3−Δ2−Δ1I ð1Þ
A1

Ā1ðx13ÞI ð2Þ
A2

Ā2ðx13Þ
× Ī ð3Þ

Ā3

A3ðx13ÞHĀ1Ā2A3
ðX12Þ: ð2:34Þ

This equation is an extension of (2.14) in [1] to the spinor
representation, and it allows us to construct an equation
relating different representations of the same correlation
function. After inverting this identity and substituting it
directly into (2.33), we apply identities such as (2.23) to
obtain an equation relating Hc and H̃,

H̃Ā3Ā2A1
ðXÞ ¼ ðX2ÞΔ1−Δ3 Ī ð2Þ

Ā2

A2ðXÞHc
A1A2Ā3

ðXÞ: ð2:35Þ

It is important to note that this is now an equation in terms
of a single variable, X, which vastly simplifies the calcu-
lations. Indeed, once H̃ is obtained we can then impose
conservation on Π as if it were located at the “first point.”
However, as we will see in the subsequent examples, this
transformation is quite difficult to carry out for correlation
functions of higher-spin primary operators due to the
proliferation of tensor indices.
To summarize, in order to successfully impose all the

relevant constraints on the fields in the correlator, we will
adhere to the following three step approach:
(1) Using ansatz (2.31), construct a solution forH that is

consistent with the algebraic/tensorial symmetry
properties of the fields Φ, Ψ, and Π.

(2) Impose conservation equations on the first and
second points using identities (2.25), (2.26a), and
(2.26b) to constrain the functional form of the
tensor H.

(3) Reformulate the correlation function using ansatz
(2.32), which allows one to find an explicit relation
for H̃ in terms ofHc. Conservation ofΠmay now be
imposed as if it were located at the first point.

D. Generating function formalism

To study and impose constraints on correlation func-
tions of primary fields with general spins it is often
advantageous to use the formalism of generating functions
to streamline the calculations. Suppose we must analyze
the constraints on a general spin-tensor HA1A2A3

ðXÞ,
where A1 ¼ fαði1Þ; _αðj1Þg, A2 ¼ fβði2Þ; _βðj2Þg, and

A3 ¼ fγði3Þ; _γðj3Þg represent sets of totally symmetric
spinor indices associated with the fields at points x1, x2,
and x3, respectively. We introduce sets of commuting
auxiliary spinors for each point: U ¼ fu; ūg at x1,
V ¼ fv; v̄g at x2, andW ¼ fw; w̄g at x3, where the spinors
satisfy

u2 ¼ εαβuαuβ ¼ 0; ū2 ¼ ε _α _βū
_αū _β ¼ 0;

v2 ¼ v̄2 ¼ 0; w2 ¼ w̄2 ¼ 0: ð2:36Þ

Now if we define the objects

UA1 ≡ Uαði1Þ _αðj1Þ ¼ uα1 � � � uαi1 ū _α1 � � � ū _αj1 ; ð2:37aÞ

VA2 ≡ Vβði2Þ _βðj2Þ ¼ vβ1 � � � vβi2 v̄ _β1 � � � v̄ _βj2 ; ð2:37bÞ

WA3 ≡Wγði3Þ_γðj3Þ ¼ wγ1 � � �wγi3 w̄_γ1 � � � w̄_γj3 ; ð2:37cÞ

then the generating polynomial for H is constructed as
follows:

HðX;U;V;WÞ ¼ HA1A2A3
ðXÞUA1VA2WA3 : ð2:38Þ

There is in fact a one-to-one mapping between the space of
symmetric traceless spin tensors and the polynomials
constructed using the above method. The tensor H can
then be extracted from the polynomial by acting on it with
the following partial derivative operators:

∂

∂UA1
≡ ∂

∂Uαði1Þ _αðj1Þ ¼
1

i1!j1!
∂

∂uα1
� � � ∂

∂uαi1
∂

∂ū _α1
� � � ∂

∂ū _αj1
;

ð2:39aÞ

∂

∂VA2
≡ ∂

∂Vβði2Þ _βðj2Þ
¼ 1

i2!j2!
∂

∂vβ1
� � � ∂

∂vβi2
∂

∂v̄ _β1
� � � ∂

∂v̄
_βj2

;

ð2:39bÞ

∂

∂WA3
≡ ∂

∂Wγði3Þ_γðj3Þ ¼
1

i3!j3!
∂

∂wγ1
� � � ∂

∂wγi3

∂

∂w̄_γ1
� � � ∂

∂w̄_γj3
:

ð2:39cÞ

The tensor H is then extracted from the polynomial as
follows:

HA1A2A3
ðXÞ ¼ ∂

∂UA1

∂

∂VA2

∂

∂WA3
HðX;U;V;WÞ: ð2:40Þ

Let us point out that methods based on using auxiliary
vectors/spinors to create a polynomial are widely used in
the construction of correlation functions throughout the
literature (see e.g., [19,27,32–34,38]). However, usually the
entire correlator is contracted with auxiliary variables, and
as a result one produces a polynomial depending on all
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three spacetime points and the auxiliary spinors. In our
approach, however, we contract the auxiliary spinors with
the tensor HA1A2A3

ðXÞ, which depends on only a single
variable.
Our approach proves to be essential in the construction

of correlation functions of higher-spin operators. It also
proves to be more computationally tractable, as the poly-
nomial H, (2.38), is now constructed out of scalar combi-
nations of X, and the auxiliary spinorsU, V, andW with the
appropriate homogeneity. Such a polynomial can be con-
structed out of the following scalar basis structures:

uv ¼ uαvα; uw ¼ uαwα; vw ¼ vαwα; ð2:41aÞ

ū v̄ ¼ ū _αv̄ _α; ū w̄ ¼ ū _αw̄ _α; v̄ w̄ ¼ v̄ _αw̄ _α; ð2:41bÞ

uXū¼ uαX̂α _αū _α; uXv̄¼ uαX̂α _αv̄ _α; uXw̄¼ uαX̂α _αw̄ _α;

ð2:41cÞ

vXū¼ vαX̂α _αū _α; vXv̄¼ vαX̂α _αv̄ _α; vXw̄¼ vαX̂α _αw̄ _α;

ð2:41dÞ

wXū¼wαX̂α _αū _α; wXv̄¼wαX̂α _αv̄ _α; wXw̄¼wαX̂α _αw̄ _α;

ð2:41eÞ

subject to cyclic permutations of linear dependence rela-
tions such as

ðuXūÞðv̄ w̄Þ − ðuXv̄Þðū w̄Þ þ ðuXw̄Þðū v̄Þ ¼ 0: ð2:42Þ

There can be more general linear dependence relations
for more complicated combinations of the basis struc-
tures (2.41); however, such relations can be obtained
computationally.
In general, it is a nontrivial technical problem to come up

with an exhaustive list of possible solutions for the
polynomial H for a given set of spins. Hence, let us
introduce a more convenient labeling scheme for the
building blocks (2.41)

P1 ¼ uv; P2 ¼ uw; P3 ¼ vw; ð2:43aÞ

Q1 ¼ uXv̄; Q2 ¼ uXw̄; Q3 ¼ vXw̄; ð2:43bÞ

Z1 ¼ uXū; Z2 ¼ vXv̄; Z3 ¼ wXw̄: ð2:43cÞ

Now if we also define the objects

Pðk1; k2; k3Þ ¼ Pk1
1 P

k2
2 P

k3
3 ; ð2:44aÞ

QðX; r1; r2; r3Þ ¼ Qr1
1 Q

r2
2 Q

r3
3 ; ð2:44bÞ

ZðX; s1; s2; s3Þ ¼ Zs1
1 Z

s2
2 Z

s3
3 ; ð2:44cÞ

then the generating function for the polynomial
HðX;U;V;WÞ may be defined as follows:

F ðX;Γ; U; V;WÞ ¼ XΔ3−Δ2−Δ1Pðk1; k2; k3ÞP̄ðk̄1; k̄2; k̄3Þ
×QðX; r1; r2; r3ÞQ̄ðX; r̄1; r̄2; r̄3Þ
× ZðX; s1; s2; s3Þ; ð2:45Þ

where the non-negative integers, Γ ¼ fki; k̄i; ri; r̄i; sig,
i ¼ 1; 2; 3, are solutions to the following linear system:

k1þ k2þ s1þ r1þ r2 ¼ i1; k̄1þ k̄2þ s1þ r̄1þ r̄2 ¼ j1;

ð2:46aÞ

k1 þ k3 þ s2þ r̄1 þ r3 ¼ i2; k̄1þ k̄3þ s2 þ r1þ r̄3 ¼ j2;

ð2:46bÞ

k2 þ k3 þ s3þ r̄2 þ r̄3 ¼ i3; k̄2þ k̄3þ s3 þ r2þ r3 ¼ j3;

ð2:46cÞ

and i1, i2, i3, j1, j2, j3 are fixed integers which specify the
spin structure of the correlation function. These equations
are obtained by comparing the homogeneity of the aux-
iliary spinors u, ū, etc., in the generating function (2.45),
against the index structure of the tensor H. Let us assume
there exists a finite number of solutions ΓI , I ¼ 1;…; N to
(2.46) for a given choice of i1, i2, i3, j1, j2, j3. Then the
most general ansatz for the polynomial H in (2.38) is as
follows:

HðX;U;V;WÞ ¼
XN
I¼1

aIF ðX;ΓI; U; V;WÞ; ð2:47Þ

where aI are a set of complex constants. Hence, construct-
ing the most general ansatz for the generating polynomial
H is now equivalent to finding all non-negative integer
solutions ΓI of (2.46), where i1, i2, i3 and j1, j2, j3 are
arbitrary non-negative integers. The solutions correspond
to a linearly dependent basis of possible structures in which
the polynomial H can be decomposed. Using computa-
tional methods, we can generate all possible solutions to
(2.46) for fixed (and in some cases arbitrary) values of
the spins.
In the remaining sections of this paper we will construct

solutions for the three-point functions of the fermionic
current field Qαð2kÞ _α with the vector current and the energy
momentum tensor using the formalism outlined above. We
use a combination of the method of systematic decom-
position and the generating function approach to reduce the
number of possible linearly dependent structures in each
case. We present most of our results in terms of the scalar
basis structures (2.41); however, the generating function
(2.45) underpins most of the calculations.
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III. CORRELATOR hQ̄α _αð2kÞðx1ÞQβð2kÞ_βðx2ÞVγ _γðx3Þi
In this section we will compute the correlation function

hQ̄QVi, where V is a conserved vector field Vγ _γ with scale
dimension 3. The ansatz for this correlator consistent with
the general results of Sec. II B is

hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi

¼ 1

ðx213x223Þkþ
5
2

Iα
_α0 ðx13ÞĪ _αð2kÞα

0ð2kÞðx13Þ

× Iβð2kÞ
_β0ð2kÞðx23ÞĪ _β

β0 ðx23Þ
×Hα0ð2kÞ _α0;β0 _β0ð2kÞ;γ _γðX12Þ; ð3:1Þ

where H is a homogeneous tensor field of degree q ¼
3 − 2ðkþ 5

2
Þ ¼ −2ðkþ 1Þ. It is constrained as follows:

(i) Under scale transformations of spacetime xm ↦
x0m ¼ λ−2xm the three-point building blocks trans-
form as Xm ↦ X0m ¼ λ2Xm. As a consequence, the
correlation function transforms as

hQ̄α _αð2kÞðx01ÞQβð2kÞ _βðx02ÞVγ _γðx03Þi
¼ ðλ2Þ2kþ8hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi; ð3:2Þ

which implies that H obeys the scaling property

Hαð2kÞ _α;β _βð2kÞ;γ _γðλ2XÞ
¼ ðλ2ÞqHαð2kÞ _α;β _βð2kÞ;γ _γðXÞ; ∀λ∈Rnf0g: ð3:3Þ

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) The conservation of the fields Q at x1 and x2 imply
the following constraints on the correlation function:

∂
_αα
ð1ÞhQ̄α _α _αð2k−1Þðx1ÞQβð2kÞ_βðx2ÞVγ _γðx3Þi ¼ 0; ð3:4aÞ

∂
_ββ
ð2ÞhQ̄α _αð2kÞðx1ÞQβð2k−1Þβ _βðx2ÞVγ _γðx3Þi ¼ 0: ð3:4bÞ

Using identities (2.26a) and (2.26b) we obtain the
following differential constraints on the tensor H:

∂
_αα
X Hαð2k−1Þα _α;β _βð2kÞ;γ _γðXÞ ¼ 0; ð3:5aÞ

∂
_ββ
X Hαð2kÞ _α;β _β _βð2k−1Þ;γ _γðXÞ ¼ 0; ð3:5bÞ

where ∂
_αα
X ¼ ðσ̃aÞ _αα ∂

∂Xa. There is also a third con-
straint equation arising from conservation of V at x3,

∂
_γγ
ð3ÞhQ̄α _αð2kÞðx1ÞQβð2kÞ_βðx2ÞVγ _γðx3Þi ¼ 0; ð3:6Þ

however, there are no identities analogous to (2.26a)
and (2.26b) that allow the partial derivative operator

acting on x3 to pass through the prefactor of (4.1);
hence, we use the procedure outlined in Sec. II C.
First we construct an alternative ansatz with V at the
front as follows:

hVγ _γðx3ÞQβð2kÞ _βðx2ÞQ̄α _αð2kÞðx1Þi

¼ 1

ðx231Þ3ðx221Þkþ
5
2

I γ
_γ0 ðx31ÞĪ _γ

γ0 ðx31Þ

× Iβð2kÞ
_β0ð2kÞðx21ÞĪ _β

β0 ðx21Þ
× H̃γ0 _γ0;β0 _β0ð2kÞ;α _αð2kÞðX32Þ: ð3:7Þ

Since the correlation function possesses the follow-
ing property:

hVγ _γðx3ÞQβð2kÞ _βðx2ÞQ̄α _αð2kÞðx1Þi
¼ −hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi; ð3:8Þ

we can now compute H̃ in terms of H. After some
manipulations one finds the following relation:

H̃γ _γ;β _βð2kÞ;α _αð2kÞðX32Þ
¼x613X

2kþ5
12 I γ

_γ0 ðx31ÞĪ _γ
γ0 ðx31Þ

×Iα
_α0 ðx13ÞĪ _αð2kÞα

0ð2kÞðx13Þ
×Iβ _μðx13ÞĪ _μβ0 ðX12ÞIμð2kÞ _βð2kÞðx13Þ
× Ī _β0ð2kÞμð2kÞðX12ÞHα0ð2kÞ _α0;β0 _β0ð2kÞγ0 _γ0 ðX12Þ: ð3:9Þ

This is quite impractical to work with due to the
presence of both two-point functions and three-point
functions; therefore we will make use of the follow-
ing relation derived from (2.33):

Hαð2kÞ _α;β _βð2kÞ;γ _γðX12Þ
¼ ðx213X2

32ÞqIαð2kÞ _α
0ð2kÞðx13ÞĪ _α

α0 ðx13ÞIβ
_β0 ðx13Þ

× Ī _βð2kÞ
β0ð2kÞðx13ÞI γ

_γ0 ðx13ÞĪ _γ
γ0 ðx13Þ

×Hc
α0 _α0ð2kÞ;β0ð2kÞ_β0;γ0 _γ0 ðX32Þ: ð3:10Þ

After substituting this relation directly into (3.9), and
making use of (2.23), we obtain the following
equation:

H̃γ _γ;β _βð2kÞ;α _αð2kÞðXÞ¼X2k−1Iβ
_β0 ðXÞĪ _βð2kÞ

β0ð2kÞðXÞ
×Hc

α _αð2kÞ;β0ð2kÞ _β0;γ _γðXÞ: ð3:11Þ

The equation relating H̃ to Hc is now expressed
in terms of a single variable, the building block
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vector X. Conservation on the third point is now
equivalent to imposing the following constraint on
the tensor H̃:

∂
_γγ
X H̃γ _γ;β _βð2kÞ;α _αð2kÞðXÞ ¼ 0: ð3:12Þ

(iii) The correlation function is also constrained by the
following reality condition:

hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi
¼ hQ̄β _βð2kÞðx2ÞQαð2kÞ _αðx1ÞVγ _γðx3Þi�; ð3:13Þ

which implies the following constraint on the
tensor H:

Hαð2kÞ _α;β _βð2kÞ;γ _γðXÞ ¼ −H̄β _βð2kÞ;αð2kÞ _α;γ _γð−XÞ: ð3:14Þ

Hence, we have to solve for the tensor H subject to
the above constraints. This is technically quite a challeng-
ing problem due to the complicated index structure of
the tensor H. Instead, we will streamline the calculations
by constructing a generating function as outlined in
Sec. II D. We introduce the commuting auxiliary spinors
u; ū; v; v̄; w; w̄, which satisfy u2 ¼ 0, ū2 ¼ 0, etc., and
define the generating function for H as follows:

HðX; u; ū; v; v̄; w; w̄Þ
¼ Hαð2kÞ _α;β _βð2kÞ;γ _γðXÞUαð2kÞ _αVβ _βð2kÞWγ _γ: ð3:15Þ

The tensor H is then obtained from the generating poly-
nomial by acting on it with partial derivatives

Hαð2kÞ _α;β _βð2kÞ;γ _γðXÞ

¼ ∂

∂Uαð2kÞ _α
∂

∂Vβ _βð2kÞ
∂

∂Wγ _γ HðX; u; ū; v; v̄; w; w̄Þ: ð3:16Þ

Again, the generating function approach simplifies the
various algebraic and differential constraints on the tensor
H. In particular, the differential constraints (3.5a) and
(3.5b) become

∂

∂Xσ _σ

∂

∂uσ
∂

∂ū _σ HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð3:17aÞ

∂

∂Xσ _σ

∂

∂vσ
∂

∂v̄ _σ HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð3:17bÞ

while the homogeneity and reality condition (3.14) become

Hðλ2X;u;ū;v;v̄;w;w̄Þ¼ðλ2ÞqHðX;u;ū;v;v̄;w;w̄Þ; ð3:18aÞ

HðX; u; ū; v; v̄; w; w̄Þ ¼ −H̄ð−X; v; v̄; u; ū; w; w̄Þ: ð3:18bÞ

Our task now is to construct the general solution for the
polynomial H consistent with the above constraints.
The general expansion for the polynomial H is formed

out of products of the basis objects introduced in (2.41). Let
us start by decomposing the polynomial H, and we have

HðX;u;ū;v;v̄;w;w̄Þ¼ 1

X2kþ2
wαw̄ _αF α _αðX;u;ū;v;v̄Þ; ð3:19Þ

where have used the fact thatH is homogeneous degree 1 in
both w and w̄. The vector object F is now homogeneous
degree 0 in X, homogeneous degree 1 in ū, v, and
homogeneous degree 2k in u, v̄. It may be decomposed
further by introducing the following basis vector structures:

Z1;α _α ¼ X̂α _α; Z2;α _α ¼ uαū _α; Z3;α _α ¼ uαv̄ _α; ð3:20aÞ

Z4;α _α ¼ vαū _α; Z5;α _α ¼ vαv̄ _α: ð3:20bÞ

We then have

F α _αðX; u; ū; v; v̄Þ ¼
X5
i¼1

Zi;α _αF iðX; u; ū; v; v̄Þ; ð3:21Þ

where the F i are polynomials that are homogeneous degree
0 in X, with the appropriate homogeneity in u; ū; v; v̄. It is
not too difficult to construct all possible polynomial
structures for each Zi;α _α:

Z1 structures∶

F 1ðX;u; ū; v; v̄Þ ¼ a1ðvXūÞðuXv̄Þ2k
þ a2ðuXūÞðvXv̄ÞðuXv̄Þ2k−1
þ a3ðuvÞðū v̄ÞðuXv̄Þ2k−1; ð3:22aÞ

Z2 structures∶

F 2ðX;u; ū; v; v̄Þ ¼ a4ðvXv̄ÞðuXv̄Þ2k−1; ð3:22bÞ

Z3 structures∶

F 3ðX;u; ū; v; v̄Þ ¼ a5ðvXūÞðuXv̄Þ2k−1
þ a6ðuXūÞðvXv̄ÞðuXv̄Þ2k−2
þ a7ðuvÞðū v̄ÞðuXv̄Þ2k−2; ð3:22cÞ

Z4 structures∶

F 4ðX;u; ū; v; v̄Þ ¼ a8ðuXv̄Þ2k; ð3:22dÞ

Z5 structures∶

F 5ðX;u; ū; v; v̄Þ ¼ a9ðuXūÞðuXv̄Þ2k−1: ð3:22eÞ

However, not all of these structures are linearly independent.
In particular, it may be shown thatF α _αðX; u; ū; v; v̄Þ ¼ 0 for
the choice
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a2¼−a1; a3¼ a1; ai ¼ 0; i¼ 4;…;9: ð3:23Þ

Therefore we can construct a linearly independent basis of
polynomial structures by removing the a1 structure, which
leaves us with eight independent structures to consider. We
now impose the differential constraints and point switch
identities using Mathematica. After imposing (3.17a), we
obtain the following k-dependent relations:

a4 ¼
ð1 − 2kÞa2 þ ð1þ 2kÞa3

1þ 2k
;

a7 ¼
ð−1þ 2kÞða2 þ ð1þ 2kÞa3Þ

2kð1þ 2kÞ ; ð3:24Þ

in addition to a5 ¼ a6 ¼ 0. Next we impose (3.17b), from
which we obtain

a9 ¼
ð1 − 2kÞa2 þ ð1þ 2kÞa3

1þ 2k
: ð3:25Þ

Hence, the correlation function is determined up to
three independent complex parameters, a2, a3, and a8.
We now must impose the reality condition (3.18b). Using
Mathematica, we find that a2 ¼ iã2, a3 ¼ iã3, and
a8 ¼ iã8, where ã2, ã3, and ã8 are three real constant
parameters.
It remains to demonstrate that this correlation function is

conserved at x3 in accordance with conservation of the
vector current. First, we compute the tensor H̃ using (3.11).
This may be written more compactly in the generating
function formalism; to do this we introduce the following
differential operators:

ðvX∂s̄Þ ¼ vαX̂α
_α ∂

∂s̄ _α
; ð∂sXv̄Þ ¼ ∂

∂sα
X̂α

_αv̄ _α: ð3:26Þ

The relation (3.11) is now equivalent to

H̃ðX;w; w̄; v; v̄; u; ūÞ

¼ 1

ð2kÞ!X
2k−1ðvX∂s̄Þð∂sXv̄Þ2kHcðX; u; ū; s; s̄; w; w̄Þ:

ð3:27Þ

Conservation on the third point (3.12) is equivalent to
imposing the following constraint on H̃:

∂

∂Xσ _σ

∂

∂wσ

∂

∂w̄ _σ H̃ðX;w; w̄; v; v̄; u; ūÞ ¼ 0: ð3:28Þ

It may be shown usingMathematica that this is satisfied up
to k ¼ 4. Beyond k ¼ 4 the calculations for (3.11) seem to
become very computationally intensive; however, we have
no reason to expect that the result will change for higher

values of k. Hence, we are reasonably confident that
hQ̄QVi is fixed up to three independent real parameters.

IV. CORRELATOR hQαð2kÞ _αðx1ÞQβð2kÞ_βðx2ÞVγ _γðx3Þi
In this section we will compute the correlation function

hQQVi. The ansatz for this correlator consistent with the
general results of Sec. II B is

hQαð2kÞ _αðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi

¼ 1

ðx213x223Þkþ
5
2

Iαð2kÞ _α
0ð2kÞðx13ÞĪ _α

α0 ðx13Þ

× Iβð2kÞ
_β0ð2kÞðx23ÞĪ _β

β0 ðx23Þ
×Hα0 _α0ð2kÞ;β0 _β0ð2kÞ;γ _γðX12Þ; ð4:1Þ

where H is a homogeneous tensor field of degree q ¼
3 − 2ðkþ 5

2
Þ ¼ −2ðkþ 1Þ. It is constrained as follows:

(i) Under scale transformations of spacetime xm ↦
x0m ¼ λ−2xm the three-point building blocks trans-
form as Xm ↦ X0m ¼ λ2Xm. As a consequence, the
correlation function transforms as

hQαð2kÞ _αðx01ÞQβð2kÞ _βðx02ÞVγ _γðx03Þi
¼ ðλ2Þ2kþ8hQαð2kÞ _αðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi; ð4:2Þ

which implies that H obeys the scaling property

Hα _αð2kÞ;β _βð2kÞ;γ _γðλ2XÞ
¼ ðλ2ÞqHα _αð2kÞ;β _βð2kÞ;γ _γðXÞ; ∀λ∈Rnf0g: ð4:3Þ

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) The conservation of the fields Q at x1 and x2 imply
the following constraints on the correlation function:

∂
_αα
ð1ÞhQαð2k−1Þα _αðx1ÞQβð2kÞ _βðx2ÞVγ _γðx3Þi ¼ 0; ð4:4aÞ

∂
_ββ
ð2ÞhQαð2kÞ _αðx1ÞQβð2k−1Þβ _βðx2ÞVγ _γðx3Þi ¼ 0: ð4:4bÞ

Using identities (2.26a) and (2.26b), we obtain the
following differential constraints on the tensor H:

∂
_αα
X Hα _α _αð2k−1Þ;β _βð2kÞ;γ _γðXÞ ¼ 0; ð4:5aÞ

∂
_ββ
X Hα _αð2kÞ;β _β _βð2k−1Þ;γ _γðXÞ ¼ 0: ð4:5bÞ

There is also a third constraint equation arising
from conservation of V at x3:

∂
_γγ
ð3ÞhQαð2kÞ _αðx1ÞQβð2kÞ_βðx2ÞVγ _γðx3Þi ¼ 0: ð4:6Þ
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Similar to the previous example, we use the pro-
cedure outlined in Sec. II C and find the following
relation between Hc and H̃:

H̃γ _γ;β _βð2kÞ;αð2kÞ _αðXÞ
¼X2k−1Iβ

_β0 ðXÞĪ _βð2kÞ
β0ð2kÞðXÞHc

αð2kÞ _α;β0ð2kÞ _β0;γ _γðXÞ:
ð4:7Þ

Conservation on the third point is now tantamount to
imposing the constraint

∂
_γγ
X H̃γ _γ;β _βð2kÞ;αð2kÞ _αðXÞ ¼ 0: ð4:8Þ

(iii) The correlation function possesses the following
symmetry property under exchange of the fields at
x1 and x2:

hQαð2kÞ _αðx1ÞQβð2kÞ_βðx2ÞVγ _γðx3Þi
¼ −hQβð2kÞ _βðx2ÞQαð2kÞ _αðx1ÞVγ _γðx3Þi: ð4:9Þ

This implies the following constraint on the tensorH:

Hα _αð2kÞ;β _βð2kÞ;γ _γðXÞ ¼ −Hβ _βð2kÞ;α _αð2kÞ;γ _γð−XÞ: ð4:10Þ

Hence, we have to solve for the tensor H subject to the
above constraints. Analogous to the previous example in
Sec. III, we streamline the calculations by constructing a
generating function, which is defined as follows:

HðX; u; ū; v; v̄; w; w̄Þ
¼ Hα _αð2kÞ;β _βð2kÞ;γ _γðXÞUα _αð2kÞVβ _βð2kÞWγ _γ: ð4:11Þ

The tensor H is then extracted from the generating
polynomial by acting on it with partial derivatives,

Hα _αð2kÞ;β _βð2kÞ;γ _γðXÞ

¼ ∂

∂Uα _αð2kÞ
∂

∂Vβ _βð2kÞ
∂

∂Wγ _γ
HðX; u; ū; v; v̄; w; w̄Þ: ð4:12Þ

As will be seen shortly, the generating function approach
simplifies the various algebraic and differential constraints
on the tensor H. In particular, the differential constraints
(4.5a) and (4.5b) become

∂

∂Xσ _σ

∂

∂uσ
∂

∂ū _σ
HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð4:13aÞ

∂

∂Xσ _σ

∂

∂vσ
∂

∂v̄ _σ
HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð4:13bÞ

while the homogeneity and point switch constraints
become

Hðλ2X; u; ū; v; v̄; w; w̄Þ ¼ ðλ2ÞqHðX; u; ū; v; v̄; w; w̄Þ;
ð4:14aÞ

HðX; u; ū; v; v̄; w; w̄Þ ¼ −Hð−X; v; v̄; u; ū; w; w̄Þ: ð4:14bÞ

Our task is now to construct the general solution for the
polynomial H consistent with the above constraints.
The general expansion for the polynomial H is then

formed out of products of the basis objects above. Let us
start by decomposing the polynomial H, we have

HðX; u; ū; v; v̄; w; w̄Þ ¼ 1

X2kþ2
wαw̄ _αF α _αðX; u; ū; v; v̄Þ;

ð4:15Þ

where we have used the fact thatH is homogeneous degree
1 in both w and w̄. The vector object F is now homo-
geneous degree 0 inX, degree 1 in u and v, and degree 2k in
ū and v̄. It may be decomposed further using the structures
defined in (3.20):

F α _αðX; u; ū; v; v̄Þ ¼
X5
i¼1

Zi;α _αF iðX; u; ū; v; v̄Þ; ð4:16Þ

where the F i are polynomials that are homogeneous degree
0 in X, with the appropriate homogeneity in u; ū; v; v̄. It is
not too difficult to construct all possible polynomial
structures for each Zi;α _α, and we find

Z1 structures∶

F 1ðX;u; ū;v; v̄Þ¼ a1ðuvÞðū v̄Þ2kþa2ðuXūÞðvXv̄Þðū v̄Þ2k−1
þa3ðuXv̄ÞðvXūÞðū v̄Þ2k−1; ð4:17aÞ

Z2 structures∶

F 2ðX;u; ū; v; v̄Þ ¼ a4ðvXv̄Þðū v̄Þ2k−1; ð4:17bÞ

Z3 structures∶

F 3ðX;u; ū; v; v̄Þ ¼ a5ðvXūÞðū v̄Þ2k−1; ð4:17cÞ

Z4 structures∶

F 4ðX;u; ū; v; v̄Þ ¼ a6ðuXv̄Þðū v̄Þ2k−1; ð4:17dÞ

Z5 structures∶

F 5ðX;u; ū; v; v̄Þ ¼ a7ðuXūÞðū v̄Þ2k−1: ð4:17eÞ

However, not all of these structures are linearly
independent. In particular, it may be shown that
F α _αðX; u; ū; v; v̄Þ ¼ 0 for the choice
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a3 ¼ −a2; a4 ¼ −a1 þ a2; a5 ¼ a1 − a2;

a6 ¼ a1 − a2; a7 ¼ −a1 þ a2: ð4:18Þ

Therefore we can construct a linearly independent basis of
polynomial structures by removing the a1 and a2 structures;
hence, there are only five independent structures remaining.
We now impose the differential constraints and point switch
identities using Mathematica. After imposing (4.13a), we
obtain the following k-dependent relations between the
coefficients:

a4 ¼ −
1

2k
a3; a5 ¼

3ð1þ 2kÞ
2kð3þ 2kÞ a3;

a7 ¼ −
ð1þ 2kÞa3 þ ð3þ 2kÞa6

3þ 8kþ 4k2
: ð4:19Þ

At this stage only two independent coefficients remain.
Next we impose (4.13b), from which we obtain

a4 ¼ −
1

2k
a3; a5 ¼

3ð1þ 2kÞ
2kð3þ 2kÞ a3;

a6 ¼
3ð1þ 2kÞ
2kð3þ 2kÞ a3; a7 ¼ −

1

2k
a3: ð4:20Þ

Hence, the correlation function is determined up to a single
complex parameter, a3 ¼ a. It may then be shown using
Mathematica that the point switch identity (4.14b) is
satisfied for this choice of coefficients.
It remains to demonstrate that this correlation function is

conserved at x3 in accordance with conservation of the
vector current. First, we need to compute H̃ using (4.7),
which is also more convenient to work with in the
generating function formalism. It may then be shown that
(4.7) is equivalent to

H̃ðX;w; w̄; v; v̄; u; ūÞ ¼ 1

ð2kÞ!X
2k−1ðvX∂s̄Þð∂sXv̄Þ2k

×HcðX; u; ū; s; s̄; w; w̄Þ: ð4:21Þ

Therefore, given the solution for the tensorH, we compute
Hc by conjugating the polynomial structures and then
compute H̃ using (4.7). The differential constraint (4.8)
may also be written in the generating function formalism

∂

∂Xσ _σ

∂

∂wσ

∂

∂w̄ _σ H̃ðX;w; w̄; v; v̄; u; ūÞ ¼ 0: ð4:22Þ

It may be shown using Mathematica that this constraint is
automatically satisfied for the coefficient relations (4.20),
up to k ¼ 4. Again, beyond this point, the calculations
seem to be quite computationally intensive. However it is
reasonable to expect that the same results will hold for all k.
Hence, after imposing all the constraints, the correlation

function hQQVi is determined up to a single complex
parameter.

V. CORRELATOR hQ̄α _αð2kÞðx1ÞQβð2kÞ_βðx2ÞTγð2Þ_γð2Þðx3Þi
In this section we will compute the correlation function

hQ̄QTi, where T is the energy momentum tensor Tγð2Þ_γð2Þ
with scale dimension 4. The ansatz for this correlator
consistent with the general results of Sec. II B is

hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi

¼ 1

ðx213x223Þkþ
5
2

Iα
_α0 ðx13ÞĪ _αð2kÞα

0ð2kÞðx13Þ

× Iβð2kÞ
_β0ð2kÞðx23ÞĪ _β

β0 ðx23Þ
×Hα0ð2kÞ _α0;β0 _β0ð2kÞ;γð2Þ_γð2ÞðX12Þ; ð5:1Þ

where H is a homogeneous tensor field of degree
q ¼ 4 − 2ðkþ 5

2
Þ ¼ −2k − 1. It is constrained as follows:

(i) Under scale transformations of spacetime xm ↦
x0m ¼ λ−2xm the three-point building blocks trans-
form as Xm ↦ X0m ¼ λ2Xm. As a consequence, the
correlation function transforms as

hQ̄α _αð2kÞðx01ÞQβð2kÞ _βðx02ÞTγð2Þ_γð2Þðx03Þi
¼ ðλ2Þ2kþ9hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi;

ð5:2Þ
which implies that H obeys the scaling property

Hαð2kÞ _α;β _βð2kÞ;γð2Þ_γð2Þðλ2XÞ
¼ ðλ2ÞqHαð2kÞ _α;β _βð2kÞ;γð2Þ_γð2ÞðXÞ; ∀ λ ∈ Rnf0g:

ð5:3Þ
This guarantees that the correlation function trans-
forms correctly under scale transformations.

(ii) The conservation of the fields Q at x1 and x2 imply
the following constraints on the correlation function:

∂
_αα
ð1ÞhQ̄α _α _αð2k−1Þðx1ÞQβð2kÞ_βðx2ÞTγð2Þ_γð2Þðx3Þi ¼ 0;

ð5:4aÞ

∂
_ββ
ð2ÞhQ̄α _αð2kÞðx1ÞQβð2k−1Þβ _βðx2ÞTγð2Þ_γð2Þðx3Þi ¼ 0:

ð5:4bÞ

Using identities (2.26a) and (2.26b) we obtain the
following differential constraints on the tensor H:

∂
_αα
X Hαð2k−1Þα _α;β _βð2kÞ;γð2Þ_γð2ÞðXÞ ¼ 0; ð5:5aÞ

∂
_ββ
X Hαð2kÞ _α;β _β _βð2k−1Þ;γð2Þ_γð2ÞðXÞ ¼ 0: ð5:5bÞ
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There is also a third constraint equation arising
from conservation of V at x3,

∂
_γγ
ð3ÞhQ̄α _αð2kÞðx1ÞQβð2kÞ_βðx2ÞTγð2Þ_γð2Þðx3Þi ¼ 0: ð5:6Þ

Using the same procedure as the previous examples,
we construct an alternative ansatz for the correlation
function as follows:

hTγð2Þ_γð2Þðx3ÞQβð2kÞ_βðx2ÞQ̄α _αð2kÞðx1Þi

¼ 1

ðx231Þ3ðx221Þ
7
2

I γð2Þ _γ
0ð2Þðx31ÞĪ _γð2Þγ

0ð2Þðx31Þ

× Iβð2kÞ
_β0ð2kÞðx21ÞĪ _β

_β0 ðx21Þ
× H̃γ0ð2Þ_γ0ð2Þ;β0 _β0ð2kÞ;α _αð2kÞðX32Þ: ð5:7Þ

Now due to the property

hTγð2Þ_γð2Þðx3ÞQβð2kÞ_βðx2ÞQ̄α _αð2kÞðx1Þi
¼ −hQ̄α _αð2kÞðx1ÞQβð2kÞ_βðx2ÞTγð2Þ_γð2Þðx3Þi; ð5:8Þ

we have a way to compute H̃ in terms of H. After
some manipulations we find

H̃γð2Þ_γð2Þ;β _βð2kÞ;α _αð2kÞðX32Þ
¼ x813X

2kþ5
12 I γð2Þ _γ

0ð2Þðx31ÞĪ _γð2Þγ
0ð2Þðx31Þ

× Iα
_α0 ðx13ÞĪ _αð2kÞα

0ð2kÞðx13ÞIβ _μðx13ÞĪ _μβ0 ðX12Þ
× Iμð2kÞ _βð2kÞðx13ÞĪ _β0ð2kÞμð2kÞðX12Þ
×Hα0ð2kÞ _α0;β0 _β0ð2kÞ;γ0ð2Þ_γ0ð2ÞðX12Þ: ð5:9Þ

We now make use of the following identity derived
from (2.34):

Hαð2kÞ _α;β _βð2kÞ;γð2Þ_γð2ÞðX12Þ
¼ ðx213X2

32ÞqIαð2kÞ _α
0ð2kÞðx13ÞĪ _α

α0 ðx13Þ
× Iβ

_β0 ðx13ÞĪ _βð2kÞ
_β0ð2kÞðx13Þ

× I γð2Þ _γ
0ð2Þðx13ÞĪ _γð2Þ _γ

0ð2Þðx13Þ
×Hc

α0 _α0ð2kÞ;β0ð2kÞ_β0;γ0ð2Þ_γ0ð2ÞðX32Þ: ð5:10Þ

After substituting this equation into (5.9), we obtain
the relation

H̃γð2Þ_γð2Þ;β _βð2kÞ;α _αð2kÞðXÞ
¼ X2k−3Iβ

_β0 ðXÞĪ _βð2kÞ
β0ð2kÞðXÞ

×Hc
α _αð2kÞ;β0ð2kÞ _β0;γð2Þ_γð2ÞðXÞ: ð5:11Þ

Conservation at x3 is now equivalent to imposing the
following constraint on the tensor H̃:

∂
_σσ
X H̃σ _σγ _γ;β _βð2kÞ;α _αð2kÞðXÞ ¼ 0: ð5:12Þ

(iii) The correlation function is also constrained by the
reality condition

hQ̄α _αð2kÞðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi
¼ hQ̄β _βð2kÞðx2ÞQαð2kÞ _αðx1ÞTγð2Þ_γð2Þðx3Þi�: ð5:13Þ

This implies the following constraint on the tensorH:

Hαð2kÞ _α;β _βð2kÞ;γð2Þ_γð2ÞðXÞ¼−H̄β _βð2kÞ;αð2kÞ _α;γð2Þ_γð2Þð−XÞ:
ð5:14Þ

Hence, we have to solve for the tensor H subject to the
above constraints. Analogous to the previous examples we
streamline the calculations by constructing a generating
function, which is defined as follows:

HðX;u;ū;v; v̄;w;w̄Þ
¼Hαð2kÞ _α;β _βð2kÞ;γð2Þ_γð2ÞðXÞUαð2kÞ _αVβ _βð2kÞWγð2Þ_γð2Þ: ð5:15Þ

The tensor H is then obtained from the generating poly-
nomial by acting on it with partial derivatives

Hαð2kÞ _α;β _βð2kÞ;γð2Þ_γð2ÞðXÞ

¼ ∂

∂Uαð2kÞ _α
∂

∂Vβ _βð2kÞ
∂

∂Wγð2Þ_γð2ÞHðX; u; ū; v; v̄; w; w̄Þ:

ð5:16Þ

Again, the generating function approach simplifies the
various algebraic and differential constraints on the tensor
H. In particular, the differential constraints (5.5a) and
(5.5b) become

∂

∂Xσ _σ

∂

∂uσ
∂

∂ū _σ
HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð5:17aÞ

∂

∂Xσ _σ

∂

∂vσ
∂

∂v̄ _σ
HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð5:17bÞ

while the homogeneity and point switch constraints
become

Hðλ2X; u; ū; v; v̄; w; w̄Þ ¼ ðλ2ÞqHðX; u; ū; v; v̄; w; w̄Þ;
ð5:18aÞ

HðX; u; ū; v; v̄; w; w̄Þ ¼ −H̄ð−X; v; v̄; u; ū; w; w̄Þ: ð5:18bÞ
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Let us now construct the general solution for the
polynomial H consistent with the above constraints. We
start by decomposing the polynomial H as follows:

HðX; u; ū; v; v̄; w; w̄Þ ¼ 1

X2kþ1
ū _αvαF α _αðX;u; v̄; w; w̄Þ;

ð5:19Þ

where have used the fact thatH is homogeneous degree 1 in
both ū and v. The vector object F is now homogeneous
degree 0 in X, homogeneous degree 2 in w and w̄, and
homogeneous degree 2k in u and v̄. It may be decomposed
further by defining the following basis vectors:

Z1;α _α ¼ X̂α _α; Z2;α _α ¼ uαv̄ _α; Z3;α _α ¼ uαw̄ _α; ð5:20aÞ

Z4;α _α ¼ wαv̄ _α; Z5;α _α ¼ wαw̄ _α: ð5:20bÞ

We then have

F α _αðX; u; v̄; w; w̄Þ ¼
X5
i¼1

Zi;α _αF iðX; u; v̄; w; w̄Þ; ð5:21Þ

where the F i are polynomials that are homogeneous
degree 0 in X, with the appropriate homogeneity in
u; v̄; w; w̄. The complete list of possible polynomial struc-
tures for each Zi;α _α is

Z1 structures∶

F 1ðX;u; v̄; w; w̄Þ ¼ a1ðuwÞ2ðv̄ w̄ÞðuXv̄Þ2k−2 þ a2ðwXw̄Þ2ðuXv̄Þ2k
þ a3ðwXw̄ÞðuwÞðv̄ w̄ÞðuXv̄Þ2k−1 þ a4ðwXv̄ÞðuXw̄ÞðuwÞðv̄ w̄ÞðuXv̄Þ2k−2
þ a5ðwXv̄Þ2ðuXw̄Þðv̄ w̄ÞðuXv̄Þ2k−2 þ a6ðuXw̄ÞðwXw̄ÞðwXv̄ÞðuXv̄Þ2k−1; ð5:22aÞ

Z2 structures∶

F 2ðX;u; v̄; w; w̄Þ ¼ a7ðwXw̄ÞðuwÞðv̄ w̄ÞðuXv̄Þ2k−2 þ a8ðwXw̄Þ2ðuXv̄Þ2k−1 þ a9ðuXw̄ÞðwXv̄ÞðwXw̄ÞðuXv̄Þ2k−2; ð5:22bÞ

Z3 structures∶

F 3ðX;u; v̄;w;w̄Þ¼ a10ðwXv̄ÞðuwÞðv̄ w̄ÞðuXv̄Þ2k−2þa11ðwXw̄ÞðwXv̄ÞðuXv̄Þ2k−1þa12ðwXv̄Þ2ðuXw̄ÞðuXv̄Þ2k−2; ð5:22cÞ

Z4 structures∶

F 4ðX;u; v̄;w;w̄Þ¼ a13ðuXw̄ÞðuwÞðv̄ w̄ÞðuXv̄Þ2k−2þa14ðuXw̄Þ2ðwXv̄ÞðuXv̄Þ2k−1þa15ðwXw̄ÞðuXw̄ÞðuXv̄Þ2k−1; ð5:22dÞ

Z5 structures∶

F 5ðX;u; v̄; w; w̄Þ ¼ a16ðwXv̄ÞðuXw̄ÞðuXv̄Þ2k−1 þ a17ðwXw̄ÞðuXv̄Þ2k þ a18ðuwÞðv̄ w̄ÞðuXv̄Þ2k−1: ð5:22eÞ

There are also the additional “higher spin” structures, which appear only for k > 1:

Z2 structures∶

F̃ 2ðX;u; v̄; w; w̄Þ ¼ a19ðuwÞ2ðv̄ w̄Þ2ðuXv̄Þ2k−3 þ a20ðwXv̄Þ2ðuXw̄Þ2ðuXv̄Þ2k−3 þ a21ðuXw̄ÞðwXv̄ÞðuwÞðv̄ w̄ÞðuXv̄Þ2k−3:
ð5:23aÞ

Hence, we will need to treat the cases k ¼ 1 and k > 1
separately. First, we will consider k ¼ 1, which corre-
sponds to a field with the same properties as the super-
symmetry current, Qαð2Þ; _α.

A. Analysis for k= 1

In this subsection we will determine the constraints on
the coefficients for general k. First, we must determine any

linear dependence relations between the various polyno-
mial structures. Using Mathematica it may be shown that
F α _αðX; u; v̄; w; w̄Þ ¼ 0 for the following relations between
the coefficients:

a3 ¼ a1 þ a2 − a10 þ a11; ð5:24aÞ

a5 ¼ −a1 − a4 þ a10 þ a12; ð5:24bÞ
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a6 ¼ a1 − a2 þ a4 − a10 − a12; ð5:24cÞ

a8 ¼ a7 þ a10 − a11; ð5:24dÞ

a9 ¼ −a7 − a10 − a12; ð5:24eÞ

a14 ¼ a10 þ a12 − a13; ð5:24fÞ

a15 ¼ −a10 þ a11 þ a13; ð5:24gÞ

a17 ¼ −a11 − a12 − a16; ð5:24hÞ

a18 ¼ −a10 − a12 − a16: ð5:24iÞ

Therefore a linearly independent basismay be obtained by
neglecting the structures corresponding to the coefficients
a1; a2; a4; a7; a10; a11; a12; a13; a16. There are only nine
structures remaining, corresponding to the coefficients
a3; a5; a6; a8; a9; a14; a15; a17; a18, respectively. Now that
we have identified any possible linear dependence between
the polynomial structures, we impose the differential con-
straints and point-switch identities usingMathematica. After
imposing the conservation equations (5.17a) and (5.17b), we
obtain the following relations between the coefficients:

a6 ¼
1

3
ða3 − 2a5 þ 4a18Þ;

a8 ¼
1

3
ð−2a3 − 2a5 þ a18Þ;

a9 ¼
1

3
ð4a3 þ 4a5 þ 7a18Þ: ð5:25Þ

Hence, the differential constraints are sufficient to fix the
correlation function up to four independent complex param-
eters, a3, a5, a17, and a18. The next constraint to impose is
the reality condition (5.18b), from which we determine
a3 ¼ iã3, a5 ¼ iã5, a17 ¼ iã17, and a18 ¼ iã18, where ã3,
ã5, ã17, and ã18 are four constant real parameters.
Finally, we must check that the correlation function

satisfies the differential constraint (5.12) in accordance with
conservation of the energy-momentum tensor. We begin by

computing H̃ using (5.11); in the generating function
formalism this may be written as

H̃ðX;w; w̄; v; v̄; u; ūÞ

¼ 1

ð2kÞ!X
2k−3ðvX∂s̄Þð∂sXv̄Þ2kHcðX; u; ū; s; s̄; w; w̄Þ:

ð5:26Þ

Conservation of the energy-momentum tensor at x3 (5.12)
is now equivalent to imposing the following differential
constraint on the tensor H̃:

∂

∂Xσ _σ

∂

∂wσ

∂

∂w̄ _σ
H̃ðX;w; w̄; v; v̄; u; ūÞ ¼ 0: ð5:27Þ

At this point we set k ¼ 1 and proceed with the analysis.
Using Mathematica it may be shown that this constraint is
automatically satisfied for the coefficient constraints above;
hence, the correlation function hQ̄QTi is determined up to
four independent real parameters.

B. Analysis for general k

Now let us carry out the analysis for general k; we must
determine any linear dependence relations between the
various polynomial structures. Indeed, we find that intro-
ducing the higher-spin contributions (5.23a) results in
the following supplementary linear dependence relation
for k > 1, i.e., F α _αðX; u; v̄; w; w̄Þ ¼ 0 for the coefficient
relations

a8¼−a19; a9¼ a19−a20; a21¼−a19−a20: ð5:28Þ

Therefore the complete list of independent structures
corresponds to the coefficients a3; a5; a6; a8; a9; a14;
a15; a17; a18; a21. We now impose the differential con-
straints and point switch identities using Mathematica.
After imposing the differential constraints arising from
requiring conservation on the first and second points, that is
(5.17a) and (5.17b), we obtain the k-dependent relations

a6 ¼
a3ð−1þ kþ 4k2 − 4k3Þ − 2a5ð1 − k − 12k2 þ 12k3Þ þ a21ð−2kþ 8k3Þ

1þ 3k − 16k2 þ 12k3
; ð5:29aÞ

a8 ¼
6ð1 − kÞð2a3kð−1þ 2kÞ þ a5ð1þ 2kÞÞ þ a21ð−1þ 4k2Þ

2þ 6k − 32k2 þ 24k3
; ð5:29bÞ

a9 ¼
5a5ð−1þ kÞ þ a21ð1 − 4kÞ

2 − 2k
; ð5:29cÞ

a18 ¼
2ð1 − kÞð4a3kð−1þ 2kÞ þ a5ð1þ 12k2ÞÞ

2þ 6k − 32k2 þ 24k3
: ð5:29dÞ

THREE-POINT FUNCTIONS OF A FERMIONIC HIGHER-SPIN … PHYS. REV. D 105, 125004 (2022)

125004-15



The remaining free coefficients are a3, a5, a17, and a21;
the relations are also defined only for k > 1. Next we must
impose the reality condition (5.18b), from which we obtain
a3 ¼ iã3, a5 ¼ iã5, a17 ¼ iã17, and a21 ¼ iã21 where
ã3; ã5; ã17, and ã21 are four real constants. Hence, we find
that the correlation function is determined up to four
independent real parameters.
Finally, we must impose the differential constraint on x3

which arises due to conservation of the energy-momentum
tensor, that is, Eq. (5.27). Indeed, we have shown using
Mathematica that (5.27) is satisfied up to k ¼ 4, and for
higher values of k the computations of H̃ seem to be
beyond our computer power. However, we believe that the
results will hold for higher values of k, so we can be
reasonably confident that the correlation function is deter-
mined up to four independent real parameters for general k.

VI. CORRELATOR hQαð2kÞ _αðx1ÞQβð2kÞ_βðx2ÞTγð2Þ_γð2Þðx3Þi
In this section we will compute the correlation function

hQQTi. The ansatz for this correlator consistent with the
general results of Sec. II B is

hQαð2kÞ _αðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi

¼ 1

ðx213x223Þkþ
5
2

Iαð2kÞ _α
0ð2kÞðx13ÞĪ _α

α0 ðx13Þ

× Iβð2kÞ
_β0ð2kÞðx23ÞĪ _β

β0 ðx23Þ
×Hα0 _α0ð2kÞ;β0 _β0ð2kÞ;γð2Þ_γð2ÞðX12Þ; ð6:1Þ

where H is a homogeneous tensor field of degree
q ¼ 4 − 2ðkþ 5

2
Þ ¼ −2k − 1. It is constrained as follows:

(i) Under scale transformations of spacetime xm ↦
x0m ¼ λ−2xm the three-point building blocks trans-
form as Xm ↦ X0m ¼ λ2Xm. As a consequence, the
correlation function transforms as

hQαð2kÞ _αðx01ÞQβð2kÞ _βðx02ÞTγð2Þ_γð2Þðx03Þi
¼ ðλ2Þ2kþ9hQαð2kÞ _αðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi;

ð6:2Þ

which implies that H obeys the scaling property

Hα _αð2kÞ;β _βð2kÞ;γð2Þ_γð2Þðλ2XÞ
¼ ðλ2ÞqHα _αð2kÞ;β _βð2kÞ;γð2Þ_γð2ÞðXÞ; ∀ λ ∈ Rnf0g:

ð6:3Þ

This guarantees that the correlation function trans-
forms correctly under conformal transformations.

(ii) The conservation of the fields Q at x1 and x2 imply
the following constraints on the correlation function:

∂
_αα
ð1ÞhQαð2k−1Þα _αðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi ¼ 0;

ð6:4aÞ

∂
_ββ
ð2ÞhQαð2kÞ _αðx1ÞQβð2k−1Þβ _βðx2ÞTγð2Þ_γð2Þðx3Þi ¼ 0:

ð6:4bÞ

Using identities (2.26a) and (2.26b), we obtain the
following differential constraints on H:

∂
_αα
X Hα _α _αð2k−1Þ;β _βð2kÞ;γð2Þ_γð2ÞðXÞ ¼ 0; ð6:5aÞ

∂
_ββ
X Hα _αð2kÞ;β _β _βð2k−1Þ;γð2Þ_γð2ÞðXÞ ¼ 0: ð6:5bÞ

There is also a third constraint equation arising
from conservation of V at x3,

∂
_γγ
ð3ÞhQαð2kÞ _αðx1ÞQβð2kÞ_βðx2ÞTγð2Þ_γð2Þðx3Þi ¼ 0: ð6:6Þ

Similar to the previous example, we use the pro-
cedure outlined in Sec. II C and find the following
relation between Hc and H̃:

H̃γð2Þ_γð2Þ;β _βð2kÞ;αð2kÞ _αðXÞ
¼ X2k−3Iβ

_β0 ðXÞĪ _βð2kÞ
β0ð2kÞðXÞ

×Hc
αð2kÞ _α;β0ð2kÞ_β0;γð2Þ_γð2ÞðXÞ: ð6:7Þ

Conservation on the third point is now equivalent to
the following constraint on H̃:

∂
_σσ
X H̃σ _σγ _γ;β _βð2kÞ;αð2kÞ _αðXÞ ¼ 0: ð6:8Þ

(iii) The correlation function possesses the following
symmetry property under exchange of the fields at
x1 and x2:

hQαð2kÞ _αðx1ÞQβð2kÞ _βðx2ÞTγð2Þ_γð2Þðx3Þi
¼ −hQβð2kÞ _βðx2ÞQαð2kÞ _αðx1ÞTγð2Þ_γð2Þðx3Þi: ð6:9Þ

This implies the following constraint on the tensorH:

Hα _αð2kÞ;β _βð2kÞ;γð2Þ_γð2ÞðXÞ¼−Hβ _βð2kÞ;α _αð2kÞ;γð2Þ_γð2Þð−XÞ:
ð6:10Þ

Hence, we have to solve for the tensor H subject to the
above constraints. Let us now streamline the calculations
by constructing the generating function:

HðX;u;ū;v; v̄;w;w̄Þ
¼Hα _αð2kÞ;β _βð2kÞ;γð2Þ_γð2ÞðXÞUα _αð2kÞVβ _βð2kÞWγð2Þ_γð2Þ: ð6:11Þ
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The tensor H is then obtained from the generating poly-
nomial by acting on it with partial derivatives as follows:

Hα _αð2kÞ;β _βð2kÞ;γð2Þ_γð2ÞðXÞ

¼ ∂

∂Uα _αð2kÞ
∂

∂Vβ _βð2kÞ
∂

∂Wγð2Þ_γð2ÞHðX; u; ū; v; v̄; w; w̄Þ:

ð6:12Þ

Let us now convert our constraints on the tensor H to
constraints on the generating function. In particular, the
differential constraints (6.5a) and (6.5b) become

∂

∂Xσ _σ

∂

∂uσ
∂

∂ū _σ HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð6:13aÞ

∂

∂Xσ _σ

∂

∂vσ
∂

∂v̄ _σ
HðX; u; ū; v; v̄; w; w̄Þ ¼ 0; ð6:13bÞ

while the homogeneity and point-switch constraints
become

Hðλ2X; u; ū; v; v̄; w; w̄Þ ¼ ðλ2ÞqHðX; u; ū; v; v̄; w; w̄Þ;
ð6:14aÞ

HðX; u; ū; v; v̄; w; w̄Þ ¼ −Hð−X; v; v̄; u; ū; w; w̄Þ: ð6:14bÞ

Our task is now to construct the general solution for
the polynomial H consistent with the above constraints.
The general expansion for H is formed out of products
of the basis objects (2.41). Let us start by decomposing the
polynomial H, and we have

HðX; u; ū; v; v̄; w; w̄Þ ¼ 1

X2kþ1
uαvβF αβðX; ū; v̄; w; w̄Þ;

ð6:15Þ

where we have used the fact thatH is homogeneous degree
1 in both u and v. The tensor F is now homogeneous
degree 0 in X, homogeneous degree 2 in w and w̄, and
homogeneous degree 2k in ū and v̄. It may be decomposed
into symmetric and antisymmetric parts as follows:

F αβðX; ū; v̄; w; w̄Þ ¼ εαβAðX; ū; v̄; w; w̄Þ
þ BðαβÞðX; ū; v̄; w; w̄Þ: ð6:16Þ

It is straightforward to identify the possible structures in the
expansion for A. We find

AðX; ū; v̄; w; w̄Þ ¼ a1ðwXw̄Þ2ðū v̄Þ2k þ a2ðwXūÞ2ðv̄ w̄Þ2ðū v̄Þ2k−2 þ a3ðwXw̄ÞðwXūÞðv̄ w̄Þðū v̄Þ2k−1
þ a4ðwXw̄ÞðwXv̄Þðū w̄Þðū v̄Þ2k−1 þ a5ðwXv̄Þ2ðū w̄Þ2ðū v̄Þ2k−2
þ a6ðwXūÞðwXv̄Þðū w̄Þðv̄ w̄Þðū v̄Þ2k−2: ð6:17Þ

However, identifying all possible structures for the tensor B
is more challenging. To this end we introduce a basis of
spinor structures, Yi;α:

Y1;α ¼ wα; Y2;α ¼ X̂α _αū _α;

Y3;α ¼ X̂α _αv̄ _α; Y4;α ¼ X̂α _αw̄ _α: ð6:18Þ

From these basis spinors, we construct a set of symmetric
objects, Yij;αβ, defined as follows:

Yij;αβ ¼
1

2
ðYi;αYj;β þ Yi;βYj;αÞ: ð6:19Þ

These objects are symmetric in α, β; hence, they form a
basis in which the tensor B may be decomposed. However,
since these objects are also symmetric in i, j, only ten of
them are unique; therefore we form the list Zi;αβ out of the
unique structures. We then have the decomposition

BðαβÞðX; ū; v̄; w; w̄Þ ¼
X10
i¼1

Zi;αβBiðX; ū; v̄; w; w̄Þ; ð6:20Þ

where the polynomials Bi are homogeneous degree 0 in X,
with the appropriate homogeneity in ū; v̄; w; w̄. We now
construct all possible polynomial structures for each Zi;αβ:

Z1 ≔ Y11 structures∶

B1ðX; ū; v̄; w; w̄Þ ¼ b1ðū w̄Þðv̄ w̄Þðū v̄Þ2k−1; ð6:21aÞ

Z2 ≔ Y12 structures∶

B2ðX; ū; v̄; w; w̄Þ ¼ b2ðwXw̄Þðv̄ w̄Þðū v̄Þ2k−1 þ b3ðwXūÞðv̄ w̄Þ2ðū v̄Þ2k−2 þ b4ðwXv̄Þðū w̄Þðv̄ w̄Þðū v̄Þ2k−2; ð6:21bÞ
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Z3 ≔ Y13 structures∶

B3ðX; ū; v̄; w; w̄Þ ¼ b5ðwXw̄Þðū w̄Þðū v̄Þ2k−1 þ b6ðwXv̄Þðū w̄Þ2ðū v̄Þ2k−2 þ b7ðwXūÞðū w̄Þðv̄ w̄Þðū v̄Þ2k−2; ð6:21cÞ

Z4 ≔ Y14 structures∶

B4ðX; ū; v̄; w; w̄Þ ¼ b8ðwXw̄Þðū v̄Þ2k þ b9ðwXūÞðv̄ w̄Þðū v̄Þ2k−1 þ b10ðwXv̄Þðū w̄Þðū v̄Þ2k−1; ð6:21dÞ

Z5 ≔ Y22 structures∶

B5ðX; ū; v̄; w; w̄Þ ¼ b11ðwXw̄ÞðwXv̄Þðv̄ w̄Þðū v̄Þ2k−2; ð6:21eÞ

Z6 ≔Y23 structures∶

B6ðX; ū; v̄;w;w̄Þ¼ b12ðwXw̄Þ2ðū v̄Þ2k−1þb13ðwXw̄ÞðwXūÞðv̄ w̄Þðū v̄Þ2k−2þb14ðwXw̄ÞðwXv̄Þðū w̄Þðū v̄Þ2k−2; ð6:21fÞ

Z7 ≔Y24 structures∶

B7ðX; ū; v̄;w;w̄Þ¼ b15ðwXw̄ÞðwXv̄Þðū v̄Þ2k−1þb16ðwXūÞðwXv̄Þðv̄ w̄Þðū v̄Þ2k−2þb17ðwXv̄Þ2ðū w̄Þðū v̄Þ2k−2; ð6:21gÞ

Z8 ≔ Y33 structures∶

B8ðX; ū; v̄; w; w̄Þ ¼ b18ðwXw̄ÞðwXūÞðū w̄Þðū v̄Þ2k−2; ð6:21hÞ

Z9 ≔ Y34 structures∶

B9ðX; ū; v̄; w; w̄Þ ¼ b19ðwXw̄ÞðwXūÞðū v̄Þ2k−1 þ b20ðwXūÞ2ðv̄ w̄Þðū v̄Þ2k−2 þ b21ðwXūÞðwXv̄Þðū w̄Þðū v̄Þ2k−2; ð6:21iÞ

Z10 ≔ Y44 structures∶

B10ðX; ū; v̄; w; w̄Þ ¼ b22ðwXūÞðwXv̄Þðū v̄Þ2k−1: ð6:21jÞ

There are also additional structures that are defined only for k > 1. Such structures will be denoted by B̃.

Z5 structures∶

B̃5ðX; ū; v̄; w; w̄Þ ¼ b23ðwXv̄Þ2ðū w̄Þðv̄ w̄Þðū v̄Þ2k−3 þ b24ðwXūÞðwXv̄Þðv̄ w̄Þ2ðū v̄Þ2k−3; ð6:22aÞ

Z6 structures∶

B̃6ðX; ū; v̄;w;w̄Þ¼ b25ðwXūÞ2ðv̄ w̄Þ2ðū v̄Þ2k−3þb26ðwXv̄Þ2ðū w̄Þ2ðū v̄Þ2k−3þb27ðwXūÞðwXv̄Þðū w̄Þðv̄ w̄Þðū v̄Þ2k−3; ð6:22bÞ

Z8 structures∶

B̃8ðX; ū; v̄; w; w̄Þ ¼ b28ðwXūÞ2ðū w̄Þðv̄ w̄Þðū v̄Þ2k−3 þ b29ðwXūÞðwXv̄Þðū w̄Þ2ðū v̄Þ2k−3: ð6:22cÞ

Therefore we must analyze the k ¼ 1 and k > 1 cases
separately.

A. Analysis for k= 1

First, we must determine any linear dependence relations
between the various polynomial structures. In this case,
since there are many structures, the linear dependence
relations are rather complicated. For the A structures, we
find AðX; ū; v̄; w; w̄Þ ¼ 0 for the choice of coefficients

a4 ¼ −a1 þ a2; a5 ¼ −a1 − a3; a6 ¼ 2a1 − a2 þ a3:

ð6:23Þ

Hence, the structures corresponding to a1, a2, and a3 may
be neglected, and we are left with only the structures with
coefficients a4, a5, a6. Next we find linear dependence
among the B structures, and we find BðαβÞðX;ū;v̄;w;w̄Þ¼0

for the choices

b6 ¼ b1 − b2 − b4 − b5 þ b11 þ b12 þ b14; ð6:24aÞ

b7 ¼ −b1 þ b2 − b3 þ b5 − b12 þ b13 þ b18; ð6:24bÞ

b8 ¼ −b1 þ b2 þ b4 − b10 − b11 þ b15 þ b17; ð6:24cÞ
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b9 ¼ −b1 þ b3 þ b4 − b10 − b11 þ b12 − b13 þ b15 þ b17

þ b19 − b20; ð6:24dÞ

b21 ¼ −b11 − b13 − b14 − b16 − b17 − b18 − b20; ð6:24eÞ

b22 ¼ b11 − b12 þ b13 − b15 þ b16 − b19 þ b20: ð6:24fÞ

Therefore a linearly independent basis may be con-
structed out of the structures corresponding to the coef-
ficients b6, b7, b8, b9, b21, and b22. Overall there are nine
independent structures to consider. We now impose the
differential constraints and point switch identities using
Mathematica. After imposing (6.5b) and (6.13b) we obtain
the following relations between the coefficients:

b6 ¼
1

90
ð−126a4 − 114a5 − 115a6Þ; ð6:25aÞ

b7 ¼
1

90
ð114a4 þ 126a5 þ 115a6Þ; ð6:25bÞ

b8 ¼
1

45
ð42a4 − 12a5 þ 5a6Þ; ð6:25cÞ

b9 ¼
1

90
ð−54a4 − 66a5 − 95a6 − 4b21 − 44b22Þ; ð6:25dÞ

b21 ¼
2

3
ða4 − a5Þ; ð6:25eÞ

b22 ¼
1

6
ð−2a4 þ 2a5 þ 5a6Þ: ð6:25fÞ

Hence, the differential constraints fix the correlation
function up to three parameters. Next we must impose the
point switch identity (6.14b), from which we obtain
a5 ¼ a4, and hence, we are left with the free parameters
a4 and a6.
We must now impose (6.8) in accordance with the

conservation of the energy momentum tensor. First, we
compute H̃ using (6.7), which in the generating function
formalism may be written as

H̃ðX;w; w̄; v; v̄; u; ūÞ

¼ 1

ð2kÞ!X
2k−3ðvX∂s̄Þð∂sXv̄Þ2kHcðX; u; ū; s; s̄; w; w̄Þ;

ð6:26Þ

while the differential constraint (6.8) is equivalent to

∂

∂Xσ _σ

∂

∂wσ

∂

∂w̄ _σ H̃ðX;w; w̄; v; v̄; u; ūÞ ¼ 0: ð6:27Þ

At this point we can freely set k ¼ 1 and check whether our
solution is consistent with conservation at x3. Using
Mathematica, it may be shown that (6.27) is satisfied
provided that a6 ¼ − 12

5
a4; hence, the correlation function

hQQTi is determined up to a single complex parameter.

B. Analysis for general k

Now let us complete the analysis for k > 1. Again we
must find a linearly independent basis of polynomial
structures. If we supplement the set of basis structures
corresponding to b6, b7, b8, b9, b21, and b22 with the B̃
structures defined in (6.22a), (6.22b), and (6.22c), then it
may be shown that BðαβÞðX; ū; v̄; w; w̄Þ ¼ 0 for the choices

b6 ¼ b23 þ b26; ð6:28aÞ

b7 ¼ −b21 − b22 þ b23 þ b24 þ b27; ð6:28bÞ

b8 ¼ −b23; ð6:28cÞ

b9 ¼ −b22 − b23 − b24; ð6:28dÞ

b25 ¼ −b22 − b24; ð6:28eÞ

b28 ¼ b21 þ 2b22 − b23 − b27; ð6:28fÞ

b29 ¼ −b21 − b22 − b26: ð6:28gÞ

Hence, there are ten independent structures to consider,
corresponding to the coefficients a4; a5; a6; b6; b7; b8; b9;
b25; b28, and b29. We now impose the differential con-
straints and point-switch identities; after imposing (6.5b),
(6.13b), and (6.14b) we obtain a5 ¼ a4, supplemented by
the following k-dependent relations between the b
coefficients:

b6 ¼
2a4ð24þ 45kþ k2 þ 14k3 − 4k4 − 8k5Þ þ a6ð24þ 39kþ 26k2 − 12k3 − 8k4Þ

ð−5þ 2kÞð1þ 2kÞð−2þ kþ 5k2 þ 2k3Þ ; ð6:29aÞ

b7 ¼ −
2ða4ð30þ 58k − 8k2 − 8k3Þ þ a6ð15þ 23kþ 5k2 − 6k3 þ 12k4 þ 8k5ÞÞ

ð−5þ 2kÞð1þ 2kÞð−2þ kþ 5k2 þ 2k3Þ ; ð6:29bÞ
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b8 ¼
−2a4ð19þ 25k − 30k2 − 4k3 þ 8k4Þ þ a6ð−19 − 17kþ 2k2 þ 20k3 þ 8k4Þ

ð−5þ 2kÞð1þ 2kÞð−2þ kþ 5k2 þ 2k3Þ ; ð6:29cÞ

b9 ¼
4a4ð−7 − 7kþ 20k2 þ 12k3Þ þ 2a6ð−7þ kþ 8k2 þ 4k3Þ

ð−5þ 2kÞð1þ 2kÞð−2þ kþ 5k2 þ 2k3Þ ; ð6:29dÞ

b25 ¼
kð3þ 2kÞð2a4ð−3þ kþ 2k2Þ − a6ð1þ 2kÞÞ

10 − 9k − 23k2 þ 4k4
; ð6:29eÞ

b28 ¼
2ð3þ 2kÞða4ð2þ 2k − 4k2Þ þ a6ð1 − kþ k2 þ 2k3ÞÞ

10 − 9k − 23k2 þ 4k4
; ð6:29fÞ

b29 ¼
kð3þ 2kÞð2a4ð−3þ kþ 2k2Þ − a6ð1þ 2kÞÞ

10 − 9k − 23k2 þ 4k4
: ð6:29gÞ

Hence, after imposing conservation on the first and
second points, we find there are two free complex coef-
ficients remaining. The last constraint to impose is con-
servation on x3, that is, Eq. (6.27). We cannot obtain a
relation for arbitrary k, as from a computational standpoint
one must fix k in order to compute H̃ as in (6.26). However,
we find that the correlation function is fixed up to a single
parameter up to k ¼ 4, after which the computations
become incredibly long and beyond our computer power.
For k ¼ 2 we find a6 ¼ − 20

7
a4; for k ¼ 3, a6 ¼ − 28

9
a4;

and for k ¼ 4, a6 ¼ − 36
11
a4. We anticipate that similar

results will hold for general k as well.

VII. DISCUSSION ON SUPERSYMMETRY

In this section we will concentrate on the case k ¼ 1,
which corresponds to a supersym-metrylike currentQαβ _α ¼
ðσmÞα _αQm;β of dimension 5

2
satisfying the conservation

equation

∂
α _αQαβ _α ¼ 0: ð7:1Þ

However, our analysis in the previous sections did not
assume supersymmetry. The question that naturally arises
is whether the supersymmetrylike current actually is the
supersymmetry current. That is, whether a conformal field
theory possessing a conserved fermionic current of spin-3

2
is

superconformal.
In any supersymmetric field theory the supersymmetry

current is a component of the supercurrent Jα _αðzÞ, which
also contains the energy-momentum tensor. As was
explained in the Introduction, this implies that the three-
point functions hQQTi and hQ̄QTi must be contained in
the three-point function of the supercurrent hJJJi. It is
known that the general form of hJJJi is fixed by super-
conformal symmetry up to two independent structures [14].
Hence, this implies that in any superconformal field theory,
hQQTi and hQ̄QTi must also be fixed up to at most two

independent structures. Moreover, the three-point function
hQQTi must actually vanish. Indeed, in a supersymmetric
theory Q carries an R-symmetry charge and, hence, the
entire correlator hQQTi carries an R-symmetry charge.
However, by performing a simple change of variables in the
path integral it then follows that hQQTi ¼ 0. In addition,
our analysis in Sec. VI showed that, in general, conformal
symmetry fixes hQQTi up one overall parameter, which is
inconsistent with supersymmetry. We also found in Sec. V
that the three-point function hQ̄QTi is fixed up to four
rather than two independent parameters, which, in general,
is also inconsistent with the general form of hJJJi.
Similarly, we can examine the three-point functions

hQ̄QVi and hQQVi studied in Secs. III and IV, respec-
tively. In supersymmetric theories, the vector current Vm
belongs to the flavor current multiplet LðzÞ. Hence, the
correlation functions hQ̄QVi and hQ̄QVi are contained in
the three-point function hJJLi. It is known [14] that hJJLi
is fixed by superconformal symmetry up to an overall real
coefficient. Hence, hQ̄QVi must also be fixed up to an
overall coefficient. As for hQQVi, it must vanish just as
hQQTi. However, our analysis in Secs. III and IV showed
that hQ̄QVi is fixed up to three independent coefficients
and hQQVi is fixed up to one overall coefficient. Both of
these results are, in general, inconsistent with the general
form of hJJLi.
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APPENDIX: 4D CONVENTIONS AND NOTATION

Our conventions closely follow that of [50]. For the
Minkowski metric ηmn we use the “mostly plus” conven-
tion: ηmn ¼ diagð−1; 1; 1; 1Þ. Spinor indices on spin ten-
sors are raised and lowered with the SLð2;CÞ invariant
spinor metrics

εαβ¼
�
0 −1
1 0

�
; εαβ¼

�
0 1

−1 0

�
; εαγε

γβ¼δα
β; ðA1Þ

ε _α _β¼
�
0 −1
1 0

�
; ε _α _β¼

�
0 1

−1 0

�
; ε _α _γε

_γ _β¼ δ _α
_β: ðA2Þ

Given the spinor fields ϕα and ϕ̄ _α, the spinor indices α ¼ 1,
2 and _α ¼ 1̄; 2̄ are raised and lowered according to the
following rules:

ϕα ¼ εαβϕ
β; ϕα ¼ εαβϕβ;

ϕ̄ _α ¼ ε _α _βϕ̄
β; ϕ̄ _α ¼ ε _α _βϕ̄ _β: ðA3Þ

It is also useful to introduce the complex 2 × 2 σ-matrices,
defined as follows:

σ0 ¼
�
1 0

0 1

�
; σ1 ¼

�
0 1

1 0

�
;

σ2 ¼
�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
: ðA4Þ

The σ-matrices span the Lie group SLð2;CÞ, the universal
covering group of the Lorentz group SOð3; 1Þ. Now let
σm ¼ ðσ0; σ⃗Þ; we denote the components of σm as ðσmÞα _α
and define

ðσ̃mÞ _αα ≡ ε _α _βεαβðσmÞβ _β: ðA5Þ

It can be shown that the σ-matrices possess the following
useful properties:

ðσmσ̃n þ σnσ̃mÞαβ ¼ −2ηmnδ
β
α; ðA6Þ

ðσ̃mσn þ σ̃nσmÞ _α _β ¼ −2ηmnδ
_α
_β
; ðA7Þ

Trðσmσ̃nÞ ¼ −2ηmn; ðA8Þ

ðσmÞα _αðσ̃mÞ _ββ ¼ −2δ _ααδ
_β
_α: ðA9Þ

The σ-matrices are then used to convert spacetime indices
into spinor ones and vice versa according to the following
rules:

Xα _α ¼ ðσmÞα _αXm; Xm ¼ −
1

2
ðσ̃mÞ _ααXα _α: ðA10Þ
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