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We obtain the classical holographic relation for the general Lovelock gravity and decompose the full
Lagrangian into the bulk term and the surface term, expressed as a total derivative d,J*. By classical

holographic relation, we mean that J* is determined completely by the bulk term. We find that the bulk term
is not degenerate, or first order in this foliation-independent approach. We then consider the Arnowitt-
Deser-Misner formalism where the foliation coordinate w is treated as special. We obtain the classical
holographic-degenerate relation with the first-order bulk term that does not involve higher than one
derivative of w. For Einstein gravity, the two approaches lead to the same bulk term, but different ones for
higher-order Lovelock gravities. The classical holographic-degenerate formulation in the Arnowitt-Deser-
Misner approach allows us to consider alternative boundary conditions in the variation principle with
different Myers terms. We show in the semiclassical approximation that the black hole entropy in all cases
is the same as the one obtained under the standard Dirichlet boundary condition. We also generalize the

formalism to general f (L(Lli,)velock) gravity.

DOI: 10.1103/PhysRevD.105.124067

I. INTRODUCTION

Holographic principle, relating theories in D and D — 1
dimensions [1,2], has played a significant role in theoretical
physics since the discovery of the AdS/CFT correspon-
dence [3], a conjectured duality based on string theory. The
holographic principle is quantum in nature and in a suitable
limit can relate a classical gravity theory to its strongly
coupled dual quantum theory. In this paper we would like to
explore a very different type of holographic relation at the
level of Lagrangian [4,5] and we would like to call it
“classical holographic relation” to distinguish it from the
usual “holographic duality” or “holography.” We can
decompose a higher-derivative Lagrangian into a bulk
and surface term as

L(®, 00, D, ...) = Ly (D, 0D, 52D, ..)

+ 0,J4(®, 00, 0*D..), (1.1)

where ®@s are dynamical fields. By holography we mean J#
is not arbitrary but it is completely determined by the
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bulk Lagrangian. In general relativity, since the affine
connection I, which is a derivative of the metric tensor,
is not tensorial under the general transformation, the
Einstein-Hilbert (EH) Lagrangian involves not only I" but
also its higher derivative dI'. It turns out, miraculously,
that the EH Lagrangian can be written in the form of
(1.1) with
Ly = Equad(r) = ‘Cquad(gv ag), (1.2)
i.e., it is quadratic in I or dg only [4-6], analogous to
classical mechanics or field theories. In other words,
although the EH Lagrangian involves higher-derivatives
on the metric, they can all be absorbed into a total deri-
vative that is fully determined by the first-order bulk
Lagrangian. In classical mechanics according to the
Ostrogradsky theorem [7], a Lagrangian is degenerate
if one can write it as a sum of a first-order Lagrangian
and a total derivative term. Hence if the bulk term of
the classical holographic relation was a first-order
Lagrangian, then we would like to call it classical
holographic degenerate. Clearly, in Einstein gravity, the
classical dynamics are determined by the bulk Lagrangian
and the total derivative term plays the role of making
the action invariant under the general transformation.
Thus the classical holographic relation and general
diffeomorphism are closely related.
When a Lagrangian contains two or more derivatives on
a dynamical field, it becomes subtle to obtain the equation

Published by the American Physical Society


https://orcid.org/0000-0001-7100-2466
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.124067&domain=pdf&date_stamp=2022-06-27
https://doi.org/10.1103/PhysRevD.105.124067
https://doi.org/10.1103/PhysRevD.105.124067
https://doi.org/10.1103/PhysRevD.105.124067
https://doi.org/10.1103/PhysRevD.105.124067
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

H. KHODABAKHSHI and H. LU

PHYS. REV. D 105, 124067 (2022)

of motion via the variation principle. Naively, one would
have to impose not only the Dirichlet boundary condition
(BC) but also the Neumann BC, where the momentum
fields vanish on the boundary. However, it is inconsistent
to allow a canonical pair with a nonvanishing Poisson
bracket to vanish simultaneously, even only on the boun-
dary [6,8,9]. In Einstein gravity, this issue was resolved by
introducing an appropriate Gibbons-Hawking-York (GHY)
surface term [10,11], whose coefficient is independent of
the space-time dimensions of the theory. The variation
principle then becomes consistent by simply imposing the
Dirichlet BC. However, the classical holographic degen-
eracy allows one to impose alternative BCs, since for
degenerate Lagrangian, we can define the momentum fields
straightforwardly from the first-order bulk Lagrangian. It
turns out that one can consistently impose the Neumann BC
in four dimensions without having to introduce any GHY
term. In general dimensions, an appropriate GHY term with
a specific dimension-dependent coefficient is needed for
the Neumann BC [6,12].

In this paper, we would like to explore further the
classical holographic relation in higher-derivative gravities
that are constructed from general Riemann tensor invari-
ants. We would like to focus on degenerate theories that
necessarily require ghost-free combinations of Riemann
tensor invariants. One such a theory is f(R) gravity.
However, it was shown that the theory is not degenerate,
but can be made so using the Ostrogradsky approach [7].
Specifically, one can follow the approach and introduce a
scalar field in the framework of Brans-Dicke formalism
[13—15]. In this different but equivalent formalism, the
Lagrangian becomes degenerate and allows us to have
different BCs with appropriate GHY terms [6].

The more interesting ghost-free higher-derivative gravity
is perhaps Lovelock gravity, which is a specific higher-
order polynomial combinations of the Riemann tensor such
that the field equation remains with two derivatives. The
Lovelock series can be classified by the homogeneous
polynomial order k of the Riemman tensor, with £k = 1, 2
corresponding to the familiar Einstein and Gauss-Bonnet
(GB) gravities, respectively. Lovelock gravity is also a
function of I" and dI'.

We find that general Lovelock gravity has the classical
holographic relation as in (1.1), but the bulk Lagrangian is
not degenerate, in that it is a function not only of I" but also
of dI'. One difference between the bulk term and the full
Lovelock Lagrangian is that the highest polynomial order
of dI'" in the bulk is one less. Consequently, the bulk
Lagrangian of Einstein gravity with k = 1 does not have
dI'. Using the foliation-independent approach, the classical
holographic relation of Lovelock gravities was also studied
in [4,5], but our results are different.

Thus the foliation-independent approach where the sur-
face term is 9,J* leads to nondegenerate bulk Lagrangian
for general Lovelock gravities. This leads us to consider a

different approach based on the Arnowitt-Deser-Misner
(ADM) formalism [16,17]. We can choose special coor-
dinates x* = (w,x“) such that J* = (J",0). We then
decompose the metric using the ADM formalism, treating
the coordinate w as the foliation coordinate. We then
find that Lovelock gravity is not only classically holo-
graphic but also degenerate in the sense that the bulk
Lagrangian has no more than one derivative of the
coordinate w. The two-derivative terms in the bulk
Lagrangian are all associated with coordinates x¢, enter-
ing through the Riemann tensor of the submanifold. We
express the surface term as d,,Lq,¢. It turns out that the
bulk Lagrangian is precisely the first-order Lagrangian
obtained using the ADM formalism by Teitelboim and
Zanelli [18] and was recently considered in a straight-
forward manner in [19,20]. Our result is to establish
the classical holographic relation. For Einstein gravity
(k=1), we find that the bulk Lagrangian is identically
the same for both the foliation-independent and the ADM
approaches. They are however not the same for GB
(k =2) or higher-k Lovelock gravities. The -classical
holographic degeneracy in the ADM formalism allows
us to reexamine the BCs in the variation principle for
general Lovelock gravities.

The paper is organized as follows. In Sec. II, we
obtain the classical holographic-degenerate relation for
the Lovelock Lagrangian by the ADM formalism, making
use of the Teitelboim-Zanelli Lagrangian, which is the first-
order Lagrangian [18,19] and Myers boundary term [21].
From the classical holographic-degenerate relation, we
add appropriate Myers terms to the Lovelock action to
make the variation principle well defined under Dirichlet or

Neumann BCs. We then consider f (Ll(ﬁ))velock) gravity and
show that it has no classical holographic relation. Using the
Ostrogradsky approach in the frame work of Brans-Dicke
formalism, we find that its equivalent scalar-tensor theory
can be written in a degenerate form. This enables us to
introduce the consistent Myers terms for Dirichlet,
Neumann, and two types of mixed BCs in arbitrary
dimensions. It is intriguing to observe that there exists a
mixed BC that does not require any Myers term in all
dimensions. Furthermore GHY and Myers terms play an
important role in the calculation of the black hole entropy
[22-25]. Using the semiclassical approximation method
[9,22,26], we examine what happens to the black hole
entropy under different BCs as well as different Myers
terms. We expect physically the entropy should be the same
under different BCs and our results indeed confirm this. In
Sec. I1I, we investigate classical holographic relation for the
Lovelock Lagrangian based on the foliation-independent
approach (1.1). We give explicit bulk Lagrangian and the
classical holographic relation. We consider the Friedmann-
Lemaitre-Robertson-Walker (FLRW) cosmological metric
to illustrate the difference between the ADM formalism and
the foliation-independent approach.

124067-2



CLASSICAL HOLOGRAPHIC RELATIONS AND ALTERNATIVE ...

PHYS. REV. D 105, 124067 (2022)

II. CLASSICAL HOLOGRAPHIC LAGRANGIAN
IN ADM FORMALISM

We begin with the general Lagrangian of the Lovelock
series given by [27]

k
L= V —9L1ovelock = V _gza(k)L]Egvelocka (2-1)

k>0

where a) are dimensionful coupling constants and
L(L];)velock is the kth order Lovelock combinations of the

Riemann tensor given by

2k)!
Lo _ (2K

Vok—1V2k
Lovelock — "ok ‘R

51511522/:{RZ111D422R233E Ry p (22)
The multi-index Kronecker delta symbol is defined to be

totally antisymmetric, i.e.,

gt — gl g — 5[%: s 8]

Vg ”2k] ’ (23)
where the square brackets denote conventional unit-strength
antisymmetrizations (so, for example, X1 #) = xlu-wl),
Note that with our choice of normalization, we have

(k) _ pk
LLovelock =R+ ’

(2.4)
with unit coefficient for the purely Ricci scalar term, where
the ellipses denote all terms involving one or more uncon-
tracted Ricci tensor or Riemann tensor. Therefore, we have
LO =1, LW =R, and L® = Lgy =R> - 4R"'R,, +

RHPOR etc. The equation of motionis ), E, ,(,k) = 0, with

HUpos
(2k)!

u(k) _
B = - 2k+1

- Mok pliVa Vok—1V2k
5/1:”1 Lok Rﬂlﬂz . ’Rl’zk—lﬂzk‘

(2.5)

A. The classical holographic relation

In this section, we would like derive a classical holo-
graphic relation of general Lovelock gravity in the ADM
formalism, where the metric is decomposed as

ds* = eN(w,x*)?dt* + hy,(w, x)(dx* + N(w, x%)dt)
X (dx? + NP (w, x*)dt), (2.6)

in which the coordinate w is specially treated, as a foliation
coordinate. (The foliation-independent approach will be
given in Sec. III.) For constant w on the dM of x“, the
submanifold is spacelike when ¢ = —1 and timelike when
€ = +1. This metric can be further simplified to the
Gaussian metric under appropriate gauge fixing and the
metric has the following form [28]

ds* = eN(w)*dw?* + hyp(w, x)dxdxP.  (2.7)
We focus on our discussion using the Gaussian metric.

It is clear that all the metric components enter the
Lovelock Lagrangian with either no w derivative, one
derivative 0,,, or two derivatives 2. We would like first
to split the Lagrangian into two parts: terms that involve no
02, and terms that contain 2. The key to the classical
holographic relation is that the latter part of the Lagrangian
is actually a total derivative, i.e., it is a surface term. In other
words, we need to establish that the full Lagrangian can be
expressed as

V=LY = NVIHLGy + 0, Lo (28)
The first term was obtained in [18], given by
V=Libu
VTS Gty R R KL,
=0
(2.9)
in which the coefficient is
g e
and K is the extrinsic curvature
K,y = ——a,h,. (2.11)
2N

In order to see explicitly that LX%M is absent from having

02, we can adopt the Gauss-Codazzi-Mainardi identity to
express the Riemann tensor as
RZ:ZZ = I_{Z:Zi - e(K,“,: KZi + KZ;KZ?) (2.12)
where R% is Riemann tensor on fy,.
By classical holographic relation, we mean that the
surface Lagrangian Liﬁzf is specified by the bulk one. To

find this relation, it is instructive to write the two terms as
[19,29]

k 2k)! 4.
L = O o R RA

o) (2k) kN /|l o (g st
@~ su

. szk—lbzk X,

Ao—1a2%k

2k—2 bi-by_1 \"M by 0203
+ (k= )RS, Rz RGN . R
—N/|h|X. (2.13)
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where
1 1.
X = (2k)12k / dssy! i Ko Ko (ERZgzi _szeK’;gKZ;;>
0

L sb b
2k-102k 2 bag-1 grbok
XX <§Raz“azk —s°eKai Koy |-

(2.14)
One can show dwﬁiﬁl),f is indeed a total derivative by finding

explicitly the surface Lagrangian [,iﬁl),f To do so, one uses

the first-order Lagrangian and obtains the associated

canonical momentum ﬂ?,f) conjugate to h,, as follows:

k
(N /THILS )
a(awhab) ’
1
ay--dy_1a 1, ch b1
:(Zk)!ke\/|h|A ds &, UK,

L Spp by 1rb
X (—Ra§a§ — S2eKZ2Kg | X ......

ﬂ.ab(k)

2

% (l szk—ZbZk—l _ szeKbZAsz2k1> ] (215)

2 A2k—242k—1 Aop—2 " Aj—1

One can then establish that the trace of the canonical
momentum has the following form [18,19,30]:

D -2k
- oy (2.16)

ﬂ(k) = hab”ab(k) = 2 surf?

where Eiﬁ]),f is the Myers boundary term under Dirichlet BC
and it is given by [21] (see also [31])

1
M = —(2k)12ke /|| A ds &) 1K)
1
X (§RZ§Z§ - sznggK,}ﬁ) X ...
1
(3R - PekizaR )

2

k—1
_ ./ E (k) cay @y _pparni-1+ax-1 ( \b1b2
- |h| Wl 5b1"'b2k—2/-2b2k—21—1"'bzk—l (R)alaz o
=0

X (R) A K2 - Kk, (2.17)
where the coefficient is
2! (k — 1)1ek=1(=2)!

bl k—1=1)MQ20+1)°

Now using Egs. (2.15), (2.16), and (2.8) we obtain

2
Vv _gLIE]i))velock(g’ ag’ azg) = N\/]TZLX(])DM(h’ ah) + ——

D-2k""
(g INVALG)
“ a<a(uhab) ’
(2.19)

which is the classical holographic relation for the general
Lovelock Lagrangian in the ADM formalism. This relation
establishes that the total derivative term is specified by the
bulk term. Note that, when D = 2k, the second term
dominates, indicating that the theory is a total derivative.

B. Variational principle

For the Einstein-Hilbert action or its high-derivative
generalization including Lovelock gravity, in order to
obtain the equations of motion via the variation principle,
one would appear to have to impose both the Dirichlet and
Neumann BCs. However, we are not allowed to set the
canonical pair, with nonvanishing Poisson brackets, to
vanish simultaneously, even only on the boundary. The
remedy is to introduce some appropriate surface terms
to the action so that the variational principle is well
defined [10,11].

As reviewed in the previous subsection, in Gaussian
coordinates and generally in the ADM formalism Lovelock
theory is described by a degenerate Lagrangian, i.e., it can
be written as the sum of the first-order Lagrangian and
the total derivative term. Using the classical holographic
relation (2.19) and writing the boundary terms of the action
in terms of fields and momentum fields will enable us to
introduce the consistent Myers term for the traditional
Dirichlet BC or the new alternative Neumann BC.

Considering Eq. (2.19), and taking variation of the action

k k
‘A<k> = / de\/ _gLﬁo)velock = / de‘CE\l))M
M M

2
_ dP-1xh ab(k)’
D -2k /aM HhabT

(2.20)

yields
2 a
SAK = /M dPxE Mg, Dk (/}2 dD_lyha,,(E)éﬂ(;(k>

+ / dP=1zh, 5n“”<")>
5 b(B)9% ()

D-2(k+1) _1._ab(k)
o ( /E 47 yiy) Shans)

_ ab(k
+/BdD IZﬂ'(B)( >5hab(6)>

Here we have assumed that dM contains two spacelike
(D — 1)-dimensional hypersurfaces X, at ¢ = constant

(2.21)
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(w = 1) and one timelike hypersurface 3 at r = constant
(o = r). We further choose that the space-time is flat asymp-
totically at r = oco. (Our arguments also apply for asymp-
totically anti—de Sitter or de Sitter space-times. However, for
lexical simplicity, we shall only mention the Minkowski flat
space-time.) To obtain (2.21), we have used the definition of
canonical momentum in Eq. (2.15). Note also

k
o ww _,  ONVRLGy) D=2k £
ab(£)*(x)  — Mab(T) 0(0,ha) - 2 surf(X)”
(2.22)
k
oy _y  ONVRLE) D=2k
ab(B)Y* () — "ab(B) a(arhab) - 2 surf(B) "
(2.23)

In our relations the indices (X) and (5) specify the induced
metric and extrinsic curvature K and R on hypersurfaces =
and B, respectively.

1. Dirichlet BC on B

Following from Eq. (2.21), it appears that both Dirichlet
BC, 5hypls, 5 = 0, and Neumann BC, 67**)|;, 5 =0, are
required in order to obtain the equations of motion via the
variation principle. However, as in the case of Einstein
gravity, we can deal with applying only the Dirichlet BC
provided with additional appropriate Myers term to the
Lovelock action. We shall show that when the Lagrangian
is degenerate, the alternative boundary condition is also
possible. However, the discussion of the BCs and Myers
terms is different, depending on whether the boundary is B
and X%,.

We shall first consider the timelike boundary B. A priori,
we can impose either the Dirichlet or the Neumann BCs.
However, we would like to require that our space-times be
asymptotically flat, i.e., i3 = 145 at the boundary r = co
This restriction automatically imposes the Dirichlet BC. The
consistency then requires the same BC for all timelike
boundaries B. It should be noticed that when the boundary
is taken to be literally at the spatial infinity, the integrals over
B vanish and play no role in the variation principle. Therefore
to obtain equation of motion, we can omit the surface integral
terms on B in Eq. (2.21). However if we require that the
variational principle be well posed quasilocally (at finite r)
then we should retain the boundary terms on the lateral
boundary B.

Focusing on B, it follows from (2.21) that one can
append the Lovelock action and obtain [19,29]

(k 2 _ ab(k)
AD)_/ d’x\/=g LLovelock+D 2% /s d” lyhab(B)”(B)(’

(2.24)

where the second term on the right-hand side is the required
Myers term corresponding to the Dirichlet BC. Note that
we use subscript D to denote the action that involves the
Dirichlet BC and we should not confuse it with dimension

D. Varying Al()k) gives [32]

5AY) = / dPx\/=gE" g, + / Pty Sy
M
(2.25)

Applying 6h,,|z =0 leads to the equation of motion
E* =0, where E" is defined in Eq. (2.5).
Inserting Eq. (2.16) into (2.24), we find

k k
‘A](D> = /deV_gL£gvelock_/dD ly‘csurf (226)
Evaluating this for k =1 gives us the full EH action,
consistent with the Dirichlet BC, as follows:

A = / dPx\ /=Ly — 2 / d>'yVhK g, (2.27)
M B

)
B) — 2\/EK(B

Myers term on B, compatible with Dirichlet BC, does not
depend on the dimensions of space-time and only depends
on the induced metric and its time Lie derivative through K.

where we used £E )- Itis clear that the required

2. Dirichlet BC or Neumann BC on %,

On the spacelike boundaries X,, the situation is different.
There can exist different choices of the BCs. Here for
simplicity we consider asymptotically flat space-time at
r — oo to omit the surface integral terms on B. We can
adopt the traditional approach and impose the Dirichlet BC,
in which case, the Myers term is the same, leading to

2 a
A]()k) / de \VAR LLovelock + 2k dD_lyhab(Z)”(é))(k) ’

://\/ldev _gL}‘]i))velock_/E dD 1y‘csurf (228)

Alternatively, we can impose the Neumann BC
6n?W |5 = 0." This is consistent with the Dirichlet BC

'In the standard approach, Neumann BC means to fix the first-
order normal derivative of a field. For many simple models, this is
equivalent to the fixation of the momentum field. In general
relativity, fixing the normal derivative of the metric does not lead
to the fixation of its momentum. The latter requires us to fix some
specific linear combination of both the metric and its normal
derivative. Therefore, one may want to call this generalization as
the “Neumann-like BC” or “Robin BC.” The advantage is to
make it manifest that the canonical pair with a nonvanishing
Poisson bracket would not be fixed simultaneously on the
boundary.

124067-5



H. KHODABAKHSHI and H. LU

PHYS. REV. D 105, 124067 (2022)

on B3, since the hypersurfaces X, intersect B orthogonally
and hence the BCs on X, and B are independent. It follows
from Eq. (2.21) that we propose the following action

k ) D-2(k+1)
AL — / 4P/ G ovetock =y 3
M

x/de_lyn'(lg)(k)hab(z).

Here we use subscript N to denote the action that involves
the Neumann BC. Varying this action, we have

(2.29)

544](\?) :/j;/ldeEahégab_/z dD_lyhab(z)aﬂ?zb)(k). (230)

By imposing the Neumann BC §z¢¢*
the equation of motion E* = 0.

When we write the Myers term (2.29) in a more familiar
form using (2.16), we get

)|Z, =0, we restore

k . (D =2(k+1))
A = [ aPr g+ P

/dD 1y’csurf
P

For the case k = 1, we have [12]

(2.31)

'AI<\11) = /dD)C\/—_gLEH+ (D—4)/ dD_ly\/lTlK(z)

%
(2.32)

Thus, in contrast to the Dirichlet case, the required
Myers term compatible with Neumann BC depends on
the dimensions of the space-time. In particular, when
D =2(k + 1), the Myers term vanishes. This observation
explicitly shows that the general Lovelock action is
naturally compatible with Neumann BC for asymptotically
flat space-times as can also be seen from (2.31) for
D = 2(k + 1). Another interesting feature is the relation
between Dirichlet Myers term and Neumann one.
Comparing Egs. (2.28) and (2.31), we find

AI\N/Iyers(k) _ _ D - 2(k + 1) Al\élyers(k).

; (2.33)

C. Generalizing to f(L Lmlock) gravity

We have so far shown that the Lagrangian of a general
Lovelock gravity is classically holographic degenerate in
the ADM formalism. As we shall see presently, the general
f ([l](i)velock) Lagrangian is not degenerate. If we want to
investigate different BCs in a consistent way, then we need
to define the momenta conjugate to the field variables in

order to distinguish Dirichlet and Neumann BCs where the

momentum fields vanish on the boundary. Following
the Ostrogradsky approach [7], we are able to write the

f(ﬁ<k)

Lovelock) Lagrangian as a degenerate one. To do so, we
adopt the scalar-tensor formulation by introducing a scalar

field ¢, and write f(L Lovdock) action in the Jordan frame:

k k
A;) = //\4 d? \% _gf(L£(3VCIOCk)

_ /M Px /=GP o~ V(P), (234)

in which ¢ f /( Lovelock) af ( Lovelock)/ a‘C:Lovelock’

V(¢) = LLovelock (¢)¢ f( Lovelock(¢)) and we assume that
f(L Lovelock) # 0 [13-15]. Now using the Eq. (2.19) we have

AW /M eGP~ V(@)

2 A(v/=FL abw)
“ioz (i S )

(2.35)

The first integral contains only the metric, its first order
derivatives, and the scalar field ¢. Integrating by parts, the
above Lagrangian is degenerate as follows:

AP = [ gL - V)

+5 _2 % /M dPx0,,¢ph, M@**H)
-5 f o /E | AP yphapzyly) . (2.36)
where
wattt) — 5 g O/ D)
Qupha MW = 0, phay =5 5= AN
- 5 2K o, (2.37)

Note that ﬂ(azb)(k> Ea(,/—gLX%M)/d(awhab) is the cano-

nical momentum of sy in Lovelock gravity. Also we
have assumed that oM contains two spacelike (D — 1)-
dimensional surfaces X, and one timelike surface /3 on which
the integral vanishes at large spatial distances for asymptoti-
cally flat space-times. Now we are able to define the canonical
momenta of ¢ and A5 in f (Lﬁlz)velock) gravity as
(k)
5Af ab(k) ab(k)
x -

(2.38)
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where
ablk) 2 oM de)
HOY = 9 : 2.39
® = D=2k 55 (2.39)
5A(k> 2
(k) _ % (k)
"0 = 5(04)  D-2k") (2.40)

(k) _ ab(k)
and 77.'(2> = hab(E)”(z) .

We now write a classical holographiclike relation for

f (L(L'f))velock) gravity, as Eq. (2.19) for general Lovelock
theories, to show that, without using the Ostrogradsky
approach and the scalar-tensor formulation, its Lagrangian
is not degenerate. Using Egs. (2.36), (2.38), (2.37), and

¢ f/( Love]ock) we can obtain

2
k k
vV _gf<LI(~o)velock) =V _gLéu)lk + m a‘”
(k)
x ( =h,, a(\/ ngulk) Y, H“b( )
g
(2.41)
in which we have
/ ( L L(k)
bulk f ( Lovelock) ADM Lovelock)
_f( Lovelock) w¢£su1)"f' (242)

Considering Eq. (2.41), we see that the surface part of
the Lagrangian is not determined completely by its bulk
part. This is in contrast to the Lovelock Lagrangian.

Furthermore, the bulk Lagrangian in f(L Lovelock) gravity
is not necessarily a first-order Lagrangian and contains an
arbitrary function of the second order derivatives of metric.

Hence, as we mentioned, the f(L Lovelock) Lagrangian is not
a degenerate one.
Now varying the degenerated action in Eq. (2.36) with
respect to ¢ and g,,, after a little algebra, we obtain
SAY = 5,41 + 5,41, (2.43)

where

5pAY = /M dPxLYy) 59,

L= {M@X‘DM—% @)

MLLX‘M) } (2.44)

2
— = 9,(-h
D% “’( (0 hay)

and

5h-’4(fk> :/ deLab(k)5hab—|—/ dD—l E‘) )5hab( 5)
M Xt

/ Py, (2.45)
z
in which
(y/=0Libm)
Lab(k) ( ADM M@ab —aghety
AR 0, (M) = 5 =G V()
2
wab(k) wabkl(k)
+ o (MO 40, phy B
0, (0, Phap BoPede X)), (2.46)

and Bwabkl(k) — aMwab(k)/agkl’ Bwahcde(k) — aMa)ab(k)/
0(0.94.)- Substituting (2.44) and (2.45) into (2.43) gives

5AY = / dPxL) 5 + / dPxL®sh,,
’ M M

D=1y, —a k D—1 = (k)
+ [Y, d 5hab />:, d y¢57r¢(2>.
(2.47)

As in Lovelock gravities discussed earlier, we shall impose
only the Dirichlet BC on B. However, based on (2.47), we
find that there exist four different types of BCs on the
hyper-surfaces X, with appropriate Myers terms that all lead

to the well-defined variation principle for f(L Lovdock)
gravity. We shall therefore discuss these BCs on X, next.

1. Dirichlet BC

In order to impose solely the Dirichlet BC: 6h,ls, =
5|z, = 0 to the Eq. (2.47), we need to modify the action
(2.34) by adding the following Myers term

_ pk) D1, 4 ~(k)

(2.48)

D) _ 40 |, yMyers(D)(k)
AT = A+ A

Varying the above action shows that it is compatible with
Dirichlet BC as follows:

sATY = / d°xLy) ¢ + / dPxL®sh,,
M M

/le
hy

which gives the equation of motion subjected to Dirichlet

A;/IyerS(D)(k) in

(k)
5hab AdD lyﬂ¢(z)5¢,

(2.49)

BC. Also we can determine the Myers term

terms Egﬁff At first using (2.40) we can rewrite the Myers
term in Eq. (2.48) as
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MyersD)(k) 2 _ ab(k)
Ap* =5 % L A" yphapmry) - (2.50)

Now substituting ¢ = f'(L Lovelock) and using (2.16), one
can obtain

AMyers(D)(k)

k
f d’! f/( Lovelock)'ciuif(z)- (251)
Zf

Substituting k = 1 in the above equation one can obtain

A _ /)E Wi (RK g, (252)

which reproduces the result in [6].

2. Neumann BC

We now consider Neumann BC: 5790(K) s, = 571((/)]() |5, =0,
and obtain the appropriate Myers term. We propose

N (k) Myers(N) (k) 4 (k) _ _ab(k)

(2.53)

A variation of (2.53) yields
sAFY = / dPxL s + /M dPxL®sh,,

_ ab(k) _ _(K)
—L dP lyhab( )5ﬂ() /):dD 1y¢57r¢(2)
(2.54)

which gives us the equations of motion using the Neumann
BC. Using Egs. (2.38) we can rewrite the Myers term so that

— ab(k
- [ @ ol

- />: dD_lyhuh(E)H(g;k)’

AMyers

(2.55)

and using (2.16) and inserting ¢ = f'(L
above formula as

Lovelock) we have the

Myers(N) (k) _ D — 2k k
Af yers(N)(k) _ 5 /Z dP=1yf(L Lovelock)ﬁiln)f(z)

D—1,,77(k)
_[c,d yH(Z).

It should be noted that, unlike the case of Dirichlet BC, the
Neumann Myers term depends on the dimensions of space-
time. Also substituting k = 1 in Eq. (2.39) gives

(2.56)

:N\/W tf/ )

(2.57)
so we have

Myers(N)
Ay = (D

-2) [ @il (0K
Z

—(p-1) / dP-yN RO f(R).  (2.58)

which is compatible with the result in [6]. It is worthwhile to
compare (2.51) with the Myers term (2.56) for Dirichlet BC.
It is easily seen that

D -2k

Myers(N)(k) _ Myers(D) (k) D—1,p7(k)
A, =-— A, _/zd YH 5.
(2.59)
3. Mixed BCs

There can exist two types of consistent mixed BCs for

k . a _
f (Lic}velock) gravity: o7 b(k>|>:, = 5¢|z, =0, or 57T(k>¢|zt =
5hab|z, =0. We begin with the first one. Using the
variation of f (Ll(i))velock)—gravity action (2.47), the first type

mixed BC is consistent if we add the appropriate Myers
term so that the full action is

Mi(k) Myers(M1)(k) (k) _ _ab(k) 1 = (k)
AP = A g e = A - L dP yhays) g+ /2 APy s (2.60)
Varying this action gives
SAMY = [ aPxLWYep + [ dPaxLWsg,, — | dP yhaymdaie + | dP vl 8. (2.61)
/ ' “ . ® T o)

Therefore, the first mixed BC indeed yields the equations of motion. Using Eqs. (2.38) and (2.40), the Myers term in (2.60)

can be written as
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At _%’;1) A AP yeph sy n o) /E APy HEY. (2.62)
Now using Eq. (2.16) and ¢ = f'(L LOvelock) we can write Myers term of Eq. (2.62) in terms of E i as
Choosing k =1 gives us

At — (D - 4) / d"~'yVhf (R)K (s~ (D~ 1) / "~ yNVho,f (R). (2.64)

which is also compatible with the result in [6]. It is also worthwhile comparing the Dirichlet and the above mixed Myers

boundary terms in f (LLOVCIOCk) gravity. We see

Myers(M1) (k) _

Finally we turn to the second type of mixed BC.
Considering Eq. (2.47) it is quite clear that, by applying
this BC, we can get the equations of motion without adding

any Myers terms to the action. This means that f(L Lo)velock)

gravity with this mixed BC is self-consistent with no need
to any Myers term in all D dimension.

D. Physical quantities and Myers terms

Although the equations of motion are the same for
imposing different BCs, the total actions are different
because of the different Myers terms. It is thus important
to address the physical implications since the actions play
an important role in quantum gravity. Here we consider
black hole thermodynamics in the semiclassical approxi-
mation in the path integral approach [9,22,26]. The
partition function in the semiclassical limit and for an
arbitrary gravitational model takes the form

Z= /[dg]e‘“zl? ~ e A,

where A}, = Ap — Agy in which Az is the Euclidean
action and Ay, is the corresponding background action.

The symbol tilde means dividing by 16zG, ie., Ay =

(2.66)

lim,_, , 1ct= 6”G The free energy, entropy, and energy are then

-1 1~ oF ,0F
F ﬁan ﬂAE’ E F+ﬁaﬁ, S=p"— T
It could be troubling if different actions based on different
BCs lead to different black hole entropies, since we
certainly do not expect that they would all satisfy the same
first law of black hole thermodynamics. Since we need to
obtain the numerical value of the Euclidean action for a
black hole in the region ry < r < r,, we should first make

(2.67)

_D2kAT) ot / -1y
9.
Z

(2.65)

the action well defined in the region where the manifold B
is considered for large but finite r. In this case the surface
terms on the manifold 53 vanish naturally no more. (They
vanish only at r — oo for asymptotically flat space-times
[22].) Hence, in order to make the Lovelock action well
defined one should consider the following two actions:

k 2 _ ab(k

"4]()) _/ de VvV LLovelock +D 2k dD lzhab(8>ﬂ(8)( )
2 _ ab(k)
+—D—2ké dv ]yhab(E)”():) ,

k) 2 _ ab(k

‘A§\I / dPx V™ LLovelock +D 2k I d® lzhab(lg)ﬂ(B; )

D-2 1
+7(k+ )/dD_lyn'
Z

ab(k)
S D) ) (2.68)

The situation is analogous for the well-defined f(L Lovelock)
gravity actions that allow four different boundary condi-
tions on X,. The full actions associated with these four types

of BCs are as follows:
+/2 dD_ly¢7_7f(k)

_ _ab(k
_/2 dD lyhab(Z)ﬂ:(z)( ),

_ _ab(k
_/2 dD lyhab(Z)”(z)()

AW = AW 4 / dP~lygrH)
B

AN g / 4Py
’ ’ B

MI®) _
A=Ay

k)+/dD—1y¢ﬁ.(k)
B
+/2dD_1y¢7_7,'(k)

M2(k k _ —
AYPH = A 4 L’ a1y (2.69)
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As was explained previously, the Myers boundary terms are
the same on B. The difference lies on the boundary X,. For
Euclidean actions, we do not have Z, and hence the issue
does not arise such as black holes. In Lorentzian signature,
the X, boundary terms will not contribute either for any
stationary geometries. They can however have nontrivial
effects on cosmological backgrounds and it requires further
investigation.

III. A NEW FOLIATION-INDEPENDENT
CLASSICAL HOLOGRAPHIC RELATION

In the previous section, we showed that in the ADM
formalism, the general Lovelock gravity is degenerate and
there is a classical holographic relation between the surface
and bulk terms. This can be viewed as a generalization of
the classical holographic relation in Einstein gravity.
However, there is one big difference. In the ADM formal-
ism, the coordinate w is specially treated as the foliation
coordinate while the classical holographic relation for the
Einstein gravity can be foliation independent in that there is
no coordinate that is special. It is then natural to ask the
question whether such a foliation-independent formulation
as Eq. (1.1) also exists in Lovelock gravities. In this section,
we show that there indeed exists a foliation-independent
classical holographic relation, but it is inequivalent from the
one in the ADM formalism for k > 2.

A. k=1: Einstein gravity

We begin with the definition of the Riemann tensor (for
torsion-free connections)

Ry, = 9°%(00, Ty = 0,1 ,0)

+ gyza(rvlﬂlﬁr ma Fylﬂzﬁrﬁﬂla)' (3.1)
The indices (u, 4,) are manifestly antisymmetric. What is
nontrivial is that (vy,1;) in the Riemann tensor is also
antisymmetric, even though they are not in each of the two
brackets of the right-hand side of the equation. It is thus
instructive to define

(C2)pa =T gy, Tl 1522,
(DI, = 0 T 0g (3.2)

In other words, we force antisymmetrization of (v, v,) in
each term. We can then also express the Riemann tensor as

Rtz =2(0%)5ve 4 2(DI2)4e: (3.3)
The Ricci scalar is thus given by
R=ser =LV + L, (3.4)

where

L(()l) — 255:522 (FZ)u1y2 ( ) _

iy =263 (D). (3.5)

. I 1
It can be established that the combination ,/—g(Lg)

ZLE)O)) is a total derivative in a foliation-independent way:

Lo(0.00) = v=g(Li +210") = 0,4,

J =\ /=g(¢°TH = T ,,). (3.6)

Compare the structure J# and Lé”, we have the identity

(1)
do(/—gL
Jr) — 5;@_ (3.7)
av,,
This leads to the classical holographic relation for Einstein
gravity

\% _gR Y _gLIEl(?velock(F’ ar)
Oy =Liui)
- \/_Lbulk< ) (5/7 al—*g bulk ’ (38)
Hp

(1)

where Ly, = —L(()l). Making use of the identity

ar,, 1

Saugy) ~ 2 " WLt ST+ 100,
adpy

(3.9)

the classical holographic relation can also be written as [4,5]

(1)
1 2 a( _gL u )
/=gR = /=gL\") (T") — 5 —5% (gy,, T © bulk” ).

. Gup)
(3.10)

It is important to note that, for Einstein gravity, the Lémk(l‘)
obtained in this foliation-independent approach is identically
the same as the bulk term in the ADM formalism discussed in
the previous section.

B. k=2: Gauss-Bonnet gravity

With our new expression for the Riemann tensor (3.3), it
can be easily seen that the Lagrangian of GB gravity is

/=gLas = v=9(LY +2LP + L), (3.11)
where
2 | 1212 b3l
L(() ) - 4‘55]5225;}/? (F2>l4]1/,42 (Fz)ﬂzﬂi’
2 i3 v vl
v = AL (P (DT
2 Vv vl

By some nontrivial exercise that we shall present momen-
tarily, we find that
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V=9Lcs = /=gLE) + 0,04, (3.13)

where

2 2 2
Ly (007) = =Ly ~ L,

— ALY, (T2 + (D))

(3.14)

It can be shown that GB gravity is classically holographic,
namely

Ju(2) 5,,5(\/ Lbulk) v

2
o(/=L%)
P al'w ‘

3.15
po a(aﬂ Fy/)ﬁ) ( )
In other words, the surface term is completely specified by
the bulk action.

We now give the proof. We begin by expressing the GB
term as
L = AL Rk, Ay =

4!
S OUGLE R (3.16)

2)
s 0(\/ ngulk)

—4! \/_guzugu4u (5/:1512::#4 (qu l—w

The quantity A}J? has the symmetries of the Riemann

tensor and it is divergence free, namely V, AJl}? = 0 [4,5].
Expressing Rl in terms of I'“ we can write

Eq. (3.16) as

Vopy

V —9Lgg = 2\/ _gAD]Vzﬂlﬂz (aﬂlrl/lﬂzl’z + Fylﬂlﬂrﬂllzl/z)
=2 /_g(ADI’/zlllﬂzl"l/lﬂl F”l/zﬂz
0 A 1/2/41/42)

_Al/luzmmry]ﬂzl/zrﬂﬂlﬂ 142”2 Hi
+ 26”] [\/—gAblyz"”‘zF”l”zyz]. (3.17)

It follows from the divergence-free condition of A, we have

ik — T2 Hi1H2 3
aﬂlAbl r MﬂlAM + D Vi

—TH L
[ /4/41Au1 .

[PIV5)
AM

(3.18)

Substituting this into Eq. (3.17) and writing A, *#1*> in
terms of 1, and &,}2/%/), we obtain (3.13). To obtain
the classical holographic relation, we note

F Haly + I 9 l—w}/htl%)

S va O
+ 5":3;‘/‘253”1 Fl/] FpV2M3 FU3M4U4 ) ’
o(/=0Lu)
Fylml/z % =4l V —99"* g+ 5[5352?3#11—‘1/1 I_“01/21431—%!441/4' (319)
a(aﬂlr 1#41/2) :

With these, the classical holographic relation (3.15) follows
straightforwardly.

It is worth remarking that it is nontrivial to demonstrate
that \/=gLyx gives the foliation-independent equation of
motion (2.5) of k=2. We shall illustrate here how a
quadratic Riemann tensor theory that might involve four
derivatives in the equations of motion actually reduces to a
two-derivative theory. The fact that L, does not involve

ng) implies that the equation of motion can be at most of
)

three derivatives, originated from L,”. However, with a

straightforward exercise, the \/—_gL(f) will not contribute
three derivatives to the equation of motion, even though it
cannot express as a total derivative in a foliation-indepen-
dent way such as d,J*. The situation improves if we break
the covariance and treat one coordinate special, such as w

coordinate in the ADM formalism. The L(lz) can be further
decomposed into a bulk part with no 92, and a surface term
expressed as d,,.J. It is perhaps demonstrative to consider
an example of classical mechanics with the analogous
Lagrangian

Ly, = q192(4192)" (4142 + 4241)-

1
= —— (41 + 42)" (G162 + G2q1)

+— ! (q192(4142)" ). (3.20)

m+1

Indeed, as we have shown in the previous section, in the
Gaussian coordinates x* = {w, x}, we are able to write
GB gravity as

a1a,a3ay b 10y pbsby
\/_LGB —N\/_éb b2b3b4 < alazRag(u

+eKo K2 (Rﬁ;’;; —gK”‘ Kb“> >

+0m< ~2¢v/h 6Z‘ZZZ§K"‘< Reo -

%K%Ki’;)),
(3.21)

in which the bulk term is a first-order Lagrangian [18-20].
Furthermore it can be written in terms of a classical
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holographic relation as Eq. (2.19) where the bulk term is a
first order Lagrangian in terms of w derivatives. The bulk
term in this ADM formalism is no longer the same as the
bulk term in the foliation-independent approach.

C. General kth Lovelock gravity

Following the same approach of GB gravity, we can find
that Lovelock gravity is in general classical holographic in
the foliation-independent formalism, namely

k k
\% _gL£<3velock (I—" ar) =V _gLéu)lk (F’ ar)

k
-9 5/30(\/ _gLé)u)lk)
P 8
: a’,,

()
Y a(Fngulk)) 52

ap a(aﬂrﬁap)
To be specific, it is instructive to define

L) = oLt (P (D) -

Hik2

. (FZ)Vzk-l Yok

Hok—1H2k >

(3.23)

and define Lgk) as Lék) with “i” (I'?) factors replaced by the
(DT'?) terms of the same indices; therefore, we have
i=0,1,..., k. It is then clear that we have

k
G Z<k>L(k)
Lovelock — . i

i l

(3.24)

For two low-lying examples, we have
R=LV 4L, Legg=LP+2LP +1LP. (3.25)

We find that the corresponding bulk Lagrangian is given by

(®) (k=1
Ly = = Z . L.

7 1

(3.26)

The minus sign is intriguing and, for k£ > 2, itis not the same
as the bulk term in the ADM formalism given in Eq. (2.19).

It is now worth comparing our results to those in literature.
For a general Lovelock Lagrangian, without calculating the
bulk term, the following surface Lagrangian in terms of
metric has been proposed [4,5]

(D-1)!

=3 L(()k) _ m aP-2k=142k
V=L =0, i=2.3,...k

(k)
g — L (g (v =9Lou)
’ (D/2) -2k " g a(augup)
0(\/ _gLékik))
+0 gy,iu . 3.27
o a(ayaégvp) ( )

To prove the above equation, the homogeneity of the bulk
expression was assumed, with the following relations for the
bulk term

(k)
d(/—¢gL
Guv ( agg bmk) = ((D/Z) - nO)\/ _gLI(J];)lk’
v
J (\/ _gLék)lk) (k)
5] —Y U — ny/—gL
(3 0( apg/w) ny Ihpulk>
(k)
(/=L i) (k)
050 —Y T U, /—gLy 3.28
) /)gﬂl/ a(aéapglw) ny 9Lpuik ( )

in which n;s are the number of the factors of g,,, d,g,,, and
050,,9,, in any given term of the bulk. However, considering
the bulk term presented in Eq. (3.26), it is obvious that there
is no homogeneity in d,g,, and 950,9,,, so we are not
allowed to write the identities in Eq. (3.28) for the bulk term.
In the next subsection, we give explicit examples to illustrate
that Eq. (3.27) is incorrect.

D. FLRW model as a concrete example

We now consider the FLRW model as a concrete
example to illustrate the difference between the classical
holographic relations, derived from the ADM formalism
and the foliation-independent formalism. We consider the
cosmological metric in general D dimensions

ds* = —di* + a(t)dx'dx'. (3.29)
Note that here we use a(t) rather than a(t)? as the scaling
factor, so the metric is g;; = ad;;. Note that we can treat this
metric as special case of the general foliation-independent
approach, or alternatively as a special case of the ADM
decomposition where the special coordinate w = ¢. This

allows us to compare the bulk Lagrangian in two
approaches. For this cosmological ansatz, we have

The general Lovelock and its bulk Lagrangian are therefore given by

k k k
V _ng(A(fvelock Y, _g(Lé ) + kL(l ))’

) (D=1 oka(ht)
L T
O 1Y Th
(3.30)
VILw = —v=g(Ly + (k= 1)LY). (3.31)
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It is straightforward to verify that

k k
\% _gLI(_o)velock =V _ng()u)lk +9,J", (332)
where
D-1
Jl = D-2k ;,2k 1‘ 3.33
D-26" (3:33)

The fact that the difference between the full Lagrangian and
our bulk term gives a total derivative confirms our bulk
Lagrangian formula Eq. (3.26), even though the FLRW
metric is somewhat too simple to be a proof. For the
classical holographic relation, we propose the ansatz on the
metric function

k k
a/=gLY) o=l
— . T 0da———

J= ,
a0 dii

(3.34)

where (cy,c,) are numerical coefficients that are to be
determined. We find the above relation holds provided that

dey(k=1)%ad+ (2(k—1)cy+ (D +2—4k)ke, +2)a*> =0.

(3.35)
Thus we have
k=1:.¢ = —i, ¢, is irrelevant;
D-2
k>2: ¢ =0, czz—k%l. (3.36)

Thus for the cosmological model, we have

(1)
(1) 2 d 9(v/=9Lpix)
V=gR = \/=qL\ ", — =
g Iovalk =D " 4 (“ da ’

aa

(k)
k) (k) 1 d (. 0o(y/=9Lpu)
% _gLIEovelock = V=9Lyx — k—1dr (“ )

k> 2. (3.37)

To compare this classical holographic relation to that in the
ADM formalism, we note that

(k) 2w 2 d
/—al\H = — = k) _ el
it 2k—17° " k(2k—1)(D -2k dt

(3.38)

This leads to the classical holographic relation in the ADM
formalism, namely

(k)
k (k 2 d{ o(\/=9Lxpm)
V _9L£(3velock =V _gLA]))M _D — 2k dt (a Jil ADM s

(3.39)

with LX%M = -5 L(()k) . This example explicitly shows that
the proposed surface term in (3.27) is not correct. Note that
for the ADM approach, the form of the classical holographic
relation is “continuous” as k running from 1 to higher values.
However, the relation is discontinuous in the foliation-
independent approach when we use (a, @, d) as variables.
It is also worth emphasizing that for k =1, we have
Ly = Lapm- However, for k > 2, Ly, in the foliation-
independent approach involves d, as well as (a, a); on the
other hand, L zpy; is first order involving only (a, a).

We further consider the most general cosmological ansatz
in D =5:ds3 =g, (1)dx"dx", with x* = (1,x1,Xp,X3.,X4). We
follow Eq. (3.27) and consider the ansatz for GB gravity
(k=2)

1 a(\/=gL>\)
0JO =—___—_ 9 Z\V_ J7bulk)
’ (5/2) =4\ 19" " 5(3,9,)
a(\/ _ng()Z%k)
0 —Y _Z ux’ ) 3.40
20 a(atal‘gﬂu) ( )

with two arbitrary numerical coefficients (¢, c,). We use
computer to obtain explicit Ly, and we find that there is no
solution for (cy, ¢;).

IV. CONCLUSION

In this paper, we obtained the classical holographic
relations for the general Lovelock Lagrangian following
two approaches: one based on the ADM formalism and the
other with the surface term 9,J*. In the latter foliation-
independent approach, the bulk Lagrangian depends not
only I" but also dI" for k > 2; therefore, it is not first order,
or degenerate. Our classical holographic relation Eq. (3.22)
differs from the Eq. (3.27) that was in literature, and we
used explicit examples to demonstrate that Eq. (3.27) is
incorrect.

The nondegenerate issue can be resolved by using the
ADM decomposition x* = (w,x%) where the foliation
coordinate w is treated as special. Using the results of
[18,19,21] for the first-order Lagrangians and boundary
terms, we obtained the classical holographic-degenerate
relation (2.19) for the Lovelock Lagrangian. By first order,
we mean that the bulk Lagrangian has no more than one
derivative of w; its two-derivative terms are all associated
with the derivatives of x“, entering the Lagrangian through
the Riemann tensor of the submanifold x“. The bulk
Lagrangians from both the ADM and foliation-independent
approaches turn out to be same for Einstein gravity, but
they are not for general Lovelock gravities.

124067-13



H. KHODABAKHSHI and H. LU

PHYS. REV. D 105, 124067 (2022)

The resulting classical holographic-degenerate rela-
tion in the ADM formalism enabled us to compute the
appropriate Myers terms consistent with the Dirichlet or
Neumann BCs (related by a factor dependent on the space-
time dimension). We found this interesting result that in
D =2(k+ 1), the Myers term under Neumann BC van-
ishes for the kth-order Lovelock gravity. As a contrast, in a
general foliation independent approach, i.e., the foliation-
independent approach discussed earlier, our result is differ-
ent and the Lovelock Lagrangian is not degenerate, except
for k=1, since the bulk term contains second-order
derivatives. We used the FLRW cosmological metric in
general dimensions to illustrate the differences between the
ADM formalism and the foliation-independent approach.

For generalization, we considered f (L(L];)velock) gravity
and figured out that its Lagrangian is not classical holo-
graphic. Also it can not be expressed as the sum of the

first-order and the total derivative terms. So f (L(L];)velock)
Lagrangian is not degenerate. Following the Ostrogradsky

approach [7] and writing f (Li’gvelock)—gravity action in the
framework of Brans-Dicke formalism [13—15] gave us the
degenerate Lagrangian that we used to develop the issue of
BCs and the corresponding Myers terms. Here we followed
ADM formalism to find the appropriate Myers terms in
f (L(L?velock) gravity required to make the variation principle
well defined. We have introduced Neumann BC and two
types of mixed BCs in addition to the Dirichlet BC. The
remarkable result is that under a type of mixed BC we do
not need to add any Myers term to the action of f (Lﬁlgvelock)
gravity in all D dimensions.

Moreover, we investigated physical quantities such as free
energy, energy, and black hole entropy in the framework of
Euclidean semiclassical approximation method [9,22] via

different BCs in Lovelock gravity and f (L(Ll;)ve] ock) gravity. In
this method the black hole entropy may be obtained for
different kinds of BCs and Myers terms. However, we
showed that the main term, which was responsible to give
the difference of the numerical value of the action with the
background solution, was the same for all cases, regardless of
the particular kind of BCs. In fact, decomposing the space-
times boundary into two spacelike X, and one timelike B
hyper-surfaces, one can see that the integral over 3 has no
role in making the action principle well defined for asymp-
totically flat metrics [6,22]. However, to calculate the black
hole entropy, the integral over B is exactly the term that gives
nontrivial contributions for different BCs. Taking this point
into account, we showed in Lovelock gravity, under Dirichlet

and Neumann BCs and also in f (L(le))velmk) gravity under
Dirichlet, Neumann, and two types of mixed BCs, free
energy, energy, and the entropy do not change. In our
approach the actions do not change for all stationary back-
grounds, but they do depend on the BCs in time-dependent
space-times; its physical implication in cosmology needs to
be investigated.
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