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Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure
depends on both coordinates and velocities. We present the arrival time delay of astroparticles subject to
Lorentz violation in the framework of Finsler geometry, and the result corresponds to that derived by Jacob
and Piran in the standard model of cosmology.
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I. INTRODUCTION

Lorentz invariance is one of the foundations of the
standard model of particle physics. However, in quantum
gravity, Lorentz invariance violation (LIV) may happen, and
a common feature of many LIV studies is the introduction
of modified dispersion relations (MDRs) for elementary
particles [1]. When the energies of particles are far below
Plank scale (Epl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc5=G

p
∼ 1.2 × 1028 eV), themodified

dispersion relations can be expressed in a general form as the
leading term of Taylor series in natural units as

E2 ¼ m2 þ p2

�
1 − snð

p
ELV;n

Þn
�
¼ m2 þ p2 þ αpnþ2; ð1Þ

where sn ¼ �1, ELV;n represents the nth-order Lorentz
violation scale, and α ¼ −sn=En

LV;n. The modified dis-
persion relations bring arrival time differences of astropar-
ticles with different energies. Longo [2] and Stodolsky [3]
made the earlier proposal to use the time flights of light and
neutrinos from the supernova SN1987A to check possible
speed anomaly of light and neutrinos. Amelino-Camelia
et al. [4,5] suggested testing Lorentz violation by comparing
the arrival times between high- and low-energy photons from
gamma-ray bursts, and later many works tested LIV from
high-energyphotons [6–11] andneutrinos [12–17]. Themost
widely used formula of the arrival time delay between
massless particles with high and low energy (which is
assumed negligible) is derived by Jacob and Piran [18], in
the standard model of cosmology,

Δt ¼ 1þ n
2H0

�
Eobs

ELV;n

�
n
Z

z

0

ð1þ z0Þndz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þΩΛ

p ; ð2Þ

where z is the redshift of the source of the two particles,Eobs

is the observed energy of the high-energy particle fromEarth
equipment,Ωm andΩΛ are universe constants, andH0 is the
current Hubble parameter. In their work, they assume the
Hamiltonian of the massless particle in terms of the comov-
ing momentum as

H ¼ p
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
p

aELV;n

�
n

s
; ð3Þ

where a ¼ 1=ð1þ zÞ is the cosmological expansion factor,
and they assume that the standard relation v ¼ dH=dp
holds; thus they get the equation of the comoving path of
the massless particle, and finally they obtain the arrival time
delay between massless particles with high energy and
normally low energy.
Since particles propagate in the expanding Universe with

curvature, it is natural to try to calculate the trajectories of
particles in the framework of general relativity (GR) or
pseudo-Riemann geometry. However, general relativity
respects diffeomorphism invariance as well as local
Lorentz invariance, which means that we cannot introduce
a modified dispersion relation in the framework of GR;
naturally, we try to calculate the trajectories of particles in a
more general framework of geometry, i.e., the Finsler
geometry [19].
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II. FINSLER GEOMETRY

Finsler geometry is a natural and fundamental generali-
zation of Riemann geometry. The Finsler structure depends
on both coordinates and velocities. It is defined as a
mapping function from a tangent bundle of a manifold
to R0;þ. In the past few years, more and more research has
suggested that new physics may be connected with Finsler
geometry, and many kinds of Finsler geometry are studied
to pursue new physics [20–24]. Many physics models with
Lorentz violation are connected with Finsler geometry. The
very special relativity [25] was proved to be a kind of
Finsler special relativity [26]. The doubly special relativity
[27] developed by Amelino-Camelia et al. can also be
incorporated into the framework of Finsler geometry [28].
The connection between standard-model extension (SME)
and Finsler geometry has been studied in recent years [29],
and the classical Lagrangians for SME [30,31] pose the
base for constructing Finsler structures. Li and Chang
constructed the theory of gravitation in Berwald-Finsler
space [32]. Girelli et al. [33] proposed a possible relation
between MDRs and Finsler geometry to account for the
nontrivial structure of Planckian spacetime.
Instead of defining an inner product structure over the

tangent bundle in Riemann geometry, Finsler geometry is
based on the so-called Finsler structure, or Finsler norm F
with the property Fðx; λyÞ ¼ λFðx; yÞ for all λ > 0, where
x ∈ M represents position and y≡ dx

dτ represents velocity.
The Finsler metric is given as

gμν ≡ ∂

∂yμ
∂

∂yν

�
1

2
F2

�
: ð4Þ

Finsler geometry has its genesis in integrals of the form

Z
b

a
F

�
x1;…; xn;

dx1

dτ
;…;

dxn

dτ

�
dτ: ð5Þ

TheFinsler structure represents the length element of Finsler
space. If F2 is quadratic in y, the Finsler metric gμν is
independent of y, the Finsler geometry is actually Riemann
geometry, and the Finsler metric is said to be Riemann. To
describe the “1þ 3” spacetime, instead of Finsler geometry
we turn to pseudo-Finsler geometry. A pseudo-Finsler
metric is said to be locally Minkowskian if at every point
there is a local coordinate system, such that F ¼ FðyÞ is
independent of the position x.
In this work we focus on the geodesic equation of Finsler

geometry. The geodesic equation for the Finsler manifold is
given as [19]

d2xμ

dτ2
þ 2Gμ ¼ 0; ð6Þ

where

Gμ ¼ 1

4
gμν

�
∂
2F2

∂xλ∂yν
yλ −

∂F2

∂xν

�
ð7Þ

is called the geodesic spray coefficient. Obviously, if F is a
Riemann metric, then

Gμ ¼ 1

2
γμνλy

νyλ; ð8Þ

where γμνλ is the Riemann Christoffel symbol. We can also
see that if F is locally Minkowskian, then Gμ ¼ 0, and the
geodesic equation (6) is actually d2xμ

dτ2 ¼ 0.

III. PSEUDO-FINSLER STRUCTURE
OF PARTICLES SUBJECT TO

LORENTZ VIOLATION

A particle moving in a pseudo-Finsler spacetime is
described by the action

I ¼ m
Z

b

a
Fðx; _xÞdτ: ð9Þ

For a particle with a Lorentz violating modified dispersion
relation,

E2 ¼ m2 þ p2ð1þ αpnÞ; ð10Þ

where α is a parameter with mass dimension −n, or
½α� ¼ −n, we derive the pseudo-Finsler geometry of the
particle following Ref. [33].
For simplification, we process the procedure in a “1þ 1”

spacetime. As discussed in Ref. [33], we need to introduce
a Lagrange multiplier λ, and letting p0 ¼ E; p1 ¼ p, we
write the action of the particle as

I ¼
Z

ð_xμpμ − λðp2
0 − p2

1 − αpnþ2
1 −m2ÞÞdτ: ð11Þ

Defining _xμ ¼ yμ, then we get

I¼
Z

ðy0p0þy1p1−λðp2
0−p2

1−αpnþ2
1 −m2ÞÞdτ: ð12Þ

Using Hamilton’s equation, we have

y0 ¼ 2λp0; ð13aÞ

y1 ¼ −λð2p1 þ ðnþ 2Þαpnþ1
1 Þ; ð13bÞ

and we can solve pμ at leading order in α as
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p0 ¼
y0

2λ
; ð14aÞ

p1 ¼ −
y1

2λ
þ ð−1Þnα ðnþ 2Þðy1Þnþ1

2nþ2λnþ1
: ð14bÞ

We should notice that p in Eq. (10) is the absolute value
of the momentum of the particle, so p1 in Eqs. (11) and (12)
should be its absolute value. For simplification, we assume
p1 > 0 in the derivation. Since p0 > 0 and λ > 0, we can
see y0 > 0 and y1 < 0 in the derivation. Using Eqs. (12)
and (14), we get the Lagrangian as

L ¼ ðy0Þ2 − ðy1Þ2
4λ

þ λm2 þ α
ð−y1Þnþ2

2nþ2λnþ1
þOðα2Þ: ð15Þ

Varying λ in the above Lagrangian, we solve λ at leading
order in α as

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

p
2m

þ α
ðnþ 1Þmn−1ð−y1Þnþ2

4ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

p
Þnþ1

: ð16Þ

Using the relation, we obtain the particle Lagrangian at
leading order in α as

L ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

q

þ αmnþ1
ð−y1Þnþ2

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

p
Þnþ1

; ð17Þ

and the pseudo-Finsler norm

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

q
þ αmn ð−y1Þnþ2

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

p
Þnþ1

: ð18Þ

As mentioned above, we should remind the reader that we
present the derivation under the assumption of p1 > 0 and
y1 < 0. We can also process the same procedure under the
assumption of p1 < 0 and y1 > 0, which means that
Eq. (10) becomes

E2 ¼ m2 þ p2ð1þ αð−pÞnÞ; ð19Þ

and finally we get the full form of the pseudo-Finsler norm
as

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

q
þ αmn jy1jnþ2

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðy1Þ2

p
Þnþ1

: ð20Þ

We can write the pseudo-Finsler norm in 1þ3 spacetime as

F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ημνyμyν

p þ αmn ðyayaÞnþ2
2

2ðημνyμyνÞnþ1
2

; ð21Þ

where ημν ¼ diagð1;−1;−1;−1Þ, and a is a spatial index,
which is summed over. This result is compatible with the
result obtained by the SME community [29] in a differ-
ent way.
Just as discussed in Ref. [33], even assuming a universal

coefficient α in Eq. (10), still the MDR corresponds to a
pseudo-Finsler norm that is mass-dependent; this means
that particles with different masses see different pseudo-
Finsler structures. That is because pseudo-Finsler norms
have no scale embedded in them as a consequence of
Fðx; λyÞ ¼ λFðx; yÞ. If we introduce a dimensional α in a
locally Minkowskian pseudo-Finsler norm, there must be
another dimensional constant to cancel the scale, and that is
the mass of the particle since there is no position coordinate
appearing in the pseudo-Finsler norm. It seems that we
cannot calculate the trajectories of massless particles with
MDRs in pseudo-Finsler geometry; however, we can deal
with massless particles just as we do in Riemann geometry,
and we will discuss this in the next section.
It is natural to assume that a particle moves along a

geodesic in pseudo-Finsler spacetime. As we can see from
Eq. (21), the pseudo-Finsler norm of the particle is
independent of the position coordinates xμ. As discussed
in Sec. II, the geodesic equation is just d2xμ

dτ2 ¼ 0, which
means that a free particle in a locally Minkowskian pseudo-
Finsler spacetime propagates with a constant speed. From
Eq. (13), we can get the speed of the particle

v ¼
����
_x1

_x0

���� ¼
����
y1

y0

���� ¼
p
E

�
1þ α

nþ 2

2
pn

�
; ð22Þ

which is related to the second of Eq. (2) in Ref. [30] and
exactly the same as derived from the assumption v ¼ ∂E=∂p
in conventional studies.

IV. TIME DELAY IN EXPANDING UNIVERSE

Now we turn to the expanding Universe of the standard
model of cosmology. To calculate the motion of a particle,
we need to obtain the pseudo-Finsler structure and solve the
geodesic equation corresponding to the pseudo-Finsler
structure. Before we get into this procedure, we simply
look back at how we solve the particle propagation problem
in the Riemann spacetime.
The expanding Universe can be described by the

Friedmann-Robertson-Walker (FRW) metric, and in a
1þ 1 Riemann spacetime the length element is ds¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt2−aðtÞ2dx2

p
, or FR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðaðx0Þy1Þ2

p
in a

Finsler way, where aðtÞ is the cosmological expansion
factor, x0 ¼ t, x1 ¼ x, y0 ¼ dx0=dτ, and y1 ¼ dx1=dτ. Let
us set present time as t ¼ 0; thus we have að0Þ ¼ 1. For
aðtÞ, the Hubble parameter H, and the redshift z, there are
relations that a ¼ 1

1þz, H ¼ a0ðtÞ
aðtÞ , and dz ¼ −ð1þ zÞHdt.

Assume that a particle starts to move at t ¼ −T and
x ¼ X with redshift z0 and reaches us at t ¼ 0 and x ¼ 0,
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and we can measure its energy and momentum Eobs and
Pobs. Obviously, we have y0¼dt=dτ>0, y1 ¼ dx=dτ < 0,
and dx=dt < 0. The geodesic equations of the FRW metric
are shown as

ẍ0 þ aðx0Þa0ðx0Þð_x1Þ2 ¼ 0; ð23aÞ

ẍ1 þ 2
a0ðx0Þ
aðx0Þ _x1 _x0 ¼ 0: ð23bÞ

From Eq. (23b), we can get

y1 ¼ _x1 ¼ C1

aðtÞ2 ; ð24Þ

and combining Eqs. (24) and (23a), we can get

y0 ¼ _x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ C2

1

aðtÞ2

s
; ð25Þ

where C1 and ϵ are integration constants with C1 < 0. As
we know, if the particle is massless, such as a photon, then
ϵ ¼ 0, and for a massive particle, if τ is set to be the proper
time, then ϵ ¼ 1. Instead of using the common sense
above, here we determine the constants with boundary
conditions. At t ¼ 0, aðtÞ ¼ 1, the velocity of the particle is
v ¼ jy1=y0j ¼ −C1ffiffiffiffiffiffiffiffi

ϵþC2
1

p , and thus

Pobs ¼
mvffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ −mC1ffiffiffi
ϵ

p : ð26Þ

So we can let

ϵ ¼ C2
1m

2

P2
obs

; ð27Þ

and combing Eqs. (24) and (25), we have

dx
dt

¼ y1

y0
¼ −

Pobs

aðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2aðtÞ2 þ P2

obs

p : ð28Þ

If Pobs ≫ m, the above equation becomes

dx
dt

¼ −
1

aðtÞ ; ð29Þ

and the equation above is exactly the same as the equation
of massless particles.
Now we turn to the Finsler expanding universe. In the

Finsler expanding universe, the Minkowski metric is
replaced by the pseudo-Riemann metric of the FRW
spacetime. As we can see, the FRW metric can be
derived from replacing ðdxαÞ2 with aðtÞ2ðdxαÞ2 in the
Riemann Minkowski metric, where α is the space index, or
replacing yα with aðx0Þyα. It is natural to think in this
way because aðtÞ describes how the space expands and it
should be multiplied to every space component in the
metric. Thus, we can write the pseudo-Finsler norm from
Eq. (21) as

F0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνyμyν

p þ αmn aðx0Þnþ2ðyayaÞnþ2
2

2ðgμνyμyνÞnþ1
2

; ð30Þ

where gμν¼diagð1;−aðx0Þ2;−aðx0Þ2;−aðx0Þ2Þ. Considering
a particle propagating in a 1þ 1 spacetime, and assuming the
motion of the particle described as above, we can get the
pseudo-Finsler norm for the particle as

F0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðaðx0Þy1Þ2

q

þ αmn ð−aðx0Þy1Þnþ2

2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2 − ðaðx0Þy1Þ2

p
Þnþ1

; ð31Þ

and the factor ð−1Þnþ2 appeals in Eq. (31) because y1 < 0.
Now we can get the geodesic equation for the particle at
leading order in α as

_y0 þ aðx0Þa0ðx0Þðy1Þ2 þ αmn ðnþ 2Þa0ðx0Þaðx0Þnþ1ð−y1Þnþ2½ðn − 1Þðy0Þ2 þ aðx0Þ2ðy1Þ2�
2½ðy0Þ2 − aðx0Þ2ðy1Þ2�nþ2

2

¼ 0; ð32aÞ

_y1 þ 2
a0ðx0Þ
aðx0Þ y

0y1 − αmn nðnþ 2Þa0ðx0Þaðx0Þn−1ðy0Þ3ð−y1Þnþ1

2½ðy0Þ2 − aðx0Þ2ðy1Þ2�nþ2
2

¼ 0: ð32bÞ

Equation (32) is much more complicated than Eq. (23). However, we get its symbolic solution at leading order in α. To
solve the geodesic equation, we assume that the solution has the form

JIE ZHU and BO-QIANG MA PHYS. REV. D 105, 124069 (2022)

124069-4



y1 ¼ C1

aðx0Þ2 þ αmnfðτÞ; ð33aÞ

y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ C2

1

aðx0Þ2

s
þ αmngðτÞ; ð33bÞ

where C1 < 0. Combing Eqs. (32) and (33), and expanding
the equation to Oðα2Þ, we can get the equations for fðτÞ
and gðτÞ. We should notice that f0ðτÞ ¼ df

da
da
dx0

dx0
dτ ¼

a0ðx0Þy0 df
da and the same for gðτÞ. Using this, we can get

the equation for fðaÞ and gðaÞ as

f0ðaÞþ 2

a
fðaÞ−nðnþ2Þð−C1Þnþ1ðϵa2þC2

1Þ
2anþ5ϵ

nþ2
2

¼ 0; ð34aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ C2

1

a2

s
g0ðaÞ − C2

1

a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2 þ C2

1

p gðaÞ þ 2C1

a
fðaÞ

þ ðnþ 2Þð−C1Þnþ2ððn − 1Þϵa2 þ nC2
1Þ

2anþ5ϵ
nþ2
2

¼ 0; ð34bÞ

and the solution for Eq. (34) is

fðaÞ ¼ C2

a2
−
ð−C1Þnþ1ððnþ 2Þϵa2 þ nC2

1Þ
2ϵ

nþ2
2 anþ4

; ð35aÞ

gðaÞ ¼ C3affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2 þ C2

1

p þ C1C2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2 þ C2

1

p

þ ð−C1Þnþ2ððnþ 1Þϵa2 þ nC2
1Þ

2ϵ
nþ2
2 anþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2 þ C2

1

p ; ð35bÞ

where C2 and C3 are integration constants. We will see that
when the energy of the particle is much bigger than its mass,
C2 andC3 do not contribute to observables, so that we can set
C2 ¼ C3 ¼ 0, but now we still keep it. Finally, we get the
solution of Eq. (32) at leading order in α as

y1 ¼ C1

a2
þ αmn

�
C2

a2
−
ð−C1Þnþ1ððnþ 2Þϵa2 þ nC2

1Þ
2ϵ

nþ2
2 anþ4

�
;

ð36aÞ

y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵþ C2

1

a2

s
þ αmn

�
C3affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵa2 þ C2
1

p þ C1C2

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2 þ C2

1

p

þ ð−C1Þnþ2ððnþ 1Þϵa2 þ nC2
1Þ

2ϵ
nþ2
2 anþ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2 þ C2

1

p
�
: ð36bÞ

Here we discuss what is an observable in this pseudo-
Finsler spacetime. Obviously, the coordinate xμ, the energy
E, and the momentum p are observables. yμ ¼ dxμ

dτ are
not an observable, for we can change τ at will, but the
ratio of ya=y0 ¼ dxa=dx0 is an observable and actually it

represents the speed defined by how we measure it. From
Eqs. (14) and (16) we can see the energy and the
momentum can also be calculated by ya=y0, which means
for the solution Eq. (36) only the ratio y1=y0 ¼ dx=dt has
physical meaning, and at leading order in α the ratio is

dx
dt

¼ C1

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa2þC2

1

p þαmn

�
ϵC2a

ðϵa2þC2
1Þ

3
2

−
C1C3a

ðϵa2þC2
1Þ

3
2

−
ðnþ2Þð−C1Þnþ1ϵ

2−n
2

2an−1ðϵa2þC2
1Þ

3
2

−
ðnþ1Þð−C1Þnþ3ϵ−

n
2

2anþ1ðϵa2þC2
1Þ

3
2

�
: ð37Þ

Dimensional analysis on Eq. (37) shows that ½ϵ� ¼ 2½C1�.
Just like how we deal with the geodesic equation of the
FRW metric, let

ϵ ¼ C2
1m

2

P2
o

; ð38Þ

where ½Po� ¼ ½m�, then we get

dx
dt

¼ −
Po

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2a2 þ P2

o

p þ α

�
−

C2mnþ2Poa

C1ðm2a2 þ P2
oÞ32

þ C3mnP3
oa

C2
1ðm2a2 þ P2

oÞ32
−

ðnþ 2Þm2Pnþ1
o

2an−1ðm2a2 þ P2
oÞ32

−
ðnþ 1ÞPnþ3

o

2anþ1ðm2a2 þ P2
oÞ32

�
; ð39Þ

and we will see soon that Po is actually the observed
momentum Pobs of the particle. We can see that, when
Po ≫ m, the first three terms in the square brackets are
suppressed in comparison to the fourth term in the square
brackets in Eq. (39), and we finally get

dx
dt

¼ −
�
1

a
þ nþ 1

2
αPn

o
1

anþ1

�
: ð40Þ

Equation (40) is quite simple, and we also find that C2

and C3 disappear in the equation, which means that
these two constants have no contribution to the physical
observable, so we can set C2 ¼ C3 ¼ 0. Considering the
boundary condition at t ¼ 0, we have a ¼ 1, p0 ¼ Eobs,
and p1 ¼ Pobs. Combining Eqs. (36), (38), (14), and (16),
we have

Eobs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

o

q
þ αPnþ2

o

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ P2

o

p þOðα2Þ; ð41aÞ

Pobs ¼ Po þOðα2Þ; ð41bÞ
and we prove the assertion that Po is actually the
observed momentum of the particle at t ¼ 0. Consider
that Pobs ¼ Eobs þOðαÞ and change the variable t to
redshift z, then Eq. (40) can be rewritten as
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dx
dz

¼ 1

HðzÞ þ
ðnþ 1ÞαEn

obs

2

ð1þ zÞn
HðzÞ : ð42Þ

Following the work of Jacob and Piran [18], we get the time
delay formula as

Δt ¼ nþ 1

2
αEn

obs

Z
z

0

ð1þ zÞn
HðzÞ dz; ð43Þ

using HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þΩΛ

p
, then

Δt ¼ αEn
obs

nþ 1

2H0

Z
z

0

ð1þ z0Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ z0Þ3 þ ΩΛ

p dz0; ð44Þ

which is exactly the same as the time delay induced by the
Lorentz violation effect between two particles with different
energies in the expanding Universe, i.e., Eq. (2) obtained by
Jacob and Piran [18] in the standard model of cosmology.
From Eq. (40), we see that if α > 0, then high-energy
particles propagate faster and arrive earlier, and if α < 0,
high-energy particles propagate slower and arrive later.

V. CONCLUSION AND DISCUSSION

In this work we derive the pseudo-Finsler structure of a
particle subject to Lorentz violation from a general

modified dispersion relation as Eq. (1) following the work
of Ref. [33]. We perform a detailed calculation of the
trajectory of the particle subject to Lorentz violation in
the expanding Universe by the geodesic equation of the
pseudo-Finsler structure and calculate the arrival time delay
between particles with high energy and normally low
energy. Surprisingly, the formula for the arrival time delay
induced by the Lorentz violation effect between two
particles with different energies is exactly the same as
Jacob and Piran [18] got, in a different way from the
standard model of cosmology. The consistency of the
results suggests that Finsler geometry is a good effective
theory to describe quantum gravity. Since Finsler geometry
provides a means to describe particle propagation in a non-
Riemann spacetime, e.g., when a particle is subject to
Lorentz violation or something along these lines, the
method performed in this work may be applied to other
questions, such as how gravitational lensing or a black hole
can influence the propagation of a particle subject to
Lorentz violation, and this is exactly what other theories
cannot deal with.
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