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We theoretically propose a finite-size quasi-one-dimensional Bose-Einstein condensate with coherent
source and drain placed at its two ends, which can in principle sustain a stationary sonic black hole with a
single event horizon. Our analysis is focused on the condensate persistence against quantum fluctuations.
We show that similar to black hole-white hole pairs, dynamical instabilities occur. Investigating in detail the
instabilities’ dependence on the system parameters, we also identify windows of formally infinite black
hole lifetimes. By using quantum depletion of the condensate as a diagnostic tool, we validate the usage of
Bogoliubov theory to describe the analog Hawking process, and establish novel signatures of Hawking
radiation in the depleted cloud, both inside and outside the event horizon.
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I. INTRODUCTION

The discovery by Stephen Hawking that black holes,
quantum mechanically, are not black but radiate a thermal
spectrum of particles [1,2] continues to furnish an in-
triguing milestone in the quest for a unification of quantum
mechanics with gravity [3]. While an observation of the
Hawking effect with astrophysical black holes is essentially
impossible, analog systems in fluids have enabled it due to
its kinematical nature [4–7] and robustness against (most
variants of) Lorentz invariance breaking [8–11]. In par-
ticular, Bose-Einstein condensates have been identified as
suitable system to verify an analog of Hawking’s prediction
in a superfluid of very low temperature, and other quantum
effects related to sonic horizons see, e.g., [12–24].
An unambiguous confirmation of the quantum Hawking

effect was achieved in 2019 by the Steinhauer group [25],
see also the more recent experiment [26]. The observation
of the density-density correlations as a second-order
correlation function signature of the Hawking effect
[18,27,28], however, still presents, in particular for small
Hawking temperatures TH, a formidable task [29,30].
Current experiments [25,26] are carried out with flow

geometry of strongly elongated condensates, a primary
motivation being to avoid turbulence developing when the
condensate flows supersonically. Two aspects to be recon-
ciled are of fundamental importance when modeling such
black hole analogs, namely what is actually feasible at a
laboratory level and what the mathematical complexity of
theoretical models requires to be solved. For definiteness,
our guiding experimental parameters for system sizes and
number of condensed atoms are the ones typically currently
implemented in the experiments of [25,26]. In particular,

the condensate is radially trapped, operating near a quasi-
one-dimensional (quasi-1D) regime. In order to describe
the phenomena presented by such quasi-1D analogs, a
working hypothesis commonly assumed is the negligibility
of the finite axial size of the condensate. When considering
the Hawking process, this is usually considered a justified
hypothesis if the system boundaries are “sufficiently
distant” from the analog event horizon. Due to the inherent
complexity of analog black holes in the many-body context
of interacting condensates, it is however in general not
possible to decide whether or not theoretical models based
on the assumption of an infinitely extended quasi-1D
condensate correctly capture all features of real finite-size
condensates in a controlled manner.
In the following, we employ the idea of using coherent

sources [31] to study a finite size quasi-1D analog model
containing only a single analog event horizon. Our model
assumes the existence of a flowing condensate which is
continuously pumped into the system at one of its ends and
destroyed at the other, and, arguably, it represents the
simplest realizable black hole analog that captures finite
size effects without the presence of a white hole. Although
being experimentally more intricate than the current imple-
mentation of [25,26], the technology needed to sustain such
a flowing condensate from condensate reservoirs has been
established previously [32–35], the major problem being
the reservoir replenishment. Although the latter is neces-
sary for steady-state applications like atom lasers [35,36],
the analog model has to operate only for short periods of
time until measurements can be performed and replenish-
ment is therefore less crucial than for lasing operation.
For dilute Bose-Einstein condensates (BECs), a quantity

of fundamental relevance is quantum depletion, which is a
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first-order correlation function. We present below, to the
best of our knowledge, the first calculation of depletion in
inhomogeneous BECs with a sonic spacetime horizon, to
certify whether under certain conditions single-horizon
finite-size analog black holes can be prepared in a quasi-
1D condensate. We stress that in this regard, most of the
current models for 1D analog black holes implement
infinitely extended quasicondensates that break the validity
of Bogoliubov theory by leading to a depletion diverging
with axial system size, a well-known fact for any 1D system
to which the f-sum rule can be applied [37]. In our 1D
model, depletion is everywhere finite and small for typical
black hole parameters throughout the system evolution. We
thereby validate the Bogoliubov expansion, which imposes
as a prerequisite that depletion must be small.
Although challenging to validate experimentally, that

analog Hawking radiation exists is unquestionable by very
general arguments [5], and perhaps more important is what
analog gravity theory in quantum many-body (condensed-
matter) systems can teach us further than predicting the
very existence of Hawking radiation per se. Of central
importance in this regard is how quantum (and thermal)
fluctuations created by the Hawking and other processes,
propagating on the top of the condensate background
backreact on this background, and thus on the motion of
the condensate, which in turn affects the production of
Hawking radiation. This backreaction can only be
described properly within a number-conserving formalism
[38], and the determination of quantum depletion is a first
necessary step in the complex backreaction program.
The model explored here shares some dynamical fea-

tures with analog black hole-white hole (BH-WH) systems
built from toroidally flowing condensates. Namely, a finite
size-induced field dynamical instability develops in such
models as well. We therefore review field quantization in
the presence of instabilities, which is a well understood
topic explored in a plethora of physical contexts, from
condensed matter systems [39–41] to cosmology [42,43].
In this context, of particular importance for the Bogoliubov
theory is the time-translation-symmetry spontaneous break-
down in stationary condensates by the growing vacuum
fluctuations, which prevents the existence of a preferred
instantaneous vacuum state. We address this problem by
constructing solutions to the Bogoliubov-de Gennes (BdG)
equation which takes into account as a starting point of the
black hole formation process a well-defined quasiparticle
vacuum state.
Describing the dynamical instabilities, our major find-

ings include the simulation of black hole lifetimes as
function of experimental parameters, whose intricate func-
tional dependence reveals how strong the correlation of
finite size and stability of the black hole is. We also
demonstrate the existence of stability regions in parameter
space. It is demonstrated that when the sonic horizon just
emerges, distinct depletion signatures appear. In particular,

we show that the depletion power spectrum changes and
new peaks can be detected, which constitutes a valuable
tool to identify the emergence of quantum Hawking
channels when negligible flux at infinity is present, and
the conventional density-density correlation signatures are
too weak to be detected by using first-order correlations.
Moreover, we show that the radiated signal is correlated
with the depletion cloud outside the black hole, and our
simulations reveal that the radiative process is accompanied
by an increase of the local depletion.

II. THE MODEL

Within the s-wave approximation, the one-dimensional
Bose-Einstein condensate under study is described by the
action functional (ℏ ¼ m ¼ 1)

Sc ¼
Z

d2xΨ�
�
i∂t þ

∂
2
x

2
− Ue −

g
2
jΨj2

�
Ψ; ð1Þ

where Ue is the external potential. Our goal is to study a
black hole model which captures the finiteness of con-
densates while enabling a fully analytical treatment of the
quantum field operator expansion, and which contains as a
limiting case an infinite size (quasicondensate) black hole
analog. There exists different routes for building such
confined flowing condensates. In the experiments of
[25,26], a condensate initially at rest is subjected to a
moving blue-detuned laser and an analog event horizon is
thereby created dynamically. The drawback of this model is
that notions of a stationary regime are difficult to establish
and a fully numerical analysis is therefore unavoidable.
In particular, the moving horizon is responsible for the
emergence of an inner horizon, and a BH-WH pair forms
[26,30,44]. Different techniques possible to establish ana-
log event horizons include the condensate being released
from a reservoir [45] by an outcoupler and the flowing
condensate in toroidal configurations [31]; the latter always
containing a BH-WH pair, as dictated by the very ring
topology.
Before presenting the model, we expand further on why

considering configurations of finite extension is important
for our analysis instead of the conventionally assumed
infinite extension of the system. First of all, Bose-Einstein
condensates simply do not exist in infinitely extended
quasi-1D black hole models. This can be concluded, for
instance, from the condensate perturbations of [46], which
imply a (generic) logarithmic divergence of the quantum
depletion with the system size at T ¼ 0. At finite temper-
ature, this divergence is stronger (linear in system size), as
dictated by the Hohenberg theorem [37], showing that finite
temperature effects as predicted by quasicondensate models
might not be extendable to true condensates. Henceforth,
we thus restrict our analysis to zero point (vacuum)
fluctuations (T ¼ 0), which pertain to the theory sector
responsible for the quantum Hawking process. In this
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regime, a (weak) logarithmic divergence with the system
size means that we can safely consider larger condensates
while maintaining sufficient control of the system
depletion.
Furthermore, another crucial aspect of infinite size

models is linked to the global Uð1Þ symmetry (in the
absence of external sources). As the condensate existence
breaks this symmetry, the theory always admits at least one
zero frequency (Goldstone) excitation, and if the conden-
sate is infinite in size, then the system spectrum is
continuous. This is particularly important for black hole
analogs, as the Hawking-like process is a low-energy
phenomenon, and thus more sensitive to boundary con-
ditions. Accordingly, to assume robustness of the Hawking
process with respect to the system size is a rather strong
assumption that needs justification. Indeed, the spectrum
cannot be continuous for finite size configurations, and
because the system is not homogeneous, a nontrivial
filtering of the excitations which would exist in infinite
analogs should occur.
The strategy pursued in our work, which proposes to

realize a finite-size (and therefore well-defined) quasi-1D
BEC black hole, consists in building a flowing condensate
sustained by continuous coherent sources and drains
[31,33] at its boundaries. Mathematically, these are generi-
cally modeled by adding to the action (1) a term

Ss ¼
Z

d2xðJeΨ� þ J�eΨÞ; ð2Þ

where Je represents the external sources (and drains).
Variation of the total action Sc þ Ss with respect to Ψ�
leads to the inhomogeneous Gross-Pitaevskii equation [47]

�
−i∂t −

∂
2
x

2
þ Ue þ gjΨj2

�
Ψ ¼ Je: ð3Þ

We note that the source field Je is in general complex, and
in order to gain insight on its physical meaning we can
make use of the Madelung representation Ψ ¼ ffiffiffi

ρ
p

expðiθÞ,
where ρ is the condensate density and v ¼ ∂xθ the fluid
velocity [38]. In terms of the variables ρ and θ, Eq. (3) reads

∂tρþ ∂xðρvÞ ¼ −2Im½JeΨ��; ð4aÞ

∂tθ þ
v2

2
−
∂
2
x

ffiffiffi
ρ

p
2

ffiffiffi
ρ

p þUe þ gρ ¼ Re½JeΨ��
ρ

: ð4bÞ

Equation (4a) shows that −2Im½JeΨ�� is the flux of
particles being injected to the system, whereas Eq. (4b)
gives rise to an Euler-type equation [38], with an additional
term due to the source term of the inhomogeneous Gross-
Pitaevskii Eq. (3),

ð∂t þ v∂xÞv ¼ −∂x
�
−
∂
2
x

ffiffiffi
ρ

p
2

ffiffiffi
ρ

p þ Ue þ gρ −
Re½JeΨ��

ρ

�
: ð5Þ

The (nonflux) term ∂xðRe½JeΨ��=ρÞ therefore acts as an
external force density.
Our analog black hole is prepared by adjusting the

source field Je and external potential Ue such as to produce
the profile depicted in Fig. 1. The condensate density ρ is
assumed to be constant in condensate support region, and
the contact interaction strength g is a piecewise constant
function, defined by g ¼ gu for x < 0 and g ¼ gd for x > 0.
The resulting background condensate describes a sound
barrier thoroughly studied in the literature [27,46,48], where
the subscripts “u” and “d” henceforth denote “upstream” and
“downstream,” respectively. Furthermore, the condensate is
trapped inside a 1D box of size ðl2 þ l1Þ=2 which para-
metrizes the system finiteness (see Fig. 1).
Now the flowing condensate is modeled by letting

θ ¼ −μtþ vx, where μ is the chemical potential and v
is the fluid velocity, both assumed constant. We build the
required finite size solution to the system (4) as a limiting
process. Let the system density ρ be given by

ρ ¼
8<
:

ρout; x < −l1=2;

ρin; −l1=2 ≤ x ≤ l2=2;

ρout; l2=2 < x;

ð6Þ

where ρout, ρin are constants, and the external potential is
set as

Ue ¼

8>><
>>:

γρ−1=4out þ μ − v2=2 − gρout; x < −l1=2;

μ − v2=2 − gρin; −l1=2 ≤ x ≤ l2=2;

γρ−1=4out þ μ − v2=2 − gρout; l2=2 < x;

ð7Þ

γ > 0 being a constant parameter. We use this infinitely
extended profile to determine the external source Je, and

FIG. 1. Schematics of the condensate under study, which is
assumed to be a homogeneous quasi-1D condensate of size
ðl2 þ l1Þ=2 flowing at constant velocity. The gas flow is
sustained by continuous source and drain at x ¼ −l1=2 and
x ¼ l2=2, respectively. At x ¼ xH, the Mach number m has a
jumplike discontinuity, separating the system into two regions of
different sound velocity.
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then we take ρout → 0. Notice that in this limit the
condensate density is constant inside the box and zero
otherwise, whereas the external potentialUe gives rise to an
infinite square well potential. Returning to Eqs. (4), we thus
find the nonflux part of Je to be

Re½JeΨ��ffiffiffi
ρ

p ¼

8>><
>>:
γρ1=4out ; x<−l1=2;

0; −l1=2≤x≤l2=2;

γρ1=4out ; l2=2<x;

þ
ffiffiffiffiffiffiffi
ρout

p − ffiffiffiffiffiffi
ρin

p
2

½∂xδðxþl1=2Þ−∂xδðx−l2=2Þ�;
ð8Þ

whereas the flux part is given by

Im½JeΨ�� ¼ vðρout − ρinÞ
2

½δðxþ l1=2Þ− δðx− l2=2Þ�; ð9Þ

and thus ρ, Ue, and Je given by Eqs. (6), (7), (8), and (9)
represent an exact solution to the system (4), with free
parameters fv; gu; gd; μ;l1;l2; ρout; ρing. Finally, our finite
size model is obtained by letting ρout → 0. In particular, in
this limit the external potential becomes

Ue ¼
8<
:

∞; x < −l1=2;

μ − v2=2 − gρ; −l1=2 ≤ x ≤ l2=2;

∞; l2=2 < x;

ð10Þ

where, in order to keep the notation simple, we use
henceforth ρ to denote the constant ρin where it is non-
vanishing. We notice also that in this limit the sources and
drains are localized: The condensate particles enter the
system at x ¼ −l1=2 and are absorbed at x ¼ l2=2, similar
to the external source considered in [47].
The analog model is obtained by studying sound

propagation over this condensate solution, i.e., we write
Ψ ¼ expð−iμtþ ivxÞð ffiffiffi

ρ
p þ ψÞ, where ψ denotes freely

propagating small fluctuations. This means that ψ represent
linearized solutions (jψ j2 ≪ ρ) to the homogeneous
(sourceless) part of Eq. (3)

i∂tψ ¼
�
−
∂
2
x

2
− iv∂x

�
ψ þ gρðψ þ ψ�Þ: ð11Þ

Furthermore, due to the infinite square well potential, the
wave function is subjected to Dirichlet boundary condi-
tions: ψ jx¼−l1=2 ¼ ψ jx¼l2=2 ¼ 0 [49].
A relevant quantity that can be constructed from the

system parameters is c ¼ ffiffiffiffiffi
gρ

p
, which has dimensions of

velocity, and represents the local sound speed.We say that an
analog black hole condensate background exists when
v=cu < 1 < v=cd, or in terms of the Mach number, mu <
1 < md (Fig. 1). Thus, we need to specify fmu;md;l1;l2g,

to determine the black hole completely. Also, we from now
on work in units such that cu ¼ 1, which, in addition to the
conventional ℏ ¼ m ¼ 1, renders the upstream healing
length ξu ¼ 1=

ffiffiffiffiffiffiffi
guρ

p
to be unity. Finally, canonical quanti-

zation is obtained by promoting ψ to an operator-valued
distribution ψ̂ subjected to equal-time bosonic commutation
relations ½ψ̂ðt; xÞ; ψ̂†ðt; x0Þ� ¼ δðx − x0Þ. The quantization
details are provided in the next section.

III. CANONICAL QUANTIZATION

The procedure to build the quantum field expansion for
ψ̂ follows the general recipe: Solve for the quasiparticle
modes, which constitute a complete set of solutions to the
classical field equation. Then, write down the most general
classical solution in terms of this complete set and postulate
the canonical commutation relations.

A. Quantization

We start by defining the Nambu spinor Φ ¼ ðψ ;ψ�Þt,
where “t” stands for transpose. Thus, the field equation (11)
implies

iσ3∂tΦ ¼
�
−
∂
2
x

2
− imuσ3∂x þ

g
gu

σ4

�
Φ; ð12Þ

where σi, i ¼ 1; 2; 3 denote the usual Pauli matrices,
and σ4 ¼ 1þ σ1. By definition, the spinor Φ satisfies
Φ ¼ σ1Φ�, and clearly, upon quantization, we should have

½Φ̂aðt; xÞ; Φ̂†
bðt; x0Þ� ¼ σ3;abδðx − x0Þ: ð13Þ

Also, from the discussion after Eq. (11), we have that the
field Φ is subjected to Dirichlet boundary conditions

Φjx¼−l1=2 ¼ 0 ¼ Φjx¼l2=2: ð14Þ

Furthermore, because of the boundary conditions, Eq. (12)
implies that if Φ and Φ0 are two distinct solutions of the
latter equation, then

hΦ;Φ0i ¼
Z

dxΦ†ðt; xÞσ3Φ0ðt; xÞ ð15Þ

is a conserved quantity (in time), which will be used as a
scalar product on the space of classical solutions. Also, as
the field modes have compact support, they have finite
norms, which can be taken in general as

hΦ;Φi ¼ �1: ð16Þ

We stress that even though Eq. (12) may admit nonzero
solutions with vanishing norm, we can always find an
orthonormal basis as in Eq. (16). The plus and minus signs
in Eq. (16) correspond to positive and negative norm
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modes, and we recall that for each solution Φ of Eq. (12),
σ1Φ� is also a solution of opposite norm sign. Thus there
exists a one-to-one correspondence between positive and
negative norm modes, which allows us to index the positive
norm solutions as Φn, n ¼ 1; 2; 3;…. With this, we can
write the most general classical solution of Eq. (12) as

Φðt; xÞ ¼
X∞
n¼1

½anΦnðt; xÞ þ b�nσ1Φ�
nðt; xÞ�; ð17Þ

and in view of the reflection property Φ ¼ σ1Φ�, it follows
that bn ¼ an. Now, canonical quantization is defined by the
promotion of Φ to the operator-valued distribution Φ̂
subjected to the condition (13), which corresponds to
promoting each an ¼ hΦn;Φi to an operator ân satisfying

½ân; â†n0 � ¼ δn;n0 : ð18Þ

Concluding, vacuum states j0i are defined by the kernel
condition ânj0i ¼ 0, and the full field operator becomes

Ψ̂ðt; xÞ ¼ e−iμtþivx½ ffiffiffi
ρ

p þ ψ̂ðt; xÞ�; ð19Þ

where ψ̂ is the first component of Φ̂. Denoting by
Φn ¼ ðfn; hnÞt, we have from Eq. (17)

ψ̂ðt; xÞ ¼
X∞
n¼1

½ânfnðt; xÞ þ â†nh�nðt; xÞ�: ð20Þ

B. Field modes in the presence of a black hole

Because the system is stationary at the classical level,
solutions to the field equation can be found in the form
Φðt; xÞ ¼ expð−iωtÞΦωðxÞ, and if Φω is a solution asso-
ciated to ω, then σ1Φ�

ω is also a solution, associated to −ω�.
In this way, we exhaust all real frequencies in the system
spectrum by focusing on ω > 0 only. Moreover, we say that
the system is unstable if there exists a solution with
Im½ω� > 0. For each such solution, the spectrum neces-
sarily contains also the frequency ω�, as guaranteed by the
hermiticity of the Hamiltonian [39]. Thus, we need to solve

ωσ3Φω ¼
�
−
∂
2
x

2
− imuσ3∂x þ

g
gu

σ4

�
Φω; ð21Þ

for Re½ω� ≥ 0; Im½ω� ≥ 0, and where each Fourier compo-
nent ΦωðxÞ is subjected to Eq. (14). Furthermore, wave
mechanics techniques [50] applied to Eq. (21) imply that
Φω and its first derivative are also continuous at x ¼ 0.
These two conditions, plus the other two in Eq. (14) give a
total of eight constraints that each field mode must satisfy.
For x ≠ 0;−l1=2, and l2=2, the general solution of the

ordinary differential equation (21) is a combination of
exponentials of the form expðikxÞζk, for constant ζk,

which, upon substitution in Eq. (21) results in the familiar
Bogoliubov dispersion relation

ðω −mukÞ2 ¼ k2
�
g
gu

þ k2

4

�
: ð22Þ

Notice that for each value of ω, this equation, being a
fourth-order polynomial equation in k, always has four
solutions (not necessarily distinct), as shown diagrammati-
cally in Fig. 2. For simplicity, we shall denote by p the
downstream solutions, and thus the general solution for Φω

has the form

Φω ¼

8>><
>>:

P
p
speipxζp; x > 0;

P
k
skeikxζk; x < 0;

ð23Þ

where the various coefficients sk and sp are integration
constants, and

ζk ¼
�

g=gu
ω −muk − k2=2 − g=gu

�
: ð24Þ

For each possible field mode, clearly at least one of the
coefficients sk, sp is nonzero, which can then be taken as a
normalization constant. This means that a total of seven
conditions are necessary and sufficient to fix the integration
constants, which can be done in a straightforward manner
by using seven of the eight boundary conditions. The
remaining equation thus becomes an analytical function
of ω through the roots k, p, and the sk and sp, which
determines the ω frequencies which are contained in the

FIG. 2. Bogoliubov dispersion relation ω ¼ ωðkÞ for real k,
from Eq. (22). We set mu ¼ 0.5, md ¼ 1.1, or gd=gu ∼ 0.2. Left:
Dispersion relation in the region x < 0. The gray dashed lines
correspond to the two discrete eigenfrequencies of our finite
system which are located within the ω range shown, for a
condensate with −l1=2 ¼ l2=2 ¼ 60. The blue points indicate
the solutions for ω2. Right: Dispersion relation for the region
x > 0. Because md > 1, the negative branch of the dispersion
relation presents a local maximum. We note that the field modes
ω1 and ω2 are below this local maximum.
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system spectrum. Furthermore, because the remaining
equation is analytic in ω, the spectrum is discrete.
Therefore, the recipe just presented exhausts all possible
field modes, which can then be normalized and added to the
field expansion of Eq. (17).

IV. BLACK HOLE LIFETIMES

As in any experimental realization of a trapped BEC, the
system confinement implies that small disturbances propa-
gating over the BEC also stay trapped throughout the
system evolution. In our analog model, this property is
captured by the Dirichlet boundary conditions (14) at the
system (hard) walls, which are a particular way of modeling
perfect mirrors for the system radiation. Therefore, con-
siderable differences as regards the predictions of finite size
and infinitely extended analog black hole models are
expected to occur, for during the black hole existence
the energy (continuously) extracted from the background
by the Hawking-like process is not allowed to radiate away
in the finite size model and stays contained within the hard-
walled box, i.e., the condensate can in principle act as a
resonant cavity for the sound waves. This characteristic,
however, does not necessarily lead to dynamical instabil-
ities, i.e., complex frequencies in the system spectrum. In
fact, analog models containing BH-WH pairs usually
present a black hole lasing effect [13], but in [31] the
authors also found dynamically stable configurations in
BH-WH analogs in toroidal (and thus finite size)
condensates.
It is noteworthy that because of the complexity of BH-

WH analogs, the mechanisms leading to stabilization
cannot in general be easily disentangled from one another
[51,52]. In our single black hole analog model a similar
interplay between the system finite size and the radiation
process is observed, which leads to dynamically stable or
unstable configurations rather sensitively depending on the
system parameters, revealing that finite size effects play a
prominent role in the (de)stabilization of analog black holes
in BECs.
In dynamically unstable scenarios, a natural notion is

therefore that of black hole lifetime, as determined by the
instability time scale. We note in this regard that previously
the instability of BH-WH configurations was explored for
instance in [31,53,54]. The authors studied the instability
dependence as function of the system parameters. More
recently, such an analysis has been pursued in [55] for a
(more realistic) quasicondensate configuration.
In principle, the system spectrum, which contains the

complex frequencies, depends solely on the condensate
configuration, and thus the involved instability time scales
are uniquely determined as long as the condensate exists in
that state, i.e., as long as quantum fluctuations remain
small. Therefore, by ensuring that we always start from a
scenario of well-defined quantum fluctuations (e.g., by
determining the condensate depletion), the unstable

frequencies set the time scales for the black hole existence
which we study in this section.
Four parameters are necessary to specify the analog

black hole: fmu;md;l1;l2g. For the sake of simplicity,
let us assume that one fixes l1 ¼ l2 ¼ l. We define the
analog black hole lifetime generally as

τ ¼ min
ω∈Σ

ð2Im½ω�Þ−1; ð25Þ

where Σ is the subset of mode frequencies ω in the
Bogoliubov spectrum with Im½ω� ≥ 0. We can study the
lifetimes as function of the three free parameters. For
instance, in Fig. 3 we plot 1=τ as functions of the down-
stream Mach number for several upstream Mach numbers.
From the figure, the remarkable effect of the finite system
size on the Hawking process can be clearly seen. For an
infinite system l1 ¼ l2 → ∞, no dynamical instability
exists, and the black hole lifetime is formally infinite,
although of course the condensate is destroyed by phase
fluctuations and is completely depleted [37]. On the other
hand, when the system has finite size, no monotonic
behavior as a function of the Mach numbers is observed.
Even more noteworthy is the existence of stability regions,
which from Fig. 3 appear for the parameters mu ¼ 0.2,
l ¼ 120 (the black continuous curve) where the lifetime
diverges. For these parameters, as discussed in the above,
there exists a compensation between different mechanisms
in the system, that therefore becomes dynamically stable.
In Fig. 4, we depict the lifetimes as a function of the

system size. Again, no clear functional dependence with
the system parameters can be inferred, a feature also
observed in the BH-WH calculations of [31,53–55]. We
note, however, that the complex dependence of τ with
fmu;md;lg is expected because each field mode is built
by combining the eight distinct channels solutions of

FIG. 3. Black hole lifetimes as function of the downstream
Mach number md for several choices of mu. Here we set
l ¼ 120. Notice that generally no monotonic behavior is ob-
served. Moreover, the lifetimes diverge (1=τ ¼ 0) for mu ¼ 0.2
and some values of md, i.e., the black continuous curve then
touches the md axis.
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Eq. (22) and the eight boundary conditions discussed in
Sec. III B.

V. THE SYSTEM VACUUM STATE IN THE
PRESENCE OF INSTABILITIES

Field quantization in the presence of instabilities is a
well-studied topic [39–43], and the canonical procedure of
Sec. III also in such a case works in general. For our
particular goal of simulating quantum depletion, a major
aspect of this particular brand of quantization is the notion
of an instantaneous vacuum state, a state such that hψ̂i ¼ 0.
As pointed out in [40], the presence of instabilities during
the black hole existence prevents the selection of a
preferred instantaneous vacuum state, which in stationary
configurations, as the name suggests, can be chosen with
respect to the laboratory frame via a complete set of
normalizable solutions whose positive norm field modes
Φn are stationary (eigenfunctions) with respect to the
generator of time translations i∂t. In this work we refer
to this vacuum state as the quasiparticle vacuum.
Notwithstanding, in the presence of instabilities, the oper-
ator i∂t has non-normalizable eigenfunctions with complex
eigenvalues. Thus, bona fide normalizable positive norm
field modes constructed from non-normalizable eigenfunc-
tions cannot be eigenfunctions of i∂t, and in this case we
say that quantization spontaneously breaks the time trans-
lation symmetry of the theory, and hence no quasiparticle
(preferred) vacuum exists. We quote [20] for further details
regarding the quasiparticle vacuum in infinitely extended
1D quasicondensate analogs.
In order to highlight the issues with fixing an instanta-

neous vacuum during an unstable black hole evolution,
let Ω;Ω� be one of the complex frequency pairs in the
spectrum, and let the corresponding solutions to Eq. (12) be
expð−iΩtÞΦΩðxÞ and expð−iΩ�tÞΦΩ� ðxÞ, respectively.
Thus, it follows from the time independence of Eq. (15)

and Im½Ω� > 0 that these two solutions have zero norm,
but hΦΩ;ΦΩ�i ≔ λ expðiθÞ ≠ 0, in such a way that the two
combinations

ΦðþÞ
Ω;αβ ¼

αffiffiffi
λ

p
�
e−iΩtΦΩ þ

�
1

2α2
þ iβ

�
e−iθ−iΩ

�tΦΩ�

�
; ð26Þ

Φð−Þ
Ω;αβ ¼

αffiffiffi
λ

p
�
e−iΩtΦΩ −

�
1

2α2
− iβ

�
e−iθ−iΩ

�tΦΩ�

�
; ð27Þ

for α > 0 and real β are orthonormal, with ΦðþÞ
Ω;αβ (respec-

tively Φð−Þ
Ω;αβ) being a positive (respectively negative) norm

solution. If Ω lies on the imaginary axis, we can add ΦðþÞ
Ω;αβ

and σ1Φ
ðþÞ�
Ω;αβ as a positive-negative norm pair of field modes

to the field expansion, whereas if Ω is not on the imaginary

axis, we must addΦðþÞ
Ω;αβ and σ1Φ

ð−Þ�
Ω;αβ and the corresponding

negative norm counterparts to the expansion. Now, inspec-
tion of the modes (26) and (27) reveals that each choice of
ðα; βÞ is equally acceptable, and it gives rise to a distinct
quantum field theory as can be seen by determining the
Bogoliubov transformation between the different sets of
modes. In particular, we note that it is, in principle, possible
that the vacuum state under study represents a strongly-
depleted condensate, rendering the whole Bogoliubov
expansion inconsistent. We shall return to this question
in the next section when we discuss condensate depletion.

A. Quenching to a black hole

An elegant way of fixing a preferred vacuum state if the
analog is dynamically unstable is provided by the fact that
amongst the various condensate configurations included in
our analysis, there are stationary configurations which can
be used as initial conditions before quenching to the final
black hole configuration. For instance, we can start from a
system for which, at t < 0, both Mach numbersmu,md are
smaller than 1, and at t ¼ 0, the coupling gd is adjusted to
setmd > 1 to the required value to create the sonic horizon.
In this way, as we work in the Heisenberg picture, the initial
stationary vacuum remains well-defined throughout the
system evolution. Specifically, the quantum field Φ̂ has the
general expansion of Eq. (17), where all functions Φnðt; xÞ
have positive norm and are solutions of the BdG equation at
all times, such that for t < 0,

Φnðt; xÞ ¼ e−iνntΦνnðxÞ; ð28Þ

νn > 0 for all n. Accordingly, because of the quench, the
field modeΦnðt; xÞ after t ¼ 0 can be expanded in terms of
any complete set of solutions, i.e.,

FIG. 4. Black hole lifetimes as function of the system size for
the fixed upstream Mach number mu ¼ 0.5 and several choices
of md. Similarly to what is observed in Fig. 3, there is no clear
functional dependence of the lifetimes on the system size, and
stability regions in the space of parameters exist.
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Φn ¼
X∞
m¼1

½αn;me−iωmtΦωm
þ βn;meiωmtσ1Φ�

ωm
�

þ
X
j

γn;je−iΩjtΦΩj
; ð29Þ

and the sum in j runs over all complex frequency solutions.
Returning to the BdG equation, we conclude from the term
i∂tΦn that Φnðt; xÞ is continuous at t ¼ 0, which amounts
to the Fourier expansion

X∞
m¼1

½αn;mΦωm
þ βn;mσ1Φ�

ωm
� þ

X
j

γn;jΦΩj
¼ Φνn : ð30Þ

Thus by projecting this equation onto the direction of the
field modes the matrices αn;m, βn;m, and γn;j are uniquely
fixed, i.e., the solution to the BdG equation is fixed. By
using this quantum field expansion instead of the instanta-
neous quantization when already residing within the
unstable phase, the vacuum state is defined to be the
quasiparticle vacuum ânj0i ¼ 0, which has a clear inter-
pretation as it is uniquely defined.

VI. QUANTUM DEPLETION AND THE VALIDITY
OF THE BOGOLIUBOV EXPANSION

With the aid of the quantum field expansion, we are able
to compute quantum depletion, defined as the vacuum
expectation value δρ ¼ hψ̂†ψ̂i. The interpretation of quan-
tum depletion is that even at T ¼ 0, a finite fraction of the
condensed particles leaves the condensate due to the
inherent quantum fluctuations caused by the interaction
of the particles constituting the system [56]. Thus, this
measurable quantity represents a fundamental tool in the
theory of Bose-Einstein condensation. Its knowledge is
necessary to validate the Bogoliubov expansion, as the ratio
depleted/condensed particles should be small for the very
expansion implemented in [Eq. (19)] to be consistent.
Different upper bounds for the Bogoliubov expansion

applicability can be adopted, depending on the character-
istics of each particular system. For instance, the simu-
lations that follow are such that the largest number of
depleted particles occurs near the analog event horizon,
roughly when (reinstating units for clarity) ξuδρ ∼ 2. For a
condensate which has ξuρ ∼ 60, this corresponds to 3% of
depleted particles near the event horizon. In the present
work we fix, by convention, that the Bogoliubov theory
predictions are considered to be accurate as long as
depletion remains below 10%.
Based on the discussion of Sec. III, we use Eq. (20) to

write the depletion as

δρðt; xÞ ¼
X∞
n¼1

jhnðt; xÞj2: ð31Þ

A. Depletion before the black hole formation

From Eq. (31), depletion can be calculated in a straight-
forward manner using the field modes constructed in
Sec. III B, and we expect a logarithmic divergence with
system size (see also for instance [46]).We thus expect to see
an overall increase in depletion as the system size grows, and
we verified this to occur already before the black hole exists,
as shown in Fig. 5. Other notable features revealed by the
plots in Fig. 5 include their shape robustness as the system
size grows, the smaller number of depleted particles at the
downstream region, caused by the fact that gd < gu (weaker
particle interactions), and the decrease in the number of
depleted particles near the condensate boundaries. This latter
aspect comes from the particular form of the chosen external
potential, which is set such as to impose Dirichlet boundary
conditions. From the plot, we can assess that this form of
potential results in a vanishing depletion at the condensate
walls, a behavior not expected if the system were prepared
with a different external potential.

B. Depletion of a stationary black hole

When the black hole is formed, the depletion curves are
qualitatively distinct, and let us consider first quantum
depletion in stationary (dynamically-stable) black hole
configurations. We present in Fig. 6 our findings for a

FIG. 5. Quantum depletion for several condensate sizes in the
absence of a black holemd ¼ 0.95. Here, l1 ¼ l2, and we recall
that l≡ ðl2 þ l1Þ=2. The curves are scaled in x to fit in the same
plot. The effect of the system size is to increase the overall
depletion logarithmically.

FIG. 6. Several depletion profiles for fixed mu ¼ 0.5, and
l ¼ 67. The continuous black, dashed blue, and dot-dashed red
curves correspond, respectively, to md ¼ 0.5, md ¼ 0.7, and
md ¼ 0.9, whereas the dotted brown curve depicts depletion for
the stationary, stable configuration with md ¼ 1.5. Deep into the
upstream region we see that the sound barrier at x ¼ 0 leaves no
imprint in the black hole’s absence, but as the analog event
horizon forms, the upstream noncondensed cloud changes due to
the analog black hole Hawking radiation. We also note the
intricate depletion behavior at the downstream region after
the black hole formation, which is in sharp distinction to the
featureless depletion profile without black hole.
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stationary black hole analog defined by mu ¼ 0.5,
md ¼ 1.5, l ¼ 67, which, from Fig. 4, can indeed be seen
to correspond to a divergent lifetime. Figure 6, which
represents one of our major findings, depicts how the
upstream noncondensed cloud outside the black hole
(x < 0) is affected by the Hawking-like radiation. We also
plot depletion profiles for a fixed upstream Mach number
mu ¼ 0.5 and different md < 1. The latter reinforces the
intuition in the absence of a black hole, a variable g at x ¼ 0
models a sound barrier for the phonon field that should not
be perceived far away from the barrier (jxj ≫ 1). The
continuous, dashed, and dot-dashed curves in Fig. 6 show
that in the black hole’s absence, depletion is indeed only
locally affected by the sound barrier; it is not possible to
detect its presence by measurements of the depleted cloud
if jxj ≫ 1. However, after the black hole is formed, a clear
contribution to depletion deep into the upstream region
appears.
It is possible to directly correlate the imprint on the

upstream noncondensed cloud far from the analog event
horizon to the Hawking-like radiation if we assume that the
condensate is extremely elongated, by using, for instance,
the field modes of [46]. Such a calculation, however,
requires the use of frequency cutoffs to render depletion
finite in our quasi-1D setup; such cutoffs can be inferred
from our finite size model. We notice also from Fig. 6 the
intricate equilibrium pattern displayed by the depleted
cloud in the downstream region.
Density modulations similar to the ones found in Fig. 6

can occur in certain inhomogeneous supersonic flows due
to the Bogoliubov-Cherenkov-Landau (BCL) radiation
phenomenon [57], as reported recently in the analog black
hole experiment of [26]. We can however rule out BCL
radiation in our setup. The characteristic feature of the BCL
mode is that it represents a zero frequency excitation [44].
There is, though, no such zero frequency mode present in
our system, as it is sustained by external source and drain,
which prevents the condensate phase diffusion in a finite
size system, associated with a zero frequency mode [58].
We also note that the various possible sources of

depletion, in the sum in Eq. (31), cannot be disentangled
in an obvious manner, and thus it is not clear how to
determine (in a controlled way) the dependence of the
interference pattern in Fig. 6 on the system parameters.

C. Depletion after the formation of
an unstable black hole

We now discuss how to probe the event horizon
existence by measurements of the downstream depleted
cloud in the most common case of analogs that can be
studied with our confined system; dynamically unstable
black holes. When an analog black hole has just formed,
and a phonon field instability then develops, we expect to
see a continuous extraction of atoms from the condensate
(depletion increase), and the whole system will eventually

assume a new configuration. Naturally, to determine how
the system will ultimately stabilize and to describe the
nature of the final state, a fully self-consistent backreaction
analysis is required, which is beyond the scope of this
work. Nevertheless, the instability onset can be explored
with our quantization scheme, and this subsection is
dedicated to such an analysis.
As discussed in Sec. V, in the absence of a stationary

regime in unstable scenarios, we need to specify initial
conditions for the system, and for the sake of illustration, let
us therefore start by considering an instantaneous vacuum
state for the phonon field when the black hole is already
formed. Note that even if the unstable modes possess
negligible absolute frequencies, it is not in general possible
to treat the system as an effectively stable one due to the
breakdown of time translation symmetry (see in this
regard Sec. V).
In order to gain further insight, we shall treat an explicit

example thoroughly. Consider the case where mu ¼ 0.5,
md ¼ 1.1, and l1 ¼ l2 ¼ 120, which corresponds to a
condensate of total size l ¼ 120. The perturbation spec-
trum for this configuration contains exactly six complex
frequencies, obtained from Ω1 ∼ i8 × 10−4 and Ω2 ∼
ð70.76þ 3iÞ × 10−4. Therefore, from the discussion that
leads to Eqs. (26) and (27), we see that the space of possible
choices for the system vacuum is parametrized by four real
parameters, two for each complex frequency in the upper
right portion of the complex plane. For each vacuum state,
the sum in Eq. (31) splits into a time-dependent contribu-
tion to the system depletion (which contains the unstable
field modes), and a time-independent part denoted by δρs,
the latter also being independent of the vacuum choice.
Following the notation of Eqs. (20), (26), and (27), the
depletion assumes the form

δρ ¼ δρs þ jhðþÞ
Ω1;αβ

j2 þ jhðþÞ
Ω2;α0β0

j2 þ jfð−ÞΩ2;α0β0
j2; ð32Þ

where α > 0; α0 > 0, β; β0 are any real parameters. The
importance of this result for our analysis is that however
large the time scale imposed by the instability for the
condensate depletion is, it is in principle possible that no
vacuum state exists for which δρ ≪ ρ, rendering the whole
quantization procedure based on the Bogoliubov expansion
inconsistent. We can visualize this by counting the total
number of depleted particles, δN ¼ R

dxδρ, which in view
of Eq. (32) splits into a contribution from the stable modes,
a contribution from the sector Ω1, and one from the sector
Ω2. We plot in Fig. 7 the number of depleted particles due
to the unstable modes from the sector Ω2 for different
choices of initial states parametrized by α0; β0.
Inspection of Fig. 7 reveals that depending on the

parameters α0, β0, the predictions of Bogoliubov theory
can not be expected to be completely reliable. For instance,
for a system with a total of 6000 particles, 1000 depleted
particles corresponds to 16% of the particles not in the
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condensate. This violates the small depletion criterion of
the Bogoliubov expansion, and it is thus not possible to
decide whether the quantization is consistent, or even if the
corrections to the condensate remain negligible. A regime
of “initially” large depletion corresponds to cases where the
instability already played a relevant role, and de-stabiliza-
tion processes are taking over the condensate evolution.
On the other hand, as the number of depleted particles is

bounded from below, there must exist a vacuum state which
renders the smallest depletion, as the Fig. 7 suggests. It is
straightforward to show, by minimizing the total number of
depleted particles with respect to the parameters α; α0; β; β0,
that there is only one possible choice for the minimizer,
which is depicted in Fig. 8. This result presents a sharp
lower bound for depletion in our black hole analog.
The problem of identifying a vacuum state during the

unstable phase usually restricts the applicability of the
theory to the study of asymptotic regimes, at late times, and
as shown here, in the presence of condensates, the analysis
is further complicated by whether the condensate persists
against quantum depletion. This problem is however
of theoretical importance only, as it comes from the
assumption that the system is stationary, and everlasting,
even though spontaneously growing quantum fluctuations

break the time translation symmetry. In experimental
realizations, the condensate and the black hole setting
must have a starting point, which defines the system
vacuum (and therefore the condensate) throughout its
evolution. This is captured by the quench described in
Sec. VA, which we explore now.
Still assuming the model with mu ¼ 0.5, and

l1 ¼ l2 ¼ 120, let us consider the case for which at
t ¼ 0, the system passes from md ¼ 0.95 (the continuous
line in Fig. 5) to md ¼ 1.1. In this case, the lifetime τ for
the system is set byΩ1, which has the larger imaginary part.
By using Ref. [25] and its experimental parameters as a
guide, and returning to dimensionful units, we find τ ≈ 8 s
for a chemical potential of 70 Hz. We plot in Fig. 9 our
findings for this quenched system.
As advocated in the above, by starting from a truly

stationary system in its uniquely defined quasiparticle
vacuum, we can study the system evolution in a consistent
and self-contained way when the Hawking process is
switched on. Inspection of Fig. 9 reveals that as the black
hole forms, a nontrivial quantum depletion response is
triggered, with the formation of an interference pattern
inside the black hole (downstream region) and the con-
tinuous increase of the overall number of depleted particles,
inside and outside the black hole. For this model, md is
increased by decreasing the particle interaction strength gd,
which in stable nonblack hole configurations diminishes the
local condensate depletion, as we can see by comparing
the upstream and downstream density profiles of Fig. 5.
However, the curves in Fig. 9 show that this dependence is
not observed in general when md exceeds 1 and the black
hole is formed.We furthermore call attention to the depletion
profile outside the black hole, wherewe see the emergence of
the depletion signal discussed in Sec. VI B.
We can follow the ramp-up of the Hawking radiation

with a better resolution by taking analog models with
higher downstream Mach numbers, which corresponds to
stronger radiation [46]. For the sake of illustration, simu-
lations are depicted in Fig. 10 for the Mach numbers
mu ¼ 0.5, md ¼ 2.

FIG. 7. Quantum-depleted number of particles coming from
different choices of instantaneous vacuum states for the sectorΩ2.
System parameters are mu ¼ 0.5, mu ¼ 1.1, and l ¼ 120.

FIG. 8. Depletion profiles as function of time for a black hole
characterized by mu ¼ 0.5, md ¼ 1.1, and l ¼ 120, with the
system in its vacuum state of minimum depletion. Three major
features are observed: Initially (black curve), the depletion profile
inside the black hole does not resemble the stable curves of Fig. 5;
as time passes, the number of depleted particles increases outside
the black hole; an oscillatory pattern emerges inside the black
hole. Here, the lifetime τ is defined in (25).

FIG. 9. Depletion profiles as function of time for a quenched
black hole. The system is set to have mu ¼ 0.5, md ¼ 0.95, and
l ¼ 120 for t < 0, and we change md ¼ 1.1 after the quench at
t ¼ 0.
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We obtain a lifetime, cf. Eq. (25), of τ ∼ 1 s for a system
of total size l ¼ 120 and chemical potential 70 Hz, about
ten times smaller than the one found for the system in Fig. 9
with md ¼ 1.1. Furthermore, τ ∼ 0.7 s for a size l ¼ 60.
Figure 10 shows that, as the Hawking-like process is
switched on, the cloud of depleted particles increases in
a manner directly correlated to the radiated signal. The
depleted cloud in a fixed upstream region only responds to
the radiation as it reaches that region, and as time passes,
because the system is out of equilibrium, the number of
depleted particles increases gradually until Bogoliubov
theory is no longer reliable. Furthermore, although this
depletion response to the radiation sheds some light onto
the system evolution, it does not uniquely fix how the
background condensate changes, i.e., how backreaction
takes place, for whose consistent description a number-
conserving analysis is required.

D. Power spectrum of quantum depletion

As a particularly noteworthy feature, our analysis reveals
the possibility of probing the existence of an analog event
horizon from the emergent interference pattern manifest in
the local quantum depletion using the Bragg technique
employed by [59]. Denoting Fourier transforms as
ρ̃ðkÞ ¼ R

dx expð−ikxÞρðxÞ, and similarly for eδρðkÞ,
Ref. [59] exploits the fact that in some configurations
ρ̃ðkÞ decays faster for large k in comparison to the
polynomial decay of eδρðkÞ. One thus obtains a large k
window which is sensitive to depletion. The emergence of
the interference pattern in Fig. 9 upon formation of the
horizon transforms to distinct peaks in ρ̃ðkÞ, as shown for
two black hole examples in Fig. 11.
Finally, as already discussed in Sec. VI B above, a

unique physical mechanism for the oscillations observed
in the depletion profile of the stationary black hole analog

of Fig. 6 cannot be clearly identified. In particular, we
observe that there is no evident relation between what
would correspond to a BCLwave vector (k ∼ 0.75) solution
of Eq. (22) and the peak positions in Fig. 11 right panel,
thus also from this point of view ruling out BCL radiation
as a source of the oscillations.
On the other hand, for the quenched unstable black

holes, the depletion is asymptotically, at late times, domi-
nated by the unstable field modes, which then determine
the peaks in the depletion power spectrum (see Fig. 11
left panel).

VII. SUMMARY AND FINAL REMARKS

We proposed a finite size quasi-1D analog black hole
model which contains a single event horizon. The model is
possibly the simplest one that encapsulates such a single
horizon and enforces zero vacuum fluctuations (Dirichlet
boundary conditions) at the condensate walls. We note that
other boundary conditions can also be used, as for instance
Neumann conditions. However, Dirichlet conditions are
better suited when we take into account that in experi-
mental realizations the condensate is subject to confining
potentials along its symmetry axis. Furthermore, the main
advantage of adopting a finite size condensate is that it
allows for a controlled usage of Bogoliubov theory by
rendering quantum depletion finite and well-defined in a
quasi-1D system.
We demonstrate the existence of finite-size-induced

dynamical instabilities for the majority of the black hole
analogs we probe. By reviewing canonical field quantiza-
tion in the presence of instabilities, we show that if the
phonon field is not carefully quantized, the theory can
represent a strongly depleted condensate, which renders the

FIG. 10. Quantum depletion for quenched black holes of
different sizes. The black holes have mu ¼ 0.5, and the quench
changes md from 0.95 to 2 at t ¼ 0. The increased downstream
Mach number leads to a stronger radiation [46]. Upper panel:
l ¼ 60. Lower panel: l ¼ 120. Both systems present similar
depletion behavior, with the emergence of an oscillatory pattern
inside the black hole, and the peculiar upstream-depleted cloud
signal discussed in Sec. VI B, which forms at the analog event
horizon (x ¼ 0) and then propagates against the condensate flow.

FIG. 11. Power spectrum of the depletion profile for two black
hole analogs. Left panel: The two curves represent the observed
spectrum at different instants of time for an unstable black hole
configuration, both at the beginning of the quench, and after a
time t ¼ 2τ, for a black hole characterized by mu ¼ 0.5,
l ¼ 120, and md ¼ 0.95 for t < 0, md ¼ 1.1, t > 0. The black
continuous curve shows the formation of a bump near k ∼ 0.4,
absent before the black hole forms, as indicated by the blue
dashed curve. Right panel: Power spectrum for the stable black
hole (continuous black curve) of Fig. 6. The blue dashed curve
shows the power spectrum before the black hole formation.
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Bogoliubov expansion inconsistent. We addressed this
problem by employing a quenching from a stationary
configuration in its quasiparticle vacuum to the final black
hole under study. This procedure enabled us to simulate the
evolution of the depletion cloud during the instability onset.
We found that two distinct signatures of the Hawking
process emerge when the event horizon forms, the first one
being the appearance of an oscillatory pattern in the
depletion cloud inside the black hole which translates to
distinct peaks in its power spectrum. As a second feature,
the quench we impose reveals the existence of a link
between the radiation emitted by the black hole and the
depletion cloud, namely, the local depletion at a region
outside the black hole starts to increase as the radiation
reaches that region. This represents a novel signature of the
Hawking radiation ramp-up that is related to the overall
distribution of particles either belonging to the condensed
or noncondensed part of the system.

We finally comment on the relevance of our results for
real black holes. In analog gravity, the quantum many-body
wave function of the whole system can (in principle) be
accessed via the observer in the lab. Similarly, we anticipate
that while in the currently existing nonunified theory of
quantized matter fields propagating in a classical, fixed
curved spacetime background, the depletion oscillations are
hidden behind the horizon, a unitary closed system evo-
lution, potentially provided by a future unification of
gravity with the matter fields, will effectively provide
access to the black hole quantum interior and thus also
to the depletion oscillations we have investigated.

ACKNOWLEDGMENTS

This work has been supported by the National
Research Foundation of Korea under Grants
No. 2017R1A2A2A05001422 andNo. 2020R1A2C2008103.

[1] S. W. Hawking, Black hole explosions?, Nature (London)
248, 30 (1974).

[2] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[3] S. B. Giddings, Black holes in the quantum universe,
Phil. Trans. R. Soc. A 377, 20190029 (2019).

[4] W. G. Unruh, Experimental Black-Hole Evaporation?,
Phys. Rev. Lett. 46, 1351 (1981).

[5] M. Visser, Hawking Radiation without Black Hole Entropy,
Phys. Rev. Lett. 80, 3436 (1998).

[6] M. Visser, Acoustic black holes: Horizons, ergospheres and
Hawking radiation, Classical Quantum Gravity 15, 1767
(1998).

[7] C. Barceló, S. Liberati, and M. Visser, Analogue gravity,
Living Rev. Relativity 14, 3 (2011).

[8] T. Jacobson, Black-hole evaporation and ultrashort distan-
ces, Phys. Rev. D 44, 1731 (1991).

[9] W. G. Unruh, Sonic analogue of black holes and the effects
of high frequencies on black hole evaporation, Phys. Rev. D
51, 2827 (1995).

[10] S. Corley and T. Jacobson, Hawking spectrum and high
frequency dispersion, Phys. Rev. D 54, 1568 (1996).

[11] W. G. Unruh and R. Schützhold, Universality of the
Hawking effect, Phys. Rev. D 71, 024028 (2005).

[12] S. Corley and T. Jacobson, Black hole lasers, Phys. Rev. D
59, 124011 (1999).

[13] S. Finazzi and R. Parentani, Black hole lasers in Bose–
Einstein condensates, New J. Phys. 12, 095015 (2010).

[14] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic
Analog of Gravitational Black Holes in Bose-Einstein
Condensates, Phys. Rev. Lett. 85, 4643 (2000).

[15] P. O. Fedichev and U. R. Fischer, Gibbons-Hawking
Effect in the Sonic de Sitter Space-Time of an Expanding

Bose-Einstein-Condensed Gas, Phys. Rev. Lett. 91, 240407
(2003).

[16] P. O. Fedichev and U. R. Fischer, Observer dependence for
the phonon content of the sound field living on the effective
curved space-time background of a Bose-Einstein conden-
sate, Phys. Rev. D 69, 064021 (2004).

[17] R. Schützhold, Detection Scheme for Acoustic Quantum
Radiation in Bose-Einstein Condensates, Phys. Rev. Lett.
97, 190405 (2006).

[18] I. Carusotto, S. Fagnocchi, A. Recati, R. Balbinot, and A.
Fabbri, Numerical observation of Hawking radiation from
acoustic black holes in atomic Bose–Einstein condensates,
New J. Phys. 10, 103001 (2008).

[19] A. Recati, N. Pavloff, and I. Carusotto, Bogoliubov theory
of acoustic Hawking radiation in Bose-Einstein conden-
sates, Phys. Rev. A 80, 043603 (2009).

[20] J. Macher and R. Parentani, Black-hole radiation in Bose-
Einstein condensates, Phys. Rev. A 80, 043601 (2009).

[21] O. Lahav, A. Itah, A. Blumkin, C. Gordon, S. Rinott, A.
Zayats, and J. Steinhauer, Realization of a Sonic Black Hole
Analog in a Bose-Einstein Condensate, Phys. Rev. Lett.
105, 240401 (2010).

[22] J. Steinhauer, Observation of quantum Hawking radiation
and its entanglement in an analogue black hole, Nat. Phys.
12, 959 (2016).

[23] C. Gooding, S. Biermann, S. Erne, J. Louko, W. G. Unruh,
J. Schmiedmayer, and S. Weinfurtner, Interferometric
Unruh Detectors for Bose-Einstein Condensates, Phys.
Rev. Lett. 125, 213603 (2020).

[24] U. Leonhardt, Cosmological horizons radiate, Europhys.
Lett. 135, 10002 (2021).

[25] J. R. Muñoz de Nova, K. Golubkov, V. I. Kolobov, and J.
Steinhauer, Observation of thermal Hawking radiation and

RIBEIRO, BAAK, and FISCHER PHYS. REV. D 105, 124066 (2022)

124066-12

https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1098/rsta.2019.0029
https://doi.org/10.1103/PhysRevLett.46.1351
https://doi.org/10.1103/PhysRevLett.80.3436
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.1088/0264-9381/15/6/024
https://doi.org/10.12942/lrr-2011-3
https://doi.org/10.1103/PhysRevD.44.1731
https://doi.org/10.1103/PhysRevD.51.2827
https://doi.org/10.1103/PhysRevD.51.2827
https://doi.org/10.1103/PhysRevD.54.1568
https://doi.org/10.1103/PhysRevD.71.024028
https://doi.org/10.1103/PhysRevD.59.124011
https://doi.org/10.1103/PhysRevD.59.124011
https://doi.org/10.1088/1367-2630/12/9/095015
https://doi.org/10.1103/PhysRevLett.85.4643
https://doi.org/10.1103/PhysRevLett.91.240407
https://doi.org/10.1103/PhysRevLett.91.240407
https://doi.org/10.1103/PhysRevD.69.064021
https://doi.org/10.1103/PhysRevLett.97.190405
https://doi.org/10.1103/PhysRevLett.97.190405
https://doi.org/10.1088/1367-2630/10/10/103001
https://doi.org/10.1103/PhysRevA.80.043603
https://doi.org/10.1103/PhysRevA.80.043601
https://doi.org/10.1103/PhysRevLett.105.240401
https://doi.org/10.1103/PhysRevLett.105.240401
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/nphys3863
https://doi.org/10.1103/PhysRevLett.125.213603
https://doi.org/10.1103/PhysRevLett.125.213603
https://doi.org/10.1209/0295-5075/ac0ecf
https://doi.org/10.1209/0295-5075/ac0ecf


its temperature in an analogue black hole, Nature (London)
569, 688 (2019).

[26] V. I. Kolobov, K. Golubkov, J. R. Muñoz de Nova, and J.
Steinhauer, Observation of stationary spontaneous Hawking
radiation and the time evolution of an analogue black hole,
Nat. Phys. 17, 362 (2021).

[27] R. Balbinot, A. Fabbri, S. Fagnocchi, A. Recati, and I.
Carusotto, Nonlocal density correlations as a signature of
Hawking radiation from acoustic black holes, Phys. Rev. A
78, 021603(R) (2008).

[28] J. Steinhauer, Measuring the entanglement of analogue
Hawking radiation by the density-density correlation func-
tion, Phys. Rev. D 92, 024043 (2015).

[29] U. Leonhardt, Questioning the recent observation of quan-
tum Hawking radiation, Ann. Phys. (Berlin) 530, 1700114
(2018).

[30] Y.-H. Wang, T. Jacobson, M. Edwards, and C.W. Clark,
Induced density correlations in a sonic black hole con-
densate, SciPost Phys. 3, 022 (2017).

[31] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Sonic
black holes in dilute Bose-Einstein condensates, Phys. Rev.
A 63, 023611 (2001).

[32] L. Santos, F. Floegel, T. Pfau, and M. Lewenstein, Con-
tinuous optical loading of a Bose-Einstein condensate,
Phys. Rev. A 63, 063408 (2001).

[33] A. P. Chikkatur, Y. Shin, A. E. Leanhardt, D. Kielpinski, E.
Tsikata, T. L. Gustavson, D. E. Pritchard, and W. Ketterle,
A continuous source of Bose-Einstein condensed atoms,
Science 296, 2193 (2002).

[34] M. Falkenau, V. V. Volchkov, J. Rührig, A. Griesmaier, and
T. Pfau, Continuous Loading of a Conservative Potential
Trap from an Atomic Beam, Phys. Rev. Lett. 106, 163002
(2011).

[35] N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D.
Close, A pumped atom laser, Nat. Phys. 4, 731 (2008).

[36] C.-C. Chen, S. Bennetts, R. G. Escudero, B. Pasquiou, and
F. Schreck, Continuous Guided Strontium Beam with High
Phase-Space Density, Phys. Rev. Applied 12, 044014
(2019).

[37] P. C. Hohenberg, Existence of long-range order in one and
two dimensions, Phys. Rev. 158, 383 (1967).

[38] R. Schützhold, M. Uhlmann, Y. Xu, and U. R. Fischer,
Quantum backreaction in dilute Bose-Einstein condensates,
Phys. Rev. D 72, 105005 (2005).

[39] U. Leonhardt, T. Kiss, and P. Öhberg, Theory of elementary
excitations in unstable Bose-Einstein condensates and the
instability of sonic horizons, Phys. Rev. A 67, 033602
(2003).

[40] A. Coutant and R. Parentani, Black hole lasers, a mode
analysis, Phys. Rev. D 81, 084042 (2010).

[41] C. C. H. Ribeiro and D. A. T. Vanzella, Analogues of
gravity-induced instabilities in anisotropic metamaterials,
Phys. Rev. Research 2, 013281 (2020).

[42] W. C. C. Lima and D. A. T. Vanzella, Gravity-Induced
Vacuum Dominance, Phys. Rev. Lett. 104, 161102 (2010).

[43] W. C. C. Lima, G. E. A. Matsas, and D. A. T. Vanzella,
Awaking the Vacuum in Relativistic Stars, Phys. Rev. Lett.
105, 151102 (2010).

[44] Y.-H. Wang, T. Jacobson, M. Edwards, and C.W. Clark,
Mechanism of stimulated Hawking radiation in a laboratory
Bose-Einstein condensate, Phys. Rev. A 96, 023616 (2017).
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