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A spectral wall is a surface in a moduli space of classically BPS (Bogomol’nyi–Prasad–Sommerfield)
solitons where an internal excitation crosses the continuum mass threshold. It has recently been shown that
spectral walls in classical field theory repel solitons whose corresponding internal excitations are excited.
We investigate, for the first time, the fate of spectral walls in a quantum theory, calculating the
instantaneous acceleration of a wave packet of classically BPS antikinks in the presence of an impurity. We
find that, in the quantum theory, the antikinks are repelled even when the bound mode is not excited.
Perhaps due to this repulsive force, the dramatic classical effects of the spectral wall are not seen in our
quantum calculation.
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I. INTRODUCTION

Topological solitons are stable, localized, particlelike
solutions of nonlinear partial differential equations that
carry a quantized amount of the pertinent topological
charge. In ð1þ 1ÞD the best studied solitons are kinks.
The first modern study of kinks as solitons was done in the
sine-Gordon model by Skyrme and Perring, as a toy model
of the eponymous ð3þ 1ÞD Skyrme model [1]. Since then,
kinks have served as a simple tool to study difficult
problems in solitonic systems. Even in these simple kink
systems, highly complicated classical dynamics has been
seen [2–4]. For instance, kinks and antikinks can either
annihilate or separate after colliding. These two possibil-
ities form a fascinating fractal pattern depending on the
parameters (e.g., velocity) of the initially colliding solitons
[5–7]. This phenomena has only recently been understood
in an effective collective coordinate approximation [8].
Recently, an intriguing phenomenon called a spectral

wall has been discovered [9]. It affects the dynamics of
solitons in BPS (Bogomol’nyi–Prasad–Sommerfield) the-
ories, where classically there is no force between static
solitons (or between a soliton and an impurity). In these
rather rare and important models, topological solitons can
be placed at any distance from each other [10–12]. This
leads to a nontrivial moduli space of the energetically

equivalent solutions whose lowest order dynamics can be
accurately described in terms of geodesic flow on the
canonical moduli space [13,14]. However, even though the
classical solutions possess the same energy, the spectrum of
their small perturbations can differ. That is to say that,
depending on the mutual distance between the kink and
impurity, the structure of the normal modes changes. At a
givendistance one of themassive boundmodes can reach the
mass threshold, at which the continuous spectrum begins,
where it transmutes into a non-normalizable thresholdmode
[9]. We call this point the spectral wall. Importantly, this
mode transmutation acts as an obstacle in the solitonic
dynamics [9]. At the spectral wall the soliton can form a
stationary state, be reflected, or pass through the spectral
wall with a temporal distortion. The outcome depends on the
value of the amplitude of the mode that enters the con-
tinuum. In any case, the spectral wall seems to play a critical
role in the dynamics of excited BPS solitons. This new
dynamical phenomena should be a generic feature of soliton
dynamics but was first discovered using kinks.
Kink systems are also a fertile place to study quantum

corrections to solitons, which have proven immensely
difficult to calculate in more than one dimension. Over
the years, many techniques have been introduced to
calculate one-loop corrections to kinks, beginning with
the semiclassical approach of Ref. [15]. At one loop, kinks
are described by a free theory and so the dynamics becomes
more rich at two loops [16]. The multiloop dynamics is
usually treated using the collective coordinate approach of
Ref. [17]. This approach is very powerful, but it requires a
nonlinear canonical transformation that is so complicated
that it has hindered progress in the field.
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In Ref. [18], a much more economical approach to
multiloop calculations has been introduced, building upon
the manifestly finite, Hamiltonian, one-loop approach of
Refs. [19,20]. In this approach, the quantum field is
expanded about a classical solution at a fixed base point
in moduli space. Besides being manifestly UV finite, the
main advantage is that the treatment is fully linear, allowing
access to problems [21,22] that would be prohibitively
difficult with traditional methods. The limitation is that it
can only treat kinks near a base point, which is arbitrary but
fixed in each calculation. Thus instantaneous accelerations
can be computed, but following the motion of a kink over a
macroscopic distance would require a gluing of results
obtained at distinct base points.
In this paper we use this new approach to loop calcu-

lations to investigate the fate of spectral walls when one-
loop quantum corrections are taken into account. Looking
from a wider perspective we also want to understand the
consequences, if any, of a transition of a normal mode to the
continuum spectrum in the quantum version of a BPS
theory. We use the formalism of Refs. [18,20]. After
introducing our model in Sec. II, the generalization of this
formalism to theories with impurities is introduced in
Sec. III, where it is applied to compute one-loop corrections
to kink energies. Unlike previous applications of this
formalism, due to the lack of translation invariance in this
model, it is essential that kinks are treated properly as wave
packets, as is described in Sec. IV. Finally these results are
assembled in Sec. V to describe the quantum dynamics of
kinks in these theories, culminating in the calculation of the
instantaneous acceleration caused by the impurity.

II. THE BPS KINK-IMPURITY MODEL

In this section we will introduce the simplest field theo-
retical model which admits spectral walls [9]. However, we
underline that this phenomenon occurs in a large variety of
field theories including ones with no impurity.

A. The BPS solutions

Let us begin with the standard scalar field model in
(1þ 1) dimensions with at least a double vacuum potential
VðϕÞ

L ¼
Z

∞

−∞

�
1

2
ð∂μϕÞ2 − VðϕÞ

�
dx: ð2:1Þ

The BPS sector of the classical theory consists of field con-
figurations which satisfy one of the two static Bogomolny
equations

dϕ
dx

¼ �
ffiffiffiffiffiffi
2V

p
: ð2:2Þ

Generally, these equations admit solutions with topological
charge�1 called (anti)kinks, which we denoteΦðxÞ. These
are the lowest energy field configurations with topological

charge �1. By studying the field structure or the energy
density of the (anti)kink, we can associate a position
x0 ∈ R to any solution Φx0ðxÞ. In the numerical calcula-
tions below we define the x0 label of each solution to be the
unique zero of that solution

Φx0ðx0Þ ¼ 0; ð2:3Þ

and we will always choose parameters such that there is
only one zero. Due to the translation invariance of the
Lagrangian (2.1) we can shift the position of the (anti)kink
by applying the transformation

Φx0ðxÞ → Φx0þcðxÞ ¼ Φx0ðx − cÞ: ð2:4Þ

Hence, there is a one-dimensional moduli space of ener-
getically equivalent BPS solutions. There are also trivial
solutions to (2.2), the topologically trivial vacua.
Typically the addition of an impurity σðxÞ, i.e., a back-

ground, nondynamical field, introduces an interaction in
the single soliton sector. This means that there is a static
force between the (anti)kink and impurity. As a conse-
quence, there is a preferred position of the soliton with
respect to the impurity where the energy takes its minimal
value. Hence, the symmetry (2.4) is broken and the BPS
sector trivializes to only one (or perhaps a finite number of)
solutions. This resembles the case of a kink-antikink pair,
which is typically not a member of any BPS sector as it
does not solve any static Bogomolny equation. As a result,
kinks and antikinks feel a mutual static force.
It has recently been demonstrated that it is possible to

couple a scalar field to an impurity in a BPS-preserving
manner [9,23]. This works for Lagrangians of the form

L ¼
Z

∞

−∞

�
1

2
ð∂μϕÞ2 − Vðϕ; xÞ þ

ffiffiffi
2

p
ϕ∂xσðxÞ

�
dx; ð2:5Þ

where

Vðϕ; xÞ ¼ ðWðϕÞ þ σðxÞÞ2 ð2:6Þ

is the impurity-deformed potential. For other possibilities
see [24–27]. Then, although (2.4) remains broken, there is
nonetheless one Bogomolny equation

dϕ
dx

¼ −
ffiffiffi
2

p
ðWðϕÞ þ σðxÞÞ; ð2:7Þ

which admits infinitely many energetically equivalent
solitonic (here, antikink) solutions, Φx0ðxÞ, parametrized
again by the continuous real parameter x0, which can be
interpreted as the position of the antikink. Since all
solutions have the same energy, there is no static force
between the antikink and the impurity. The two can be
located any distance from each other. It is straightforward
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to show that solutions of the Bogomolny equation obey the
full Euler-Lagrange equation of motion arising from (II A).
For an explicit example, consider the Lagrangian

L¼
Z

∞

−∞

�
1

2
ð∂μϕÞ2−

m2

4λ
ðWðϕÞþσÞ2þ mffiffiffiffiffi

2λ
p ϕ∂xσðxÞ

�
dx;

ð2:8Þ

with

WðϕÞ ¼ ð1 − λϕ2Þffiffiffi
2

p ; σðxÞ ¼ αsech2ðlxÞ; ð2:9Þ

which is a BPS-impurity deformation of the ϕ4 model.
Note that λ−1 has dimensions of action, and so ℏλ is the

dimensionless constant. A power series expansion in this
parameter can be interpreted as a semiclassical expansion in
ℏ or a perturbative expansion in λ. In the presence of an
impurity there are other dimensionless quantities, such as
m=l and α, which will play important roles below.
Specifically, in our numerical computations the param-

eters take the values m ¼ 2, λ ¼ l ¼ 1, and α ¼ 0.3 or
α ¼ 3.0. Then, the BPS antikink solution has the classical
energyQ0 ¼ 4=3. We plot the BPS solutions in Fig. 1. Note
that, although the basic translation symmetry (2.4) is
broken, we still label the solutions by x0 and interpret this
as the position of the antikink. When the antikink center is
far from the impurity, the configuration looks like an
antikink without impurity superposed with the vacuum
solution near the impurity. Near the impurity, the antikink is
deformed.
The one-parameter family of energetically equivalent

antikink-impurity solutions Φx0ðxÞ forms the canonical
moduli space, which describes the simplest dynamics of
an antikink passing through the impurity. Concretely, the
static BPS solutions Φx0ðxÞ are inserted into the original
Lagrangian with the modulus x0 promoted to a time
dependent variable. Then, we arrive at the following
collective coordinate model

Lðx0Þ ¼
1

2
Mðx0Þ_x20; ð2:10Þ

where the dot denotes the time derivative and Mðx0Þ is the
metric on a one-dimensional moduli space

Mðx0Þ ¼
Z

∞

−∞
ð∂x0Φx0ðxÞÞ2dx: ð2:11Þ

This function can also be interpreted as a generalized mass
of the soliton, which changes in the vicinity of the impurity.
Asymptotically, as x0 → �∞, it tends to the mass of the
soliton in the ϕ4 model

M0 ¼
mffiffiffi
λ

p
Z

1

−1
dϕWðϕÞ ¼ 2

3

m
λ
; ð2:12Þ

which, for our choice of parameters, is M0 ¼ 4=3 and
equals the energy of the soliton Q0 ¼ M0. More generally,
due to the presence of the impurity, Mðx0Þ ≠ Q0. In this
approximation, x0 is the kinetic degree of freedom of the
BPS antikink. The resulting time dependence of x0 models
the collision of the antikink with the impurity very well,
provided no internal modes are excited and the initial
velocity is small, v ≪ 1 [23].
The Bogomolny equation also supports two topologi-

cally trivial solutions, i.e., vacua with vanishing classical
energy Q0 ¼ 0. For the assumed impurity they are isolated
solutions, which do not span any nontrivial moduli space.
Formally, the vacuum moduli space is just a point in each
vacuum sector.

B. The mode structure

A soliton can also store energy in internal degrees of
freedom, which are typically identified with the massive
normal modes that arise in the linear perturbation theory.
Concretely, we perturb the static BPS solutions, ΦðxÞ,
which include both antikink and topologically trivial states,
by a small perturbation

ϕðx; tÞ ¼ Φx0ðxÞ þ e−iωtgðxÞ; ð2:13Þ

FIG. 1. Antikinks Φx0ðxÞ at α equal to 0.3 (left) and 3.0 (right) for several values of x0.
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which, when inserted into the equation of motion, leads to
the small mode equation

0 ¼ ðω2 − Vð2ÞðΦðxÞ; xÞÞgðxÞ þ ∂2
xgðxÞ; ð2:14Þ

where we have defined

VðnÞðΦðxÞ; xÞ ¼ δn

ðδϕðxÞÞn VðϕðxÞ; xÞ
���
ϕðxÞ¼ΦðxÞ

: ð2:15Þ

Assuming that ω ∈ R and imposing a normalization con-
dition on the mode (wave) function g leads to three
possibilities. First of all, there can be a solution with zero
frequency referred to as the zero mode. This solution exists
when there is a continuous family of energetically equiv-
alent solutions, for example the BPS antikink solutions
Φx0ðxÞ. Hence, the zero mode is intimately related to a
nontrivial moduli space. Furthermore, its excitation corre-
sponds to a kinetic motion of the soliton. In our case, the
zero mode is just

gB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx0Þ

p ∂x0Φx0ðxÞ; ð2:16Þ

which obeys the normalization conditionZ
dxg2BðxÞ ¼ 1: ð2:17Þ

The vacuum solutions do not support any zero modes as the
moduli space is discrete.
In addition there may be a set of discrete massive

(bound) modes, which we call shape modes gSðxÞ with
0 < ωS < m, wherem2 is the mass threshold defined as the
asymptotic value of Vð2ÞðΦðxÞ; xÞ at x ¼ �∞.1 Here gSðxÞ
is real and fulfils the same normalization as the zero
mode (2.17).
Finally, there are also continuum solutions at each

ω ≥ m, describing radiation. For each ω > m, let k ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k −m2

q
> 0. There are two real, linearly independent

solutions at each frequency ωk. At large jxj or jkj these tend
to sine waves of wave number k. Let the ψ1ðxÞ and ψ2ðxÞ
be an orthonormal basis of the space of real frequency ωk
solutions, chosen to have amplitude 1 at x → �∞. Then we
define

g�kðxÞ ¼ ψ1ðxÞ � iψ2ðxÞ: ð2:18Þ

These will also be orthonormal and satisfy the normaliza-
tion condition

Z
dxg�k1ðxÞgk2ðxÞ ¼ 2πδðk1 − k2Þ: ð2:19Þ

The space of linear perturbations is even richer if
the normalization condition or the ω ∈ R condition is
relaxed. There is a non-normalizable threshold mode
with ω ¼ m, whose wave function approaches a constant
asymptotically. There may also be antibound modes,
which are non-normalizable modes with purely real fre-
quency and an exponentially growing wave function at
spatial infinity. Finally, there can be genuine quasinormal
modes (resonances), which are solutions of the linear mode
equation with complex frequencies Ω ¼ ωþ iΓ and purely
outgoing boundary conditions

lim
x→−∞

∂xArgðgðxÞÞ > 0 > lim
x→þ∞

∂xArgðgðxÞÞ: ð2:20Þ

Physically, Γ encodes information about the decay of this
mode. All these modes may actively participate in the
dynamics of kinks.
Equation (2.14) is a special case of the Sturm-Liouville

equation. Therefore, on any finite interval, the normal
modes are a basis of the space of functions. We are
interested in the entire real line, not a finite interval.
Here the space of normal modes gBðxÞ, gSðxÞ, and gkðxÞ
is a basis of all δ-function normalizable functions.
Quasinormal modes are not in this space. The correspond-
ing completeness relation is

gBðxÞgBðyÞ þ gSðxÞgSðyÞ þ
Z

dkg�kðxÞgkðyÞ ¼ δðx − yÞ:

ð2:21Þ

Note that if there are multiple shape modes Si, one should
simply sum over them

P
i gSiðxÞgSiðyÞ. Similarly, if there

are no zero modes or shape modes, the corresponding term
should be omitted from the sum.
An important feature of the BPS-impurity model is that,

although the BPS solutions Φx0ðxÞ are energetically equiv-
alent, they do not have the same spectrum of linear
perturbations. Indeed, the structure of the linear modes
depends on the parameter x0, which characterizes the
soliton-impurity distance. This property occurs in more
complicated BPS systems, e.g., multiscalar BPS models
and vortices in the Abelian Higgs model at critical
coupling. However, the BPS-impurity systems are the
simplest field theoretical setups with a flow of the spectral
structure. In Fig. 2, left panel, we plot the normal mode
structure for our example (2.8)–(2.9). If the impurity is
small, α ¼ 0.3, the frequency of the unique shape mode is
only moderately changed as the antikink approaches the
impurity. On the other hand, for a stronger impurity, α ¼ 3,
there is a dramatic change in the spectral structure at
jx0j ¼ xsw ¼ 1.650231. When jx0j < xsw there is no shape
normal mode in the spectrum. The point xsw defines the

1If these asymptotic values are not equal, the one-loop vacuum
energies will differ on the two sides of the kink [28]. As a result
the kink, being a wall separating the true and false vacua, will
accelerate [29,30] and so its mass is difficult to define.
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position of the spectral wall, a phenomenon which we
explain below.
A detailed study reveals a rather involved mode structure

as we pass through the spectral wall, shown in Fig. 2, right
panel.We see the following behavior: at the spectral wall the
shape mode becomes a non-normalizable threshold mode
with frequency ω ¼ 2. As jx0j decreases, it transmutes into
an antibound mode. There is another antibound mode with
lower frequency, which also exists in the region outside the
spectral wall jx0j > xsw. As x0 further decreases the anti-
bound modes meet and combine into a quasinormal mode.
Now, both ω and Γ grow as jx0j decreases. Our detailed
analysis goes beyond the initial study of this model in [9].

C. The spectral wall

The fact that a shape mode reaches the mass threshold is
not only a mathematical peculiarity of the model but has a
profound effect on the dynamics of the BPS antikink,
known as the spectral wall phenomenon [9]. The transition
of the shape mode creates an obstacle to an excited soliton’s
motion at xsw. This is seen in Fig. 3 where the dynamics of
an excited antikink for α ¼ 3 (when a spectral wall exists,
left panel), and α ¼ 0.3 (when there is no spectral wall,

right panel) is presented. Strictly speaking, if the amplitude
of the shape mode is excited at the critical amplitude,
A ¼ Acrit then the antikink forms a stationary, arbitrary long
lived state at x0 ¼ xsw. If A < Acrit, then it passes the
spectral wall and its motion is less and less affected as the
amplitude decreases. If A > Acrit, the soliton is reflected
and the reflection point occurs sooner, i.e., at bigger
distance, as the amplitude grows. This behavior was also
observed in a BPS two-scalar field model [31] and is
expected in any BPS system provided there is a mode
crossing the mass threshold, e.g., [32–37].
The spectral wall can be studied in an extended version

of the moduli space approximation where, together with the
BPS solutions, shape modes are included. This is some-
times referred as a vibrational moduli space and it describes
the motion of a soliton where both kinetic (zero modes) as
well as internal (shape modes) degrees of freedom are taken
into account. The resulting vibrational moduli space has an
essential singularity at the location of the spectral wall,
reflecting the transmutation of the shape mode into a non-
normalizable threshold mode.
In the subsequent sections we will study one-loop

quantum corrections to the BPS-impurity model, hoping

FIG. 2. The structure of normal modes in the BPS impurity kink model (2.8)–(2.9) for the BPS antikink solution Φx0ðxÞ. Left: change
of the frequency of the normal modes for two values of impurity strength as a function of modulus x0. There is always a zero mode,
while the shape mode may reach the mass threshold, ω2 ¼ 4, above which the continuum spectrum of scattering modes (radiation)
begins. Right: the linear modes in the vicinity of the spectral wall for α ¼ 3.0.

FIG. 3. Classical dynamical evolution of x0, the position of the antikink, with an impurity near the critical normal mode excitation Acrit
for α ¼ 3 (left) and α ¼ 0.3 (right). A spectral wall only exists for the α ¼ 3 system. The dynamics is heavily influenced by the spectral
wall at xsw ¼ 1.65 (dotted line, left).
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to understand the quantum spectral wall phenomenon. As
the transition of a normal mode to the continuous spectrum
has a rather big impact on classical soliton dynamics, one
may hope to see such an impact on the quantum dynam-
ics too.

III. ONE-LOOP CORRECTIONS TO THE BPS
ANTIKINK-IMPURITY BOUND STATE

To calculate the one-loop correction to the antikink, we
will need to generalize the formalism developed in
Ref. [18]. This is because our system does not have simple
translation invariance and the small-fluctuation potential is
not symmetric in x. We will deal with these technical issues
in Secs. III A–III E before applying the formalism to the
antikink-impurity model in Sec. III F.

A. The kink Hamiltonian

Let us start with the Hamiltonian of the BPS-impurity
model (II A), with an arbitrary (two vacuum) W and
impurity σðxÞ

H ¼
Z

dx∶HðxÞ∶a;

HðxÞ ¼ 1

2
½π2ðxÞ þ ð∂xϕðxÞÞ2� þ Vðϕ; xÞ

−
ffiffiffi
2

p
ϕðxÞ∂xσðxÞ; ð3:1Þ

where πðxÞ is the conjugate momentum, and the plane-
wave normal-ordering ∶∶a will be defined in Sec. III B.
Choose any time-independent classical solution ϕðxÞ ¼
ΦðxÞ of the static equation of motion

∂2
xΦðxÞ ¼ Vð1ÞðΦðxÞ; xÞ −

ffiffiffi
2

p ∂xσðxÞ: ð3:2Þ

Let us define the unitary displacement operator

DΦ ¼ exp

�
−i

Z
dxΦðxÞπðxÞ

�
ð3:3Þ

and the similarity-transformed Hamiltonian

H0 ¼ D†
ΦHDΦ: ð3:4Þ

Wewill see that perturbation theory usingH0 can be used to
build the Fock space of perturbative excitations above the
ground state of the sector of the quantum field theory
corresponding to the classical solution ΦðxÞ. We refer to
the space of such states as the ΦðxÞ sector. Following the
usual convention, we will refer to H0 as the kink
Hamiltonian because we will usually be interested in the
case in which ΦðxÞ is a BPS antikink solution Φx0ðxÞ, and
so H0 will be used to construct antikink sector states.
However in Appendix C we will apply this formalism to the

case when ΦðxÞ is a topologically trivial solution, in which
case H0 can be used to construct vacuum sector states.
The similarity transformation (3.4) commutes with any

normal ordering prescription [20]. AsH andH0 are similar,
they have the same spectra. Therefore for every eigenvector
jΨi ofH with energy E,D†

ΦjΨi is an eigenvector ofH0 with
the same energy

H0D†
ΦjΨi ¼ ED†

ΦjΨi: ð3:5Þ

In other words, the energy E is an eigenvalue of both H0 or
H, and so it may be obtained by solving the eigenvalue
problem for either operator. The reason that one introduces
a kink Hamiltonian H0 is that its eigenvectors correspond-
ing to ΦðxÞ-sector states, and their eigenvalues, can be
obtained in perturbation theory.
This situation can be summarized as follows. The theory

is defined by a HamiltonianH and a Hilbert space of states.
Finding (anti)kink states directly in this space would be a
difficult, nonperturbative problem. Thus one first trans-
forms the Hilbert space using the unitary operator D†

Φ,
where ΦðxÞ is the classical solution corresponding to the
sector of interest. Intuitively, this removes the classical part
from the field ϕðxÞ, leaving only the quantum fluctuations
ϕðxÞ −ΦðxÞ. Then one diagonalizes H0 perturbatively,
which yields the Fock space of Φ-sector states. Finally,
to obtain the corresponding states in the original Hilbert
space, one acts with DΦ.
Now, we expand

H0 ¼
X
j¼0

H0
j; H0

j ¼
Z

dxHjðxÞ; ð3:6Þ

whereHjðxÞ contains all terms of order j in the fluctuations
when normal-ordered using ∶∶a. The first term H0

0 is just
the classical energy Q0 of the solution ΦðxÞ. The tree-level
tadpole H0

1 vanishes by the classical equations of motion

H1ðxÞ ¼ ½−∂2
xΦðxÞþVð1ÞðΦðxÞ; xÞ−

ffiffiffi
2

p ∂xσðxÞ�ϕðxÞ ¼ 0:

ð3:7Þ

The next contribution yields the one-loop quantum correc-
tion to the energy of the ΦðxÞ-sector ground state. It is
determined by the free Hamiltonian H0

2, according to the
dimensional analysis of Ref. [15]. The free Hamiltonian
density is

H2ðxÞ ¼
1

2
∶½π2ðxÞ þ ð∂xϕðxÞÞ2 þ Vð2ÞðΦðxÞ; xÞϕ2ðxÞ�∶a;

ð3:8Þ

which leads to Eq. (2.14) satisfied by small fluctuations
(linear modes).
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B. From plane-wave to normal-mode
normal-ordering

We will work in the Schrödinger picture, so that the
fields ϕðxÞ and πðxÞ are independent of time and satisfy the
canonical commutation relations

½ϕðxÞ; πðyÞ� ¼ iδðx − yÞ: ð3:9Þ

Together the operators ϕðxÞ and πðxÞ generate the operator
algebra of a scalar theory. We will need several different
bases of this algebra. A decomposition in terms of plane
waves yields the basis

ϕp ¼
Z

dxϕðxÞeipx; πp ¼
Z

dxπðxÞeipx; ð3:10Þ

while a decomposition in normal modes yields

ϕk ¼
Z

dxϕðxÞg�kðxÞ; πk ¼
Z

dxπðxÞg�kðxÞ; ð3:11Þ

where k runs over all real numbers representing continuum
states as well as the discrete values S representing shape
modes. For the zero mode we will use the standard notation

ϕ0 ¼
Z

dxϕðxÞgBðxÞ; π0 ¼
Z

dxπðxÞgBðxÞ: ð3:12Þ

These bases can be distinguished because we will always
use p and q to label plane waves and k to label normal
modes. The commutation relations (3.9) imply the relations

½ϕp; πq� ¼ 2πiδðpþ qÞ; ½ϕk1 ; πk2 � ¼ 2πiδðk1 þ k2Þ;
½ϕI; πJ� ¼ iδIJ; ð3:13Þ

where I and J run over bound states B and S. The
decompositions may be inverted using the completeness
of the plane waves and the normal modes (2.21)

ϕðxÞ ¼
Z

dp
2π

ϕpe−ipx

¼ ϕ0gBðxÞ þ ϕSgSðxÞ þ
Z

dk
2π

ϕkgkðxÞ;

πðxÞ ¼
Z

dp
2π

πpe−ipx

¼ π0gBðxÞ þ πSgSðxÞ þ
Z

dk
2π

πkgkðxÞ; ð3:14Þ

where for concreteness we have considered a single
shape mode.
These bases can be rearranged as usual to construct

creation and annihilation operators. In the case of the plane
wave basis

A†
p ¼ ϕp

2
− i

πp
2ωp

;
A−p

2ωp
¼ ϕp

2
þ i

πp
2ωp

: ð3:15Þ

Note that A† and A, so normalized, are only Hermitian
conjugated after a rescaling. One can easily check that these
satisfy the Heisenberg algebra

½Ap; A
†
q� ¼ 2πδðp − qÞ: ð3:16Þ

Similarly the normal mode basis can be used to construct

B†
k ¼

ϕk

2
− i

πk
2ωk

;
B−k

2ωk
¼ ϕk

2
þ i

πk
2ωk

;

B†
S ¼

ϕS

2
− i

πS
2ωS

;
B−S

2ωS
¼ ϕS

2
þ i

πS
2ωS

; ð3:17Þ

and this basis satisfies

½Bk1 ;B
†
k2
� ¼ 2πδðk1 − k2Þ; ½BS;B

†
S� ¼ 1; ½ϕ0;π0� ¼ i:

ð3:18Þ

Any operator in the operator algebra may be expressed in
either the fA†

p; Apg basis or the fB†
k; Bk; B

†
S; BS;ϕ0; π0g

basis. We will define, correspondingly, two normal order-
ings. Plane-wave normal-ordering ∶∶a places all A to the
right of A†. Normal-mode normal-ordering ∶∶b places
all B and π0 to the right of all B† and ϕ0. Our defining
Hamiltonian and the kink Hamiltonian found above are
plane-wave normal ordered. However it will be convenient
to normal-mode normal-order the kink Hamiltonian. This
can be done using the commutation relations and decom-
positions above.
Combining the various decompositions above, one can

derive the Bogoliubov transformation that relates the two
bases

A†
p ¼ g̃BðpÞ

�
ϕ0

2
−

iπ0
2ωp

�

þ g̃SðpÞ
2

��
1þ ωS

ωp

�
B†
S þ

�
1 −

ωS

ωp

�
BS

2ωS

�

þ
Z

dk
2π

g̃kðpÞ
2

��
1þ ωk

ωp

�
B†
k þ

�
1 −

ωk

ωp

�
B−k

2ωk

�
;

A−p

2ωp
¼ g̃BðpÞ

�
ϕ0

2
þ iπ0
2ωp

�

þ g̃SðpÞ
2

��
1 −

ωS

ωp

�
B†
S þ

�
1þ ωS

ωp

�
BS

2ωS

�

þ
Z

dk
2π

g̃kðpÞ
2

��
1 −

ωk

ωp

�
B†
k þ

�
1þ ωk

ωp

�
B−k

2ωk

�
;

ð3:19Þ

where we have defined the inverse Fourier transform
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g̃ðpÞ ¼
Z

dxgðxÞeipx: ð3:20Þ

Below we will also encounter the simpler combinations

A†
p þ A−p

2ωp
¼ g̃BðpÞϕ0 þ g̃SðpÞ

�
B†
S þ

BS

2ωS

�

þ
Z

dk
2π

g̃kðpÞ
�
B†
k þ

B−k

2ωk

�
;

A†
p −

A−p

2ωp
¼ −ig̃BðpÞ

π0
ωp

þ ωSg̃SðpÞ
ωp

�
B†
S −

BS

2ωS

�

þ
Z

dk
2π

ωkg̃kðpÞ
ωp

�
B†
k −

B−k

2ωk

�
: ð3:21Þ

C. The kink Hamiltonian

Now we convert H2 from plane-wave to normal-mode
normal ordering. The calculation can be found in
Appendix A. The result consists of the sum of a c-number
term Q1, which depends on the normal modes and so the
choice of classical solution Φx0ðxÞ, and a normal-mode
normal-ordered operator H̃0

2

H0
2 ¼ Q1 þ H̃0

2: ð3:22Þ

Specifically,

Q1 ¼ −
1

4

Z
dp
2π

�
jg̃BðpÞj2ωp þ jg̃SðpÞj2

ðωS − ωpÞ2
ωp

þ
Z

dk
2π

jg̃kðpÞj2
ðωk − ωpÞ2

ωp

�
; ð3:23Þ

and the operator is

H̃0
2 ¼

π20
2
þ ωSB

†
SBS þ

Z
dk
2π

ωkB
†
kBk: ð3:24Þ

The first term in (3.24) is a nonrelativistic kinetic term for a
free particle, in this case the (anti)kink center of mass,
where the eigenvalue of ϕ0 is identified with the particle’s
position times the square root of its mass. The other terms
are harmonic oscillators for each normal mode. Therefore
the lowest eigenvalue eigenstate of H0

2 is j0i0 defined by

π0j0i0 ¼ BSj0i0 ¼ Bkj0i0 ¼ 0: ð3:25Þ

If there is no zero mode, for example if ΦðxÞ is a vacuum
solution, then one obtains the same expressions as above
but with all terms containing gB or π0 dropped. Similarly in
the absence of a shape mode, the gS and BS terms are
dropped.
What is j0i0? It is an eigenstate of H0

2 and, since H
0
1 ¼ 0

and H0
0 ¼ Q0 is a scalar, it is an eigenstate of H0 expanded

out to quadratic order in the fields. In a perturbative
approach to the H0 eigenvalue equation,

H0j0i ¼ Qj0i; where H0 ¼
X∞
i¼0

H0
i;

j0i ¼
X∞
i¼0

j0ii; Q ¼
X∞
i¼0

Qi; ð3:26Þ

H0
2 contributions will be suppressed with respect to those of

H0
0 by one power of ℏ. In this sense,DΦj0i0 is the one-loop

approximation to the (H eigenstate) ground state DΦj0i of
the ΦðxÞ sector. This situation is summarized in Table I. In
the BPS impurity model (2.8) the expansion parameter is λ
and one could rewrite the perturbative expansions as

H0 ¼
X∞
i¼0

λi=2Ĥ0
i; j0i¼

X∞
i¼0

λi=2j0̂ii; Q¼m
X∞
i¼0

λi−1Q̂i;

ð3:27Þ

where the factors of λ have been pulled out of all terms on
the right-hand sides and Q̂i are dimensionless. However we
do not adopt this convention.
The topological sector including Φx0ðxÞ may contain

other classical solutions. However, H0 depends on the
choice of Φx0ðxÞ via (3.3) and so j0i0 will also depend
on this choice. A different choice would lead to a different
j0i0, although presumably, in the sense of an asymptotic
series, after performing the perturbative summation one
would arrive at the same H eigenstate DΦj0i.

D. ϕ0 and the antikink’s position

Let us restrict our attention to the case of BPS antikinks
ΦðxÞ ¼ Φx0ðxÞ. What does Eq. (3.25) tell us about the
ground state? How is the location of the quantum antikink
related to x0?
The algebra of operators is generated by ϕ0, π0, Bk, and

B†
k. The first two commute with the others, and generate the

canonical algebra. As a result the space of states factorizes
into a tensor product of a representation of the canonical
algebra and a representation of the various Heisenberg
algebras. As is customary in quantum mechanics, the
representation of the canonical algebra may be expanded
in terms of wave functions ψ∶R → C∶y ↦ ψðyÞ,

TABLE I. Operators and eigenstates.

Operator Eigenstate Interpretation Eigenvalue

H0
2 j0i0 One-loop ground state

of ΦðxÞ sector
Q1

H0 j0i Ground state of ΦðxÞ sector Q
H DΦj0i Ground state of ΦðxÞ sector Q
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jψi ¼
Z

dyψðyÞjyi; ϕ0jψi ¼
Z

dyyψðyÞjyi;

π0jψi ¼ −i
Z

dy
∂ψðyÞ
∂y jyi: ð3:28Þ

Tensoring jyi with the ground state of the oscillators, one
arrives at jyi0. It satisfies

ϕ0jyi0 ¼ yjyi0; Bkjyi0 ¼ 0; ð3:29Þ

where k ranges over all real numbers and also includes any
possible shape mode S. The one-loop ground state j0i0 of
H0 is annihilated by π0 and so corresponds to a non-
normalizable, flat superposition of all jyi0

j0i0 ¼
Z

dyjyi0: ð3:30Þ

How is y related to the moduli space of classical
solutions of Eq. (3.2)? Let x0 be a point on the classical
moduli space corresponding to the classical position of the
solutionΦx0ðxÞ. Then, in the stateDΦx0

jyi0, the expectation
value of ϕðxÞ is

0hyjD†
Φx0

ϕðxÞDΦx0
jyi0

0hyjD†
Φx0

DΦx0
jyi0

¼ 0hyjðϕðxÞþΦx0ðxÞÞjyi0
0hyjyi0

¼Φx0ðxÞþgBðxÞ0
hyjϕ0jyi0
0hyjyi0

¼Φx0ðxÞþygBðxÞ;
¼Φx0ðxÞþ

yffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx0Þ

p ∂x0Φx0ðxÞ

¼Φ
x0þy=

ffiffiffiffiffiffiffiffiffi
Mðx0Þ

p ðxÞþOðy2Þ: ð3:31Þ

So while one might be tempted to identify Φx0ðxÞ with the
expectation value of the scalar field ϕðxÞ, this is not
quite right. At small y, the expectation value approaches
Φx1ðyÞðxÞ where

x1ðyÞ ¼ x0 þ
yffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðx0Þ
p : ð3:32Þ

At y ¼ 0 one immediately sees that x1ð0Þ ¼ x0. This is
the zeroth order term in the expansion (3.31). On the other
hand, this expansion is meaningless at large y. However, for
small y, it tells us that x1ðyÞ is the expected position of the
quantumantikink in the classicalmoduli space. The relation-
ship between all these variables can be difficult to keep track
of. As such we provide a summary of them in Table II.
It is unsurprising that x0 is not the expected position, as x0

was chosen arbitrarily. However, x0 must be chosen close to
x1 if y is to be small, and so (3.32) usefully constrains x1. It
may appear that the definition (3.32) of x1 also depends on x0.
Our point of viewwill be as follows.One first fixes a localized
quantum state corresponding to a kink smeared about some
point x1 in the classical moduli space. Then, for any given
choice of x0, one will see that the eigenvalues y of ϕ0 that
dominate ψðyÞ depend on both x0 and x1. In this sense, the
observable x1 is independent of the arbitrary choice of x0.
Summarizing, we have two distinct sets of coordinates

that describe the position of the quantum antikink in the
classical moduli space. First, the coordinates x1 yield the
classical solution Φx1ðxÞ closest to the expectation value of
the scalar field. Second, if we fix x0, then the eigenvalue y
of ϕ0 provides a second set of coordinates for the antikink
position. With x0 fixed, these two coordinates on the
moduli space are related by the function x1ðyÞ.
In the case of a BPS antikink with no impurity, Φx0ðxÞ is

a function only of x − x0 and so

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx0Þ

p
gBðxÞ ¼

∂Φx0ðxÞ
∂x0 ¼ −

∂Φx0ðxÞ
∂x : ð3:33Þ

Inserting this into the BPS condition

Q0 ¼
Z

dx

�∂Φx0ðxÞ
∂x

�
2

¼ Mðx0Þ
Z

dxg2BðxÞ ¼ Mðx0Þ:

ð3:34Þ

Therefore we find that in the absence of an impurity, the
moduli space metric Mðx0Þ ¼ M0 is simply the classical
kink mass Q0. The impurity modified Mðx0Þ is plotted in

TABLE II. Wave packet notation.

Variable Meaning Definition

Q0 Classical antikink mass H0
0 ¼ Q0

Q1 One-loop antikink mass H0
2j0i0 ¼ Q1j0i0

Φx0ðxÞ Classical antikink solution at modulus x0 ϕðx; tÞ ¼ Φx0ðxÞ
DΦx0

Displacement operator by Φx0 ϕðxÞDΦx0
¼ DΦx0

ðϕðxÞ þΦx0ðxÞÞ
x0 Point in moduli space where H0 is defined H0 ¼ D†

Φx0
HDΦx0

x1 Centroid of antikink wave packet hyjD†
Φx0

ϕðxÞDΦx0
jyi ≈Φx1ðxÞ

y Eigenvalue of ϕ0 ϕ0jyi ¼ yjyi
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Fig. 4. As expected from (3.34), when jx0j is sufficiently
large, so that the antikink and impurity are well separated,
the function tends to Q0 ¼ 2m=3λ ¼ 4=3.
More generally, Eq. (3.32) relates the classical moduli

space, parametrized by x1, to the eigenvalue y of the
operator ϕ0. In the example treated below x1 will be a
global coordinate on the moduli space; however since y is
only defined once x0 is fixed, y will be in a neighborhood
of 0 with a value depending on x0. One may apply this
construction to a general multidimensional moduli space, in
which case y is a point in the total space of the tangent
bundle of the moduli space, in the fiber over the point x0.
When the eigenvalues y of ϕ0 are large, the corrections at

higher loops will also be large. These corrections are of
course suppressed by powers of the coupling, and so the
semiclassical expansion can only converge in the sense of
an asymptotic series for eigenvalues which are much
smaller than order 1=

ffiffiffiffiffiffi
Q0

p
.

This leads us to a complication. The equation π0j0i0 ¼ 0
means that the wave function ψðyÞ is independent of y, and
so eigenvectors jyi0 with all eigenvalues y appear in the
ground state (3.30). The states are in fact dominated by
eigenvalues beyond the range in which our perturbative
expansion of the states is valid. For a translation-invariant
Hamiltonian, such as one with no impurity, this is a
problem for finding the states but not for finding the
energy Q since translation invariance implies that the
energy is anyway independent of the antikink location.
However in the case of an impurity, we will see that Q1

depends on the value of x0 even within a classically
degenerate moduli space. This will prevent us from finding
states that are Hamiltonian eigenvectors, even in the sense
of an asymptotic series. Indeed, in the example treated
below we will see that the impurity is repulsive and so, just
like the case of a particle in a repulsive potential in quantum
mechanics, there are no reasonable eigenstates.

Our goal is to study the dynamics of quantum antikinks
near an impurity. For this we are interested in antikinks that
are spatially localized, not in exact Hamiltonian eigen-
states, which would anyway be stationary and so have no
dynamics. This motivates us to study spatially localized
wave packets, centered at some small eigenvalue y ¼ y1.
We will always take the width to be sufficiently small that
the support of the wave packet is within the perturbative
regime, avoiding the problem described above.

E. One-loop energy

Summarizing, we will not study exact Hamiltonian
eigenstates, but rather spatially localized wave packets.
These wave packets are centered on some value y1 of y. We
have argued that each value y1 corresponds to a classical
solution Φx1ðy1ÞðxÞ, and so equivalently each wave packet
describes configurations close to some classical solution.
Now our perturbative expansion will involve a power

series in y1 which, for a given wave packet, is most
convergent if we fix x0 ¼ x1 so that y1 ¼ 0. With this
choice, Q1 depends on Φx0ðxÞ and so on x0. If there is no
impurity, then translation invariance guarantees that any
choice of modulus leads to the same Q1 and so this initial
choice of x0 does not affect the one-loop energy.
With this caveat in mind, the energy of our wave packet

state is simply given by Q1ðx0Þ, with x0 chosen near the
center x1 of the wave function, and the width of the energy
depends on the variation in Q1ðx0Þ over the width of the
wave function ψðyÞ. The energy Q1 is given by summing
the c-number contributions from Sec. III B

Q1ðx0Þ ¼ −
1

4

Z
dp
2π

�
jg̃BðpÞj2ωp þ jg̃SðpÞj2

ðωS − ωpÞ2
ωp

þ
Z

dk
2π

jg̃kðpÞj2
ðωk − ωpÞ2

ωp

�
: ð3:35Þ

We recognize this as the Cahill, Comtet, Glauber formula
[19,38] for the mass of a (anti)kink in the absence of an
impurity. We note that the normal modes and their
frequencies also implicitly depend upon Φx0ðxÞ and hence
upon x0.
The interpretation now is somewhat different from that

of Ref. [19]. The mass of a (anti)kink is the difference
between the ground state energy of the (anti)kink sector and
the vacuum sector. Q1 is the one-loop energy of the ground
state of the ΦðxÞ sector. In the absence of an impurity, as a
result of the plane-wave normal-ordering of the defining
Hamiltonian, the vacuum energy would vanish at this order.
However, in the presence of an impurity, it is not even
guaranteed that there are any Hamiltonian eigenstates in the
vacuum sector. Of course, given a choice of σðxÞ one can
determine whether the vacuum sector has a ground state
and calculate its energy using old fashioned perturbation
theory. This energy is independent of the modulus x0 that

FIG. 4. The moduli space metric Mðx0Þ evaluated numerically
at α ¼ 3, m ¼ 2, λ ¼ l ¼ 1. Notice that, at jx0j > 3, the antikink
and the impurity are well separated and the expression tends to
Q0 ¼ 4=3, in agreement with Eq. (3.34).
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we choose for our antikink, and so the result of this
calculation will simply subtract a x0-independent constant
from Q1ðx0Þ calculated using the BPS antikink solution
Φx0ðxÞ. Therefore the antikink mass is, up to corrections
resulting from the width of the wave packet, equal to
Q1ðx0Þ plus a x0-independent constant.
This means that the energy equivalence of BPS solitonic

solutions is lifted at the one-loop quantum order.
Classically, the BPS (anti)kink in our BPS-impurity model
can be located at any distance from the impurity. In other
words, there is no static force between the soliton and
impurity. This is no longer true if the quantum corrections
are taken into account. Depending on its position, x1, the
energy of the soliton-impurity system changes leading to
the appearance of a force. This is no surprise, such a lifting
of the classical degeneracy has already been observed in a
two field model [39].
The derivation above may be repeated for the one-loop

correction to the energy of any state. In some cases, such as
a vacuum sector in a model with possible impurities, the
moduli space contains only discrete classical solutions. In
that case the derivation proceeds as above except there is no
zero mode in the decomposition of the fields. Completing
the derivation as above, one finds that in such a case the
energy is given by (3.35) without the zero mode term g̃B. In
Appendix C we present the calculation in the vacuum
sector, with an approximate analytical result.

F. The BPS impurity ϕ4 model

Now we analyze the system introduced in Sec. II, which
is a BPS-impurity deformation of the well-known ϕ4

model. The impurity is chosen in the form (2.9). As

described earlier, fluctuations around the antikink fgig
satisfy the Sturm-Liouville equation

−
d2giðxÞ
dx2

þm2

2
ð3λΦx0ðxÞ2 − 1 −

ffiffiffi
2

p
αsechðlxÞ2ÞgiðxÞ

¼ ω2
i giðxÞ: ð3:36Þ

We solve (3.36) numerically for m ¼ 2, λ ¼ l ¼ 1 with a
weak (α ¼ 0.3) and strong (α ¼ 3) impurity. This is
performed in two ways, which are described in
Appendix B. The resulting mode structure is shown in
Fig. 2. Then, we calculate Q1ðx0Þ using (3.35).
For a moment, let the α dependence of Q1 be explicit.

Then Q1ðx0; αÞ is the one-loop correction as a function of
the modulus x0 and the impurity strength α. There are some
consistency checks: Q1ð0; 0Þ ¼ −m=3 ¼ −2=3, the one-
loop antikink correction to the long-understood [15] ϕ4

model, and Q1ð∞; αÞ ¼ Q1ð0; 0Þ þQvac
1 , saying that when

the antikink is far from the impurity their contributions
decouple.
We plot Q1ðx0; 0.3Þ in Fig. 5 and Q1ðx0; 3.0Þ in Fig. 6.

Note that the consistency checks are satisfied, showing that
the numerical methods presented in Appendix B appear to
work. The two methods also give the same result, con-
firming consistency between them. Overall, we see that the
classical degeneracy is lifted and the BPS property is
destroyed by quantum corrections. The energy is lower
when the antikink and impurity are separated, suggesting
that the interaction is repulsive. The size of the correction
and the difference between vacuum and antikink masses
both grow with α, as expected.

FIG. 5. The zero mode (top left), shape mode (top right), and continuum (bottom left) contributions to the one-loop mass correctionQ1

(bottom right) as a function of x0 for α ¼ 0.3. Note that it asymptotes to the sum of the vacuum energy (−0.016) in this model plus the
one-loop mass (−0.666) in a model with no impurity [15].
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In Sec. VA we will show that the force exerted on the
antikink by the impurity is proportional to Q0

1 and so
the derivative of Q1 is physically important. Since the
classical dynamics are dramatically altered near the
spectral wall, it is worth looking at Q1 and Q0

1 carefully
near this point. In Fig. 7 we show the various contribu-
tions to Q1 close to the α ¼ 3 wall. We find a corner in
the shape mode contribution QS

1 , leading to a discontinu-
ous contribution to the force −Q0

1. However, there is a

corresponding corner2 in the continuum contribution QC
1

that cancels that of the shape mode within our numerical
accuracy. Thus our results are consistent with a differ-
entiable energy Q1, and so a continuous force −Q0

1.

FIG. 6. The zero mode (top left), shape mode (top right) and continuum (bottom left) contributions to the one-loop mass correctionQ1

(bottom right) as a function of x0 for α ¼ 3. Note that it asymptotes to the sum of the vacuum energy (−1.0) plus the one-loop mass
(−0.666) in a model with no impurity [15].

FIG. 7. As in Fig. 6 but enlarged close to the wall. One sees that the shape mode contribution QS
1 has a nonvanishing derivative at the

wall, and so yields a nondifferentiable contribution to Q1. However the continuum contribution QC
1 has a corner that, to within the

precision of our computation, cancels the corner inQS
1 . As a result we find no evidence thatQ1 fails to be differentiable, and so the force

exerted by the impurity appears to be continuous at the wall.

2Such a corner may be expected as, outside the wall, the
continuum modes are restricted by the condition that they must be
orthogonal to the shape mode while inside the wall there is no
such condition.
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IV. WAVE PACKETS AND ENERGY SMEARING

In Sec. III we argued that, in the case of a Hamiltonian
without translation invariance, the Cahill-Comtet-Glauber
formula (3.35) for the one-loop correction to the antikink
energy depends on an a priori arbitrary choice of modulus x0
and, as a result, is not part of a convergent expansion of the
energy of a Hamiltonian eigenstate. Rather, the interpretation
is that it should be thought of as a potential Q1ðx0Þ in the
moduli space. We explained that we were interested in
antikink wave packets that are localized in moduli space,
in the sense that the x intercepts x0 of the corresponding
classical solutionsΦx0ðxÞ are supported in some small region.
In Sec. III F we numerically calculated Q1ðx0Þ. It is the

goal of the present section to estimate the size of the energy
smearingand to determinewhenQ1ðx0Þ is a reasonable proxy
for the energy of a wave packet localized near x0. Thesewave
packet states are not Hamiltonian eigenstates, nor even
eigenstates of H0

2, because they are not annihilated by π0.
Instead they have an energy width arising from two sources.
First, from the spread of values ofQ1ðx0Þ in the range of x0 in
thewave packet, leading to a smeared position. Second, from
the π20 term in Eq. (3.24) for H0

2; this does not vanish for a
wave packet state, leading to a smeared momentum.
For any positive ρ define the wave packet

jρi ¼ 1

π1=4
ffiffiffi
ρ

p
Z

dy exp

�
−
ðy − y1Þ2

2ρ2

�
jyi0: ð4:1Þ

Fixing the normalization condition

0hy1jy2i0 ¼ δðy1 − y2Þ; ð4:2Þ

one finds that the wave packet satisfies

hρjρi ¼ 1; hρjϕ0jρi ¼ y1: ð4:3Þ

Summarizing, we have two kinds of coordinates on our
one-dimensional classical moduli space, x and y, with an
arbitrary base point x0 (y ¼ 0 in the y coordinates) and an
antikink wave packet centered at x1ðy1Þ (y ¼ y1 in the y
coordinates). This situation is summarized in Table III.
Following (3.31) and using (4.3) one can show that the
wave packet (4.1) has the property

hρjDΦx0

†ϕðxÞDΦx0
jρi ¼ Φx1ðy1ÞðxÞ þOðy21Þ: ð4:4Þ

Therefore the wave packet is centered at x1ðy1Þ.
We can now consider the contribution to the energy

width arising from the smeared position and momentum.
First, consider the smeared position. The state ρ is not an
eigenvector of ϕ0, but rather it has eigenvalues y smeared
with a standard deviation of

Δy ¼ ρ: ð4:5Þ

Each eigenvalue of y corresponds to a classical modulus
x1ðyÞ according to the definition (3.32). Therefore the
standard deviation of the modulus x1 is

Δx1 ¼ Δy
∂x1ðyÞ
∂y

����
y¼y1

¼ ρffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx0Þ

p : ð4:6Þ

Our one-loop estimate, based on the base point x0, of the
antikink mass isQ1ðx0Þ. We recall that this estimate is most
reliable when y ¼ 0 or equivalently x0 ¼ x1, where we
expect the fastest convergence of the semiclassical expan-
sion. Therefore the derivative of the one-loop antikink mass
with respect to the modulus is ∂Q1ðx0Þ=∂x0. This smearing
leads to a contribution of

ΔQ1 ¼ Δx1
∂Q1ðx0Þ
∂x0 ¼ ρ

∂Q1ðx0Þ
∂x0

∂x1ðyÞ
∂y

����
y¼y1

¼ ρffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx0Þ

p ∂Q1ðx0Þ
∂x0 ð4:7Þ

to the energy width of the antikink. This expression is
somewhat unappealing for the following reason. The
quantity x1ðy1Þ is the centroid of the wave packet in
moduli space. It is an observable quantity. However Q1

is a function of the arbitrarily chosen modulus x0, which
was used to define the kink Hamiltonian H0 via DΦx0

. Thus

this expression depends strongly on our choice of x0.
As we have noted above, the series expansion for the

antikink energy converges more rapidly if we choose x0 to
be equal to the wave packet centroid x1ðy1Þ, which implies
y1 ¼ 0. We will make this choice. In other words, the kink
Hamiltonian H0 is defined by conjugating the defining
Hamiltonian H by DΦx0

, where x0 is the centroid of the

TABLE III. Various coordinates on moduli space.

Variable Meaning Definition

x0 Point in moduli space where H0 is defined ϕðx; tÞ ¼ Φx0ðxÞ, H0 ¼ D†
Φx0

HDΦx0

x1ðy1Þ Centroid of antikink wave packet hyjD†
Φx0

ϕðxÞDΦx0
jyi ≈Φx1ðxÞ

y Eigenvalue of ϕ0 ϕ0jyi0 ¼ yjyi0
y1 Centroid of wave packet in y coordinates jρi ∼ R

dy expð− ðy−y1Þ2
2ρ2

Þjyi0
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classical modulus of the wave packet considered. With this
convention understood, in the sequel we will often abuse
our notation and replace x1 with x0.
Next, consider the smeared momenta. The states jρi are

not eigenstates of the π20=2 term in H2. To evaluate the
corresponding contribution to the energy, one may Fourier
transform into a basis of π0 eigenstates. Now the coefficient
is a Gaussian with standard deviation 1=ρ. The expectation
value of π20=2 is just half of the variance, and so contributes

ΔQ ¼ 1=ð2ρ2Þ ð4:8Þ

to the expectation value of the energy. The variance of the
energy is then 1=ð2ρ4Þ and so the momentum smearing
contributes 1=

ffiffiffi
2

p
ρ2 to the energy width.

In all, the width of the energy is

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2

Mðx0Þ
�∂Q1ðx0Þ

∂x0
�

2

þ 1

2ρ4

s
; ð4:9Þ

which simplifies, far from an impurity, to

Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2

Q0

�∂Q1ðx0Þ
∂x0

�
2

þ 1

2ρ4

s
: ð4:10Þ

Recall that, up to factors of order unity, and letting α ∼ 1
and l ∼ 1=m

Q0 ∼
m
λ
; Q1 ∼m;

∂Q1ðx0Þ
∂x0 ∼m2: ð4:11Þ

Therefore the energy width is minimized for a wave packet
of width

ρ ∼ λ−1=6m−1=2; Σ ∼ λ1=3m: ð4:12Þ

For the range of validity of the semiclassical expansion,
λ ≪ 1, this implies that the energy smearing is smaller than
the one-loop correction to the antikink mass, but neces-
sarily larger than the two-loop correction Q2 ∼mλ when
α ∼ 1.
Recalling that x ∼ y=

ffiffiffiffiffiffi
Q0

p
∼

ffiffiffiffiffiffiffiffiffi
λ=m

p
y far from an impu-

rity, a width of the wave packet of ρ ∼ λ−1=6=
ffiffiffiffi
m

p
in the y

coordinate corresponds to a wave packet of coordinate
width Δx ∼ λ1=3=m. This is much larger than the kink’s de
Broglie wavelength λ=m, but it is fortunately much smaller
than its classical size 1=m. Thus, in the semiclassical
limit λ ≪ 1, such a wave packet indeed resembles a
classical kink.
The function Q1ðx0Þ is only a reasonable approximation

to the one-loop correction to the energy if Q1ðx0Þ ≫ Σ,
which requires, far from an impurity

ffiffiffiffiffiffi
Q0

p
Q1ðx0Þ

ð∂Q1ðx0Þ=∂x0Þ ≫ ρ ≫
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q1ðx0Þ
p : ð4:13Þ

Such an interval only exists if the length scale
Q1=ð∂Q1ðx0Þ=∂x0Þ, which is determined by m and the
width of the impurity, is greater than the reciprocal of the
geometric mean of Q0 and Q1ðx0Þ. Any fine structure in
Q1ðx0Þ smaller than this length scale cannot be probed by
antikinks of any ρ. For example, if the impurity is small and
α ∼ 1, then 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Q0Q1

p
∼

ffiffiffi
λ

p
=m and Q1=ð∂Q1ðx0Þ=∂x0Þ∼

1=m. At weak coupling λ ≪ 1 this inequality is indeed
satisfied.
More generally, if we allow the length scale of the

impurity to differ parametrically from that of the kink
l ∼ λ−n=m, for some n then

∂Q1ðx0Þ
∂x0 ∼

m
l
∼m2λn; ρ∼λ−n=3−1=6m−1=2; Σ∼λð2nþ1Þ=3m:

ð4:14Þ

Therefore, for a thin or fat impurity with n ¼ 3k=2 − 2, the
wave packet smearing affects the energy at the same order
as the k-loop perturbative correction.

V. DYNAMICS

A. Acceleration

We have seen that Q1 depends on the position modulus
x0, which is intuitively the intercept of the antikink solution
at the centroid of the wave packet. In the case of a BPS
antikink, considered in this note, Q0 is independent of x0
but Q1 continues to depend on x0. This dependence
describes the energy of a wave packet whose center is
sufficiently localized about some x0 so that dQ1=dx0 can be
ignored in a leading approximation, and yet sufficiently
delocalized that to a leading approximation it may be
usefully treated as a Hamiltonian eigenstate. In this regime,
we can consider the dynamical evolution of the antikink
and will now calculate its instantaneous acceleration.
States in our antikink basis evolve via the action of the

evolution operator

jρðtÞi ¼ e−iH
0tjρð0Þi: ð5:1Þ

Since we are trying to calculate the instantaneous accel-
eration of the antikink, we need only consider the second
order evolution

jρðtÞi − jρð0Þi ⊃ −
t2

2
H02jρð0Þi: ð5:2Þ

The kink Hamiltonian consists of many terms that anni-
hilate jρð0Þi, as well as the following two terms
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H0 ⊃
π20
2
þQ1ðx1ðy1ÞÞ: ð5:3Þ

So when we act on the ground state, we need only consider
those two terms. We may promote the position of our wave
packet y1 to the operator ϕ0. This is allowed since, up to
corrections coming from the width of the wave packet, the
eigenvalue of ϕ0 is y1 and so for all functions Fðϕ0Þjy1i ¼
Fðy1Þjy1i holds. In a multiloop calculation, we expect that
the one-loop correction Q1ðy1Þ will be promoted to an
operator Q1ðϕ0Þ. In that case, this approximation will
become exact. Using this approximation, and only keeping
terms that will lead to a change in the instantaneous
acceleration, we find that

jρðtÞi − jρð0Þi ⊃ −
t2

2

�
π20
2
þQ1ðϕ0Þ

�
2

jρð0Þi;

⊃ −
t2

2

�
π20
2
Q1ðϕ0Þ þQ1ðϕ0Þ

π20
2

�
jρð0Þi:

ð5:4Þ

Intuitively, only these terms contribute to the acceleration
since the force on the antikink must come from translations
of the antikink. Since the wave packet is concentrated
around y1, we can approximate (5.4) by taking a Taylor
series

jρðtÞi− jρð0Þi ⊃ −
t2

4

�
Q1ðy1Þπ20 þ

1

4

∂Q1

∂y1 fϕ0;π20g
�
jρð0Þi:

ð5:5Þ

Once again, the first term in (5.5) does not contribute to the
acceleration and can be ignored, giving

jρðtÞi − jρð0Þi

⊃ −
t2

4ρ
ffiffiffi
π

p ∂Q1

∂y1 fϕ0; π20g
Z

dy exp

�
−
ðy − y1Þ2

2ρ2

�
jyi0

¼ −
1

ρ
ffiffiffi
π

p ∂Q1

∂y1
Z

dy
t2y
2ρ2

exp

�
−
ðy − y1Þ2

2ρ2

�
jyi0 þOðℏÞ:

ð5:6Þ

We have used the commutation relations (3.18) to simplify
the anticommutator to fπ20;ϕ0g ¼ 2π20ϕ0 þOðℏÞ. We can
then move jρð0Þi to the right-hand side to find

jρðtÞi ¼ 1

ρ
ffiffiffi
π

p
Z �

1 −
∂Q1

∂y1
t2y
2ρ2

�
exp

�
−
ðy − y1Þ2

2ρ2

�
jyi0;

≈
1

ρ
ffiffiffi
π

p
Z �

1 −
∂Q1

∂y1
t2y
2ρ2

−
ðy − y1Þ2

2ρ2

�
jyi0;

≈
1

ρ
ffiffiffi
π

p
Z

exp

�
−
ðy − ytÞ2

2ρ2

�
; ð5:7Þ

where we have expanded and contracted the exponential
function. Completing the square, one finds that

yt ¼ y1 −
∂Q1

∂y1
t2

2
: ð5:8Þ

We are thus tempted to identify −Q0
1ðy1Þ with the instanta-

neous acceleration of the antikink. Actually this is the
second time derivative not of the center of mass x1ðtÞ of the
antikink, but rather of the eigenvalue y1 of ϕ0. Recall from
Eq. (3.32) that x1ðy1Þ and y1 are related by a factor of
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðx0Þ

p
and so the acceleration is −Q0

1ðx0Þ=Mðx0Þ.
To understand the physics behind this result, let us

consider an antikink that is well separated from the
impurity. Then, by Eqs. (3.32) and (3.34), the derivative
of the wave packet centroid x1ðy1Þ with respect to y1 is
1=

ffiffiffiffiffiffi
Q0

p
, and so the acceleration is −Q0

1ðy1Þ=
ffiffiffiffiffiffi
Q0

p
.

Similarly

∂Q1ðx1ðy1ÞÞ
∂y1 ¼ ∂Q1ðx1ðy1ÞÞ

∂x1
∂x1ðy1ÞÞ

∂y1
¼ 1ffiffiffiffiffiffi

Q0

p ∂Q1ðx1ðy1ÞÞ
∂x1 : ð5:9Þ

Combining these results

d2xðtÞ
dt2

¼ −
1ffiffiffiffiffiffi
Q0

p ∂Q1ðx1ðy1ÞÞ
∂y1 ¼ −

1

Q0

∂Q1ðxÞ
∂x : ð5:10Þ

We have recovered Newton’s second law a ¼ F=m, where
Q0 is the leading contribution to the mass and −Q0

1ðxÞ is the
force. Note that close to the impurity this formula breaks
down as Q0 is no longer a good approximation to the
effective mass Mðx0Þ of the antikink. Evidently, in the
presence of an impurity the inertial mass should be
identified with Mðx0Þ. As further evidence for this, we
note that the identification of the kinetic term π20=2 in H0

2

with the nonrelativistic p2=2M implies that the ϕ0-eigen-
value y1 is related to the position x1 by a factor of

ffiffiffiffiffi
M

p
.

Overall, we see that the repulsive potential Q1ðx0Þ leads
to a repulsive force that pushes the antikink away from the
impurity. The dramatic classical effects of the spectral wall
are seen in models without forces. Hence just the existence
of this repulsion suggests that the spectral wall will be less
pronounced once quantum corrections are included.
Understanding the link between quantum corrections and
classical forces is difficult, and we have used many
approximations in this section. However, our formalism
does provide the first steps needed to begin a more careful
treatment of these ideas.

B. Exciting the shape mode

So farwe have studied the antikink ground state.We found
that the impurity model considered here, which hosts a
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spectral wall for sufficiently large α, yields an x0-dependent
one-loop contribution to the energy of an antikink in its
ground state. This causes a ground state antikink to be
repelled from such impurities. On the other hand, the
classical energy Q0 of a BPS antikink is independent of
the modulus x0 and so classically there is no such repulsion.
The spectral wall phenomena arises from the observation
that, when the shape mode is excited, a classical antikink is
repelled from an impurity. If the shape mode is not excited,
the antikink can pass through the wall. In the present section
wewill try to understand howexciting the shapemode affects
the dynamics of the antikink.
Let us reconsider our model

L ¼
Z

∞

−∞

�
1

2
ð∂μϕÞ2 −

m2

4λ

�ð1 − λϕ2Þffiffiffi
2

p þ αsech2ðlxÞ
�

2

þ mffiffiffiffiffi
2λ

p ϕ∂xαsech2ðlxÞ
�
dx; ð5:11Þ

again with the choice x0 ¼ x1 so that y1 ¼ 0. We will start
by introducing the quantum state corresponding to the
classical antikink with an excited shape mode.
The operator B†

S excites the shape mode. Let us define
the coherent state jβi to be the normalized state

jβi ¼ exp

�
β

� ffiffiffiffiffiffiffiffi
2ωS

p
B†
S −

BSffiffiffiffiffiffiffiffi
2ωS

p
��

jyi0;

jKiβ ¼ DΦx0
jβi: ð5:12Þ

Using3

BSjβi ¼
ffiffiffiffiffiffiffiffi
2ωS

p
βjβi; hβjB†

S ¼ hβj βffiffiffiffiffiffiffiffi
2ωS

p ;

hβjϕðxÞjβi ¼ β

ffiffiffiffiffiffi
2

ωS

s
gSðxÞ; ð5:13Þ

one finds

βhKjϕðxÞjKiβ ¼ Φx0ðxÞ þ β

ffiffiffiffiffiffi
2

ωS

s
gSðxÞ: ð5:14Þ

This is our master formula for the normalization of
quantum shape modes.
Using the ωSB

†
SBS term in H0

2, the one-loop expectation
value of the energy of the shape mode is

hβjωSB
†
SBSjβi ¼ β2ωS: ð5:15Þ

Substituting the second term in (5.14), interpreted as the
classical field, into the Hamiltonian of the classical field

theory and using the linearized classical wave equation
satisfied by gSðxÞ, one finds that the classical energy
is β2ωS.
How does this compare to the moduli space approach of

Ref. [9]? As the shape mode gS here is normalized
identically to the collective coordinate η there, one may
identify β

ffiffiffiffiffiffiffiffiffiffiffi
2=ωS

p
with the amplitude of oscillation of the

collective coordinate AðtÞ. In Eq. (5) of Ref. [9] it was
found that in the moduli space approximation, the system is
described by the Hamiltonian

H ¼ 1

2
½ _A2ðtÞ þMx0ðtÞ_x20ðtÞ þ ω2

S;x0
A2ðtÞ�;

Mx0ðtÞ ¼
Z

dx½∂x1ðfx1ðxÞ þ AðtÞgS;x1ðxÞÞjx1¼x0 �2; ð5:16Þ

where we have made the dependence of gSðxÞ andωS on the
modulus x0 explicit. In the case of a stationary antikink
with constant shape mode amplitude, the energy contribu-
tion of the shape mode to a stationary antikink is just equal
to the first plus last term

H¼1

2
½ _A2ðtÞþω2

SA
2ðtÞ�¼1

2

�
ω2
S

�
β

ffiffiffi
2

p
ffiffiffiffiffiffi
ωS

p
�2�

¼β2ωS: ð5:17Þ

Thus, all three expressions for the classical energy agree.
What about the instantaneous acceleration ẍ0ðt ¼ 0Þ? If

the antikink begins at rest, then _x0ðt ¼ 0Þ ¼ 0. Therefore,
the A equation of motion from (5.16) yields

Äðt ¼ 0Þ ¼ −ω2
S;x0

Aðt ¼ 0Þ: ð5:18Þ

Therefore, any change in x0 only affects AðtÞ at order
Oðt3Þ, and so does not contribute to the instantaneous
acceleration. The equation of motion for the modulus x0
derived from (5.16) is just Newton’s second law

Mx0ðtÞẍ0ðtÞ¼−
∂Mx0ðtÞ
∂x0

_x20ðtÞ
2

− _Mx0ðtÞ_x0ðtÞ−ωS
dωS

dx0
A2ðtÞ;

ð5:19Þ

where the right-hand side is the force. Our initial condition,
that the antikink is at rest, means that the first two terms
initially vanish, leaving an instantaneous force at time
zero of

F ¼ −ωS
dωS

dx0
A2: ð5:20Þ

This is plotted numerically in Fig. 8. We see that this is a
repulsive force, meaning that the kink is further repelled
from the impurity when the shape mode is excited. Note
that the force appears to vanish at the wall xsw ¼ 1.65, and
attains its maximum just outside of the wall. Inside of the3Recall our convention that the adjoint of BS is 2ωSB

†
S.
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wall there is no shape mode and so no corresponding force.
The leading contribution to the acceleration is the force
divided by the classical energy of the excited solution,
which consists of all three mass terms in Eq. (5) of Ref. [9].
It may be unexpected that the force is the derivative ofω2

S
and not ωS, as it would be were β fixed instead of the
amplitude ofA. As β is the dimensionless expected quantum
number of the shape mode of the excitation, one might think
that during acceleration β should be fixed rather than the
dimensionful collective coordinate A. The fact that the
amplitude of A is fixed up to order t2 implies that as an
antikink approaches a spectral wall, and so as ωS grows, the
quantum number of the shape mode excitation grows too.
Thus we see that the excitation number and the energy cost
per excitation both grow linearly in ωS, resulting in an
energy proportional to ω2

S. This surprising behavior may
result from the fact that, near thewall, the shapemode is very
delocalized and any classical profile at a fixedmode number
is similarly delocalized. Thus if one fixes a classical profile
for the shape mode, then as it approaches the wall its mode
decomposition requires higher and higher modes.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have studied a single, stationary quantum antikink in
the presence of an impurity. We have found that, for the
values of the impurity strength α considered and perhaps
more generally for α > 0, the antikink always is repelled by
the impurity. This repulsion exists whether or not the shape
mode is excited, although it is stronger when the shape
mode is excited.
We have found that nothing unexpected happens at the

spectral wall, xsw. The classical dynamics is greatly
affected by the spectral wall and the Hamiltonian (3.24)
naively looks like it changes discontinuously across the

wall. However, we found that the one-loop correction is
continuous across xsw. A possible explanation for this fact
is that the quantum effect induces a force on the moduli
space, breaking the BPS feature of the model. Classically,
when the model is not BPS the spectral walls become thick
walls [40], which exist across a finite interval of space and
whose position depends on the velocity of the incoming
antikink. These features naturally smooth out any discon-
tinuous behavior at the spectral wall.
Our calculation was performed using the general frame-

work of kink sector perturbation theory in Ref. [20]. This
framework still has some quite serious limitations. For
example, it is only reliable in the vicinity of some chosen
base point in moduli space. This base point can be chosen
arbitrarily, but once it is chosen it is fixed. Therefore it is
not yet possible to follow a moving kink, or to consider the
dynamics of multiple kinks. This is the reason that only
instantaneous acceleration can be computed. That said, if
one knows the instantaneous acceleration for each kink
position and each kink momentum, then the acceleration
can be integrated to yield a trajectory and so in principle it
would be possible to study kink-impurity scattering even in
the quantum theory.
It would also be possible to follow an excited quantum

antikink as it passes a wall, observing how the shape modes
transform into continuum modes. Using the explicit state
and Hamiltonian constructed here, such an evolution is
quite straightforward. One merely applies e−iHt to the
initial state. The interplay between the momentum and
zero mode and also the shape and continuummodes may be
simplified by considering a stationary antikink and a
quench in which the shape mode dissolves into the
continuum. This is quite similarly straightforward with
Hamiltonian evolution. The study of kinks in quenched
theories has recently received attention in Ref. [41].
Beyond one loop, using the formalism of Ref. [18], the

different normal modes couple to one another. One can
therefore expect a much richer phenomenology in these
systems, considering that the momentum of moving kinks
can also be transferred into their normal modes. Higher
excitations of shape modes also decay into continuum
modes beyond one loop, which will render the dynamics of
excited quantum kinks yet more interesting.
The focus of this method on time-independent

Hamiltonian eigenstates also limits the systems to which
it may be applied at present. While this manuscript was in
preparation, Ref. [42] appeared which studied a one-loop
time-dependent nontopological soliton, building upon the
studies of such normal modes in Ref. [43]. A systematic
approach to higher-loop corrections in such cases would be
interesting to pursue.
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APPENDIX A: FROM PLANE-WAVE TO
NORMAL-MODE NORMAL ORDERING

1. Zero modes

We will convert H2, defined in (3.8), from plane-wave to
normal-mode normal ordering, one term at a time. First
consider the π2 term

Z
dx

∶π2ðxÞ∶a
2

¼
Z

dp
2π

∶πpπ−p∶a
2

¼
Z

dp
2π

ω2
p

2

�
−A†

−p

�
A†
p −

A−p

2ωp

�
þ
�
A†
p −

A−p

2ωp

�
Ap

2ωp

�
:

ðA1Þ

The zero mode contribution is

Z
dx

∶π2ðxÞ∶a
2

⊃
Z

dp
2π

g̃BðpÞg̃Bð−pÞ
4

ð2π20 − iωp½π0;ϕ0�Þ

¼ π20
2
−
Z

dp
2π

jg̃BðpÞj2
�
ωp

4

�
; ðA2Þ

where we used

Z
dp
2π

g̃BðpÞg̃Bð−pÞ ¼
Z

dp
2π

Z
dx

Z
dyeipðx−yÞgBðxÞgBðyÞ

¼
Z

dxg2BðxÞ ¼ 1 ðA3Þ

and

g̃�BðpÞ ¼ g̃Bð−pÞ: ðA4Þ

Next consider the term

Z
dxVð2ÞðΦðxÞ; xÞ ∶ϕ

2ðxÞ∶a
2

¼
Z

dx
Z

dp
2π

Z
dq
2π

e−ixðpþqÞ V
ð2ÞðΦðxÞ; xÞ

2

×

�
A†
p

�
A†
q þ A−q

2ωq

�
þ
�
A†
q þ A−q

2ωq

�
A−p

2ωp

�
: ðA5Þ

The zero mode contribution is

Z
dxVð2ÞðΦðxÞ; xÞ∶ϕ

2ðxÞ∶a
2

⊃
Z

dx
Z

dp
2π

Z
dq
2π

e−ixðpþqÞV
ð2ÞðΦðxÞ; xÞ

4
g̃BðpÞg̃BðqÞ

×

�
ϕ2
0 −

i
ωp

½π0;ϕ0�
�

¼
Z

dx
Z

dp
2π

e−ixp
Vð2ÞðΦðxÞ; xÞgBðxÞ

4
g̃BðpÞ

�
ϕ2
0−

1

ωp

�
;

¼
Z

dx
Z

dp
2π

e−ixp
∂2
xgBðxÞ
4

g̃BðpÞ
�
ϕ2
0 −

1

ωp

�
: ðA6Þ

The last term in H0
2 is

Z
dx

∶ð∂xϕðxÞÞ2∶a
2

¼
Z

dx
Z

dp
2π

Z
dq
2π

e−ixðpþqÞ q
2

2

×

�
A†
p

�
A†
q þ A−q

2ωq

�
þ
�
A†
q þ A−q

2ωq

�
A−p

2ωp

�
; ðA7Þ

whose zero mode part is

Z
dx

∶ð∂xϕðxÞÞ2∶a
2

⊃
Z

dx
Z

dp
2π

Z
dq
2π

e−ixðpþqÞ

×
q2

4
g̃BðpÞg̃BðqÞ

�
ϕ2
0 −

1

ωp

�
; ðA8Þ

which exactly cancels the zero mode contribution in
Eq. (A6).
Therefore the zero mode contribution to H2 is given by

Eq. (A2). Note, if the connected component of the moduli
space under consideration consists of isolated points, as we
will see below in a vacuum sector, then there is no zero
mode and so there is no such contribution.

2. Shape modes

Next we will calculate the shape mode contributions to
these three terms. First, inserting the Bogoliubov trans-
formation into Eq. (A1), we find

Z
dx

∶π2ðxÞ∶a
2

⊃
Z

dp
2π

g̃SðpÞg̃Sð−pÞ
2

×

�
−ω2

SB
†2
S þ 2ω2

SB
†
S
BS

2ωS
− ω2

S

�
BS

2ωS

�
2

þ
�
ωS

2
−
ωp

2

��
: ðA9Þ

Next, the shape mode contribution to the potential
term is
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Z
dxVð2ÞðΦðxÞ;xÞ∶ϕ

2ðxÞ∶a
2

⊃
Z

dx
Z

dp
2π

e−ixp
Vð2ÞðΦðxÞ;xÞgSðxÞ

2
g̃SðpÞ

×

�
B†2
S þ2B†

S
BS

2ωS
þ
�
BS

2ωS

�
2

þ
�

1

2ωS
−

1

2ωp

��

¼
Z

dx
Z

dp
2π

e−ixp
ðω2

Sþ∂2
xÞgSðxÞ
2

g̃SðpÞ

×

�
B†2
S þ2B†

S
BS

2ωS
þ
�
BS

2ωS

�
2

þ
�

1

2ωS
−

1

2ωp

��
: ðA10Þ

Again the ∂2
x term cancels the contribution from ð∂ϕÞ2=2,

leaving

Z
dp
2π

g̃Sð−pÞg̃SðpÞ
2

�
ω2
SB

†2
S þ 2ω2

SB
†
S
BS

2ωS

þ ω2
S

�
BS

2ωS

�
2

þ
�
ωS

2
−

ω2
S

2ωp

��
: ðA11Þ

The first and third terms cancel those in (A9), leaving a
shape mode contribution to the kink Hamiltonian of

ωSB
†
SBS −

Z
dp
2π

jg̃SðpÞj2
�ðωS − ωpÞ2

4ωp

�
: ðA12Þ

Again, it is often the case that there are no shape modes, in
which case there is no such contribution.

3. Continuum modes

The calculation for the continuum modes is very similar,
although now the gkðxÞ are complex as each describes two
normal modes. The continuum contribution to the π2 term is

Z
dx

∶π2ðxÞ∶a
2

⊃
Z

dp
2π

Z
d2k
ð2πÞ2

g̃k1ðpÞg̃k2ð−pÞ
2

ωk1

×

�
−ωk2B

†
k1
B†
k2
þ ωk2

�
B†
k1

B−k2
2ωk2

þ B†
k2

B−k1
2ωk1

�

− ωk2

B−k1B−k2
4ωk1ωk2

þ ð−ωp þ ωk2Þ
�
2πδðk1 þ k2Þ

2ωk2

��
:

ðA13Þ

Using

Z
dp
2π

g̃k1ðpÞg̃k2ð−pÞ¼
Z

dx
Z

dy
Z

dp
2π

eipðx−yÞgk1ðxÞgk2ðyÞ

¼2πδðk1þk2Þ ðA14Þ

the π2 contribution simplifies to

Z
dk
2π

ω2
k

2

�
−B†

kB
†
−k þ 2B†

k
Bk

2ωk
−
BkB−k

4ω2
k

�

þ
Z

dp
2π

Z
d2k
ð2πÞ2 g̃kðpÞg̃−kð−pÞ

�
ωk

4
−
ωp

4

�
: ðA15Þ

Again the contribution from the kinetic and potential terms
cancel the first and third terms, double the second and
modify the last, leaving

Z
dk
2π

�
ωkB

†
kBk −

Z
dp
2π

jg̃kðpÞj2
ðωk − ωpÞ2

4ωp

�
: ðA16Þ

APPENDIX B: NUMERICAL TECHNIQUES

All numerics in this paper are done using the Lagrangian
(5.11) with parameters λ ¼ l ¼ 1 and m ¼ 2.

1. Gradient flow on a finite interval

This method is based on [44]. It is useful as it can be
applied to solitons in dimension greater than one [45]. We
put the system on a finite box of length L and equally
discretize space with a lattice spacing Δx. Instead of
solving (3.36) directly, we take a random initial perturba-
tion ϵ0 and evolve it using

_ϵ ¼ −
�
−

d2

dx2
þ Vð2ÞðΦx0ðxÞ; xÞ

�
ϵ: ðB1Þ

Writing the initial perturbation as a linear combination of
eigenvectors fgig ¼ fgB; gS; gkg of the operator, its evo-
lution with time becomes obvious:

ϵ0 ¼
X
i

aigi ⇒ ϵðtÞ ¼
X
i

aigie−ωit; ðB2Þ

where ωi are the eigenvalues of the eigenvectors. Hence,
after a long time the lowest frequency mode dominates the
dynamics. At this point we extract this mode and repeat the
process while projecting out the extracted mode. After
extracting the second, we repeat while projecting out the
first two modes. And so on. This builds a library of N
perturbations ordered by frequency. Since the box has a
finite length, there is a discrete set of modes, rather than
a continuum as there is on R. On the same grid, we build a
library of N0 plane waves with frequency ωp. As this is
computationally simple, we take N0 very large.
To calculate the one-loop correction (3.35) we discretize

the integrals

Z
dp →

XN0

;
Z

dk →
XN

: ðB3Þ
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Denote the one-loop correction includingN modes asQðNÞ
1 .

This gives us the one-loop correction up to frequencies of
ωN . The large frequency contribution can be found using a
WKB (Wentzel–Kramers–Brillouin) approximation. This
shows that

QðNÞ
1 ∼

1

ω2
N
; ðB4Þ

and we fit this tail to our numerically generated density

QðnÞ
1 . This density, and a fitted tail, is displayed in Fig. 9.

The calculations in this paper are done on a box with grid
length 24 and a lattice spacing of 0.04. A total 60 modes are
generated for each classical configuration whose mass is
calculated.

2. Uncompactified approach

We also used an approach in which no compactification
was imposed. At each value of k > 0, there is a two-
dimensional space of continuummodes. A grid of values of
k was selected. For each, we began at a point with two
distinct sets of real initial conditions for the field and its first
spatial derivative. Then the linearized equation of motion
was numerically integrated to generate the solution out to
the region where the potential is flat, where the contribution
of the kink and impurity are both negligible. In this region,
each solution is a sine wave.
We considered two such solutions and determined the

amplitude of the sine waves at large x and −x for each
solution. Then we constructed two linearly independent,
linear combinations of the two solutions, which each have
the same amplitude at large x and −x. Finally we con-
structed two linear combinations of those solutions that are
orthonormal with respect to integration. More precisely, the
amplitude is unity at large x and −x for each function, and
the integral of the product over a sufficiently large interval
of positive x values is negative that same integral over
negative x values. The function gkðxÞ is defined to have its
real and imaginary parts equal to those two functions.

The Fourier transform is performed by first multiplying
gkðxÞ by a small exponential damping factor, and taking
the limit that this damping factor goes to zero. This limit is
taken analytically, as the high jxj region is just a sine
wave.
The bound normal modes are treated differently. For a

trial value of the frequency, the eigenvalue equation for
normal modes is discretized and written as a matrix
equation, which is solved by inversion. The result does
not satisfy the boundary conditions that gðxÞ should tend to
zero at infinity. To improve the situation, a new value of the
frequency is guessed, even in the case of the zero mode, and
this is repeated a fixed number of times, usually a few
hundred or thousand until the boundary conditions are
satisfied out to large jxj.

APPENDIX C: THE VACUUM SECTOR

Here we present an approximated analytical computation
of the one-loop energy in the vacuum sector when the
impurity is small. Consider a vacuum sector of a model
with an impurity. For a fixed impurity and sufficiently large
k, the amplitude of the normal modes will be approximately
constant. We will now derive a simple formula for the
contribution toQ1 arising at such large k, or equivalently at
fixed k for a small impurity.
Let the interval ½0; xf� be the spatial support of

Vð2ÞðΦðxÞ; xÞ. In this approximation, the impurity is
reflectionless and each normal mode may be divided into
three parts

gkðxÞ ¼

8>><
>>:

e−ikx if x < 0

e−i
R

dxk0ðkÞ if 0 < x < xf

e−iðδðkÞþkxÞ if x > xf

; ðC1Þ

where

δðkÞ ¼
Z

xf

0

dxðk0ðkÞ − kÞ: ðC2Þ

An analogous expression may be written for the
eikx mode.
For now, let us make the crude approximation that

Vð2ÞðΦðxÞ; xÞ is equal to V in the middle interval and
m2 elsewhere. Then the linearized equations of motion
(2.14) obeyed by the normal modes yield

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 − V

p
∼ kþm2 − V

2k
; ðC3Þ

where we have used our approximation k2 > jm2 − Vj.
Thus we find

FIG. 9. Fitting an analytical tail to our numerical approximation
of the one-loop correction as a function of the maximum
frequency included. This fit is for α ¼ 0.3 and ϕ0 ¼ 0.
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δðkÞ ¼ xf
m2 − V
2k

: ðC4Þ

We calculate g̃kðpÞ one region at a time. The first region
contributes

Z
0

−∞
dxgkðxÞeipx ¼

i
k − p

e−iðk−pÞx
����0
−∞

¼ i
k − p

: ðC5Þ

In the last equality we have dropped the contribution from
x ¼ −∞. This is because it yields a quantity that rapidly
oscillates in p at large jxj, and so when folded into any
continuous function in p it will vanish by the Riemann-
Lebesgue Lemma. This is not true at p ¼ k, leading to a
2πδðp − kÞ, which we ignore here as it does not contribute
to Q1 [38]. The last equality may alternatively be derived
from the usual prescription of including an exponential
damping in the integrand, integrating, and then taking the
damping factor to zero after the integration.
Similarly the third region contributes

Z
∞

xf

dxgkðxÞeipx ¼ −
i

k − p
e−iðδðkÞþðk−pÞxfÞ: ðC6Þ

The second contributes

Z
xf

0

dxgkðxÞeipx ¼ −i
�
1 − e−iðk0ðkÞ−pÞxf

k0 − p

�
: ðC7Þ

Combining these contributions we find

g̃kðpÞ ¼ ið1 − e−iðk0ðkÞ−pÞxfÞ k0ðkÞ − k
ðk − pÞðk0ðkÞ − pÞ : ðC8Þ

Inserting this and (C3) into (3.35) yields

Q1 ¼ −
1

4

Z
dk
2π

Z
dp
2π

ðωk − ωpÞ2
ωp

g̃kðpÞg̃−kð−pÞ

¼ −
Z

dk
2π

ðk0ðkÞ − kÞ2 k
2

ω3
k

Z
dp
2π

sin2ððk0ðkÞ−pÞxf
2

Þ
ðk0 − pÞ2 ;

¼ −
xf
4

Z
dk
2π

ðk0ðkÞ − kÞ2 k
2

ω3
k

¼ −
xf
16

ðm2 − VÞ2
Z

dk
2π

1

ω3
k

¼ −xf
ðm2 − VÞ2
16πm2

; ðC9Þ

where, going from the second expression to the third, we
have used k ∼ p to approximate

ðωk − ωpÞ2 ¼
�
kþm2

2k
− p −

m2

2

1

k − ðk − pÞ
�

2

¼
�
k − p −

m2

2

k − p
k2

�
2

;

¼ ðk − pÞ2
�
1 −

m2

2k2

�
2

¼ ðk − pÞ2 k
2

ω2
k

: ðC10Þ

The fact that this is linear in xf suggests that we may drop
the restriction that Vð2ÞðΦðxÞ; xÞ be constant

Q1 ¼ −
Z

dx
ðm2 − Vð2ÞðΦðxÞ; xÞÞ2

16πm2
: ðC11Þ

We remind the reader that we have approximated jkj to
be large, and so we do not expect the small k contribution to
Q1 to be well approximated by this formula. That said, in
any example one can determine just which values of k are
reliable by observing the position dependence of the
amplitude in a numerically evaluated normal mode.
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