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We investigate the properties of a four-dimensional conformal field theory possessing a fermionic
higher-spin current Q1) Using a computational approach, we examine the number of independent
tensor structures contained in the three-point correlation functions of two fermionic higher-spin currents
with the conserved vector current V,, and with the energy-momentum tensor 7',,,. In particular, the k = 1
case corresponds to a “supersymmetrylike” current, that is, a fermionic conserved current with identical
properties to the supersymmetry current which appears in N' = 1 superconformal field theories. However,
we show that in general, the three-point correlation functions (QQV) and (QQT) are not consistent with

N =1 supersymmetry.
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I. INTRODUCTION

Correlation functions of conserved currents are among the
most important observables in conformal field theory. Itis a
well-known fact that conformal symmetry determines the
general form of two- and three-point correlation functions
up to finitely many parameters; however, it remains an open
problem to understand the structure of three-point functions
of conserved currents for arbitrary spin. The systematic
approach to study correlation functions of conserved cur-
rents was undertaken in [1,2] (see also Refs. [3—12] for
earlier results), and was later extended to superconformal
field theories in diverse dimensions [13—26].1 The most
important examples of conserved currents in conformal field
theory are the energy-momentum tensor and vector currents;
their three-point functions were studied in [1]. However,
more general conformal field theories can possess higher-
spin conserved currents. As was proven by Maldacena and
Zhiboedov in [28], all correlation functions of higher-spin
currents are equal to those of a free theory. This theorem was
originally proven in three dimensions and was later
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"The approach of [1,2] performs the analysis in general
dimensions and did not consider parity-violating structures
relevant for three-dimensional conformal field theories. These
structures were found later in [27].
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generalized in [29-31] to four- and higher-dimensional
cases. The general structure of the three-point functions
of conserved higher-spin, bosonic, vector currents was
found by Stanev [32] and Zhiboedov [33]; see also [34]
for similar results in the embedding formalism [35—40] (and
[41,42] for supersymmetric extensions). There are also some
novel approaches to the construction of correlation functions
of conserved currents which carry out the calculations in
momentum space, using methods such as spinor-helicity
variables [43-49].

The study of correlation functions in conformal field
theory has mostly been devoted to bosonic operators with
vector indices (except for supersymmetric settings); fer-
mionic operators have practically not been studied.” Our
interest in studying three-point functions of fermionic
operators is twofold: first, any conformal field theory
possessing fermionic operators naturally breaks the
assumptions of the Maldacena-Zhiboedov theorem [28]
discussed above. Indeed, the main assumption of the
Maldacena-Zhiboedov theorem was that the conformal
field theory under consideration possesses a unique con-
served current of spin two, the energy-momentum tensor.
However, in [28] it was also shown that if a conformal field
theory possesses a conserved fermionic higher-spin current,
then it has an additional conserved current of spin two.
Hence, it is not clear whether correlation functions of
fermionic higher-spin currents must coincide with those in
a free theory. Second, fermionic operators are interesting
due to their prevalence in supersymmetric field theories.

Recently, in [34], correlation functions involving fermionic
operators were studied; however, these operators were not
conserved currents.
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In fact, there is a natural question: if a conformal field
theory possesses a conserved fermionic current, is it
necessarily supersymmetric?

The aim of this paper is to study correlation functions of
the conserved fermionic higher-spin currents’
(1.1)

OQa(2k)s O ir(2)»

which obey the conservation equations

aaana(Zk—l)d =0, aaano'to't(Zk—l) =0. (12)
Thecase k = 1in(1.1)1is quite interesting as it corresponds to
currents of spin—% which possess the same index structure and
conservation properties as the supersymmetry currents.
Indeed, one might expect that a conformal field theory
possessing conserved spin—% primary operators is super-
symmetric. One way to explore this issue is to study the
correlation functions involving such operators to see if they
are consistent with supersymmetry. In particular, we must
study the general form of the three-point functions involving
combinations of the operators Oy Qad(Z) [i.e., (1.1) for
k = 1], the energy-momentum tensor 7,,,, and the vector
current V. Recall that in any superconformal field theory the
supersymmetry current and the energy-momentum tensor are
components of the supercurrent multiplet, J,;(z), where
7= (x",0%,0,) is a point in four-dimensional (4D)
Minkowski superspace. This implies that in supersymmetric
theories the three-point functions

(Qua(2) (x1) Qs (X2) T un (x3))

<Qa(2)0't(x1)Q/}(2)[}’(x2)Tmn (X3)> (13)
must be contained in the three-point function of the super-
current (/o4 (21)J 33(22)J,(23)), which was shown in [14] to
be fixed up to two independent tensor structures. Similarly, in
supersymmetric theories the vector current V,, is a compo-
nent of the flavor current multiplet, L(z). Hence, the three-
point functions

<Qad(2) (x1) Qs (%2)Vin (x3))

(Qa2)a(¥1) Qi) (¥2) Vi (x3)) (1.4)
must be contained in the three-point function of the super-
current and the flavor current (J,4(21)J5(22)L(z3)), which

was shown to be fixed up to a single tensor structure [14].

In this paper, we study the general form of the three-point
functions (1.3) and (1.4) and extend the results to the operators
(1.1), using only the constraints of conformal symmetry;
supersymmetry is not assumed. The analysis is highly non-
trivial and requires significant use of computational methods.

*We use the standard notation Domya(n) = Pay- ) (1)

To streamline the calculations we develop a hybrid formalism
which combines the approach of Osborn and Petkou [1] and
the approach based on the contraction of tensor indices with
auxiliary vectors/spinors. This method is widely used
throughout the literature to construct correlation functions
of more complicated tensor operators. Our particular
approach, however, has some advantages as the correlation
function is completely described in terms of a polynomial
which is a function of a single conformally covariant three-
point building block, X, and the auxiliary spinor variables
u, i, v, v,w,w. Hence, one does not have to work with the
spacetime points explicitly when imposing conservation
equations. To find all solutions for the polynomial, we
construct a generating function which produces an exhaustive
list of all possible linearly dependent structures for fixed (and
in some cases, arbitrary) spins. The possible structures form a
basis in which the polynomial may be decomposed, and are in
correspondence with the solutions to a set of six linear
inhomogeneous Diophantine equations, which can be solved
computationally for any spin.

Using the methods outlined above, we find that the three-
point functions (1.3) and (1.4), in general, are not consistent
with supersymmetry as they are fixed up to more independent
tensor structures than the three-point functions (JJJ) and
(JJL). This means, based on the constraints of conformal
symmetry alone, that the existence of spin—% supersymmetry-
like conserved currents in a conformal field theory does not
necessarily imply that the theory is superconformal. We want
to stress that our analysis is based only on symmetries and
does not take into account other features of local field theory.
We do not know how to realize a local nonsupersymmetric
conformal field theory possessing conserved spin—% currents,
neither do we have a proof that it is impossible.

Our paper is organized as follows: in Sec. II, we discuss
the general formalism to construct two- and three-point
functions in conformal field theory. First, we review the
constructions of Osborn and Petkou [1] and introduce our
hybrid generating function formalism based on contrac-
tions of tensor operators with auxiliary spinors. We con-
struct a generating function which, for a given choice of
spins, generates all possible linearly dependent solutions
for the correlation function. In Secs. III and IV, we find the
most general form of the three-point functions (1.4). Our
conclusions are that the three-point function (QQV)
depends on three independent tensor structures (here and
in all other cases the tensor structures are found explicitly)
and the three-point function (QQV) depends on a single
tensor structure. In Secs. Vand VI, we find the most general
form of the three-point functions (1.3). Our conclusions are
that the three-point function (QQT) depends on four
independent tensor structures and the three-point function
(QQT) depends on a single tensor structure. Most of our
analysis in Secs. [II-VI was performed for an arbitrary k.
However, due to computational limitations certain results
were proven only for small values k. Nevertheless, we
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believe that the results stated above hold for all values
of k. Finally, in Sec. VII, we discuss whether our results
are consistent with supersymmetry for k =1, when Q
possesses the same properties as the supersymmetry
current. We show that, in general, the results obtained in
Secs. III-VI are not consistent with supersymmetry. Our
four-dimensional notation and conventions are summarized
in the Appendix.

II. CONFORMAL BUILDING BLOCKS

In this section we will review the pertinent aspects of the
group theoretic formalism used to compute correlation
functions of primary operators in four-dimensional con-
formal field theories. For a more detailed review of the
formalism as applied to correlation functions of bosonic
primary fields, the reader may consult [1]. Our 4D con-
ventions and notation are those of [50]; see the Appendix
for a brief overview.

A. Two-point functions

Consider 4D Minkowski space M3, parametriZed by
coordinates x™, where m = 0, 1,2,3 are Lorentz indices.
Given two points, x; and x,, we can define the covariant
two-point function

m

— X)), (2.1)

Xy = (% X3 = —X{3-
Next, following Osborn and Petkou [1], we introduce the
conformal inversion tensor, [,,, which is defined as

follows:

xmxrl
Imn(x) = "mn — 2 2

Lyg ()1 (x) = 6. (2.2)

This object played a pivotal role in the construction of
correlation functions in [1], as the full conformal group
may be generated by considering Poincaré transformations
supplemented by inversions. However, in the context of this
work, we require an analogous operator for the spinor
representation. Hence, we convert the vector two-point
functions (2.1) into spinor notation using the conventions
outlined in the Appendix:

X12a0 = (Gm)a&xnm’ x?g = (6m)dax12mv

2 _ aa
X2 = = 5 X12X12a4-

: (2.3)

In this form the two-point functions possess the following
useful properties:

aq L 2 sa
X5 X 00p = —X107.

o (24)

aa _ 2 sa
X5 X125 = —X1205,

Hence, we find

) xaa
()i == @25)
A12

We also introduce the normalized two-point functions,
denoted by X,

s~ _  X2aa jaag P
X120 = (x2 )1/2 ’ A2X 1280 = -
12

(2.6)
From here we can now construct an operator analogous to
the conformal inversion tensor acting on the space of
symmetric traceless tensors of arbitrary rank. Given a two-
point function x, we define the operator

Taatk) () = Xay (e ey (2.7)
along with its inverse
ZeWalk) (x) = glalar ... gaa) (2.8)

The spinor indices may be raised and lowered using the
standard conventions as follows:

Za(k)d(k) (x) = g’ .. '8ak7k:zy(k)éz(k) (x)’ (2_93)
j’d(k)a(k) (X) = Sd”',l cee So'lk}',kjﬂk)a(k) ()C) (29b)
Now due to the property
Zawyatt) (%) = (=) Lo (%), (2.10)
we have the following useful relations:
T ayary (x12) Z80OPE) (x5 ) = 581 5@3 (2.11a)
TPl (*12)Z a(ryar) (x21) = 52?1 o 5{2)) (2.11b)

The objects (2.7) and (2.8) prove to be essential in the
construction of correlation functions of primary operators
with arbitrary spin. Indeed, the vector representation of the
inversion tensor may be recovered in terms of the spinor
two-point functions as follows:

1
Loy (x) -~ E Tr(gm-%&n;c)'

(2.12)
Now let ®@ 4 be a primary field with dimension A, where A
denotes a collection of Lorentz spinor indices. The two-

point correlation function of ®@ 4 and its conjugate DA s
fixed by conformal symmetry to the form

‘ _ IAA(XH)

(@4(x1) P4 (x2)) = NCAL (2.13)
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where 7 is an appropriate representation of the inversion
tensor and c is a constant complex parameter. The denom-
inator of the two-point function is determined by the
conformal dimension of ® 4, which guarantees that the
correlation function transforms with the appropriate weight
under scale transformations. For example, in the case of the
fermionic current field Q)4 the two-point function is
uniquely fixed to the following form:

Ia(Zk)ﬁ(zk) (xlz)jaﬂ(xu)
(x1,)2@ ’
(2.14)

where in this case A(Q) is fixed by conservation of Q (Q)
at x; (x,). It is not too difficult to show that A(Q) = k +3.

<Qa(2k)('z(xl)Q/}(2k)ﬂ (x2)) =c¢

B. Three-point functions

Given three distinct points in Minkowski space, x;, with
i=1, 2, 3, we define conformally covariant three-point
functions in terms of the two-point functions as in [1]

X Xik x;
ik j 2 ij
Xij==—=5, Xpi=-X; Xj= . (215)
ITR2 T2 ] J X
ik Jjk ik jk

where (i,j,k) is a cyclic permutation of (1,2,3). For
example, we have

XM X x2
m _ X13 _ *23 2 *D
Xh =75 -3 Xh=>5" (2.16)
X3 X3 X13X23

There are several useful identities involving the two-point
and three-point functions along with the conformal inver-
sion tensor; for example, we have the useful algebraic
relations

Ima(xl3)lan(x23) = Ima(x12)1an(xl3)’
2

X
L (x23) X7, = —;2X13m, (2.17a)
X13
Ima(x23)1an(xl3) =1, (x21)1 10 (X32).
2
X
Imn (x13)X?2 = %ZXZQma (217b)
X23
and the differential identities
1
a(l)rnX12n Tlmn(xm)a
13
1
a(Z)mXIZH Tlmn(-x23)~ (218)
X23

The three-point functions also may be represented in spinor
notation as follows:

-1

Xij,ao'z = <6m) X7 Xij,ad = (xﬁcl)a;'/xg (xjk )yt‘x' (219)

aa“tijo

These objects satisfy properties similar to the two-point
functions (2.4). Indeed, it is convenient to define the

normalized three-point functions )A(,-j and the inverses

(X",

ao

X“ L Xijﬂd (le)(lrl _ _Xij
Lj,aa (X2>l/2 ’ t 2
ij ij

(2.20)

Now given an arbitrary three-point building block X, it is
also useful to construct the following higher-spin operator:

A

Latatn)(X) = Xw @ - Xapay»  (221)
along with its inverse
ZeWalk) (x) = Xl . g (2.22)

These operators have properties similar to the two-point
higher-spin inversion operators (2.7) and (2.8). There are
also some useful algebraic identities relating the two- and
three-point functions at various points, such as

Ia&(XIZ) = Iay(xn)ﬁy(xlz)zyd@%),
jdy(xw)zyy(xuﬁm(xw) = jda(xsz)' (2-23)

These identities (and cyclic permutations of them) are
analogous to (2.17a) and (2.17b), and also admit higher-
spin generalizations, for example,

THOM® (x13) T aypeay (X12) TP OW (x13) = Z60W) (X 35).
(2.24)

In addition, similar to (2.18), there are also the following
useful identities:

. 2 . _
0aaX(3 = =5 Lo’ (¥13)Za"(x13),
13

. 2 . -
02)ae XT3 = xTIaﬂ(xB)Id{;(xB)' (2.25)

23

These identities allow us to account for the fact that
correlation functions of primary fields obey differential
constraints which can arise due to conservation equations.
Indeed, given a tensor field 7 4(X), there are the following
differential identities which arise as a consequence of
(2.25):

1 . - 0
Onaa? 4(X12) = 5L (x13)L47(x13)

4 T.A(X]2>7
X13 0X73

(2.26a)
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T 4(X12)-

(2.26b)

1 . _
00w A(X12) = ——1I,° L’ —
(2)aa A( 12) x%3 a (.X'23) a ()C23) 6X‘]’g

Now concerning three-point correlation functions, let ®, P,
and IT be primary fields with scale dimensions A;, A,, and
A5, respectively. The three-point function may be con-
structed using the general ansatz

<®A, (x1 )‘PA2 (xz)HA3 (x3)>
_ I(I)AIA' (x13)I(2)A2A2 (x23)

(xf3) 21 (x35)2

where the tensor H A, Ao As encodes all information about the

HAIA2A3 (Xlz), (227)

correlation function and is highly constrained by the
conformal symmetry as follows:

(1) Under scale transformations of Minkowski space
x™ > x™ = )72x™, the three-point building blocks
transform as X — X'™ = }2X". Asa consequence,
the correlation function transforms as

(@4, (1), (06T g, (%3))
= ()8R @y, (1)) W g, (02) T4, (33)). (2.28)

which implies that H obeys the scaling property

Hy a,4,(FX) = (A2)8787 8 H 5 4 4. (X),

vV 1eR\{0}. (2.29)
This guarantees that the correlation function trans-
forms correctly under scale transformations.

(i) If any of the fields @, ¥, and IT obey differential
equations, such as conservation laws in the case of
conserved current multiplets, then the tensor H is
also constrained by differential equations. Such
constraints may be derived with the aid of identities
(2.26a) and (2.26b).

(iii) If any (or all) of the operators @, ¥, and II coincide,
the correlation function possesses symmetries under
permutations of spacetime points, e.g.,

<q)A1 (x )q)Az (Xz)HA3 (x3))

= (1)) (@4 (1), ()L, (). (2.30)
where ¢(®) is the Grassmann parity of ®. As a
consequence, the tensor 7 obeys constraints which
will be referred to as “point-switch identities.”
Similar relations may also be derived for two fields
which are related by complex conjugation.

The constraints above fix the functional form of H

(and therefore the correlation function) up to finitely

many independent parameters. Hence, using the general

formula (2.31), the problem of computing three-point
correlation functions is reduced to deriving the general
structure of the tensor H subject to the above constraints.

C. Comments regarding differential constraints

An important aspect of this construction which requires
further elaboration is that it is sensitive to the configuration
of the fields in the correlation function. Indeed, depending
on the exact way in which one constructs the general ansatz
(2.31), it can be difficult to impose conservation equations
on one of the three fields due to a lack of useful identities
such as (2.26a) and (2.26b). To illustrate this more clearly,
consider the following example: suppose we want to
determine the solution for the correlation function
(D4, (x1) W4, (x2)T1 4, (x3)) with the ansatz

(D@4, (1) 4, (x2) 4, (x3))

I(l)AIA‘ ()513)1(2%42“42 (x23)

B ACTE NI

(2.31)

All information about this correlation function is encoded
in the tensor H; however, this particular formulation of the
problem prevents us from imposing conservation on the
field IT in a straightforward way. To rectify this issue we
reformulate the ansatz with IT at the front

<HA3 (363)\PA2 (xz)q)Al (x1))

IO TP
- (x§1)A3(x%1)Az A;AZAI( 32)-

In this case, all information about this correlation function
is now encoded in the tensor 7, which is a completely
different solution compared to H. Conservation on II can
now be imposed by treating x5 as the first point with the aid
of identities analogous to (2.25), (2.26a), and (2.26b). What
we now need is a simple equation relating the tensors H and
H, which correspond to different representations of the
same correlation function. If we have equality between the
two ansatz above, after some manipulations we obtain
the following relation:

(2.32)

3 ‘ A ;
Fla aa (Xan) = (<1552 () 70, A (xy,)
x j(z)AzAlz (3512)1(2)/1’2“4/2 (x23)

x Z0) 5 A (r13)Hg, 2, (X12). (2.33)
where ¢ is either O or 1 depending on the Grassmann
parity of the fields @, ¥, and II; since the overall sign is
somewhat irrelevant for the purpose of this calculation we
will absorb it into the overall sign of 7{. In general, this
equation is quite impractical to work with due to the
presence of both two- and three-point functions; hence,
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further simplification is required. Let us now introduce
some useful definitions; suppose H(X) (with indices
suppressed) is composed out of a finite basis of linearly
independent tensor structures P;(X), ie., H(X)=
> ia;P;(X) where a; are constant complex parameters.
We define H(X) =", a;P;(X), the conjugate of H, and
also H¢(X) = >_, a;P;(X), which we will call the comple-
ment of H. As a consequence of (2.23), the following
relation holds:

Hey (X32)

= (x%zxgz)ArArA‘I(l)A]A‘ (x13)I(2)A2A2(X13)

X 1(3)213/13 <x13)H;l|.;le3 (XIZ)' (234)
This equation is an extension of (2.14) in [1] to the spinor
representation, and it allows us to construct an equation
relating different representations of the same correlation
function. After inverting this identity and substituting it
directly into (2.33), we apply identities such as (2.23) to

obtain an equation relating H¢ and H,

Fa,a,4,(X) = (X2)2=5T0) 3 A (XM, o (X).

A, (2.35)

It is important to note that this is now an equation in terms
of a single variable, X, which vastly simplifies the calcu-
lations. Indeed, once H is obtained we can then impose
conservation on IT as if it were located at the “first point.”
However, as we will see in the subsequent examples, this
transformation is quite difficult to carry out for correlation
functions of higher-spin primary operators due to the
proliferation of tensor indices.

To summarize, in order to successfully impose all the
relevant constraints on the fields in the correlator, we will
adhere to the following three step approach:

(1) Using ansatz (2.31), construct a solution for 7 that is
consistent with the algebraic/tensorial symmetry
properties of the fields @, ¥, and II.

(2) Impose conservation equations on the first and
second points using identities (2.25), (2.26a), and
(2.26b) to constrain the functional form of the
tensor H.

(3) Reformulate the correlation function using ansatz
(2.32), which allows one to find an explicit relation
for 7 in terms of . Conservation of IT may now be
imposed as if it were located at the first point.

D. Generating function formalism

To study and impose constraints on correlation func-
tions of primary fields with general spins it is often
advantageous to use the formalism of generating functions
to streamline the calculations. Suppose we must analyze
the constraints on a general spin-tensor H 4 4,4,(X),

where A, = {a(i).a(j))}, A = {B(i).B(j»)}. and

A; = {y(i3),7(j3)} represent sets of totally symmetric
spinor indices associated with the fields at points x, x5,
and x3, respectively. We introduce sets of commuting
auxiliary spinors for each point: U = {u,u} at xi,
V = {v, 0} at x,, and W = {w, w} at x3, where the spinors
satisfy

u? = eaﬂu"’uﬂ =0,

v? = > =0, w? =w? = 0.

i = e, i =0,
(2.36)

Now if we define the objects

UAI = U(l(il>(.l(jl) =y ... M“il ﬁdl e ﬁdjl R (2373)

VA = VARG = pbr .. fogh .. 5Pn, (2.37b)

WAB = Wy<13)7<J3) =y’ ... W}/i3 w}'l e ‘,—Vf/jg N (237c)
then the generating polynomial for H is constructed as
follows:

HX:U, V. W) = Hu a4, (X)UAVAWA, (2.38)
There is in fact a one-to-one mapping between the space of
symmetric traceless spin tensors and the polynomials
constructed using the above method. The tensor H can
then be extracted from the polynomial by acting on it with
the following partial derivative operators:

o 9 1 9 o 0 P
JUA — gue)at) i1 tou™ ou gt Qutn
(2.39)
o _ 0 1 9 o 9 0
OV T GyBR@IBG) iyl ovP vk g gpfn
(2.39b)
o 9o 1 9 d 0 9
OWA oW T Ggljstawn owTs ol gwin
(2.39)

The tensor H is then extracted from the polynomial as
follows:

0 9 9
— UA gVA gWA

Hoa, 4,4, (X) H(X;U,V,W). (2.40)

Let us point out that methods based on using auxiliary
vectors/spinors to create a polynomial are widely used in
the construction of correlation functions throughout the
literature (see e.g., [19,27,32-34,38]). However, usually the
entire correlator is contracted with auxiliary variables, and
as a result one produces a polynomial depending on all
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three spacetime points and the auxiliary spinors. In our
approach, however, we contract the auxiliary spinors with
the tensor H 4, 4,4,(X), which depends on only a single
variable.

Our approach proves to be essential in the construction
of correlation functions of higher-spin operators. It also
proves to be more computationally tractable, as the poly-
nomial H, (2.38), is now constructed out of scalar combi-
nations of X, and the auxiliary spinors U, V, and W with the
appropriate homogeneity. Such a polynomial can be con-
structed out of the following scalar basis structures:
uv = u®v,, (2.41a)

uw = uwy, oW = %W,

0D =y, aw=ia%w, 0w =%, (2.41Db)

= __ oay o
uXw = u*X oW,

(2.41c)

= _ a% a4 = _ Y | sa
uXm=u*X ,u*,  uXv=u*X,,0%

= __atY oa
vXw = v*X W%,

(2.41d)

= _ ,a%  oa 5 A% s
X =v"X 1%,  vX0=0%X,,0%

X —a L aY =AY A
wXi =wX it wX0=wX ;0%  wXw=wX W%,

(2.41e)

subject to cyclic permutations of linear dependence rela-
tions such as

(uXu)(vw) — (uX0)(@w) + (uXw)(av) =0. (2.42)
There can be more general linear dependence relations
for more complicated combinations of the basis struc-
tures (2.41); however, such relations can be obtained
computationally.

In general, it is a nontrivial technical problem to come up
with an exhaustive list of possible solutions for the
polynomial H for a given set of spins. Hence, let us

introduce a more convenient labeling scheme for the
building blocks (2.41)

P, = uv, Py, = uw, Py = vw, (2.43a)

0, = uXv, 0, = uXw, 03 = vXw, (2.43Db)

Z, = uXu, Z, = vX7, Zy =wXw. (2.43c)
Now if we also define the objects

P(ky, ky, ks) = P{'PY PR, (2.44a)

O(X.ri,r2.13) = 01' 0707, (2.44b)

Z(X,s1,80.83) = Z\' 2727, (2.44c¢)

then the generating function for the polynomial
H(X;U,V,W) may be defined as follows:

./,T(X, F, U, V, W) = XA3_A2_A1P(IC1,kz,kS)P(l_Cl,l_Cz,l_C?,)

X Q(X7 ry,rp, rS)Q(Xv ’715 ?27 7‘3)
X Z(X,51,82,53), (2.45)

where the non-negative integers, I' = {k; k;,r;,7;.5;},
i =1,2,3, are solutions to the following linear system:

ky+ky+s5 +7 +F=J;,
(2.46a)

k1+k2—|—s1—|—r1+r2:i1,

ki+ks+sy+r +7F =,
(2.46b)

ki +ky+ sy 4+ 7+ 13 =1y,

ky+ks+s3+r+r;=js,
(2.46¢)

k2+k3+S3+?2+73:i3,

and iy, iy, i3, j1, jo, j3 are fixed integers which specify the
spin structure of the correlation function. These equations
are obtained by comparing the homogeneity of the aux-
iliary spinors u, i, etc., in the generating function (2.45),
against the index structure of the tensor H. Let us assume
there exists a finite number of solutions I';, I = 1,..., N to
(2.46) for a given choice of iy, i,, i3, ji, j2, j3- Then the
most general ansatz for the polynomial H in (2.38) is as
follows:

N
HXU.V.W) =D aF(X:;T U V. W), (247)
I=1

where a; are a set of complex constants. Hence, construct-
ing the most general ansatz for the generating polynomial
‘H is now equivalent to finding all non-negative integer
solutions I'; of (2.46), where i, i,, i3 and j, j,, j3 are
arbitrary non-negative integers. The solutions correspond
to a linearly dependent basis of possible structures in which
the polynomial H can be decomposed. Using computa-
tional methods, we can generate all possible solutions to
(2.46) for fixed (and in some cases arbitrary) values of
the spins.

In the remaining sections of this paper we will construct
solutions for the three-point functions of the fermionic
current field Qa5 With the vector current and the energy
momentum tensor using the formalism outlined above. We
use a combination of the method of systematic decom-
position and the generating function approach to reduce the
number of possible linearly dependent structures in each
case. We present most of our results in terms of the scalar
basis structures (2.41); however, the generating function
(2.45) underpins most of the calculations.
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IIL CORRELATOR (Qy (210 (1)@ 300 (%2) V3 (x3))

In this section we will compute the correlation function
(QQV), where V is a conserved vector field V,; with scale
dimension 3. The ansatz for this correlator consistent with
the general results of Sec. II B is

(Qui(aty (1) Qﬁ(Zk)[i (x2)V,;(x3))

1 -

s Zae2 ' (2k)

X Iﬁ(zk)/} '(26) (xzz)j/}ﬁ/ (x23)

X Haj 2k (1 ﬁ/ﬂ 2k W(Xlz), (31)
where H is a homogeneous tensor field of degree g =
3—2(k+3) = —=2(k+1). It is constrained as follows:

(1) Under scale transformations of spacetime x” —
x'™ = )72x™ the three-point building blocks trans-

form as X™ — X'™ = )2X™, As a consequence, the
correlation function transforms as

<Qaéz(2k) (x}) Qﬁ(zk)ﬁ (x5) Vi (x§)>
:(/12)2"*8@&&(2,{)(xl)Q[,(Zk)ﬁ(xz)Vﬂ(xg), (32)

which implies that H obeys the scaling property

Hoonyinpian) yy(/l X)

:(/12)qHa(zk)&,/}/}(zm,yy(X)7 VieR\{0}. (3.3)
This guarantees that the correlation function trans-
forms correctly under scale transformations.

(i1) The conservation of the fields Q at x; and x, imply
the following constraints on the correlation function:

0?{)‘)@@&(%—1)(351)Qﬂ(zk)/’;(xz)vﬂ(xs)> =0, (3.4a)

02 (Dot (1) Qs (12) Vi (x3)) = 0. (3.4b)

Using identities (2.26a) and (2.26b) we obtain the
following differential constraints on the tensor H:

B M gk tyaipian) 7 X) = 0, (3.53)

5
aﬁ/ a(2K)a B f(2k— l)yy( ) =0, (3.5b)

where 0§ = (5)* -2 There is also a third con-

straint equation arising from conservation of V at x3,

Og) <Qaiz(2k) (xl )Q/}(zk)/} (xz) Vy;'/ (x3)> =0; (3 '6)

however, there are no identities analogous to (2.26a)
and (2.26b) that allow the partial derivative operator

125004-8

acting on x3 to pass through the prefactor of (4.1);
hence, we use the procedure outlined in Sec. IIC.
First we construct an alternative ansatz with V at the
front as follows:

(V35 (x3) Qpanyp(%2) Ouir(ar) (X1))
1 . =
= WI/ (x31)Z;57 (x31)
x Ly 2k)‘ re )(le)I (x21)

X Fy it 010 oy (Ka2)- (3.7)

Since the correlation function possesses the follow-
ing property:

(V35 (x3) Q005(%2) Quirany (1))
__<Qa&(2k)(xl)Qﬂ(zk)ﬁ(x2)V7}7(x3)>7 (3.8)

we can now compute 7{ in terms of . After some
manipulations one finds the following relation:

ﬂyy PR ai(2n) (X32)
—x13X%12(+SI 4 (xsl)I 7 (x31)
XZL," (x13)Id(2k) (2k>(x13)
XL (¥13) T (X 12)Z ooy (%13)
x TP OHC0 (X 1, H,, nipp ey X2)- (3.9)

This is quite impractical to work with due to the
presence of both two-point functions and three-point
functions; therefore we will make use of the follow-
ing relation derived from (2.33):

Ha(Zk)a't,ﬁ[i’(Zk),y;‘/ (X12)
- (x%3X%2)an(2k)&/(2 )(x]3)I d(xls)zﬁﬂ/(xw)
X Lo P (013)T,7 (x13) 237 (x13)

X H;/dr(zk)ﬁ/(zk ﬂ/ }//7/( 32) (310)

After substituting this relation directly into (3.9), and
making use of (2.23), we obtain the following
equation:

s e aaan) (X) = X T (X)L 029 (X)

XHE o wop X (1)

The equation relating 7 to H¢ is now expressed
in terms of a single variable, the building block
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vector X. Conservation on the third point is now
equivalent to imposing the following constraint on

the tensor H:

N s5000) aion)(X) = 0. (3.12)
(iii) The correlation function is also constrained by the
following reality condition:

(Qui(an) (x1 )Qpanyp (%2) V3 (x3))

= (Qyjan) (¥2) Qaana(¥1) Vi (x3)) ", (3.13)
which implies the following constraint on the
tensor H:

Hooumappenr7X) = ~Hgjon aeoay; (—X)- (3.14)

Hence, we have to solve for the tensor H subject to
the above constraints. This is technically quite a challeng-
ing problem due to the complicated index structure of
the tensor H. Instead, we will streamline the calculations
by constructing a generating function as outlined in
Sec. I D. We introduce the commuting auxiliary spinors
u,it,v, v, w,w, which satisfy u> =0, @#> =0, etc., and
define the generating function for H as follows:

H(X;u,i,v,0,w,w)

=H (X)UrCREyPBROWr - (3.15)

a(2k)a [iﬁ(2k R4

The tensor H is then obtained from the generating poly-
nomial by acting on it with partial derivatives

H a(2k)a.pp(2k (X)
B a o 9
—QURE Gyppk) QW

H(Xu, i, v,0,w,w).

(3.16)

Again, the generating function approach simplifies the
various algebraic and differential constraints on the tensor
‘H. In particular, the differential constraints (3.5a) and
(3.5b) become

0 0 0

axaéﬁﬁ ( ,M,ﬁ,U,E,W,W):O, (317&)
0 o0 0 o _

0X¢,&Wﬁ (Xsu,i,v,0,w,w) =0, (3.17b)

while the homogeneity and reality condition (3.14) become

HA2X;u,it,0,0,w,w) = (A2)TH(X;u,it,v,0,w,w), (3.18a)

H(X;u, i, v, v, w, w) = —H(=X; v, D, u, &,w,w). (3.18b)

Our task now is to construct the general solution for the
polynomial H consistent with the above constraints.

The general expansion for the polynomial H is formed
out of products of the basis objects introduced in (2.41). Let
us start by decomposing the polynomial H, and we have

1
H(X;u,i,v,0,w,w) = X2k+2w"w ]:(,(l(X u,i,v,7),

(3.19)
where have used the fact that H is homogeneous degree 1 in
both w and w. The vector object F is now homogeneous
degree 0 in X, homogeneous degree 1 in #, v, and
homogeneous degree 2k in u, v. It may be decomposed
further by introducing the following basis vector structures:

Z) i =X Zyoa =gl (3.20a)

24,11('1 = U(zud’ ZS.a(’l = U(ﬂ_}&' (320b)

We then have

5
FoaXsu.,0.0) =Y 2o Fi(Xsu . v.9),  (3.21)

i=1

where the F; are polynomials that are homogeneous degree
0 in X, with the appropriate homogeneity in u, it, v, v. It is
not too difficult to construct all possible polynomial
structures for each Z; ;4

Z structures:

Fi(Xsu, it,v,0) = a,(vXit)(uXv)*

+ ay(uXit) (vX D) (uX7)*!
+ as(uv) (i v) (uXw)**1, (3.22a)
Z, structures :
Fr(X;u,it,v,0) = ay(vX0)(uXp)?* 1, (3.22b)
Z5 structures
F3(Xsu, w0, 9) = as(vX)(uX0)*~!
+ ag(uXt) (vX) (uX7)*2
+ a7 (uv)(a2) (uXv)*2, (3.22¢)
Z, structures
FaXsu, it,v,0) = ag(uXv)* (3.22d)
Zs structures :
Fs(X;u,it,v,0) = ag(uXu)(uXp)*1. (3.22¢)

However, not all of these structures are linearly independent.
In particular, it may be shown that F ., (X; u, &, v, 7) = 0 for
the choice

125004-9
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ay=-a;, az=a;, a;=0, i=4,...9. (3.23)
Therefore we can construct a linearly independent basis of
polynomial structures by removing the a; structure, which
leaves us with eight independent structures to consider. We
now impose the differential constraints and point switch
identities using Mathematica. After imposing (3.17a), we

obtain the following k-dependent relations:

(1 —2k)a; + (1 + 2k)a;
1+ 2k ’
a — (=1 +2k)(ay + (1 +2k)as3)
T 2k(1 4 2k) ’

a, =

(3.24)

in addition to a5 = ag = 0. Next we impose (3.17b), from
which we obtain

(1 =2k)as + (1 +2k)a;
1+ 2k

(3.25)

dg =

Hence, the correlation function is determined up to
three independent complex parameters, a,, as, and ag.
We now must impose the reality condition (3.18b). Using
Mathematica, we find that a, =ia,, as =ids, and
ag = iag, where a,, as, and dag are three real constant
parameters.

It remains to demonstrate that this correlation function is
conserved at x3 in accordance with conservation of the
vector current. First, we compute the tensor 7 using (3.11).
This may be written more compactly in the generating
function formalism; to do this we introduce the following
differential operators:

~ - 0 0 A .
(vX05) = v*X,* —, (0sXv) = — X, 0% (3.26)
05 os*

The relation (3.11) is now equivalent to

H(X;w,w, v, 0, u, i)

= —— X1 (vX05)(0sXD)*H  (X; u, it, 5,5, w, W).

Conservation on the third point (3.12) is equivalent to
imposing the following constraint on F:

9 0 9 -
0X ,; OW° OW°

(Xsw,w,v,0,u,t) =0. (3.28)

It may be shown using Mathematica that this is satisfied up
to k = 4. Beyond k = 4 the calculations for (3.11) seem to
become very computationally intensive; however, we have
no reason to expect that the result will change for higher

values of k. Hence, we are reasonably confident that
(QQV) is fixed up to three independent real parameters.

IV. CORRELATOR (@ 21)i(*¥1)@p 21 (*2) Vi (x3))

In this section we will compute the correlation function
(QQV). The ansatz for this correlator consistent with the
general results of Sec. II B is

<Qa2k (xl>Q/,’2k/;(x2) W(x3)>
1 _
= — 7 Zan” ) (x13) 2% (x13)
5L a(2k) 13 13
()613)633)1(+
xT ﬂ(2k) p ek (x23)I ﬁﬂl (x23)

X H o on 5 2k) yy(X 2)s (4.1)

where H is a homogeneous tensor field of degree g =
3—-2(k+3) = —=2(k+1). It is constrained as follows:
(1) Under scale transformations of spacetime x”
x'™ = 272x™ the three-point building blocks trans-
form as X" > X' = 2X™. As a consequence, the
correlation function transforms as

(Qa(2)a(¥1) Qpaiyp(¥2) Vi (%))
= () Quiana(x1) Qpiaiy(¥2) Vi (3)), - (4.2)

which implies that H obeys the scaling property

Hy; i(2K) BP(2k) yy(}’ X)

= (BT H oo ppony s (X). YAER\{0}.  (4.3)

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(i) The conservation of the fields Q at x; and x, imply
the following constraints on the correlation function:

a?ﬁ(Qa<2k—1)aa(x1)Q,;(zk)/;(xz)vyy(xz» =0, (44a)

0 (a0 (X1) Qg1 g (12) Vi3 (x3)) = 0. (4.4b)

Using identities (2.26a) and (2.26b), we obtain the
following differential constraints on the tensor H:

B girion) pian) 7 (X) = 0, (4.52)
a/’ﬁH a0 g okt gy (X) = 0. (4.5b)

There is also a third constraint equation arising
from conservation of V at x3:

a}g) <Qa(2k)o’z <X1 ) Qﬂ(zk)[j <x2) Vy;" (XS )> =0. (4'6)

125004-10
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Similar to the previous example, we use the pro-
cedure outlined in Sec. II C and find the following

relation between H¢ and H:

H; gion) anaX)

=x*17 0 (X)T;

ﬁ(zk)ﬂ,ak) (X)H<

a(2k)ap (2608 yi (X) '
(4.7)

Conservation on the third point is now tantamount to
imposing the constraint

7, Hwﬂﬂ 2%), (2k)a(X) =0. (4.8)

(iii) The correlation function possesses the following
symmetry property under exchange of the fields at
x; and x,:

(Qa(21)a(X1) Qpianyp (%2) Vi (%3))

= —(Qp(21)(¥2) Qaiana(x1) Vi3 (x3)).  (4.9)

This implies the following constraint on the tensor H:

H{z[z(Zk),/}/}(Zk),yJ}(X) = _H/}f)’(2k).rl&(2k).y;7(_x)' (4.10)

Hence, we have to solve for the tensor H subject to the
above constraints. Analogous to the previous example in
Sec. III, we streamline the calculations by constructing a
generating function, which is defined as follows:

H(X; u, i,
= Hoaon) ppan (X YOO VAR W

v, T, W, W)
(4.11)

The tensor H is then extracted from the generating
polynomial by acting on it with partial derivatives,

Hi @(2k).pB(2k) yy(X>
0 0 0
—QUak) Gyap(2K) QW

H(X;u,a,v,0,w,w). (4.12)

As will be seen shortly, the generating function approach
simplifies the various algebraic and differential constraints
on the tensor H. In particular, the differential constraints
(4.5a) and (4.5b) become

Jd o0 0

——H(X;u, v w) = 4.1
3X . 0w o (Xsu,it,v,0,w,w) =0, (4.13a)
0 o0 0
axo_&wﬁ (X, u, ﬁ, v, T),W,W) = O, (413b)

while the homogeneity and point switch constraints
become

HA2 X u, i, v, 0, w,w) = (A2)TH(X; u, it, v, D, w, W),

(4.14a)

H(X;u,a,v,0,w,w) = —H(=X;v,0,u,u,w,w). (4.14b)
Our task is now to construct the general solution for the
polynomial H consistent with the above constraints.

The general expansion for the polynomial H is then
formed out of products of the basis objects above. Let us

start by decomposing the polynomial H, we have

H(X;u, i, v,0,w,w) = WOWEF oo (X u, i1, v, 3),

X2k+2
(4.15)

where we have used the fact that H is homogeneous degree
1 in both w and w. The vector object F is now homo-
geneous degree 0 in X, degree 1 in u and v, and degree 2k in
u and 9. It may be decomposed further using the structures
defined in (3.20):

5
faa( Z zaa X u,u, v, U) (416)

where the F; are polynomials that are homogeneous degree
0 in X, with the appropriate homogeneity in u, i1, v, 0. It is
not too difficult to construct all possible polynomial

structures for each Z; ,;, and we find

Z | structures :
Fi(X;u,i,0,0) =a, (uv) (@ 0)* + a,(uXa) (vX0) (4 0)*!
+as(uXv)(vXi)(av)>*1, (4.17a)

Z, structures

Fr(Xsu, it,v,0) = as(vX)(v)* ", (4.17b)
Z5 structures :

F3(X;u, it,v,0) = as(vXit) (i v) >, (4.17¢)
Z, structures

Fa(Xsu,it,v,0) = ag(uXv) (i v)*1, (4.17d)
Zs structures :

Fs(X;u,it,v,v) = a;(uXi) (it v)1. (4.17¢)

However, not all of these structures are linearly
independent. In particular, it may be shown that
Foa(Xsu, 1, v, ) = 0 for the choice
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az = —ay, ay = —a; + ap, as = a; — dp,

ag = a, — a,, a; = —a, + a,. (4.18)
Therefore we can construct a linearly independent basis of
polynomial structures by removing the a; and a, structures;
hence, there are only five independent structures remaining.
We now impose the differential constraints and point switch
identities using Mathematica. After imposing (4.13a), we
obtain the following k-dependent relations between the
coefficients:

1 3(1 +2k)
a,=—--a a5 = ————~a
fT2kY ST 2k(3+2k)
142 2
a7:—< + k)a3+(3—|—2 k)a6. (4.19)
3 4 8k + 4k

At this stage only two independent coefficients remain.
Next we impose (4.13b), from which we obtain

1 3(1 4 2k)
a, = ———das, a5 = ————~das,
MY > T 2k(3+2k)
3(1 + 2k) 1

——a,. (4.20)

UG 20 T Tk

Hence, the correlation function is determined up to a single
complex parameter, a; = a. It may then be shown using
Mathematica that the point switch identity (4.14b) is
satisfied for this choice of coefficients.

It remains to demonstrate that this correlation function is
conserved at x; in accordance with conservation of the
vector current. First, we need to compute H using (4.7),
which is also more convenient to work with in the
generating function formalism. It may then be shown that
(4.7) is equivalent to

3 1
H(X;w, W, v, D, u, i) = wX”H (vX05)(0sX D)%
x H(X;u, @, s,5,w,w). (4.21)

Therefore, given the solution for the tensor H, we compute
‘H¢ by conjugating the polynomial structures and then
compute H using (4.7). The differential constraint (4.8)
may also be written in the generating function formalism

0 0 0 -
0X ;5 OW OW°

(X;w,w,v,0,u,it) =0. (4.22)

It may be shown using Mathematica that this constraint is
automatically satisfied for the coefficient relations (4.20),
up to k =4. Again, beyond this point, the calculations
seem to be quite computationally intensive. However it is
reasonable to expect that the same results will hold for all k.
Hence, after imposing all the constraints, the correlation

function (QQV) is determined up to a single complex
parameter.

V. CORRELATOR (Qui(at) (¥1) Q@313 (¥2) Ty 2)5(2) (¥3))

In this section we will compute the correlation function
(QQT), where T is the energy momentum tensor T, ();()
with scale dimension 4. The ansatz for this correlator
consistent with the general results of Sec. II B is

<Qa(’1(2k) (x )Qﬂ(zk)/}(xz)Ty(z)y(z) (x3))
1 b — J
= Wzga (x13>Ia(2k)a (2) (x13)
xT ﬁ(2k)ﬂ '(28) (x23 )j ﬁﬁ/ (x23)

X Ho i it (200 72)2) (X 12): (5.1)

where H is a homogeneous tensor field of degree

g =4-2(k+3) = -2k —1. It is constrained as follows:

(1) Under scale transformations of spacetime x”

x™ = 272x™ the three-point building blocks trans-

form as X" > X" = J2X™. As a consequence, the

correlation function transforms as
(Qui(at) (¥1) Qpianyp (¥0) Ty2pi2) (5))
= (B Quaaan) (1) Qpianys (¥2) Ty2)2) (X))
(5.2)

which implies that H obeys the scaling property

. 2
H(I(Qk)('l,/iﬂ(Zk),y(2);’/(2) (/1 X)

Ve R\{0}.
(5.3)

2 .
(P) T H aani pivan) 1 92) (X)-

This guarantees that the correlation function trans-
forms correctly under scale transformations.

(i1) The conservation of the fields Q at x; and x, imply
the following constraints on the correlation function:

O (Quaiaar—1) (¥1) Qpanyp (¥2) Ty 2)32) (x3)) = 0,
(5.4a)

) (Qaion) (¥1) Qpias 1y (¥2) Ty (%3)) = 0.
(5.4b)

Using identities (2.26a) and (2.26b) we obtain the
following differential constraints on the tensor H:

My akt)ae o) 2)52) (X) = 0, (5.52)
BB . _
df; H i pr-1)42)72) (X)=0. (5.5b)
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There is also a third constraint equation arising
from conservation of V at x3,

9% (Duiot) (51) Qpiasp(X2) Ty 2132 (63)) = 0. (5.6)

Using the same procedure as the previous examples,
we construct an alternative ansatz for the correlation
function as follows:

(T, 2)7(2) (%3) @ papj(%2) Qui(an (1))

1 . - )
=————T,0) P (x31)L;0)" P (x31)

74y
(x§1)3(x§1)2

X I/}(Zk)ﬁ/ (26) (x21 )j/;'ﬁ/ (x21)

X ﬂy’<2>7’(2)./f’/3’(2k),a&(2k) (X32). (5.7)
Now due to the property
< ( ) (x2>Qaa ()C1>>
<Q (2k) (xl)Q/)v 2% /}(xz)Ty(Q)}}(z) (X3)>, (58)

we have a way to compute 7{ in terms of H. After
some manipulations we find

H,2)72) g aiar) (X32)
= X8 XL, 07 P (x3)) 07 ) (w31
XI{I (x13):z- (2 ) Zk)(xli%)zﬁ#(xlg,)zﬂ/ (Xl2)

x H i g k) )7 ) (X12)- (5.9)

We now make use of the following identity derived
from (2.34):

Hoonapien y2)2) X12)
:(x13X32)an(2k)a(Qk)(xn)z (x13)

X Iﬁﬁ’ (xw)jﬁ(zk)ﬁ/@k) (x13)

X L) P (x13) L5007 P (x13)

x HE,, (5.10)

& (2k).8 (20 7 ()7 (2 >(X32)

After substituting this equation into (5.9), we obtain
the relation

2352 pian) aaar) (X)
= sz—3Iﬁﬁ/ (X)j/}(Zk)ﬁ/Qk) (X)

x H¢

w200 0 i) K (5.11)

Conservation at x5 is now equivalent to imposing the
following constraint on the tensor H:

5§67:{a&yy,ﬁﬁ(zk).aa(2k> (X)=0. (5.12)

(iii) The correlation function is also constrained by the
reality condition

<Qaa )( ) ﬁ('x2) 2)7(2 (X’;)>
<Q/}/}2k (xz)Qazk (x )Ty(Z)f/(Z)(x3)>*' (5.13)

This implies the following constraint on the tensor H:

(X)=-

Hpjon auir@ie (—X)-
(5.14)

Haaryippen 12

Hence, we have to solve for the tensor H subject to the
above constraints. Analogous to the previous examples we
streamline the calculations by constructing a generating
function, which is defined as follows:

H(X;u,i,v,0,w,W)
= H o) pi20) 7 (2)5(2) (X)UeCRaypPROWr(2)i(2) - (5.15)

The tensor H is then obtained from the generating poly-
nomial by acting on it with partial derivatives

H oty ppan) r2)i2) (X)
9 G J
aUa (z Vﬂﬁ 2k aW}’( ) ( )

H(X;u, i, v,0,w, ).
(5.16)

Again, the generating function approach simplifies the
various algebraic and differential constraints on the tensor
‘H. In particular, the differential constraints (5.5a) and
(5.5b) become

d o0 0 _ _

axabﬁﬁ (X,M,M,’U,'U,W,W) = O, (5173.)
d 9 0 - _

X 30° 9% (Xsu,i,v,0,w,w) =0, (5.17Db)

while the homogeneity and point switch constraints
become

HA2 X u, i, v, 0, w,w) = (A2)TH(X; u, it, v, b, w, W),

(5.18a)

H(X;u,a,v,0,w,w) = —H(=X;v,0,u,u,w,w). (5.18b)
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Let us now construct the general solution for the
polynomial H consistent with the above constraints. We
start by decomposing the polynomial H as follows:

1
H(X;u, a,v,0,w,w) =

=, . = -
—Wu VOF o (X5 u, 0, w, W),

(5.19)

where have used the fact that H is homogeneous degree 1 in
both # and v. The vector object F is now homogeneous
degree 0 in X, homogeneous degree 2 in w and w, and
homogeneous degree 2k in u# and . It may be decomposed

further by defining the following basis vectors:
|

Z, structures:

Ziwi=Xawr  Zraa=Uabi  Z3ai=UaVer  (5.202)
Zhae = Walg, Z506 = WoWs.  (5.20Db)
We then have
5
Foo Xsu, 0,w,w) = Z ZiwoFi(Xsu, 0,w,w),  (5.21)

i=1

where the F; are polynomials that are homogeneous
degree O in X, with the appropriate homogeneity in
u,v,w,w. The complete list of possible polynomial struc-
tures for each Z; ,,; is

Fi(Xsu, v, w,w) = a; (uw)?(3w)(uX0)?*72 + a,(wXw)?(uXv)*
+ az(wXw) (uw) (2 w) (uX2)*" + ay(wX ) (uXw) (uw) (2 W) (uX )2

+ as(wX0)?(uXw) (2 W) (uX2)*2 + ag(uXw)(WXw) (wX?)(uX1)?*!,

Z, structures :

For(X;u, 5w, w) = a;(wXw) (uw) (2 W) (uX)*2 + ag(wXw)>(uX0) 7! + ag(uXw) (WX D) (WwXW) (uXp)?*2,

Z5 structures :

F3(X;u, 0,w,w) = a;o(wX) (uw)(5w) (uXD)*2 + a;, (wXw) (WXD) (uX?)* +a,(wXD)?(uXW) (uXv)?2,

Z, structures :

F4(X;u,0,w,w) = a3 (uXw) (uw) (0w) (uX )2 + a1 (uXW)? (wXD) (uXD)*7! 4+ a;s(wXw) (uXw) (uXp)?*!,

Zs structures :

Fs(X;u, 0, w, W) = a;6(wX0)(uXW)(uX0)**" + a7 (wXw) (uXp)* + ayg(uw)(dw)(uXp)*-1.

(5.22a)

(5.22b)

(5.22¢)

(5.22d)

(5.22¢)

There are also the additional “higher spin” structures, which appear only for k > 1:

Z, structures :

Fo(Xsu, 0,w, W) = ao(uw)?(5w)*(uX8) 73 4 ay (WX D) (uXW)? (uXD)*3 + ayy (uX)(wXD) (uw) (7 W) (uXD)? 3,

Hence, we will need to treat the cases k =1 and k > 1
separately. First, we will consider k = 1, which corre-
sponds to a field with the same properties as the super-
symmetry current, Qy2) 4

A. Analysis for k=1

In this subsection we will determine the constraints on
the coefficients for general k. First, we must determine any

(5.23a)

linear dependence relations between the various polyno-
mial structures. Using Mathematica it may be shown that
F oe(X;u, v, w,w) = 0 for the following relations between
the coefficients:

a3 =a,+a,—ap+ap, (5.24a)

a5 = —d| — Ay + apo + ai, (524b)
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g = a;, —a, +ay — ajy — ap, (5.24¢)
ag = a; +dajy—ap. (5.244d)
Ay = —ay — djy — Ay, (5.24e)
a4 = ayp + ajp — a3, (5.24f)
ajs = —ao +ay +aps, (5.24¢)
ay7 = —ap —dpp — ages (5.24h)
aig = —dy— ap — dig- (5.241)

Therefore a linearly independent basis may be obtained by
neglecting the structures corresponding to the coefficients
ai,a,ay, as, g, i, s, 13, djg. There are only nine
structures remaining, corresponding to the coefficients
as, as, de, dg, dg, d14, d15, d17, d1g, Tespectively. Now that
we have identified any possible linear dependence between
the polynomial structures, we impose the differential con-
straints and point-switch identities using Mathematica. After
imposing the conservation equations (5.17a) and (5.17b), we
obtain the following relations between the coefficients:

1
ag = 5(03 —2as +4ayg),
1
ag = 3 (—2a3 = 2as5 + ays),
1
dg = g (4613 + 4a5 + 76118). (525)

Hence, the differential constraints are sufficient to fix the
correlation function up to four independent complex param-
eters, a3, as, a7, and a;g. The next constraint to impose is
the reality condition (5.18b), from which we determine
az = i6~l3, as = ias, ay; = i&”, and ag = ileg, where 53,
as, dpq, and d,g are four constant real parameters.

Finally, we must check that the correlation function
satisfies the differential constraint (5.12) in accordance with
conservation of the energy-momentum tensor. We begin by
|

as(=1 4 k + 4k2 — 4k3) — 2a5(1 — k — 12K% + 12&3) + ay; (—=2k + 8K3)

computing 7 using (5.11); in the generating function
formalism this may be written as

H(X;w. W, v, D, u, i)
1
=20 X*73(vX05)(0sX0)* HE (Xs u, @1, 5,5, w, W).

(5.26)

Conservation of the energy-momentum tensor at x3 (5.12)
is now equivalent to imposing the following differential

constraint on the tensor H:

0 0 0 -
0X ;5 OW OW°

(X;w,w,v,0,u,i1) =0. (5.27)

At this point we set k = 1 and proceed with the analysis.
Using Mathematica it may be shown that this constraint is
automatically satisfied for the coefficient constraints above;
hence, the correlation function (QQT) is determined up to
four independent real parameters.

B. Analysis for general k

Now let us carry out the analysis for general k; we must
determine any linear dependence relations between the
various polynomial structures. Indeed, we find that intro-
ducing the higher-spin contributions (5.23a) results in
the following supplementary linear dependence relation
for k > 1, ie., Foo(X,u,v,w,w) =0 for the coefficient
relations
ag=-ay, a9g=dajg—dy, dy=-—djg—dy. (5.28)
Therefore the complete list of independent structures
corresponds to the coefficients a3, as, ag, ag, ag, a4,
as, a7, dig, dr1. We now impose the differential con-
straints and point switch identities using Mathematica.
After imposing the differential constraints arising from
requiring conservation on the first and second points, that is
(5.17a) and (5.17b), we obtain the k-dependent relations

_ , 5.29
a6 1+ 3k — 16K + 1263 (5.292)
6(1 — k)(2azk(=1 + 2k 1+ 2k 1442
gy = S =RQak(=1+20) + as(1 +26) + an (=1 +4K) (5.29b)
2 1 6k — 327 1 24k
1 1—4
do — 5as( +/2<)_+2Zm( k)’ (5.29¢)
_ _ 2
a18:2(1 k) (4ask(=1 + 2k) + as(1 + 12k%)) (5.29d)

2 + 6k — 32k* + 24K3
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The remaining free coefficients are a3, as, a7, and a,;;
the relations are also defined only for £ > 1. Next we must
impose the reality condition (5.18b), from which we obtain
az = i6~l3, as = iglj, ay = iZl17, and ayy = ilel where
as, as, d7, and a,, are four real constants. Hence, we find
that the correlation function is determined up to four
independent real parameters.

Finally, we must impose the differential constraint on x5
which arises due to conservation of the energy-momentum
tensor, that is, Eq. (5.27). Indeed, we have shown using
Mathematica that (5.27) is satisfied up to k = 4, and for
higher values of k the computations of 7 seem to be
beyond our computer power. However, we believe that the
results will hold for higher values of k, so we can be
reasonably confident that the correlation function is deter-
mined up to four independent real parameters for general k.

VL. CORRELATOR (Qy21)ic(X1)@p (215 (*2) Ty (2)7(2) (x3))

In this section we will compute the correlation function
(QQT). The ansatz for this correlator consistent with the
general results of Sec. II B is

(Qu(2r)a(*1) Qpanp (¥2) Ty(2)5(2) (%3))
1 . _
— o (2k) a
(x%3x%3)k+% I(I(Zk) (x13)Ia ('x13)
x T ﬁ(zk)ﬁ 20 (x23 )-T /}ﬁ / (x23)

X Hya 0 g5 26 7(2)i(2) (X12), (6.1)

where H is a homogeneous tensor field of degree

qg=4-2(k+ %) = —2k — 1. It is constrained as follows:

(i) Under scale transformations of spacetime x” —

x'™ = 272x™ the three-point building blocks trans-

form as X > X = 22X™. As a consequence, the
correlation function transforms as

(Qa20)a(x1) Qpanp (¥2) Tr2)i(2) (X3))

= (B! Qufana(x1) Qpanyp (¥2) Ty2)(2) (X3)).
(6.2)

which implies that H obeys the scaling property

3 2
Hoaaton) i) 12)32) (A X)

V1 e R\{0}.
(6.3)

2 .
()" H gian) g2 1 232) (XD

This guarantees that the correlation function trans-

forms correctly under conformal transformations.
(i1) The conservation of the fields Q at x; and x, imply

the following constraints on the correlation function:

O ( Qa(at—1)ai(¥1) Qpany(¥2) Ty 2)i12) (¥3)) = 0,
(6.4a)

&g}) <Qa(2k)(}:(xl )Qﬁ(2k_1)ﬂﬁ (XZ)T}/(2))'/(2) (x3)) = 0.
(6.4b)

Using identities (2.26a) and (2.26b), we obtain the
following differential constraints on H:

KM i 21 pison) 52152 (X) = 0, (6.5a)
p . _
o Hui2n) i pai—1) 5 2)32) (X) = 0. (6.5b)

There is also a third constraint equation arising
from conservation of V at x3,

0% (Qa(an)a(¥1) Qpiasep(X2) Ty2)7(2) (63)) = 0. (6.6)

Similar to the previous example, we use the pro-
cedure outlined in Sec. II C and find the following
relation between H¢ and H:

0502, pion) a2 X)

= X310 (X )Iﬁ(zk)ﬂ/uk) (X)

x HC ~ (X).

a(2k)af (2K r(2)i(2) (67)

Conservation on the third point is now equivalent to
the following constraint on H:

5§0ﬂo&yy,p/}(2k).a(zk)a(x )=0. (6.8)

(iii) The correlation function possesses the following
symmetry property under exchange of the fields at
x; and x,:

(Qu(20)a(¥1) Qo (x2) Ty 2332 (%3))
= —(Qp1)3(*2) Qaana (1) Ty2)52) (%3)).  (6.9)

This implies the following constraint on the tensor H:

Haaan) 20 1 )72) X = =Hgian) aaan) p2)i2) (%)
(6.10)

Hence, we have to solve for the tensor H subject to the
above constraints. Let us now streamline the calculations
by constructing the generating function:

H(X;u,,v,0,w,W)

= Hao'z(2k),/3[)’(2k),y(2)j/(2) (X)Uw'l(Zk) VAP Wr(2)i(2) (6.11)
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The tensor H is then obtained from the generating poly-
nomial by acting on it with partial derivatives as follows:

Haa(Zk),/1/}’(2k),y(2>?(2) (X)

9 0 9 o
= U i) gy T 0D ).

(6.12)

Let us now convert our constraints on the tensor H to
constraints on the generating function. In particular, the
differential constraints (6.5a) and (6.5b) become

Jd 9 0

2% H(Xu, 7,0, 5, w, W) = 1
3X . 0w o (Xsu,it,v,0,w,w) =0, (6.13a)
Jd d 0

——H(X;u,it,v,v w) = .13b
3X_ 007 90° (Xsu,i,v,0,w,w) =0, (6.13Db)

while the homogeneity and point-switch constraints
become
HA2X;u, i, v, 5, w,w) = (2)TH(X;u, i, v, 5, w, W),
(6.14a)
|

H(X;u,a,v,0,w,w) = —H(=X;v,0,u,u,w,w). (6.14b)

Our task is now to construct the general solution for
the polynomial H consistent with the above constraints.
The general expansion for H is formed out of products
of the basis objects (2.41). Let us start by decomposing the
polynomial H, and we have

1
H(X;u, it, v, 8, w, W) = Wu%/’;'-'aﬂ(x; i, T, w, W),
(6.15)

where we have used the fact that H is homogeneous degree
1 in both u# and v. The tensor F is now homogeneous
degree 0 in X, homogeneous degree 2 in w and w, and
homogeneous degree 2k in i and . It may be decomposed
into symmetric and antisymmetric parts as follows:

f(lﬁ(X; u,v,w, \/_V) = 6'(1[}A(X,
(6.16)

It is straightforward to identify the possible structures in the
expansion for A. We find

A(X; i, 0, w, W) = a (wXw)? (i ) + ay (wXit)? (0 w)* (it 8)*2 + as(wXw)(wXit) (B w) (i )+
+ as(wXw)(wWXp) (e w) (i 0)*" + as(wXp)*(aw)? (i v)*2

+ ag(wXu)(wXo) (@ w)(vw) (i p)*2.

However, identifying all possible structures for the tensor B
is more challenging. To this end we introduce a basis of
spinor structures, Y, ,:

Y 2. — Xaa'z ’,

— ¥ .2
Y4,(1 = X"

N}

Yl,a = Wq,

Y3, = Xpa (6.18)
From these basis spinors, we construct a set of symmetric

objects, V;; o, defined as follows:

(YioYjp+YipYa) (6.19)

| =

yij,a[)’ =

Z| = ) structures:

B\(X; i, b,w, W) = by (aw)(Dw) (i p)**,

Z, 1= Y, structures :

By(X; i1, 5, w, W) = by (wXwW) (2 W) (it )% + bsy(wXit)(

(6.17)

|

These objects are symmetric in @, f#; hence, they form a
basis in which the tensor B may be decomposed. However,
since these objects are also symmetric in i, j, only ten of
them are unique; therefore we form the list Z; .5 out of the
unique structures. We then have the decomposition

10
Bap) (X, 0. w, W) = > Z;0sBi(X; 1,5, w, W),

i=1

(6.20)

where the polynomials B; are homogeneous degree 0 in X,
with the appropriate homogeneity in i, v, w, w. We now
construct all possible polynomial structures for each Z; ,4:

(6.21a)

w)2 (i 2)*$2 + by (wXD) (W) (W) (i1 D) %2, (6.21b)
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Z5 = )5 structures:

B3(X; i1, 5, w, w) = bs(wXw)(aw) (it 1)1 + bs(wX0)(aw)* (i 0)*2 + by(wXi)(uw)(vw)(av)*2, (6.21c)

Z, = )4 structures:

By(X; i1, 5, w, W) = bg(wXW) (it 1)* + bo(wX@t) (3 w) (i1 0)*" + byo(wXd)(aw) (it )2+,

Zs = )y, structures:

Bs(X;it, 5, w, W) = by (wXW)(wXD) (W) (i )2,

Zg 1= Y3 structures

Be(X;it,0,w, W) = b, (WXW)?(a0)*= + b3 (wXWw) (wXat) (0w) (a0) 472 + b1y (WwXW) (wX D) (@w) (av)**2,  (6.21f)

Z 1= Y,y structures

By (X;it, B,w, W) = bys(wXW) (wXD) (i 0) > + b s (wXit) (wXD) (5W) (@ 8) 472 + by, (wXD)? (@w) (i 9) 2,

Zg := Y33 structures

Bs(X; i, 5, w, w) = big(wXw)(wXit) (i w) (it ©)*2,

Zg 1= Y34 structures:

Bo(X; i, 5, w, W) = biog(wXW)(wXit) (it 1)~ + byg(wXt)? (5 W) (it )2 + byy (wXit) (wXD) (W) (it 1)?*2,

Z 10 = Y4 structures:

Bio(X; i, 0, w, W) = byy(wXit)(wX®) (it )1

(6.21h)

(6.21i)

(6.21j)

There are also additional structures that are defined only for k > 1. Such structures will be denoted by B.

Zs structures :

Bs(X; i, 0, w, W) = bys(WXD)2(aw)(2W) (i1 D)3 + boy(wXit) (wXD) (D W)? (i1 )43,

Zg structures :

Bo(X;it, 0, w, W) = bys(wXit)>(0W)? (i 0)*F73 + bog (WX D) (aw)? (1 0) %73 + byy (wXt) (wXD) (W) (2W) (2 0)*3,

Zg structures :

Therefore we must analyze the k = 1 and k > 1 cases
separately.

A. Analysis for k=1

First, we must determine any linear dependence relations
between the various polynomial structures. In this case,
since there are many structures, the linear dependence
relations are rather complicated. For the A structures, we
find A(X; &, », w,w) = 0 for the choice of coefficients

a,=—a;+a,, as=-—a;—das,

(6.23)

ag :2611 —a2+a3.

(6.22a)

(6.22b)

(6.22¢)

Hence, the structures corresponding to a;, a,, and a; may
be neglected, and we are left with only the structures with
coefficients a4, as, ag. Next we find linear dependence
among the B structures, and we find B, (X;a,0,w,w)=0
for the choices

be = by — by — by —bs+ by + by + by, (6.24a)
by ==by + by — b3+ bs—biy+ b3 +bg, (6.24b)
by = =by + by + by —byg— by + bis + b7, (6.24c)
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by =—=by+bs+by—byg—by +by,—b;3+ b5+ by

+ byg — by, (6.24d)
by = =byy — b3 — by — big — by7 — b1y — by,  (6.24e)
by = by = by + b3 —bis+big—big+by.  (6.24f)

Therefore a linearly independent basis may be con-
structed out of the structures corresponding to the coef-
ficients bg, b7, bg, by, byy, and b,,. Overall there are nine
independent structures to consider. We now impose the
differential constraints and point switch identities using
Mathematica. After imposing (6.5b) and (6.13b) we obtain
the following relations between the coefficients:

1

be = g (~126a4 = 114as — 115a), (6.25a)
1

by = g5 (114ay + 126as + 115aq), (6.25b)
1

bg = E (42614 - 12(15 + 5(16), (625C)
1

b9 = 9—0 (—54614 - 66615 - 95616 - 4b2| - 44b22), (625(1)
2

by = 3 (ag —as), (6.25¢)
1

bzz — 6 (-2614 + 2a5 + 5616). (625f)

Hence, the differential constraints fix the correlation
function up to three parameters. Next we must impose the
point switch identity (6.14b), from which we obtain
as = a4, and hence, we are left with the free parameters
ay and dg.

We must now impose (6.8) in accordance with the
conservation of the energy momentum tensor. First, we
compute 7 using (6.7), which in the generating function
formalism may be written as
ﬂ(X;w, W, v, 0, U, i)

1

=20 X3 (vX05)(0sX D) HE (X u, it 5,5, w, W),

(6.26)
|

| 2a4(24 + 45k 4 12 + 14K3 — 4k* — 8K%) + ag(24 + 39k + 26k% — 12k° — 8k*)

while the differential constraint (6.8) is equivalent to

0 0 0 -
0X,; oW OW°®

(6.27)

At this point we can freely set k = 1 and check whether our
solution is consistent with conservation at x;. Using
Mathematica, it may be shown that (6.27) is satisfied
provided that ag = — '5—2a4; hence, the correlation function
(QQT) is determined up to a single complex parameter.

B. Analysis for general k

Now let us complete the analysis for k > 1. Again we
must find a linearly independent basis of polynomial
structures. If we supplement the set of basis structures
corresponding to bg, by, bg, by, by, and b,, with the B
structures defined in (6.22a), (6.22b), and (6.22c¢), then it
may be shown that B, (X; a1, ,w,w) = 0 for the choices

bs = b3 + b, (6.28a)
b7 = —=by; — byy + byz + by + by, (6.28b)
by = —b;3, (6.28c¢)
by = —=bay — by3 — byy, (6.28d)
bys = —by = byy, (6.28e)
byg = byy + 2by; — by3 — by, (6.28f)
bag = —by1 — by — bys. (6.28g)

Hence, there are ten independent structures to consider,
corresponding to the coefficients ay, as, ag, bg, b7, bg, by,
bys, byg, and b,g. We now impose the differential con-
straints and point-switch identities; after imposing (6.5b),
(6.13b), and (6.14b) we obtain a5 = a4, supplemented by
the following k-dependent relations between the b
coefficients:

be

b7:

(=5 + 2k) (1 + 2k) (=2 + k + 5k* + 2k3) ’

_ 2(ay(30 + 58k — 8K% = 8K®) + ag(15 + 23k + 5K = 6k° + 12k* + 8K°))

(6.29a)

(=5 4 2k)(1 4 2k) (=2 + k + 5k* + 2k3) ’

(6.29b)
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 —2a4(19 + 25k — 30k? — 4k + 8k*) + ag(—19 — 17k 4 2k* + 20k> + 8k*)

b , 6.29
g (=5 + 2k) (1 + 2k) (=2 + k + 5k + 2k3) (629¢)
b 4aa(=7 = Tk + 20K + 12K%) + 2a6(=7 + k + 8K + 4K°) (6.29d)
0= (=5 + 2k) (1 + 2k) (=2 + k + 5K + 2i%) ’ '
k(3 + 2k)(2a4(=3 + k + 2k*) — aq(1 + 2k))
b 7 6.29
2 10 — 9k — 23k + 4k* (6:2%¢)
o203+ 2K)(as(2 + 2k = 4%) + ag(1 — k+ K +26) (6.29f)
2% = 10 — 9k — 23K% + 4k* ’ '
k(3 + 2k)(2a4(=3 + k + 2k2) — ag(1 + 2k
by — (3 +2K)(2a4(=3 + k + 2K%) — a(1 +2K)) (6.29¢)

10 — 9k — 23k% + 4k*

Hence, after imposing conservation on the first and
second points, we find there are two free complex coef-
ficients remaining. The last constraint to impose is con-
servation on xs, that is, Eq. (6.27). We cannot obtain a
relation for arbitrary k, as from a computational standpoint
one must fix k in order to compute H as in (6.26). However,
we find that the correlation function is fixed up to a single
parameter up to k=4, after which the computations
become incredibly long and beyond our computer power.
For k =2 we find ag = —2ay; for k =3, a5 = —Lay;
and for k=4, ag = —%(M. We anticipate that similar
results will hold for general k as well.

VII. DISCUSSION ON SUPERSYMMETRY

In this section we will concentrate on the case k = 1,

which corresponds to a supersym-metrylike current Q5 =

(6™)qaQmp of dimension 3 satisfying the conservation

2
equation

0" Qe = 0. (7.1)
However, our analysis in the previous sections did not
assume supersymmetry. The question that naturally arises
is whether the supersymmetrylike current actually is the
supersymmetry current. That is, whether a conformal field
theory possessing a conserved fermionic current of spin—% is
superconformal.

In any supersymmetric field theory the supersymmetry
current is a component of the supercurrent J,;(z), which
also contains the energy-momentum tensor. As was
explained in the Introduction, this implies that the three-
point functions (QQT) and (QQT) must be contained in
the three-point function of the supercurrent (JJJ). It is
known that the general form of (JJJ) is fixed by super-
conformal symmetry up to two independent structures [14].
Hence, this implies that in any superconformal field theory,
(QQT) and (QQT) must also be fixed up to at most two

independent structures. Moreover, the three-point function
(QQT) must actually vanish. Indeed, in a supersymmetric
theory Q carries an R-symmetry charge and, hence, the
entire correlator (QQT) carries an R-symmetry charge.
However, by performing a simple change of variables in the
path integral it then follows that (QQT) = 0. In addition,
our analysis in Sec. VI showed that, in general, conformal
symmetry fixes (QQT) up one overall parameter, which is
inconsistent with supersymmetry. We also found in Sec. V
that the three-point function (QQT) is fixed up to four
rather than two independent parameters, which, in general,
is also inconsistent with the general form of (JJJ).

Similarly, we can examine the three-point functions
(QQV) and (QQV) studied in Secs. III and IV, respec-
tively. In supersymmetric theories, the vector current V,
belongs to the flavor current multiplet L(z). Hence, the
correlation functions (QQV) and (QQV) are contained in
the three-point function (JJL). It is known [14] that (JJL)
is fixed by superconformal symmetry up to an overall real
coefficient. Hence, (QQV) must also be fixed up to an
overall coefficient. As for (QQV), it must vanish just as
(QQT). However, our analysis in Secs. III and IV showed
that (QQV) is fixed up to three independent coefficients
and (QQV) is fixed up to one overall coefficient. Both of
these results are, in general, inconsistent with the general
form of (JJL).
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APPENDIX: 4D CONVENTIONS AND NOTATION

Our conventions closely follow that of [50]. For the
Minkowski metric 7,,, we use the “mostly plus” conven-
tion: ,,, = diag(—1, 1,1, 1). Spinor indices on spin ten-
sors are raised and lowered with the SL(2,C) invariant
spinor metrics

0 -1 0 1
S“ﬂ:(l 0)’ 8aﬂ:<—1 0)’ e’ =08/,  (Al)

0 -1 iy 01 s .
= . e = . ey eP =60 A2
Eip <1 0 ) € <_1 0> Eq7E (A2)

Given the spinor fields ¢, and ¢,, the spinor indices a = 1,
2 and & = 1,2 are raised and lowered according to the
following rules:

¢(z = 8(1/145/},
4_565 = & /}éﬁﬂ’

¢(l — 8(1[)’ ¢/}9

P = gdi}&/r (A3)

It is also useful to introduce the complex 2 x 2 o-matrices,

defined as follows:
( L >
0] = s
1 0

1 0
00:<0 1>,
0 —i 1 0
"2:(1 0)’ "3:(0 —1>'

The o-matrices span the Lie group SL(2, C), the universal
covering group of the Lorentz group SO(3,1). Now let
o, = (09,0); we denote the components of o, as (c,,)
and define

aa

(5m)da = gdﬁgaﬁ(gm)/}/}' (AS)

It can be shown that the o-matrices possess the following
useful properties:

(0B + uBm)o = =210 (A6)
(00 + 840m)" 5 = =215 (A7)
Tr(6,,6,) = =21 (AB)

(0" )ei(8)? = ~263). (A9)

The o-matrices are then used to convert spacetime indices
into spinor ones and vice versa according to the following
rules:

1 .
Xad = (O-m) 'Xm’ Xm = _E(ém)aaxail' (AIO)
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