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We obtain the classical holographic relation for the general Lovelock gravity and decompose the full
Lagrangian into the bulk term and the surface term, expressed as a total derivative ∂μJμ. By classical
holographic relation, we mean that Jμ is determined completely by the bulk term. We find that the bulk term
is not degenerate, or first order in this foliation-independent approach. We then consider the Arnowitt-
Deser-Misner formalism where the foliation coordinate w is treated as special. We obtain the classical
holographic-degenerate relation with the first-order bulk term that does not involve higher than one
derivative of w. For Einstein gravity, the two approaches lead to the same bulk term, but different ones for
higher-order Lovelock gravities. The classical holographic-degenerate formulation in the Arnowitt-Deser-
Misner approach allows us to consider alternative boundary conditions in the variation principle with
different Myers terms. We show in the semiclassical approximation that the black hole entropy in all cases
is the same as the one obtained under the standard Dirichlet boundary condition. We also generalize the

formalism to general fðLðkÞ
LovelockÞ gravity.

DOI: 10.1103/PhysRevD.105.124067

I. INTRODUCTION

Holographic principle, relating theories in D and D − 1
dimensions [1,2], has played a significant role in theoretical
physics since the discovery of the AdS=CFT correspon-
dence [3], a conjectured duality based on string theory. The
holographic principle is quantum in nature and in a suitable
limit can relate a classical gravity theory to its strongly
coupled dual quantum theory. In this paper wewould like to
explore a very different type of holographic relation at the
level of Lagrangian [4,5] and we would like to call it
“classical holographic relation” to distinguish it from the
usual “holographic duality” or “holography.” We can
decompose a higher-derivative Lagrangian into a bulk
and surface term as

LðΦ; ∂Φ; ∂2Φ;…Þ ¼ LbulkðΦ; ∂Φ; ∂2Φ; ..Þ
þ ∂μJμðΦ; ∂Φ; ∂2Φ..Þ; ð1:1Þ

where Φs are dynamical fields. By holography we mean Jμ

is not arbitrary but it is completely determined by the

bulk Lagrangian. In general relativity, since the affine
connection Γ, which is a derivative of the metric tensor,
is not tensorial under the general transformation, the
Einstein-Hilbert (EH) Lagrangian involves not only Γ but
also its higher derivative ∂Γ. It turns out, miraculously,
that the EH Lagrangian can be written in the form of
(1.1) with

Lbulk ¼ LquadðΓÞ ¼ Lquadðg; ∂gÞ; ð1:2Þ

i.e., it is quadratic in Γ or ∂g only [4–6], analogous to
classical mechanics or field theories. In other words,
although the EH Lagrangian involves higher-derivatives
on the metric, they can all be absorbed into a total deri-
vative that is fully determined by the first-order bulk
Lagrangian. In classical mechanics according to the
Ostrogradsky theorem [7], a Lagrangian is degenerate
if one can write it as a sum of a first-order Lagrangian
and a total derivative term. Hence if the bulk term of
the classical holographic relation was a first-order
Lagrangian, then we would like to call it classical
holographic degenerate. Clearly, in Einstein gravity, the
classical dynamics are determined by the bulk Lagrangian
and the total derivative term plays the role of making
the action invariant under the general transformation.
Thus the classical holographic relation and general
diffeomorphism are closely related.
When a Lagrangian contains two or more derivatives on

a dynamical field, it becomes subtle to obtain the equation
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of motion via the variation principle. Naively, one would
have to impose not only the Dirichlet boundary condition
(BC) but also the Neumann BC, where the momentum
fields vanish on the boundary. However, it is inconsistent
to allow a canonical pair with a nonvanishing Poisson
bracket to vanish simultaneously, even only on the boun-
dary [6,8,9]. In Einstein gravity, this issue was resolved by
introducing an appropriate Gibbons-Hawking-York (GHY)
surface term [10,11], whose coefficient is independent of
the space-time dimensions of the theory. The variation
principle then becomes consistent by simply imposing the
Dirichlet BC. However, the classical holographic degen-
eracy allows one to impose alternative BCs, since for
degenerate Lagrangian, we can define the momentum fields
straightforwardly from the first-order bulk Lagrangian. It
turns out that one can consistently impose the Neumann BC
in four dimensions without having to introduce any GHY
term. In general dimensions, an appropriate GHY term with
a specific dimension-dependent coefficient is needed for
the Neumann BC [6,12].
In this paper, we would like to explore further the

classical holographic relation in higher-derivative gravities
that are constructed from general Riemann tensor invari-
ants. We would like to focus on degenerate theories that
necessarily require ghost-free combinations of Riemann
tensor invariants. One such a theory is fðRÞ gravity.
However, it was shown that the theory is not degenerate,
but can be made so using the Ostrogradsky approach [7].
Specifically, one can follow the approach and introduce a
scalar field in the framework of Brans-Dicke formalism
[13–15]. In this different but equivalent formalism, the
Lagrangian becomes degenerate and allows us to have
different BCs with appropriate GHY terms [6].
The more interesting ghost-free higher-derivative gravity

is perhaps Lovelock gravity, which is a specific higher-
order polynomial combinations of the Riemann tensor such
that the field equation remains with two derivatives. The
Lovelock series can be classified by the homogeneous
polynomial order k of the Riemman tensor, with k ¼ 1, 2
corresponding to the familiar Einstein and Gauss-Bonnet
(GB) gravities, respectively. Lovelock gravity is also a
function of Γ and ∂Γ.
We find that general Lovelock gravity has the classical

holographic relation as in (1.1), but the bulk Lagrangian is
not degenerate, in that it is a function not only of Γ but also
of ∂Γ. One difference between the bulk term and the full
Lovelock Lagrangian is that the highest polynomial order
of ∂Γ in the bulk is one less. Consequently, the bulk
Lagrangian of Einstein gravity with k ¼ 1 does not have
∂Γ. Using the foliation-independent approach, the classical
holographic relation of Lovelock gravities was also studied
in [4,5], but our results are different.
Thus the foliation-independent approach where the sur-

face term is ∂μJμ leads to nondegenerate bulk Lagrangian
for general Lovelock gravities. This leads us to consider a

different approach based on the Arnowitt-Deser-Misner
(ADM) formalism [16,17]. We can choose special coor-
dinates xμ ¼ ðw; xaÞ such that Jμ ¼ ðJw; 0Þ. We then
decompose the metric using the ADM formalism, treating
the coordinate w as the foliation coordinate. We then
find that Lovelock gravity is not only classically holo-
graphic but also degenerate in the sense that the bulk
Lagrangian has no more than one derivative of the
coordinate w. The two-derivative terms in the bulk
Lagrangian are all associated with coordinates xa, enter-
ing through the Riemann tensor of the submanifold. We
express the surface term as ∂wLsurf . It turns out that the
bulk Lagrangian is precisely the first-order Lagrangian
obtained using the ADM formalism by Teitelboim and
Zanelli [18] and was recently considered in a straight-
forward manner in [19,20]. Our result is to establish
the classical holographic relation. For Einstein gravity
(k ¼ 1), we find that the bulk Lagrangian is identically
the same for both the foliation-independent and the ADM
approaches. They are however not the same for GB
(k ¼ 2) or higher-k Lovelock gravities. The classical
holographic degeneracy in the ADM formalism allows
us to reexamine the BCs in the variation principle for
general Lovelock gravities.
The paper is organized as follows. In Sec. II, we

obtain the classical holographic-degenerate relation for
the Lovelock Lagrangian by the ADM formalism, making
use of the Teitelboim-Zanelli Lagrangian, which is the first-
order Lagrangian [18,19] and Myers boundary term [21].
From the classical holographic-degenerate relation, we
add appropriate Myers terms to the Lovelock action to
make the variation principle well defined under Dirichlet or

Neumann BCs. We then consider fðLðkÞ
LovelockÞ gravity and

show that it has no classical holographic relation. Using the
Ostrogradsky approach in the frame work of Brans-Dicke
formalism, we find that its equivalent scalar-tensor theory
can be written in a degenerate form. This enables us to
introduce the consistent Myers terms for Dirichlet,
Neumann, and two types of mixed BCs in arbitrary
dimensions. It is intriguing to observe that there exists a
mixed BC that does not require any Myers term in all
dimensions. Furthermore GHY and Myers terms play an
important role in the calculation of the black hole entropy
[22–25]. Using the semiclassical approximation method
[9,22,26], we examine what happens to the black hole
entropy under different BCs as well as different Myers
terms. We expect physically the entropy should be the same
under different BCs and our results indeed confirm this. In
Sec. III, we investigate classical holographic relation for the
Lovelock Lagrangian based on the foliation-independent
approach (1.1). We give explicit bulk Lagrangian and the
classical holographic relation. We consider the Friedmann-
Lemaı̆tre-Robertson-Walker (FLRW) cosmological metric
to illustrate the difference between the ADM formalism and
the foliation-independent approach.

H. KHODABAKHSHI and H. LÜ PHYS. REV. D 105, 124067 (2022)

124067-2



II. CLASSICAL HOLOGRAPHIC LAGRANGIAN
IN ADM FORMALISM

We begin with the general Lagrangian of the Lovelock
series given by [27]

L ¼ ffiffiffiffiffiffi
−g

p
LLovelock ¼

ffiffiffiffiffiffi
−g

p X
k≥0

αðkÞL
ðkÞ
Lovelock; ð2:1Þ

where αðkÞ are dimensionful coupling constants and

LðkÞ
Lovelock is the kth order Lovelock combinations of the

Riemann tensor given by

LðkÞ
Lovelock ¼

ð2kÞ!
2k

δμ1���μ2kν1���ν2k R
ν1ν2
μ1μ2R

ν3ν4
μ3μ4 � � �Rν2k−1ν2k

μ2k−1μ2k : ð2:2Þ

The multi-index Kronecker delta symbol is defined to be
totally antisymmetric, i.e.,

δμ1���μ2kν1���ν2k ¼ δ½μ1ν1 δ
μ2
ν2 � � � δμ2k�ν2k ¼ δ½μ1½ν1δ

μ2
ν2 � � � δμ2k�ν2k� ; ð2:3Þ

where the square brackets denote conventional unit-strength
antisymmetrizations (so, for example, X½μ1���μp� ¼ X⟦μ1���μp⟧).
Note that with our choice of normalization, we have

LðkÞ
Lovelock ¼ Rk þ � � � ; ð2:4Þ

with unit coefficient for the purely Ricci scalar term, where
the ellipses denote all terms involving one or more uncon-
tracted Ricci tensor or Riemann tensor. Therefore, we have
Lð0Þ ¼ 1, Lð1Þ ¼ R, and Lð2Þ ¼ LGB ≡ R2 − 4Rμ1νRμν þ
RμνρσRμνρσ, etc. The equation ofmotion is

P
k E

ðkÞ
μν ¼ 0, with

EμðkÞ
ν ¼ −

ð2kÞ!
2kþ1

δμμ1…μ2k
νν1…ν2k R

ν1ν2
μ1μ2…Rν2k−1ν2k

μ2k−1μ2k : ð2:5Þ

A. The classical holographic relation

In this section, we would like derive a classical holo-
graphic relation of general Lovelock gravity in the ADM
formalism, where the metric is decomposed as

ds2 ¼ ϵNðω; xaÞ2dt2 þ habðw; xaÞðdxa þ Naðω; xaÞdtÞ
× ðdxb þ Nbðω; xaÞdtÞ; ð2:6Þ

in which the coordinate w is specially treated, as a foliation
coordinate. (The foliation-independent approach will be
given in Sec. III.) For constant w on the ∂M of xa, the
submanifold is spacelike when ϵ ¼ −1 and timelike when
ϵ ¼ þ1. This metric can be further simplified to the
Gaussian metric under appropriate gauge fixing and the
metric has the following form [28]

ds2 ¼ ϵNðωÞ2dω2 þ habðω; xaÞdxadxb: ð2:7Þ

We focus on our discussion using the Gaussian metric.
It is clear that all the metric components enter the

Lovelock Lagrangian with either no w derivative, one
derivative ∂w, or two derivatives ∂

2
w. We would like first

to split the Lagrangian into two parts: terms that involve no
∂
2
w and terms that contain ∂

2
w. The key to the classical

holographic relation is that the latter part of the Lagrangian
is actually a total derivative, i.e., it is a surface term. In other
words, we need to establish that the full Lagrangian can be
expressed as

ffiffiffiffiffiffi
−g

p
LðkÞ ¼ N

ffiffiffiffiffiffi
jhj

p
LðkÞ
ADM þ ∂ωL

ðkÞ
surf : ð2:8Þ

The first term was obtained in [18], given by

ffiffiffiffiffiffi
−g

p
LðkÞ
ADM

¼ N
ffiffiffiffiffiffi
jhj

p Xk
l¼0

CðkÞ
l δa1…a2k

b1…b2k
Rb1b2
a1a2…Rb2l−1b2l

a2l−1a2lK
b2lþ1

b2lþ1
…Kb2k

b2k
;

ð2:9Þ

in which the coefficient is

CðkÞ
l ¼ k!ð2kÞ!2k−2lϵk−l

l!ð2ðk − lÞ − 1Þ!! ; ð2:10Þ

and K is the extrinsic curvature

Kab ¼
1

2N
∂ωhab: ð2:11Þ

In order to see explicitly that LðkÞ
ADM is absent from having

∂
2
w, we can adopt the Gauss-Codazzi-Mainardi identity to
express the Riemann tensor as

Ra1a2
b1b2

¼ R̄a1a2
b1b2

− ϵðKa1
b1
Ka2

b2
þ Ka1

b2
Ka2

b1
Þ; ð2:12Þ

where R̄ab
cd is Riemann tensor on hab.

By classical holographic relation, we mean that the

surface Lagrangian LðkÞ
surf is specified by the bulk one. To

find this relation, it is instructive to write the two terms as
[19,29]

LðkÞ
ADM ¼ ð2kÞ!

2k
δa1���a2kb1���b2kR

b1b2
a1a2R

b3b4
a3a4 � � �Rb2k−1b2k

a2k−1a2k þ X;

∂ωL
ðkÞ
surf ¼

ð2kÞ!kN ffiffiffiffiffiffijhjp
2k−2

δa1���a2k−1b1���b2k−1ðR
ωb1
ωb2

Rb2b3
a2a3

þ ðk − 1ÞRωb1
a1b2

Rb2b3
ωa3 ÞRb4b5

a4a5…Rb2k−2b2k−1
a2k−2a2k−1

− N
ffiffiffiffiffiffi
jhj

p
X; ð2:13Þ
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where

X ¼ ð2kÞ!2k
Z

1

0

dsδa1���a2kb1���b2kK
b1
a1K

b2
a2

�
1

2
R̄b3b4
a3a4 − s2ϵKb3

a3K
b4
a4

�

× � � �… ×

�
1

2
R̄b2k−1b2k
a2k−1a2k − s2ϵKb2k−1

a2k−1K
b2k
a2k

�
: ð2:14Þ

One can show ∂ωL
ðkÞ
surf is indeed a total derivative by finding

explicitly the surface Lagrangian LðkÞ
surf . To do so, one uses

the first-order Lagrangian and obtains the associated
canonical momentum πabðkÞ conjugate to hab as follows:

πabðkÞ ≡ ∂ðN ffiffiffiffiffiffijhjp
LðkÞ
ADMÞ

∂ð∂ωhabÞ
;

¼ ð2kÞ!kϵ
ffiffiffiffiffiffi
jhj

p Z
1

0

ds δa1���a2k−1ab1���b2k−1ch
cbKb1

a1

×

�
1

2
R̄b2b3
a2a3 − s2ϵKb2

a2K
b3
a3

�
×……

×
�
1

2
R̄b2k−2b2k−1
a2k−2a2k−1 − s2ϵKb2k−2

a2k−2K
b2k−1
a2k−1

�
: ð2:15Þ

One can then establish that the trace of the canonical
momentum has the following form [18,19,30]:

πðkÞ ¼ habπabðkÞ ¼ −
D − 2k

2
LðkÞ
surf ; ð2:16Þ

where LðkÞ
surf is the Myers boundary term under Dirichlet BC

and it is given by [21] (see also [31])

LðkÞ
surf ¼ −ð2kÞ!2kϵ

ffiffiffiffiffiffi
jhj

p Z
1

0

ds δa1���a2k−1b1���b2k−1K
b1
a1

×

�
1

2
R̄b2b3
a2a3 − s2ϵKb2

a2K
b3
a3

�
×…

×

�
1

2
R̄b2k−2b2k−1
a2k−2a2k−1 − s2ϵKb2k−2

a2k−2K
b2k−1
a2k−1

�

¼
ffiffiffiffiffiffi
jhj

p Xk−1
l¼0

WðkÞ
l δa1���a2k−2l−2a2k−2l−1���a2k−1b1���b2k−2l−2b2k−2l−1���b2k−1ðR̄Þ

b1b2
a1a2 � � �

× ðR̄Þb2k−2l−3b2k−2l−2a2k−2l−3a2k−2l−2K
b2k−2l−1
a2k−2l−1 � � �Kb2k−1

a2k−1 ; ð2:17Þ

where the coefficient is

WðkÞ
l ¼ ð2kÞ!ðk − 1Þ!ϵk−lð−2Þl

2k−1ðk − l − 1Þ!l!ð2lþ 1Þ : ð2:18Þ

Now using Eqs. (2.15), (2.16), and (2.8) we obtain

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelockðg; ∂g; ∂2gÞ ¼ N

ffiffiffi
h

p
LðkÞ
ADMðh; ∂hÞ þ

2

D − 2k
∂ω

×

�
−hab

∂ðN ffiffiffi
h

p
LðkÞ
ADMÞ

∂ð∂ωhabÞ
�
;

ð2:19Þ

which is the classical holographic relation for the general
Lovelock Lagrangian in the ADM formalism. This relation
establishes that the total derivative term is specified by the
bulk term. Note that, when D ¼ 2k, the second term
dominates, indicating that the theory is a total derivative.

B. Variational principle

For the Einstein-Hilbert action or its high-derivative
generalization including Lovelock gravity, in order to
obtain the equations of motion via the variation principle,
one would appear to have to impose both the Dirichlet and
Neumann BCs. However, we are not allowed to set the
canonical pair, with nonvanishing Poisson brackets, to
vanish simultaneously, even only on the boundary. The
remedy is to introduce some appropriate surface terms
to the action so that the variational principle is well
defined [10,11].
As reviewed in the previous subsection, in Gaussian

coordinates and generally in the ADM formalism Lovelock
theory is described by a degenerate Lagrangian, i.e., it can
be written as the sum of the first-order Lagrangian and
the total derivative term. Using the classical holographic
relation (2.19) and writing the boundary terms of the action
in terms of fields and momentum fields will enable us to
introduce the consistent Myers term for the traditional
Dirichlet BC or the new alternative Neumann BC.
Considering Eq. (2.19), and taking variation of the action

AðkÞ ¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock ¼

Z
M

dDxLðkÞ
ADM

−
2

D − 2k

Z
∂M

dD−1xhabπabðkÞ; ð2:20Þ

yields

δAðkÞ ¼
Z
M
dDxEμνðkÞδgμν−

2

D−2k

�Z
Σt

dD−1yhabðΣÞδπ
abðkÞ
ðΣÞ

þ
Z
B
dD−1zhabðBÞδπ

abðkÞ
ðBÞ

�

þD−2ðkþ1Þ
D−2k

�Z
Σt

dD−1yπabðkÞðΣÞ δhabðΣÞ

þ
Z
B
dD−1zπabðkÞðBÞ δhabðBÞ

�
: ð2:21Þ

Here we have assumed that ∂M contains two spacelike
(D − 1)-dimensional hypersurfaces Σt at t ¼ constant
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(ω ¼ t) and one timelike hypersurface B at r ¼ constant
(ω ¼ r).We further choose that the space-time is flat asymp-
totically at r ¼ ∞. (Our arguments also apply for asymp-
totically anti–de Sitter or de Sitter space-times. However, for
lexical simplicity, we shall only mention the Minkowski flat
space-time.) To obtain (2.21), we have used the definition of
canonical momentum in Eq. (2.15). Note also

habðΣÞπ
abðkÞ
ðΣÞ ¼ habðΣÞ

∂ðN ffiffiffi
h

p
LðkÞ
ADMÞ

∂ð∂thabÞ
¼ −

D − 2k
2

LðkÞ
surfðΣÞ;

ð2:22Þ

habðBÞπ
abðkÞ
ðBÞ ¼ habðBÞ

∂ðN ffiffiffi
h

p
LðkÞ
ADMÞ

∂ð∂rhabÞ
¼ −

D − 2k
2

LðkÞ
surfðBÞ:

ð2:23Þ

In our relations the indices (Σ) and ðBÞ specify the induced
metric and extrinsic curvature K and R̄ on hypersurfaces Σ
and B, respectively.

1. Dirichlet BC on B

Following from Eq. (2.21), it appears that both Dirichlet
BC, δhabjΣt;B ¼ 0, and Neumann BC, δπabðkÞjΣt;B ¼ 0, are
required in order to obtain the equations of motion via the
variation principle. However, as in the case of Einstein
gravity, we can deal with applying only the Dirichlet BC
provided with additional appropriate Myers term to the
Lovelock action. We shall show that when the Lagrangian
is degenerate, the alternative boundary condition is also
possible. However, the discussion of the BCs and Myers
terms is different, depending on whether the boundary is B
and Σt.
We shall first consider the timelike boundary B. A priori,

we can impose either the Dirichlet or the Neumann BCs.
However, we would like to require that our space-times be
asymptotically flat, i.e., habðBÞ ¼ ηab at the boundary r ¼ ∞.
This restriction automatically imposes the Dirichlet BC. The
consistency then requires the same BC for all timelike
boundaries B. It should be noticed that when the boundary
is taken to be literally at the spatial infinity, the integrals over
B vanish andplay no role in thevariation principle. Therefore
to obtain equation ofmotion,we can omit the surface integral
terms on B in Eq. (2.21). However if we require that the
variational principle be well posed quasilocally (at finite r)
then we should retain the boundary terms on the lateral
boundary B.
Focusing on B, it follows from (2.21) that one can

append the Lovelock action and obtain [19,29]

AðkÞ
D ¼

Z
M
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelockþ

2

D−2k

Z
B
dD−1yhabðBÞπ

abðkÞ
ðBÞ ;

ð2:24Þ

where the second term on the right-hand side is the required
Myers term corresponding to the Dirichlet BC. Note that
we use subscript D to denote the action that involves the
Dirichlet BC and we should not confuse it with dimension

D. Varying AðkÞ
D gives [32]

δAðkÞ
D ¼

Z
M

dDx
ffiffiffiffiffiffi
−g

p
Eμνδgμν þ

Z
B
dD−1yπabðkÞðBÞ δhabðBÞ:

ð2:25Þ

Applying δhabjB ¼ 0 leads to the equation of motion
Eμν ¼ 0, where Eμν is defined in Eq. (2.5).
Inserting Eq. (2.16) into (2.24), we find

AðkÞ
D ¼

Z
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock −

Z
B
dD−1yLðkÞ

surfðBÞ: ð2:26Þ

Evaluating this for k ¼ 1 gives us the full EH action,
consistent with the Dirichlet BC, as follows:

Að1Þ
D ¼

Z
M

dDx
ffiffiffiffiffiffi
−g

p
LEH − 2

Z
B
dD−1y

ffiffiffi
h

p
KðBÞ; ð2:27Þ

where we usedLð1Þ
ðBÞ ¼ 2

ffiffiffi
h

p
KðBÞ. It is clear that the required

Myers term on B, compatible with Dirichlet BC, does not
depend on the dimensions of space-time and only depends
on the induced metric and its time Lie derivative throughK.

2. Dirichlet BC or Neumann BC on Σt

On the spacelike boundaries Σt, the situation is different.
There can exist different choices of the BCs. Here for
simplicity we consider asymptotically flat space-time at
r → ∞ to omit the surface integral terms on B. We can
adopt the traditional approach and impose the Dirichlet BC,
in which case, the Myers term is the same, leading to

AðkÞ
D ¼

Z
M
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelockþ

2

D−2k

Z
Σt

dD−1yhabðΣÞπ
abðkÞ
ðΣÞ ;

¼
Z
M
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock−

Z
Σt

dD−1yLðkÞ
surfðΣÞ: ð2:28Þ

Alternatively, we can impose the Neumann BC
δπabðkÞjΣt

¼ 0.1 This is consistent with the Dirichlet BC

1In the standard approach, Neumann BC means to fix the first-
order normal derivative of a field. For many simple models, this is
equivalent to the fixation of the momentum field. In general
relativity, fixing the normal derivative of the metric does not lead
to the fixation of its momentum. The latter requires us to fix some
specific linear combination of both the metric and its normal
derivative. Therefore, one may want to call this generalization as
the “Neumann-like BC” or “Robin BC.” The advantage is to
make it manifest that the canonical pair with a nonvanishing
Poisson bracket would not be fixed simultaneously on the
boundary.
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on B, since the hypersurfaces Σt intersect B orthogonally
and hence the BCs on Σt and B are independent. It follows
from Eq. (2.21) that we propose the following action

AðkÞ
N ¼

Z
M

dDx
ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock −

D − 2ðkþ 1Þ
D − 2k

×
Z
Σt

dD−1yπabðkÞðΣÞ habðΣÞ: ð2:29Þ

Here we use subscript N to denote the action that involves
the Neumann BC. Varying this action, we have

δAðkÞ
N ¼

Z
M

dDxEabδgab −
Z
Σt

dD−1yhabðΣÞδπ
abðkÞ
ðΣÞ : ð2:30Þ

By imposing the Neumann BC δπabðkÞjΣt
¼ 0, we restore

the equation of motion Eμν ¼ 0.
When we write the Myers term (2.29) in a more familiar

form using (2.16), we get

AðkÞ
N ¼

Z
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock þ

ðD − 2ðkþ 1ÞÞ
2

×
Z
Σt

dD−1yLðkÞ
surfðΣÞ: ð2:31Þ

For the case k ¼ 1, we have [12]

Að1Þ
N ¼

Z
dDx

ffiffiffiffiffiffi
−g

p
LEH þ ðD − 4Þ

Z
Σt

dD−1y
ffiffiffi
h

p
KðΣÞ:

ð2:32Þ

Thus, in contrast to the Dirichlet case, the required
Myers term compatible with Neumann BC depends on
the dimensions of the space-time. In particular, when
D ¼ 2ðkþ 1Þ, the Myers term vanishes. This observation
explicitly shows that the general Lovelock action is
naturally compatible with Neumann BC for asymptotically
flat space-times as can also be seen from (2.31) for
D ¼ 2ðkþ 1Þ. Another interesting feature is the relation
between Dirichlet Myers term and Neumann one.
Comparing Eqs. (2.28) and (2.31), we find

AMyersðkÞ
N ¼ −

D − 2ðkþ 1Þ
2

AMyersðkÞ
D : ð2:33Þ

C. Generalizing to f ðLðkÞ
LovelockÞ gravity

We have so far shown that the Lagrangian of a general
Lovelock gravity is classically holographic degenerate in
the ADM formalism. As we shall see presently, the general

fðLðkÞ
LovelockÞ Lagrangian is not degenerate. If we want to

investigate different BCs in a consistent way, then we need
to define the momenta conjugate to the field variables in
order to distinguish Dirichlet and Neumann BCs where the

momentum fields vanish on the boundary. Following
the Ostrogradsky approach [7], we are able to write the

fðLðkÞ
LovelockÞ Lagrangian as a degenerate one. To do so, we

adopt the scalar-tensor formulation by introducing a scalar

field ϕ, and write fðLðkÞ
LovelockÞ action in the Jordan frame:

AðkÞ
f ¼

Z
M

dD
ffiffiffiffiffiffi
−g

p
fðLðkÞ

LovelockÞ

¼
Z
M

dDx
ffiffiffiffiffiffi
−g

p ðϕLðkÞ
Lovelock − VðϕÞÞ; ð2:34Þ

in which ϕ ¼ f0ðLðkÞ
LovelockÞ ¼ ∂fðLðkÞ

LovelockÞ=∂LðkÞ
Lovelock,

VðϕÞ ¼ LðkÞ
LovelockðϕÞϕ − fðLðkÞ

LovelockðϕÞÞ andwe assume that

f00ðLðkÞ
LovelockÞ ≠ 0 [13–15]. Nowusing theEq. (2.19)we have

AðkÞ
f ¼

Z
M

dDx
ffiffiffiffiffiffi
−g

p ðϕLðkÞ
ADM − VðϕÞÞ

þ 2

D − 2k

Z
M

dDxϕ∂w

�
−hab

∂ð ffiffiffiffiffiffi−gp
LðkÞ
ADMÞ

∂ð∂whabÞ
�
:

ð2:35Þ

The first integral contains only the metric, its first order
derivatives, and the scalar field ϕ. Integrating by parts, the
above Lagrangian is degenerate as follows:

AðkÞ
f ¼

Z
M

dDx
ffiffiffiffiffiffi
−g

p ðϕLðkÞ
ADM − VðϕÞÞ

þ 2

D − 2k

Z
M

dDx∂ωϕhabMωabðkÞ

−
2

D − 2k

Z
Σt

dD−1yϕhabðΣÞπ
abðkÞ
ðΣÞ ; ð2:36Þ

where

∂ωϕhabMωabðkÞ ≡ ∂ωϕhab
∂ð ffiffiffiffiffiffi−gp

LðkÞ
ADMÞ

∂ð∂ωhabÞ
¼ −

D − 2k
2

∂ωϕL
ðkÞ
surf : ð2:37Þ

Note that πabðkÞðΣÞ ≡ ∂ð ffiffiffiffiffiffi−gp
LðkÞ
ADMÞ=∂ð∂whabÞ is the cano-

nical momentum of habðΣÞ in Lovelock gravity. Also we
have assumed that ∂M contains two spacelike (D − 1)-
dimensional surfaces Σt and one timelike surface B onwhich
the integral vanishes at large spatial distances for asymptoti-
cally flat space-times.Nowwe are able to define the canonical

momenta of ϕ and habðΣÞ in fðLðkÞ
LovelockÞ gravity as

π̄abðkÞðΣÞ ≡ δAðkÞ
f

δð∂thabÞ
¼ ϕπabðkÞðΣÞ þHabðkÞ

ðΣÞ ; ð2:38Þ
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where

HabðkÞ
ðΣÞ ≡ 2

D − 2k
∂tϕgde

∂MtdeðkÞ

∂ð∂thabÞ
; ð2:39Þ

π̄ðkÞϕðΣÞ ≡
δAðkÞ

f

δð∂tϕÞ
¼ 2

D − 2k
πðkÞðΣÞ; ð2:40Þ

and πðkÞðΣÞ ¼ habðΣÞπ
abðkÞ
ðΣÞ .

We now write a classical holographiclike relation for

fðLðkÞ
LovelockÞ gravity, as Eq. (2.19) for general Lovelock

theories, to show that, without using the Ostrogradsky
approach and the scalar-tensor formulation, its Lagrangian
is not degenerate. Using Eqs. (2.36), (2.38), (2.37), and

ϕ ¼ f0ðLðkÞ
LovelockÞ, we can obtain

ffiffiffiffiffiffi
−g

p
fðLðkÞ

LovelockÞ ¼
ffiffiffiffiffiffi
−g

p
LðkÞ
bulk þ

2

D − 2k
∂ω

×

�
−hab

∂ð ffiffiffiffiffiffi−gp
LðkÞ
bulkÞ

∂ωhab
þ habHabðkÞ

�
;

ð2:41Þ

in which we have

LðkÞ
bulk ¼ f0ðLðkÞ

LovelockÞðLðkÞ
ADM − LðkÞ

LovelockÞ
− fðLðkÞ

LovelockÞ − ∂ωϕL
ðkÞ
surf : ð2:42Þ

Considering Eq. (2.41), we see that the surface part of
the Lagrangian is not determined completely by its bulk
part. This is in contrast to the Lovelock Lagrangian.

Furthermore, the bulk Lagrangian in fðLðkÞ
LovelockÞ gravity

is not necessarily a first-order Lagrangian and contains an
arbitrary function of the second order derivatives of metric.

Hence, as we mentioned, the fðLðkÞ
LovelockÞ Lagrangian is not

a degenerate one.
Now varying the degenerated action in Eq. (2.36) with

respect to ϕ and gab, after a little algebra, we obtain

δAðkÞ
f ¼ δϕA

ðkÞ
f þ δhA

ðkÞ
f ; ð2:43Þ

where

δϕA
ðkÞ
f ¼

Z
M

dDxLðkÞ
ϕ δϕ;

Lϕ ≡
� ffiffiffiffiffiffi

−g
p ðLðkÞ

ADM − ∂ϕVðϕÞÞ

þ 2

D − 2k
∂ω

�
−hab

∂ð ffiffiffiffiffiffi−gp
LðkÞ
ADMÞ

∂ð∂ωhabÞ
��

; ð2:44Þ

and

δhA
ðkÞ
f ¼

Z
M

dDxLabðkÞδhab þ
Z
Σt
dD−1yπ̄abðkÞðΣÞ δhabðΣÞ

−
Z
Σt

dD−1yϕδπ̄ðkÞϕðΣÞ; ð2:45Þ

in which

LabðkÞ ¼ ϕ
∂ð ffiffiffiffiffiffi−gp

LðkÞ
ADMÞ

∂hab
− ∂ωðϕMωabÞ − 1

2

ffiffiffiffiffiffi
−g

p
habVðϕÞ

þ 2

D − 2k
ð∂ωϕMωabðkÞ þ ∂ωϕhklBωabklðkÞ

− ∂cð∂ωϕhabB̃ωabcdeðkÞÞÞ; ð2:46Þ

and BωabklðkÞ ≡ ∂MωabðkÞ=∂gkl, B̃ωabcdeðkÞ ≡ ∂MωabðkÞ=
∂ð∂cgdeÞ. Substituting (2.44) and (2.45) into (2.43) gives

δAðkÞ
f ¼

Z
M

dDxLðkÞ
ϕ δϕþ

Z
M

dDxLabðkÞδhab

þ
Z
Σt

dD−1yπ̄abðkÞðΣÞ δhabðΣÞ −
Z
Σt

dD−1yϕδπ̄ðkÞϕðΣÞ:

ð2:47Þ

As in Lovelock gravities discussed earlier, we shall impose
only the Dirichlet BC on B. However, based on (2.47), we
find that there exist four different types of BCs on the
hyper-surfaces Σt with appropriate Myers terms that all lead

to the well-defined variation principle for fðLðkÞ
LovelockÞ

gravity. We shall therefore discuss these BCs on Σt next.

1. Dirichlet BC

In order to impose solely the Dirichlet BC: δhabjΣt
¼

δϕjΣt
¼ 0 to the Eq. (2.47), we need to modify the action

(2.34) by adding the following Myers term

ADðkÞ
f ¼ AðkÞ

f þAMyersðDÞðkÞ
f ¼ AðkÞ

f þ
Z
Σt

dD−1yϕπ̄ðkÞϕðΣÞ:

ð2:48Þ
Varying the above action shows that it is compatible with
Dirichlet BC as follows:

δADðkÞ
f ¼

Z
M

dDxLðkÞ
ϕ δϕþ

Z
M

dDxLabðkÞδhab

þ
Z
Σt

dD−1yπ̄abðkÞðΣÞ δhabðΣÞ þ
Z
Σt

dD−1yπ̄ðkÞϕðΣÞδϕ;

ð2:49Þ
which gives the equation of motion subjected to Dirichlet

BC. Also we can determine the Myers term AMyersðDÞðkÞ
f in

terms LðkÞ
surf . At first using (2.40) we can rewrite the Myers

term in Eq. (2.48) as
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AMyersðDÞðkÞ
f ¼ 2

D − 2k

Z
Σt

dD−1yϕhabðΣÞπ
abðkÞ
ðΣÞ : ð2:50Þ

Now substituting ϕ ¼ f0ðLðkÞ
LovelockÞ and using (2.16), one

can obtain

AMyersðDÞðkÞ
f ¼ −

Z
Σt

dD−1yf0ðLðkÞ
LovelockÞLðkÞ

surfðΣÞ: ð2:51Þ

Substituting k ¼ 1 in the above equation one can obtain

AMyersðDÞ
fðRÞ ¼ −2

Z
Σt

dD−1y
ffiffiffi
h

p
f0ðRÞKðΣÞ; ð2:52Þ

which reproduces the result in [6].

2. Neumann BC

We now consider Neumann BC∶ δπ̄abðkÞjΣt
¼δπ̄ðkÞϕ jΣt

¼0,
and obtain the appropriate Myers term. We propose

ANðkÞ
f ¼AðkÞ

f þAMyersðNÞðkÞ
f ¼AðkÞ

f −
Z
Σt

dD−1yhabðΣÞπ̄
abðkÞ
ðΣÞ ;

ð2:53Þ

A variation of (2.53) yields

δANðkÞ
f ¼

Z
M

dDxLðkÞ
ϕ δϕþ

Z
M

dDxLabðkÞδhab

−
Z
Σt

dD−1yhabðΣÞδπ̄
abðkÞ
ðΣÞ þ

Z
Σt

dD−1yϕδπ̄ðkÞϕðΣÞ;

ð2:54Þ

which gives us the equations of motion using the Neumann
BC. Using Eqs. (2.38) we can rewrite the Myers term so that

AMyersðNÞðkÞ
f ¼ −

Z
Σt

dD−1yϕhabðΣÞπ
abðkÞ
ðΣÞ

−
Z
Σt

dD−1yhabðΣÞH
abðkÞ
ðΣÞ ; ð2:55Þ

and using (2.16) and insertingϕ ¼ f0ðLðkÞ
LovelockÞ, we have the

above formula as

AMyersðNÞðkÞ
f ¼ D − 2k

2

Z
Σt

dD−1yf0ðLðkÞ
LovelockÞLðkÞ

surfðΣÞ

−
Z
Σt

dD−1yHðkÞ
ðΣÞ: ð2:56Þ

It should be noted that, unlike the case of Dirichlet BC, the
Neumann Myers term depends on the dimensions of space-
time. Also substituting k ¼ 1 in Eq. (2.39) gives

HðkÞ
ðΣÞ ¼ N

ffiffiffiffiffiffi
jhj

p 2ðD − 1Þ
D − 2

∂tf0ðRÞ; ð2:57Þ

so we have

AMyersðNÞ
fðRÞ ¼ ðD − 2Þ

Z
Σt

dD−1y
ffiffiffiffiffiffi
jhj

p
f0ðRÞKðΣÞ

− ðD − 1Þ
Z
Σt

dD−1yN
ffiffiffiffiffiffi
jhj

p
∂tf0ðRÞ; ð2:58Þ

which is compatible with the result in [6]. It is worthwhile to
compare (2.51) with the Myers term (2.56) for Dirichlet BC.
It is easily seen that

AMyersðNÞðkÞ
f ¼ −

D − 2k
2

AMyersðDÞðkÞ
f −

Z
Σt

dD−1yHðkÞ
ðΣÞ:

ð2:59Þ
3. Mixed BCs

There can exist two types of consistent mixed BCs for

fðLðkÞ
LovelockÞ gravity: δπ̄abðkÞjΣt

¼ δϕjΣt
¼ 0, or δπ̄ðkÞϕjΣt

¼
δhabjΣt

¼ 0. We begin with the first one. Using the

variation of fðLðkÞ
LovelockÞ-gravity action (2.47), the first type

mixed BC is consistent if we add the appropriate Myers
term so that the full action is

AM1ðkÞ
f ¼ AðkÞ

f þAMyersðM1ÞðkÞ
f ¼ AðkÞ

f −
Z
Σt

dD−1yhabðΣÞπ̄
abðkÞ
ðΣÞ þ

Z
Σt

dD−1yϕπ̄ðkÞϕðΣÞ: ð2:60Þ

Varying this action gives

δAM1ðkÞ
f ¼

Z
M

dDxLðkÞ
ϕ δϕþ

Z
M

dDxLabðkÞδgab −
Z
Σt

dD−1yhabðΣÞδπ̄
abðkÞ
ðΣÞ þ

Z
Σt

dD−1yπ̄ðkÞϕðΣÞδϕ: ð2:61Þ

Therefore, the first mixed BC indeed yields the equations of motion. Using Eqs. (2.38) and (2.40), the Myers term in (2.60)
can be written as
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AMyersðM1ÞðkÞ
f ¼ −

D − 2ðkþ 1Þ
D − 2k

Z
Σt

dD−1yϕhabðΣÞπ
abðkÞ
ðΣÞ −

Z
Σt

dD−1yhabðΣÞH
abðkÞ
ðΣÞ : ð2:62Þ

Now using Eq. (2.16) and ϕ ¼ f0ðLðkÞ
LovelockÞ, we can write Myers term of Eq. (2.62) in terms of LðkÞ

surf as

AMyersðM1ÞðkÞ
f ¼ D − 2ðkþ 1Þ

2

Z
Σt

dD−1yf0ðLðkÞ
LovelockÞLðkÞ

surfðΣÞ −
Z
Σt

dD−1yHðkÞ
ðΣÞ: ð2:63Þ

Choosing k ¼ 1 gives us

AMyersðM1Þ
fðRÞ ¼ ðD − 4Þ

Z
Σt

dD−1y
ffiffiffi
h

p
f0ðRÞKðΣÞ − ðD − 1Þ

Z
Σt

dD−1yN
ffiffiffi
h

p
∂tf0ðRÞ; ð2:64Þ

which is also compatible with the result in [6]. It is also worthwhile comparing the Dirichlet and the above mixed Myers

boundary terms in fðLðkÞ
LovelockÞ gravity. We see

AMyersðM1ÞðkÞ
f ¼ −

D − 2ðkþ 1Þ
2

AMyersðDÞðkÞ
f −

Z
Σt

dD−1yHðkÞ
ðΣÞ: ð2:65Þ

Finally we turn to the second type of mixed BC.
Considering Eq. (2.47) it is quite clear that, by applying
this BC, we can get the equations of motion without adding

any Myers terms to the action. This means that fðLðkÞ
LovelockÞ

gravity with this mixed BC is self-consistent with no need
to any Myers term in all D dimension.

D. Physical quantities and Myers terms

Although the equations of motion are the same for
imposing different BCs, the total actions are different
because of the different Myers terms. It is thus important
to address the physical implications since the actions play
an important role in quantum gravity. Here we consider
black hole thermodynamics in the semiclassical approxi-
mation in the path integral approach [9,22,26]. The
partition function in the semiclassical limit and for an
arbitrary gravitational model takes the form

Z ¼
Z

½dg�e−Ã�
E ≃ e−Ã

�
E ; ð2:66Þ

where A�
E ¼ AE −AE0 in which AE is the Euclidean

action and AE0 is the corresponding background action.
The symbol tilde means dividing by 16πG, i.e., Ã�

E ¼
limr→∞

A�
E

16πG. The free energy, entropy, and energy are then

F¼−1
β
lnZ¼1

β
Ã�

E; E¼Fþβ
∂F
∂β

; S¼β2
∂F
∂β

: ð2:67Þ

It could be troubling if different actions based on different
BCs lead to different black hole entropies, since we
certainly do not expect that they would all satisfy the same
first law of black hole thermodynamics. Since we need to
obtain the numerical value of the Euclidean action for a
black hole in the region rH < r < r∞, we should first make

the action well defined in the region where the manifold B
is considered for large but finite r. In this case the surface
terms on the manifold B vanish naturally no more. (They
vanish only at r → ∞ for asymptotically flat space-times
[22].) Hence, in order to make the Lovelock action well
defined one should consider the following two actions:

AðkÞ
D ¼

Z
M
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelockþ

2

D−2k

Z
B
dD−1zhabðBÞπ

abðkÞ
ðBÞ

þ 2

D−2k

Z
Σt

dD−1yhabðΣÞπ
abðkÞ
ðΣÞ ;

AðkÞ
N ¼

Z
M
dDx

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelockþ

2

D−2k

Z
B
dD−1zhabðBÞπ

abðkÞ
ðBÞ

þD−2ðkþ1Þ
D−2k

Z
Σt

dD−1yπabðkÞðΣÞ habðΣÞ: ð2:68Þ

The situation is analogous for the well-defined fðLðkÞ
LovelockÞ-

gravity actions that allow four different boundary condi-
tions on Σt. The full actions associated with these four types
of BCs are as follows:

ADðkÞ
f ¼AðkÞ

f þ
Z
B
dD−1yϕπðkÞϕðBÞ þ

Z
Σt

dD−1yϕπ̄ðkÞϕðΣÞ;

ANðkÞ
f ¼AðkÞ

f þ
Z
B
dD−1yϕπ̄ðkÞϕðBÞ −

Z
Σt

dD−1yhabðΣÞπ̄
abðkÞ
ðΣÞ ;

AM1ðkÞ
f ¼AðkÞ

f þ
Z
B
dD−1yϕπ̄ðkÞϕðBÞ −

Z
Σt

dD−1yhabðΣÞπ̄
abðkÞ
ðΣÞ

þ
Z
Σt

dD−1yϕπ̄ðkÞϕðΣÞ;

AM2ðkÞ
f ¼AðkÞ

f þ
Z
B
dD−1yϕπ̄ðkÞϕðBÞ: ð2:69Þ
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As was explained previously, the Myers boundary terms are
the same on B. The difference lies on the boundary Σt. For
Euclidean actions, we do not have Σt and hence the issue
does not arise such as black holes. In Lorentzian signature,
the Σt boundary terms will not contribute either for any
stationary geometries. They can however have nontrivial
effects on cosmological backgrounds and it requires further
investigation.

III. A NEW FOLIATION-INDEPENDENT
CLASSICAL HOLOGRAPHIC RELATION

In the previous section, we showed that in the ADM
formalism, the general Lovelock gravity is degenerate and
there is a classical holographic relation between the surface
and bulk terms. This can be viewed as a generalization of
the classical holographic relation in Einstein gravity.
However, there is one big difference. In the ADM formal-
ism, the coordinate w is specially treated as the foliation
coordinate while the classical holographic relation for the
Einstein gravity can be foliation independent in that there is
no coordinate that is special. It is then natural to ask the
question whether such a foliation-independent formulation
as Eq. (1.1) also exists in Lovelock gravities. In this section,
we show that there indeed exists a foliation-independent
classical holographic relation, but it is inequivalent from the
one in the ADM formalism for k ≥ 2.

A. k= 1: Einstein gravity

We begin with the definition of the Riemann tensor (for
torsion-free connections)

Rν1ν2
μ1μ2 ¼ gν2αð∂μ1Γν1

μ2α − ∂μ2Γ
ν1
μ1αÞ

þ gν2αðΓν1
μ1βΓ

β
μ2α − Γν1

μ2βΓ
β
μ1αÞ: ð3:1Þ

The indices ðμ1; μ2Þ are manifestly antisymmetric. What is
nontrivial is that ðν1; ν2Þ in the Riemann tensor is also
antisymmetric, even though they are not in each of the two
brackets of the right-hand side of the equation. It is thus
instructive to define

ðΓ2Þν1ν2μ1μ2
¼ Γ½ν1

α½μ1�Γ
jαj

μ2�βg
ν2�β;

ðDΓ2Þν1ν2μ1μ2 ¼ ∂½μ1Γ
½ν1

μ2�αg
ν2�α: ð3:2Þ

In other words, we force antisymmetrization of ðν1; ν2Þ in
each term. We can then also express the Riemann tensor as

Rν1ν2
μ1μ2 ¼ 2ðΓ2Þν1ν2μ1μ2

þ 2ðDΓ2Þν1ν2μ1μ2
: ð3:3Þ

The Ricci scalar is thus given by

R ¼ δμ1μ2ν1ν2R
ν1ν2
μ1μ2 ¼ Lð1Þ

0 þ Lð1Þ
1 ; ð3:4Þ

where

Lð1Þ
0 ¼ 2δμ1μ2ν1ν2 ðΓ2Þν1ν2μ1μ2

; Lð1Þ
1 ¼ 2δμ1μ2ν1ν2 ðDΓ2Þν1ν2μ1μ2

: ð3:5Þ

It can be established that the combination
ffiffiffiffiffiffi−gp ðLð1Þ

1 þ
2Lð0Þ

0 Þ is a total derivative in a foliation-independent way:

Lð1Þ
surfðΓ; ∂ΓÞ ¼

ffiffiffiffiffiffi
−g

p ðLð1Þ
1 þ 2Lð1Þ

0 Þ ¼ ∂μJμð1Þ;

Jμð1Þ ¼ ffiffiffiffiffiffi
−g

p ðgρσΓμ
ρσ − gρμΓσ

ρσÞ: ð3:6Þ

Compare the structure Jμ and Lð1Þ
0 , we have the identity

Jμð1Þ ¼ δσρ
∂ð ffiffiffiffiffiffi−gp

Lð1Þ
0 Þ

∂Γσ
μρ

: ð3:7Þ

This leads to the classical holographic relation for Einstein
gravity

ffiffiffiffiffiffi
−g

p
R ¼ ffiffiffiffiffiffi

−g
p

Lð1Þ
LovelockðΓ; ∂ΓÞ

¼ ffiffiffiffiffiffi
−g

p
Lð1Þ
bulkðΓÞ − ∂μ

�
δσρ

∂ð ffiffiffiffiffiffi−gp
Lð1Þ
bulkÞ

∂Γσ
μρ

�
; ð3:8Þ

where Lð1Þ
bulk ¼ −Lð1Þ

0 . Making use of the identity

∂Γρ
μν

∂ð∂αgβγÞ
¼ 1

2
ð−gραδβμδγν þ gρβδαμδ

γ
ν þ gργδβμδανÞ; ð3:9Þ

the classical holographic relation can also be written as [4,5]

ffiffiffiffiffiffi
−g

p
R ¼ ffiffiffiffiffiffi

−g
p

Lð1Þ
bulkðΓÞ −

2

D − 2
∂μ

�
gνρ

∂ð ffiffiffiffiffiffi−gp
Lð1Þ
bulkÞ

∂ð∂μgνρÞ
�
:

ð3:10Þ

It is important to note that, for Einstein gravity, the Lð1Þ
bulkðΓÞ

obtained in this foliation-independent approach is identically
the same as the bulk term in theADMformalism discussed in
the previous section.

B. k= 2: Gauss-Bonnet gravity

With our new expression for the Riemann tensor (3.3), it
can be easily seen that the Lagrangian of GB gravity is

ffiffiffiffiffiffi
−g

p
LGB ¼ ffiffiffiffiffiffi

−g
p ðLð2Þ

0 þ 2Lð2Þ
1 þ Lð2Þ

2 Þ; ð3:11Þ

where

Lð2Þ
0 ¼ 4!δμ1μ2μ3μ4ν1ν2ν3ν4 ðΓ2Þν1ν2μ1μ2

ðΓ2Þν3ν4μ3μ4 ;

Lð2Þ
1 ¼ 4!δμ1μ2μ3μ4ν1ν2ν3ν4 ðΓ2Þν1ν2μ1μ2

ðDΓ2Þν3ν4μ3μ4 ;

Lð2Þ
2 ¼ 4!δμ1μ2μ3μ4ν1ν2ν3ν4 ðDΓ2Þν1ν2μ1μ2

ðDΓ2Þν3ν4μ3μ4 : ð3:12Þ

By some nontrivial exercise that we shall present momen-
tarily, we find that
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ffiffiffiffiffiffi
−g

p
LGB ¼ ffiffiffiffiffiffi

−g
p

Lð2Þ
bulk þ ∂μJμð2Þ; ð3:13Þ

where

Lð2Þ
bulkðΓ;∂ΓÞ ¼ −Lð2Þ

0 −Lð2Þ
1 ;

Jμð2Þ ¼ 4!
ffiffiffiffiffiffi
−g

p
δμμ2μ3μ4ν1ν2ν3ν4Γν1

μ2
ν2ððΓ2Þν3ν4μ3μ4 þ ðDΓ2Þν3ν4μ3μ4Þ:

ð3:14Þ

It can be shown that GB gravity is classically holographic,
namely

Jμð2Þ ¼ −δνρ
∂ð ffiffiffiffiffiffi−gp

Lð2Þ
bulkÞ

∂Γν
μρ

− Γν
ρσ
∂ð ffiffiffiffiffiffi−gp

Lð2Þ
bulkÞ

∂ð∂μΓν
ρσÞ

: ð3:15Þ

In other words, the surface term is completely specified by
the bulk action.
We now give the proof. We begin by expressing the GB

term as

LGB ¼ Aμ1μ2
ν1ν2R

ν1ν2
μ1μ2 ; Aμ1μ2

ν1ν2 ≡ 4!

22
δμ1μ2μ3μ4ν1ν2ν3ν4 R

ν3ν4
μ3μ4 : ð3:16Þ

The quantity Aμ1μ2
ν1ν2 has the symmetries of the Riemann

tensor and it is divergence free, namely ∇μ1A
μ1μ2
ν1ν2 ¼ 0 [4,5].

Expressing Rν1ν2
μ1μ2 in terms of Γν1

ν2μ1 , we can write
Eq. (3.16) as

ffiffiffiffiffiffi
−g

p
LGB ¼ 2

ffiffiffiffiffiffi
−g

p
Aν1

ν2μ1μ2ð∂μ1Γν1
μ2ν2 þ Γν1

μ1μΓ
μ
μ2ν2Þ

¼ 2
ffiffiffiffiffiffi
−g

p ðAν1
ν2μ1μ2Γν1

μ1μΓ
μ
ν2μ2

− Aν1
ν2μ1μ2Γν1

μ2ν2Γ
μ
μ1μ − Γν1

μ2ν2∂μ1Aν1
ν2μ1μ2Þ

þ 2∂μ1 ½
ffiffiffiffiffiffi
−g

p
Aν1

ν2μ1μ2Γν1
μ2ν2 �: ð3:17Þ

It follows from the divergence-free condition of A, we have

∂μ1Aν1
ν2μ1μ2 ¼ −Γν2

μμ1Aν1
μμ1μ2 þ Γμ

ν1μ1Aμ
ν2μ1μ2

− Γμ1
μμ1Aν1

ν2μμ2 : ð3:18Þ

Substituting this into Eq. (3.17) and writing Aν1
ν2μ1μ2 in

terms of Γν1
ν2μ1 and δμ1μ2μ3μ4ν1ν2ν3ν4 , we obtain (3.13). To obtain

the classical holographic relation, we note

δν1ν2
∂ð ffiffiffiffiffiffi−gp

Lð2Þ
bulkÞ

∂Γν1
μ1ν2

¼ −4!
ffiffiffiffiffiffi
−g

p
gν2νgν4ν

0 ðδμ1μ2μ3μ4ν1νν3ν
0 ðΓν1

ν2μ2Γ
ν3
μ3ρΓ

ρ
μ4ν4 þ Γν1

ν2μ2∂μ3Γ
ν3
μ4ν4Þ

þ δμ3μ2μ4μ1ν1νν3ν
0 Γν1

μ2ρΓ
ρ
ν2μ3Γ

ν3
μ4ν4Þ;

Γν1
μ4ν2

∂ð ffiffiffiffiffiffi−gp
Lð2Þ
bulkÞ

∂ð∂μ1Γν1
μ4ν2Þ

¼ 4!
ffiffiffiffiffiffi
−g

p
gν2νgν4ν

0
δμ3μ2μ4μ1ν1νν3ν

0 Γν1
μ2ρΓ

ρ
ν2μ3Γ

ν3
μ4ν4 : ð3:19Þ

With these, the classical holographic relation (3.15) follows
straightforwardly.
It is worth remarking that it is nontrivial to demonstrate

that
ffiffiffiffiffiffi−gp

Lbulk gives the foliation-independent equation of
motion (2.5) of k ¼ 2. We shall illustrate here how a
quadratic Riemann tensor theory that might involve four
derivatives in the equations of motion actually reduces to a
two-derivative theory. The fact that Lbulk does not involve

Lð2Þ
2 implies that the equation of motion can be at most of

three derivatives, originated from Lð2Þ
1 . However, with a

straightforward exercise, the
ffiffiffiffiffiffi−gp

Lð2Þ
1 will not contribute

three derivatives to the equation of motion, even though it
cannot express as a total derivative in a foliation-indepen-
dent way such as ∂μJμ. The situation improves if we break
the covariance and treat one coordinate special, such as w

coordinate in the ADM formalism. The Lð2Þ
1 can be further

decomposed into a bulk part with no ∂
2
w and a surface term

expressed as ∂wJ. It is perhaps demonstrative to consider
an example of classical mechanics with the analogous
Lagrangian

L2 ¼ q1q2ð _q1 _q2Þmðq̈1 _q2 þ q̈2 _q1Þ;

¼ 1

mþ 1
ð _q1 þ _q2Þmþ1ðq̈1 _q2 þ q̈2 _q1Þ

þ 1

mþ 1
ðq1q2ð _q1 _q2Þmþ1Þ_: ð3:20Þ

Indeed, as we have shown in the previous section, in the
Gaussian coordinates xμ ¼ fω; xag, we are able to write
GB gravity as

ffiffiffiffiffiffi
−g

p
LGB¼N

ffiffiffi
h

p
δa1a2a3a4b1b2b3b4

�
1

4
R̄b1b2
a1a2R̄

b3b4
a3a4

þϵKb1
a1K

b2
a2

�
R̄b2b3
a2a3 −

ϵ

3
Kb3

a3K
b4
a4

��

þ∂ω

�
−2ϵ

ffiffiffi
h

p
δa1a2a3b1b2b3

Kb1
a1

�
R̄b2b3
a2a3 −

2ϵ

3
Kb2

a2K
b3
a3

��
;

ð3:21Þ
in which the bulk term is a first-order Lagrangian [18–20].
Furthermore it can be written in terms of a classical
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holographic relation as Eq. (2.19) where the bulk term is a
first order Lagrangian in terms of w derivatives. The bulk
term in this ADM formalism is no longer the same as the
bulk term in the foliation-independent approach.

C. General kth Lovelock gravity

Following the same approach of GB gravity, we can find
that Lovelock gravity is in general classical holographic in
the foliation-independent formalism, namely

ffiffiffiffiffiffi
−g

p
LðkÞ
LovelockðΓ; ∂ΓÞ ¼

ffiffiffiffiffiffi
−g

p
LðkÞ
bulkðΓ; ∂ΓÞ

− ∂μ

�
δβρ

∂ð ffiffiffiffiffiffi−gp
LðkÞ
bulkÞ

∂Γβ
μρ

þ Γβ
αρ
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂ð∂μΓβ
αρÞ

�
: ð3:22Þ

To be specific, it is instructive to define

LðkÞ
0 ¼ δμ1���μ2kν1���ν2k ðΓ2Þν1ν2μ1μ2

ðΓ2Þν3ν4μ3μ4 � � � ðΓ2Þν2k−1ν2kμ2k−1μ2k ; ð3:23Þ

and define LðkÞ
i as LðkÞ

0 with “i” ðΓ2Þ factors replaced by the
ðDΓ2Þ terms of the same indices; therefore, we have
i ¼ 0; 1;…; k. It is then clear that we have

LðkÞ
Lovelock ¼

Xk
i

�
k

i

�
LðkÞ
i : ð3:24Þ

For two low-lying examples, we have

R ¼ Lð1Þ
0 þ Lð1Þ

1 ; LGB ¼ Lð2Þ
0 þ 2Lð2Þ

1 þ Lð2Þ
2 : ð3:25Þ

We find that the corresponding bulk Lagrangian is given by

LðkÞ
bulk ¼ −

Xk−1
i

�
k − 1

i

�
LðkÞ
i : ð3:26Þ

The minus sign is intriguing and, for k ≥ 2, it is not the same
as the bulk term in the ADM formalism given in Eq. (2.19).
It is nowworth comparing our results to those in literature.

For a general Lovelock Lagrangian, without calculating the
bulk term, the following surface Lagrangian in terms of
metric has been proposed [4,5]

∂μJμðkÞ ¼ −
1

ðD=2Þ − 2k
∂μ

�
gνρ

∂ð ffiffiffiffiffiffi−gp
LðkÞ
bulkÞ

∂ð∂μgνρÞ

þ ∂δgνρ
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂ð∂μ∂δgνρÞ
�
: ð3:27Þ

To prove the above equation, the homogeneity of the bulk
expression was assumed, with the following relations for the
bulk term

gμν
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂gμν
¼ ððD=2Þ − n0Þ

ffiffiffiffiffiffi
−g

p
LðkÞ
bulk;

∂ρgμν
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂ð∂ρgμνÞ
¼ n1

ffiffiffiffiffiffi
−g

p
LðkÞ
bulk;

∂δ∂ρgμν
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂ð∂δ∂ρgμνÞ
¼ n2

ffiffiffiffiffiffi
−g

p
LðkÞ
bulk; ð3:28Þ

in which nis are the number of the factors of gμν, ∂ρgμν, and
∂δ∂ρgμν in any given term of the bulk. However, considering
the bulk term presented in Eq. (3.26), it is obvious that there
is no homogeneity in ∂ρgμν and ∂δ∂ρgμν, so we are not
allowed to write the identities in Eq. (3.28) for the bulk term.
In the next subsection, we give explicit examples to illustrate
that Eq. (3.27) is incorrect.

D. FLRW model as a concrete example

We now consider the FLRW model as a concrete
example to illustrate the difference between the classical
holographic relations, derived from the ADM formalism
and the foliation-independent formalism. We consider the
cosmological metric in general D dimensions

ds2 ¼ −dt2 þ aðtÞdxidxi: ð3:29Þ

Note that here we use aðtÞ rather than aðtÞ2 as the scaling
factor, so the metric is gij ¼ aδij. Note that we can treat this
metric as special case of the general foliation-independent
approach, or alternatively as a special case of the ADM
decomposition where the special coordinate w ¼ t. This
allows us to compare the bulk Lagrangian in two
approaches. For this cosmological ansatz, we have

ffiffiffiffiffiffi
−g

p
LðkÞ
0 ¼ ðD − 1Þ!

ðD − 2k − 1Þ! a
D−2k−1 _a2k; LðkÞ

1 ¼ 2
ðD − 1Þ!
ðD − 2kÞ! a

D−2k _a2ðk−1Þä;

ffiffiffiffiffiffi
−g

p
LðkÞ
i ¼ 0; i ¼ 2; 3;…; k: ð3:30Þ

The general Lovelock and its bulk Lagrangian are therefore given by

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock ¼

ffiffiffiffiffiffi
−g

p ðLðkÞ
0 þ kLðkÞ

1 Þ; ffiffiffiffiffiffi
−g

p
LðkÞ
bulk ¼ −

ffiffiffiffiffiffi
−g

p ðLðkÞ
0 þ ðk − 1ÞLðkÞ

1 Þ: ð3:31Þ
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It is straightforward to verify that

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock ¼

ffiffiffiffiffiffi
−g

p
LðkÞ
bulk þ ∂tJt; ð3:32Þ

where

Jt ¼ 2
ðD − 1Þ!
ðD − 2kÞ! a

D−2k _a2k−1: ð3:33Þ

The fact that the difference between the full Lagrangian and
our bulk term gives a total derivative confirms our bulk
Lagrangian formula Eq. (3.26), even though the FLRW
metric is somewhat too simple to be a proof. For the
classical holographic relation, we propose the ansatz on the
metric function

Jt ¼ c1a
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂ _a
þ c2 _a

∂ð ffiffiffiffiffiffi−gp
LðkÞ
bulkÞ

∂ä
; ð3:34Þ

where ðc1; c2Þ are numerical coefficients that are to be
determined. We find the above relation holds provided that

4c1ðk−1Þ2aäþð2ðk−1Þc2þðDþ2−4kÞkc1þ2Þ _a2¼0:

ð3:35Þ

Thus we have

k ¼ 1∶ c1 ¼ −
2

D − 2
; c2 is irrelevant;

k ≥ 2∶ c1 ¼ 0; c2 ¼ −
1

k − 1
: ð3:36Þ

Thus for the cosmological model, we have

ffiffiffiffiffiffi
−g

p
R ¼ ffiffiffiffiffiffi

−g
p

Lð1Þ
bulk −

2

D − 2

d
dt

�
a
∂ð ffiffiffiffiffiffi−gp

Lð1Þ
bulkÞ

∂ _a

�
;

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock ¼

ffiffiffiffiffiffi
−g

p
LðkÞ
bulk −

1

k − 1

d
dt

�
_a
∂ð ffiffiffiffiffiffi−gp

LðkÞ
bulkÞ

∂ä

�
;

k ≥ 2: ð3:37Þ

To compare this classical holographic relation to that in the
ADM formalism, we note that

ffiffiffiffiffiffi
−g

p
LðkÞ
1 ¼ −

2

2k − 1
LðkÞ
0 −

2

kð2k − 1ÞðD − 2kÞ
d
dt

×

�
a
∂ð ffiffiffiffiffiffi−gp

LðkÞ
0 Þ

∂ _a

�
: ð3:38Þ

This leads to the classical holographic relation in the ADM
formalism, namely

ffiffiffiffiffiffi
−g

p
LðkÞ
Lovelock¼

ffiffiffiffiffiffi
−g

p
LðkÞ
ADM−

2

D−2k
d
dt

�
a
∂ð ffiffiffiffiffiffi−gp

LðkÞ
ADMÞ

∂ _a

�
;

ð3:39Þ

withLðkÞ
ADM ¼ − 1

2k−1L
ðkÞ
0 . This example explicitly shows that

the proposed surface term in (3.27) is not correct. Note that
for the ADM approach, the form of the classical holographic
relation is “continuous” as k running from 1 to higher values.
However, the relation is discontinuous in the foliation-
independent approach when we use ða; _a; äÞ as variables.
It is also worth emphasizing that for k ¼ 1, we have
Lbulk ¼ LADM. However, for k ≥ 2, Lbulk in the foliation-
independent approach involves ä, as well as ða; _aÞ; on the
other hand, LADM is first order involving only ða; _aÞ.
We further consider the most general cosmological ansatz

inD¼5: ds25¼ gμνðtÞdxμdxν, with xμ¼ðt;x1;x2;x3;x4Þ. We
follow Eq. (3.27) and consider the ansatz for GB gravity
(k ¼ 2)

∂tJtð2Þ ¼ −
1

ð5=2Þ − 4
∂t

�
c1gμν

∂ð ffiffiffiffiffiffi−gp
Lð2Þ
bulkÞ

∂ð∂tgμνÞ

þ c2∂tgμν
∂ð ffiffiffiffiffiffi−gp

Lð2Þ
bulkÞ

∂ð∂t∂tgμνÞ
�
; ð3:40Þ

with two arbitrary numerical coefficients ðc1; c2Þ. We use
computer to obtain explicit Lbulk and we find that there is no
solution for ðc1; c2Þ.

IV. CONCLUSION

In this paper, we obtained the classical holographic
relations for the general Lovelock Lagrangian following
two approaches: one based on the ADM formalism and the
other with the surface term ∂μJμ. In the latter foliation-
independent approach, the bulk Lagrangian depends not
only Γ but also ∂Γ for k ≥ 2; therefore, it is not first order,
or degenerate. Our classical holographic relation Eq. (3.22)
differs from the Eq. (3.27) that was in literature, and we
used explicit examples to demonstrate that Eq. (3.27) is
incorrect.
The nondegenerate issue can be resolved by using the

ADM decomposition xμ ¼ ðw; xaÞ where the foliation
coordinate w is treated as special. Using the results of
[18,19,21] for the first-order Lagrangians and boundary
terms, we obtained the classical holographic-degenerate
relation (2.19) for the Lovelock Lagrangian. By first order,
we mean that the bulk Lagrangian has no more than one
derivative of w; its two-derivative terms are all associated
with the derivatives of xa, entering the Lagrangian through
the Riemann tensor of the submanifold xa. The bulk
Lagrangians from both the ADM and foliation-independent
approaches turn out to be same for Einstein gravity, but
they are not for general Lovelock gravities.
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The resulting classical holographic-degenerate rela-
tion in the ADM formalism enabled us to compute the
appropriate Myers terms consistent with the Dirichlet or
Neumann BCs (related by a factor dependent on the space-
time dimension). We found this interesting result that in
D ¼ 2ðkþ 1Þ, the Myers term under Neumann BC van-
ishes for the kth-order Lovelock gravity. As a contrast, in a
general foliation independent approach, i.e., the foliation-
independent approach discussed earlier, our result is differ-
ent and the Lovelock Lagrangian is not degenerate, except
for k ¼ 1, since the bulk term contains second-order
derivatives. We used the FLRW cosmological metric in
general dimensions to illustrate the differences between the
ADM formalism and the foliation-independent approach.

For generalization, we considered fðLðkÞ
LovelockÞ gravity

and figured out that its Lagrangian is not classical holo-
graphic. Also it can not be expressed as the sum of the

first-order and the total derivative terms. So fðLðkÞ
LovelockÞ

Lagrangian is not degenerate. Following the Ostrogradsky

approach [7] and writing fðLðkÞ
LovelockÞ-gravity action in the

framework of Brans-Dicke formalism [13–15] gave us the
degenerate Lagrangian that we used to develop the issue of
BCs and the corresponding Myers terms. Here we followed
ADM formalism to find the appropriate Myers terms in

fðLðkÞ
LovelockÞ gravity required to make the variation principle

well defined. We have introduced Neumann BC and two
types of mixed BCs in addition to the Dirichlet BC. The
remarkable result is that under a type of mixed BC we do

not need to add anyMyers term to the action of fðLðkÞ
LovelockÞ

gravity in all D dimensions.

Moreover, we investigated physical quantities such as free
energy, energy, and black hole entropy in the framework of
Euclidean semiclassical approximation method [9,22] via

different BCs in Lovelock gravity and fðLðkÞ
LovelockÞ gravity. In

this method the black hole entropy may be obtained for
different kinds of BCs and Myers terms. However, we
showed that the main term, which was responsible to give
the difference of the numerical value of the action with the
background solution,was the same for all cases, regardless of
the particular kind of BCs. In fact, decomposing the space-
times boundary into two spacelike Σt and one timelike B
hyper-surfaces, one can see that the integral over B has no
role in making the action principle well defined for asymp-
totically flat metrics [6,22]. However, to calculate the black
hole entropy, the integral overB is exactly the term that gives
nontrivial contributions for different BCs. Taking this point
into account, we showed inLovelock gravity, underDirichlet

and Neumann BCs and also in fðLðkÞ
LovelockÞ gravity under

Dirichlet, Neumann, and two types of mixed BCs, free
energy, energy, and the entropy do not change. In our
approach the actions do not change for all stationary back-
grounds, but they do depend on the BCs in time-dependent
space-times; its physical implication in cosmology needs to
be investigated.
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