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We wish to carry forward to higher dimensions the insightful and novel method of obtaining the Kerr
metric proposed by one of us [Gen. Relativ. Gravit. 45, 2383 (2013)] for deriving the Myers-Perry rotating
black hole metric. We begin with a flat spacetime metric written in oblate spheroidal coordinates
(ellipsoidal geometry) appropriate for the inclusion of rotation, and then introduce arbitrary functions to
introduce a gravitational potential due to mass, which are then determined by requiring that a massless
particle experiences no acceleration, while a massive particle feels Newtonian acceleration at large r.
We further generalize the method to include the cosmological constant A to obtain the Myers—Perry—

de Sitter/anti—de Sitter black hole metric.
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I. INTRODUCTION

Einstein’s gravitational equations are highly nonlinear
differential equations and hence are difficult to solve.
However, the first exact solution describing the field of
a static mass point was obtained by Schwarzschild [1]
immediately after the theory was discovered. It then took
48 years for the discovery of a rotating black hole solution
by Kerr [2]. The charged versions of the Schwarzschild and
Kerr solutions followed soon afterwards (Refs. [3,4] and
[5,6], respectively).

However, it was easy to find higher-dimensional versions
of the static solution [7]. Myers and Perry obtained the
higher-dimensional generalization of the rotating Kerr
metric [8]. However, there exists no higher-dimensional
exact solution of the Einstein-Maxwell equations describing
a charged rotating black hole, i.e., no higher-dimensional
analog of a Kerr-Newman black hole has yet been found.
Because of the nonlinearity and complexity of the equations,
there are only a handful of physically meaningful exact
solutions.

With this background, it is important to devise ingenious
techniques and methods where one does not have to solve
the Einstein equations to obtain the required metric. One
such technique is the Newman-Janis (NJ) algorithm [9] that
converts a static Schwarzschild solution into a rotating Kerr
solution by applying a simple complex transformation. As a
matter of fact, the Kerr-Newman metric of a charged
rotating black hole [5,6] was also obtained by employing
this technique. The NJ algorithm has been widely
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employed in various cases, in particular for obtaining a
rotating NUT black hole [10], a rotating black hole with a
scalar field [11], and in modified gravity [12]. A general-
ized formulation of the Newman-Janis algorithm for five-
dimensional black holes with arbitrary angular momenta
and in seven dimensions with equal angular momenta was
recently proposed in Refs. [13,14]. It is a prescription that
works like magic, but one knows very little about why and
how it works. This question was addressed to some extent
in Ref. [15] where the uniqueness of the NJ algorithm was
established. At any rate, the physical reason why it works is
not so obvious and remains unclear.

Recently Dadhich proposed an insightful method
of obtaining black hole metrics, first for the static
Schwarzschild [16] and then for the rotating Kerr black
hole [17]. The most attractive feature of the method is that it
is driven by simple physical and geometrical considerations,
and hence one can clearly understand and see why and how it
works. First, a spatial geometry appropriate for the gravi-
tating object is chosen in flat spacetime: spherical for the
static nonrotating case, and ellipsoidal for the rotating case.
Then, two arbitrary functions are introduced to generate
gravitational potential due to mass. Finally, these functions
are determined by appealing to two physical guiding
principles: massless particles experience no acceleration,
while massive particles experience Newtonian acceleration
in the first approximation. These conditions are based on the
principle that in vacuum a photon should experience no
acceleration to maintain the constant velocity of light, while
Newton’s law should always be included in general relativity
[16] in the first approximation. The physical motivation of
this method is therefore clear and transparent.

In this paper, we wish to take Dadhich’s prescription [17]
to higher dimensions to obtain the Myers-Perry metric of a

© 2022 American Physical Society
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rotating black hole. The paper is organized as follows.
In the next section we apply the method to obtain the
Myers-Perry metric in both odd (d =2n + 1) and even
(d =2n +2) dimensions, where n = [(d —1)/2] is the
maximum number of rotation parameters a black hole
can have in dimension d. In Sec. III we include the
cosmological constant A and obtain the Myers—Perry—anti
de Sitter/de Sitter (AdS/dS) metric in four and five
dimensions. This is followed by a consideration of a
general Myers-Perry-AdS metric in arbitrary dimensions.
We end with a discussion.

II. HIGHER-DIMENSIONAL MYERS-PERRY
ROTATING BLACK HOLE METRICS

We shall first obtain the Myers-Perry metric for a five-
dimensional rotating black hole to illustrate the method, and
then apply it to arbitrary higher-dimensional black holes with
[(d — 1)/2] rotation parameters. We begin by writing the flat
Minkowski metric in the ellipsoidal form, which is appro-
priate for the inclusion of rotation. To introduce a gravita-
tional potential, two arbitrary functions of r are added to the
metric without disturbing axial symmetry. These functions
would be determined by requiring that axially falling massive
particles experience Newtonian acceleration for large » and
massless ones experience no acceleration. This will finally
lead to the required Myers-Perry metric.

A. Five-dimensional Myers-Perry black hole

Let us begin with the Minkowski metric in Cartesian
coordinates in five dimensions,

2
ds? =d = (dx? + dy?). (1)
i=1

We transform it to the oblate spheroidal coordinates by the
following transformations:

X = \/rz—i—ia2 sin 9 cos g,
v = \/msin 9 sin g,
Xy = \/1"24—7b2 sin 9 cosy,
Yo = \/1"24-7172 sin 9 siny. (2)

The above d = 5 Minkowski metric in Eq. (1) takes the form

P2
(r* + a*)(r* + b?)
— (r* + a*)sin?9dg?* — (r* + b*)cos*9dy?,  (3)

ds®> = dt* — dr* — p*d9?

where p? = r? +a?cos’ 0 + b*sin’ 0, and a and b are
arbitrary constants. It could be further transformed into
the Boyer-Lindquist form [18],

sin%0
7

A 2
ds? ==0de> ~E=dr® — 29 - [(* +a*)dp - adi]?
p 0

cos? 9

——2 [(rz + bz)dl//— bdﬂZ
P

———labdt—bsin> §(r* + a*)dg
rp

—acos?(r* + b*)dy?, (4)

where dr=dt—asin?9dp—bcos*ddy Ay =L (r* 4 a*)x
(r* + b?). Clearly, the gravitational potential (which would
be a function of r only) would appear in A. The rest of the
metric remains unaltered as above adhering to axial sym-
metry, and so we write

2
i =T g _ P42 page
p g(r)
. 29
- sz [(r? + a*)de — a di])?
p
29
2512 + b2 dy - bdi)?
p
1
s [ab dt — bsin>9(r* + a*)dg
—acos*d(r* + b?)dy|?, (5)

where f(r) and g¢(r) are arbitrary functions to be
determined. Asymptotically, the metric should become the
Minkowski metric, and hence as r — o0, f(r) = g(r) =
Ag =% (r* + a*)(r* 4 b*). There are two options for inves-
tigating radial motion: the subspace 9 = 0 with y = const
and b =0, and the subspace 9 =7 with ¢ = const and
a = 0. We will opt for the former, i.e., axially falling particles
in the subspace 8 = 0 and y = const with only one rotating
parameter (b = 0). There is no loss of generality because
f(r) and g(r) would involve a gravitational potential, which
is not going to depend on whether the black hole has one or
two rotations. The Lagrangian for particle motion in this

subspace is given by

. f .
L= g, x'x" = -
Guv (P + %) g

where a dot denotes a partial derivative with respect to an
affine parameter 4, and y is the mass of the particle. Since the
Lagrangian is free of #, the corresponding canonical momen-
tum is conserved to give

Pz:ﬁi:E- (7)

Putting this back into Eq. (6), we get
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2, 2
.o (r* +a°) 2 2 g
=(—FFE - - 8
= (et @
Since massless particles (4 = 0) experience no acceleration
(¥ =0),
E2 g I
F=—1(=] =0, 9
T2 <f) )

where a prime denotes a partial derivative with respect to r

(£ =4drd — j4) Thus, we have
g
= =const = 1. (10)
f

The above constant should be set equal to 1 as this is the only
case where the metric (5) tends to the flat Minkowski metric
as r — oo, i.e., it is asymptotically flat. We can now rewrite
Eq. (8) for a massive particle with y = 1 as

f

r* + a?

?=E?

(=1). (11)
Upon differentiating, we get

L1 f 2rf
T2 [r2+a2_(r2+a2)2]'

(12)

Now, taking the asymptotic flatness condition into account,
we write f(r)=g(r)=%(r*+a*)(r*+b*)+y(r), where
the function w(r) - 0 as r — co. Replacing f(r) in
Eq. (12) yields

124y 2r(P a4 y) (13)
2P +a? (r*+a*)? |’
which for large r reduces to
L v W

This should now agree with the Newtonian acceleration in

d = 5 (note that the potential in dimension d goes as M / r?=3)
[19], and thus # = —3#, giving the equation
ry' =2y —4M = 0. (15)

This is readily integrated to give
w(r) = —2M, (16)

where the integration constant is set to zero for asymptotic
flatness. We would have arrived at the same result had we
followed the other alternative, i.e., the subspace § = 7 with
@ = const and a = 0.

Plugging in the other rotation parameter and the func-
tions f(r) and g(r), we write the general form of the five-
dimensional Myers-Perry metric for a rotating black hole of
mass M and rotation parameters a and b as follows:

A 2
ds? =~ de* == dr? - a9
p

. 219
- sz [(r* + a*)dp — a dt]?
p
cos? 9
7

[(¥? + b?)dy — b dt)?
-5 labdt — bsin?9(r* + a*)dg
r’p

— acos? 9(r? + b?)dy)?, (17)

where A = f(r) = g(r) =% (r* +a*)(r* + b*) —2M. The
metric (17) can also be written in the following Myers-
Perry form:

2M
ds* = d* — - (dt + asin*9 dp + b cos?9 dy)? — p*d§?
p

7'2/)2 5
- d
P+ a2+ %) —2mr

— (P + a*)sin?9 dg? — (r* + b?) cos’9 dy?.  (18)

We would like to emphasize that in the Minkowski
metric in ellipsoidal form, we have only replaced A by the
free functions f(r) and g(r), which were determined by
appealing to physically motivated conditions, i.e., massive
particles experience Newtonian acceleration and no accel-
eration for massless ones. Nothing else was added from
outside by hand. In principle, it would be possible to carry
on with the same procedure for d > 5; however, this would
be too involved and cumbersome to implement. On the
other hand, the above Myers-Perry form is ideally suited for
this purpose.

B. Odd dimensions (d=2n+1)

The metric of an odd (2n + 1)-dimensional flat space-
time can be written as follows:

n

s’ =d* = (dx? + dy?). (19)

i=1

Now we transform the metric (19) to the required form by
employing the following transformations:

Xp =/ r* + a;* p; cos @;,
Vi =1/ r +a p; sin @;, (20)
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with

St =1 1)
i=1

where y; are direction cosines. Now the metric takes the
form

IF -
ds? = di* = —=dr* =y (4 a}) (d} + pddg}). (22)
i=1

where
" du? n u?
F=1- P — 2 L
; r?+ a% ; rr+ a%
n
=] +a). (23)

i=1

This is a flat metric in the Myers-Perry form; how do we
inject a gravitational potential due to a point mass into it? In
view of the Myers-Perry metric (17), we have to add a term
dr*> with an appropriate coefficient to introduce rotation.
Thus, we write by inserting as before the functions f(r)

and g(r),
2 _ g _S1) ~ o\ _IF
ds® = di* —* <dt+;a,,uidqol> p dr

n
= (7 + @) (dp? + pdde?). (24)
i=1
Here we should note that }% must tend to zero asymp-
totically as r — oo0. As before, we would like to investigate
the radial motion, and sowe set y; = p, = ... = p,_; =0,
a, =0, and ¢, = const. Therefore, we have p, = 1 and
F =1, and the metric (24) takes the following form:

I
ds* = dr* - Mdtz ———dr’. (25)
I g(r)
Retracing the same steps as before, we readily arrive at
. II g
2= |E* —— | =2 =. 26
) el e
Now for # =0 for massless particles (x = 0), we have
h=h="d
E( g\ g
' 2<H—f> Th-f 27

with the constant being set to unity for asymptotic flatness.
By replacing g(r) =1 — f(r) in Eq. (26) and assuming
u =1, we write

P =

fooL
_1+ﬁ:>r_§<ﬁ H2>' (28)

We know that asymptotically IT ~ 72", so at very large r, #
approximates to

gt S (29)

2}"2" r2n+l ’

which should agree with the Newtonian acceleration,
(3 —d)M/r%=2. This leads to the equation

rf' =2nf 4+2(n—1)Mr? =0, (30)

for d = 2n + 1. Respecting asymptotic flatness, it can be
integrated to give

f(r) =2Mr?, (31)

and from Eq. (27) we write
g(r) =T —2Mr?. (32)
Upon replacing f(r) and g(r) in Eq. (24), we arrive at the

Myers-Perry metric in odd d =2n+ 1 dimensions as
follows:

2MP " > 1F
ds? = df* - di R
’ MF < +;a’”’ 7)) Tm—ame
= (2 + a?)(dp? + p? de?). (33)
i=1

C. Even dimensions (d=2n+2)
In d =2n + 2, we begin with

ds® = d* = (dx? + dy;?) - d2%, (34)
i=1

with the transformations

Xi =1/ r* +a? p; cos g,
yi =/ +a’ p; sing;,

z=ra, (35)

If we write

Zﬂiz +a’ =1, (36)
i1

the metric takes the form
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n

I1F
ﬁdrz—;u +a?)(dp? + 3 dg?) - r*da?,

ds* =dr* —

(37)

where F and IT are as given above in Eq. (23). Retracing all
of the steps as in the odd (d = 2n + 1) case above, we
obtain

f(r)=2Mr, g(r) =T1-2Mr. (38)
Now the metric for an even d = 2n + 2-dimensional
rotating black hole is written as follows:

M - 2 IF
ds® = dr* — H—Fr (dt +>° aiﬂ?dwi> -y
i=1

I1-2Mr
—Z

d/’lt + /’ttzd(pt) -r daZ (39)

III. MYERS-PERRY-AdS BLACK HOLE

In this section, we apply the method to include A and
obtain rotating black holes in AdS spacetime. We first
obtain the Kerr-AdS metric in four dimensions, and then
obtain the five-dimensional Myers-Perry-AdS black hole
metric.

Let us begin with the AdS metric in the usual spherical
coordinates,

d 2
ds? = <1+l )dt2 1 A 249 Psin29dg?.  (40)
+5

If we write r = \/x;% + x,° + x32, the metric takes the

form

2 2 2

ds®> = <1 + W) dr> — dx,* — dx,* — dx3*
(xydx;+x, dzxz +x3dx3)?

+ L . (41)

)C2+X2+)C2
1+l 122 3

Now we go to oblate spheroidal coordinates by the
following coordinate transformations:

2 2

r +a
X = sin § cos | +
o)
r?+a? [ ]
Xy = sin § sin [ +
1—?—2 I
X3 =r cosd. (42)

Then, the metric takes the following oblate spheroidal
form:

2 2 2
ds? [d p 40 ’9d(p] -Car - Lag
s 2 s
Agsin® r + a>  ?
- adt — do| , (43)

where

p? = r* + a’cos?9,

a
Ag=1- 1_20052’9' (44)

To introduce a gravitational potential due to mass, as before
we introduce the functions f(r) and g(r) into Eq. (43),

f(r) { asin’9 r P’ p?
ds? =T\ | gy S TP g2 P g
p? E g(r) Ay
Aysin? 9 2
_ Sosin [adt—r ta d(p} . (45)
p =

Now we consider motion along the axis of rotation (3 = 0)
of massive and massless particles, for which the Lagrangian
takes the form

_@'2_9_2}2_ 2
L= pzt o0 =y (46)

As before, E = p, = %r)i and we write

Now we implement the two guiding conditions. For
massless (4 = 0) particles, # = 0, which readily leads to
f(r) = g(r). Then, for massive particles with u = 1, we
have

E? - /42> M (47)

Pg

r:—%[ A } (48)

rr+a® (r*+a*)?

Let us write f(r)=g(r) = (P +a)(1 +5) +k(r),
where the function k(r) goes to zero asymptotically as
r — oco. We substitute this into the above acceleration
equation, which at large r should be equal to that of the
Schwarzschild-AdS [20], and hence we write

1[2r K 2k M r

r r P22
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This leads to the equation
k' —=2k/r—-2M =0, (50)
which is readily solved to give
k= —-2Mr. (51)

The constant of integration has been set to zero for the
same reason as before. Finally, we have f(r) = g(r) =
(r*+a*)(1+ ?—22) — 2M'r, and by replacing f(r) and g(r) in
Eq. (45) we obtain the Kerr-AdS metric [21-24] in Boyer-
Lindquist coordinates:

A : 219 2 2 2
dszz—;[dz—“lf d(p] P g P g2
1% = Ar 9

_ Agsin® 8 {adt—rQ —L—aQ d(Pr»

Pg

—

where

2
A, = (r*+a?) (1 + ;—2> —2Mr. (53)

Now we obtain the five-dimensional rotating black
hole metric in AdS spacetime. We begin similarly with
the AdS metric in oblate spheroidal form and perform the
transformations

2 2

X = d +6§ sin & cos [(p%—%t},
1-% [
r?+a* . . a

v = —sin 9 sin (¢ + 1],
1-4% l
r+b? b

Xy = = cos & cos 1//+l—2t,

T

2+ p? b

yy = d +b2 cos & sin [1//+l—2t] (54)

12

to get to the required spheroidal form,

A 219 b 219 2 2 2 Aosi 2 9 2 2 2
ds? = 5 |dr = 500 gy PO g 1T P g P g B T
=, =5 A Alg P Za
rz .
A cc;s2 9 [bdt o i— b? J ]2 _a ;1—21—2) <ab Ji b(r? +:12)sm2 9 do - a(r? —1—192)0052 9 dlll>2, (55)
E r =) E
P b P a b
I
where The corresponding acceleration equation in this case
) would be
p? = r* + a’cos®9 + b*sin’9,
a>
B, =1—-—
a 2’ . 1[2r K 2k 2M  r
B r:_§[1_2+?_? =5 ¥
Eb — 1 1—2,
1 2
A= 2 (P +a*)(r* +b%) <1 + —2), So the equation to be solved becomes
2 b2
Ay=1- ‘;—zcos2 9 - Jrsin® 9. (56)

Proceeding in the same way as before, we have f(r) = g(r)
and write

2

F0)=g0) =52+ @) +07) (1475 ) k(). (57)

ds? =

A in?9
_g[dt_asm

= =
=g =p

AS)

2 2 2
d(p_bcos 8dy1] _Z_

A ocos? 242 72 (142
_ ’9C058[bdt—rfb dy/] ! ’)<abdt—b

2 2.2
P Ep r’p

k' —=2k/r=4M/r, (59)

which can be solved to give k = —2M.
The required five-dimensional metric of a rotating AdS
black hole is then given by [25]

—a

2 Aosi 219 2 2 2
P ggr - 200 [adt _rta d(p]
Ay P =

a(r* + b?*)cos?d 2
p- 2ot dw) . (60)

(r* + a*)sin®9 J
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where we have A, = % (r* +a?)(r* + b*)(1 + ) 2M.
By writing 1/ 12 1/ in the above we could simi-
larly obtain the dS version of rotating black holes.

IV. GENERAL MYERS-PERRY-AdS METRIC
IN ARBITRARY DIMENSION

First, we consider the AdS metric in Cartesian coor-
dinates for odd dimensions (d = 2n + 1),

12

(08 (dx; + yidy;))?
P+ 3 (7 +y7)

n 2 2 n
ds? = — (1 il ) yi))dﬂ + ) (dx? +dy?)
i=1

We employ the new transformations

el

2 aiZ
( a2 ):ul Sln|:(1 _l_2>(pi:| ’
=%

= ﬁ(l —6112’2) t, (62)

where

and the parametrization for y; is [26]

n— 1( 2 _ )
2 a=1 1 y(l
R T (64)
i l(azz_ak)

Here a prime indicates the exclusion of the term i = k from
the product. So, by applying Eqgs. (62) and (64) we write

n— 1

2
U
2 _ 2
ds =-7 {Wdt— E a; 7,d(p,} +§dr + E

”le ”ar—i—a 2
do;
a

a=1 ya i=1 0’

[T af ~ o 5 ?
T o2 2 1+lz Wdt—Z(r +a;)yvide;|

" Ha= i=1

(65)

where

n—1

U=1]>+),

a=1

n—1/
Upy==(P+y2) [[03-33). 1<a<n-1,
p=1
1

(12 i (af —ya)
W= <l_l) yi= a= a ’ 1<i<n.
LI] P " oa [1%-1(a 12 k)
+h o
X = L 2+ 2 ,
2 ILII(F ak)
1—% n
Xe=—5 H(a%_y(zl)’ l<a<n-1. (66)
Ya k=i

Now by applying the same procedure as in earlier sections,
we introduce the functions f(r) and g(r),

n 2 U n—1 U
ds* = & {Wdt — Za%yid(pi] ———dr’ - Z—adyé

U g(r) — X,
"2 +a?y, 12
S [ g,
i=1 aiy —Ya
Al a ai [( r’ zn:< 24 @) ?
— e 1+ > Wdt — r +Cll~ yld(pl:| .
r2 Ha:l y!l 12 i=1
(67)
As before, by setting
yi = az, 1<i<n-—1, l<a<n-1,
a, =0, (68)
we have
U
ds*> = () (Wdt)? — ——dr°. (69)
U g(r)
Then, the Lagrangian
fr) . U .
L=""2W"———i?=u (70)
U g(r)
gives the conserved energy as
122 :%Wzi:E, (71)

and leads to

Q_Ib

",.2 — <%W2E2 —,Lt2>

For a photon (u = 0), we write

124068-7
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<9>/ 212

F=(2) WE2=0=

f

g

= = const = 1. 73
7 (73)

On the other hand, for u = 1, we have

‘2:W2E2_i:>
" U

LN L (f fU
f—‘z@ “E@‘fvz) 7

Writing
f(r) =g(r) = X +¥(r), (75)
we have
1/X' ¥ XU YU
F=—|l—=t—=—-—"—F5 -5, 76
" 2<U+ll U2 Lﬂ) (76)

which should be equal to the Newtonian acceleration far
from a black hole, and for very large values of r, U ~ r?"~2,
X~ 4+ ’liz we have

1<‘V 2r @n—mw>

F=—c

2\ 2T E el
_—Qigﬂ—%. (77)
This is then integrated to give
Y(r)=-2M (78)
and
f(r)=g(r)=X-2M. (79)

Putting this into the metric (67) would describe a rotating
black hole in AdS-dS (AdS — dS by 1/ — —1/1?)
spacetime in arbitrary odd dimensions (d = 2n + 1).

For even (d = 2n + 2) dimensions we can follow the
same procedure, beginning with the metric (where there is
an unpaired coordinate z),

n 2 2 2
dS2:—<1—|— i=1(le_|2_yz)+z)dt/2+dz2

+ D (dx + dy})
i=1

(22d2? + 31 (xidx; + yidy;))?
- 2 7 (2 L2 (80)
P22+ 3700 +y7)

and the transformations

(r* +a3) a?
X = —a;’,u,-cos 1——2l @il
-+ !
(r*+a?) . a?
Yi = ]—a%’yism 1—1—2’ @i
T

t’zﬁ( —?—Z’Z)t, (81)

where

Zﬂiz +a?=1. (82)
=1

By retracing the same steps, one would easily obtain the
corresponding metric for even (d = 2n + 2) dimensions.
By setting 1//> = 0, we recover the Myers-Perry solution
for arbitrary dimension d.

V. DISCUSSION

The main purpose of both the NJ algorithm [5] and
Dadhich’s method [17] is to obtain the rotating black hole
metric without having to solve the formidable Einstein
vacuum equations. Both techniques work wonderfully
well. The working of the former is however not so clear
and transparent. In contrast, the latter is driven entirely by
the two physically motivated guiding conditions: (a) a
photon experiences no acceleration, so as to keep the
velocity of light constant (this condition is equivalent to the
null energy condition), and (b) a timelike particle experi-
ences Newtonian acceleration in the first approximation so
as to include Newtonian gravity in general relativity [16].
These are the two natural features that should be incorpo-
rated as one goes from Newtonian theory to general
relativity. This is therefore the most attractive and physi-
cally satisfying aspect of Dadhich’s prescription.

The NJ algorithm has also been applied in modified
gravity [12]; however, it does not always work [27], and it
has been strongly argued that it should not be applied
outside general relativity [12]. Its application in generating
higher-dimensional rotating black holes also does not go
beyond d = 5 and d = 7 (equal angular momenta) [13,14].

On the other hand, Dadhich’s method [17]—which we
have employed in this paper to obtain a Myers-Perry
rotating black hole in arbitrary dimensions in AdS-dS
spacetime—works wonderfully well in arbitrary dimen-
sions, and A could also be easily included. In a similar
manner, it was also applied to write the pure Gauss-Bonnet
rotating black hole metric in six dimensions. It does
however lead to a perfectly acceptable black hole metric
with all of the expected features of a six-dimensional pure
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Gauss-Bonnet black hole [27]. Unfortunately, this is not an
exact solution of the pure Gauss-Bonnet vacuum equation,
which is satisfied only at leading orders. This may be
because the pure Gauss-Bonnet equation is quadratic in
Riemann curvature, and hence what worked for general
relativity for which the equation was linear in Riemann may
not work when it is nonlinear in Riemann. However, it
works for arbitrary dimension with the inclusion of A. As
we have noted that NJ algorithm has not been applied for
d > 7, and in contrast Dadhich’s method [17] works

beautifully in any arbitrary dimension as we have shown
in obtaining the higher dimensional Myers-Perry rotating
black hole metric.
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