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The well-posedness of the gravitational equations of fðRÞ gravity is studied in this paper. Three
formulations of the fðRÞ gravity with dynamical shifts [which are all based on the Arnowitt-Deser-Misner
(ADM) formalism of the equations] are investigated. These three formulations are all proved to be strongly
hyperbolic by pseudodifferential reduction. The first one is the Baumagarte-Shapiro-Shibata-Nakamura
formulation with the so-called “hyperbolic K-driver” condition and the “hyperbolic Gamma driver”
condition. The second one is the ADM formulation with modified harmonic gauge conditions. We find that
the equations are not strong hyperbolic in traditional Z4 formulation for fðRÞ gravity. So, in the third
formulation, we improve the Z4 formulation, and show these equations are strong hyperbolic with modified
harmonic gauge conditions.
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I. INTRODUCTION

In the past two decades, physicists have been trying to find
an interpretation about the early and late time accelera-
ting expansion of the Universe. As an alternative solution,
modified gravity has been arousing people’s curiosities. The
so-called fðRÞ gravity, whose Lagrangian is an analytic
function of the spacetime’s Ricci scalar, is one of the simplest
and the most direct modifications of general relativity.
Starobinsky used the model with fðRÞ ¼ Rþ αR2 to give
an explanation of the early accelerating expansion of the
Universe [1], without introducing extra inflation fields.
Gradually, the investigations of fðRÞ gravity are expanded
to many aspects, ranging from Solar System to cosmology
[2,3]. To get a systematic understanding of fðRÞ gravity, one
can refer to reviews [4,5]. Further on, there are more wide
reviews on fðRÞ gravity and other modified gravity [6,7].
However, there is still much to be studied about fðRÞ

gravity such as its well-posed initial value problem (IVP).
A well-posed initial value problem in some sense has the
following three reasonable properties associated with the
equations of motion. Given suitable initial data and
boundary data, (i) a solution must be existent, (ii) the
solution must be unique, and (iii) the solution must depend
continuously on the initial data. The well-posed initial
value problem has been successfully demonstrated in
general relativity, which enables us to make predictions
under strong field or dynamical field conditions, with the
powerful tool of numerical relativity. Additionally, the

well-posedness also demonstrates the local determinism
of classical theories. Therefore, naturally, we also expect
fðRÞ gravity to have a well-posed initial value problem. In
addition to the fðRÞ gravity, the well-posed formulations in
other modified gravities have been put forward. Scalar-
tensor theory has been discussed in Ref. [8]. For the
Einstein-æ ther theory, the well-posed formulation is given
in Ref. [9], where the authors use the Ricci rotation
coefficients (such a formulation was obtained in general
relativity [10]). The well-posed formulation of cubic
Horndeski theories is proposed in Ref. [11].
Sufficient conditions for well-posedness of the initial

value problem are that the equations are strongly hyper-
bolic. Hyperbolicity refers to algebraic conditions on the
principal part of the equations. It implies well-posedness
for the Cauchy problem, which reveals the existence of a
unique continuous map between initial data and solutions.
Especially, among a series of definitions of hyperbolicity,
strong hyperbolicity is consider to be a spot-on definition
for a well-posed initial value problem. The proof of this
equivalence is based on pseudodifferential analysis [12,13].
Roughly speaking, there are two methods to investigate

the hyperbolicity of a gravity theory. One is proposed by
Reall et al. The well-posed formulation in Horndeski and
Lovelock gravity has been studied in [14–16]. They show
that the equations of motion of these theories can be written
in a form that, at weak coupling, is strongly hyperbolic and
therefore admits a well-posed initial value problem.
Another considered in this paper is a different approach
than that taken by Kovacs and Reall which is based on the
Arnowitt-Deser-Misner (ADM) decomposition. However,
after ADM decomposition of the equation of motion, the
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result is usually nonlinear. Further, the hyperbolicity
analysis of the evolution is still in a linearized way which
is based on the localization principle and the linearization
principle [17]. It is based on the ADM decomposition of
the evolution equations [18] with some suitable gauge
conditions. The key technology of strong hyperbolicity is
to check whether the eigenvalues of the principal part are
all real or not and check whether the eigenvectors of the
principal part of the equations span the whole eigenspace
or not [17,19,20]. At the perturbative level, the hyper-
bolicity of the Einstein-Gauss-Bonnet theory is studied in
Refs. [21,22].
It has beenproved that theADMevolution equations are of

weak hyperbolicity in general relativity [23]. This is the
reason why one can find some instabilities in ADM for-
mulations [24–26]. In Ref. [19], the authors came up with
densitized ADM equations where the lapse function is
densitized. However, this formulation is still not strongly
hyperbolic but only weakly hyperbolic. Numerical evolution
of the Einstein equations in the Baumgarate-Shapiro-
Shibata-Nakamura (BSSN) formulation have been found
to have stable evolution [27]. It is based on the ADM
decomposition of the field equations. A new variable Γ̃i is
introduced in the BSSN systems. It has been shown in
many papers that the BSSN formulation leads to strong
hyperbolicity of the evolution equations in general relativity
[28–30].
It is worth pointing out that all notions of hyperbolicity

mentioned above require that the evolution equations are
first order systems. Here, either the ADM evolution
equations or the BSSN evolution equations are first order
in time, but mixed first/second order in space. Hence, the
strategy to analyze the hyperbolicity of these second-order
systems is to transform them into equivalent first-order
systems. Then one looks at algebraic properties of the
principal part for these first-order systems. There are
several ways of obtaining a first-order system from these
second-order ones. One of them, used in [28,29,31], is to
add as variables all first-order derivatives and look at the
resulting larger system. Another is to add as new variables
the square roots of the Laplacian of some of the original
variables and so get a first-order pseudodifferential system
[30]. No extra equations will be introduced under the
pseudodifferential reductions which were first used in
general relativity in [32].
In the early days, the Cauchy problem of fðRÞ gravity

was studied through the equivalency of fðRÞ gravity and
scalar-tensor gravity [33]. In 2016, Mongwane, bypassing
this equivalency, took full advantage of the ADM decom-
position proposed in Ref. [34] to directly study the hyper-
bolicty of the fðRÞ gravity. He investigated the
hyperbolicity of fðRÞ gravity but only for a given shift
function in both the ADM formulation and the BSSN
formulation. Therefore, by adding all first-order derivatives
as variables, he proved the ADM version of fðRÞ gravity is

just weakly hyperbolic while the BSSN version of fðRÞ
gravity is strongly hyperbolic [35].
On the one hand, it is known that there are many other

formulations with different gauge conditions other than the
BSSN formulation with Bona-Masso slicing condition [36]
which is used in Ref. [35] for the fðRÞ gravity. For example,
ADM formulation with harmonic gauge conditions and the
Z4 formulation are common formulations. Then, it is natural
for us to study whether or not these formulations keep the
strong hyperbolicity in fðRÞ gravity. On the other hand,
the advantage of the pseudodiffenrential reduction is that the
principal part of the system is algebraically much simpler to
dispose of (the matrix of principal part is much smaller),
especially for systemswhichhave second order derivatives in
space. Based on these two reasons, the main purpose of this
paper is tomake an investigation of the hyperbolicity of fðRÞ
gravity in three different formulations by using the pseudo-
diffenrential reduction. To be specific, the first one consid-
ered is the BSSN formulation with dynamical shifts and
lapses, we find it will be strongly hyperbolic under the so-
called “hyperbolic K-driver” condition and the “hyperbolic
Gamma driver” condition. The second one is the ADM
formulation with a modified harmonic gauge condition
which is different from the one in general relativity [17].
For the last formulation, a four-vector field Za is added into
the original equations of motion. Then we get the so-called
Z4 formulation. However, the approach to addZa is distinct
with the traditional one in general relativity. Otherwise, one
cannot acquire a strongly hyperbolic Z4 formulation.
This paper is organized as follows. In Sec. II, we present

the standard Arnowitt-Deser-Misner (ADM) formulation of
fðRÞ gravity according to Ref. [34]. The hyperbolicity of
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation with dynamical lapse and dynamical shift is studied in
Sec. III. In Sec. V, a modified harmonic formulation is
analyzed. Last but not least, we perform a modified Z4
formulation for the fðRÞ gravity in Sec. IV. Section VI is the
conclusion and the discussion. We use the lowercase letters
fa; b; c;…g for the abstract indices andweuse the lowercase
letters fi; j; k;…g for the spatial component of a tensor.

II. THE ADM DECOMPOSITION OF EQUATIONS
OF MOTION IN f ðRÞ GRAVITY

We start with a brief review of the ADMdecomposition of
equations of motion in fðRÞ gravity (the details can be found
in Ref. [34]). There are three versions of fðRÞ gravity: metric
formalism, Palatini formalism, and metric-affine formalism,
respectively [37]. In this paper, we consider the metric
formalism whose action can be expressed as

S ¼ 1

2κ2

Z
d4x

� ffiffiffiffiffiffi
−g

p
fðRÞ þ 2κ2Lm

�
; ð2:1Þ

where κ2 ¼ 8πGN , andGN is the gravitational constant. The
symbol g is the determinant of the spacetime metric gab, and
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Lm is the Lagrangian density for usual matter fields. Varying
the action (2.1)with respect to themetric gab yields equations
of motion

f0Rab −
1

2
fgab −∇a∇bf0 þ gab□f0 ¼ κ2Tab; ð2:2Þ

where f0 ¼ ∂fðRÞ=∂R, f ¼ fðRÞ, and Tab is the energy-
momentum tensor from the Lagrangian density Lm. For
convenience on the notion, usually, we introduce a sym-
metric tensor Σab which is defined as follows:

Σab ≡ f0Rab −
1

2
fgab − f00∇a∇bR − f000∇aR∇bR

þ gabðf000∇cR∇cRþ f00□RÞ: ð2:3Þ

Hence, Eq. (2.2) can be written as

Σab ¼ κ2Tab: ð2:4Þ

We think of spacetime ðM; gabÞ to be foliated by spacelike
surfaces ðΣt; γabÞ. Letna be the future directed unit normal to
Σt and the induced spatial metric on those hypersurfaces is

γab ¼ gab þ nanb: ð2:5Þ

The mixed tensor γab is called the projection operator since
when contracted with any four-dimensional vector it pro-
duces its spatial projection on Σt. Under the standard ADM
decomposition, the metric gab is written as

ds2 ¼ −ðα2 − βiβ
iÞdt2 þ 2βidtdxi þ γijdxidxj; ð2:6Þ

where α is the lapse function and βi is the shift vector
with βi ¼ γijβ

j. The induced covariant derivative on
ðΣt; γabÞ is denoted by Da, which is compatible with the
induced metric γab as usual. The extrinsic curvatureKab can
be defined in terms of projections of covariant derivative of
na, i.e.,

Kab ¼−γacγbd∇cnd ¼−∇anb −naab ¼−
1

2
Lnγab; ð2:7Þ

where ab ¼ nc∇cnb is the acceleration of the normal na, and
it is related to the lapse function α via ab ¼ Db lnα. By these
definitions, the ADM decomposition of the full system (2.4)
is expressed as follows [34,35]:

∂0R ¼ αψ ; ð2:8Þ

∂0ψ ¼ α

3f00
½−2f þ Rf0 þ 3ðDiDiRþ Kψ þ aiDiRÞf00

þ 3ðDiRDiR − ψ2Þf000 − κ2ðS − ρÞ�; ð2:9Þ

∂0γij ¼ −2αKij þ γik∂jβ
k þ γjk∂iβ

k; ð2:10Þ

∂0Kij ¼ αðRij − 2Ki
kKjk þ KKijÞ

þ α

f0

�
1

6
fγij −

1

3
γijRf0 − ðDiDjRþ ψKijÞf00

− f000DiRDjR − κ2
�
Sij −

1

3
γijðS − ρÞ

��
−DiDjαþ Kkj∂iβ

k þ Kik∂jβ
k; ð2:11Þ

where Eq. (2.8) is just the definition of the variable ψ .
Here, the operator ∂0 is defined as ∂0 ≡ ∂t − βi∂i with βi

denoting shift. This operator is always used in the
following discussion. In the above equations, Rij called
the spatial Ricci tensor is obtained by the following
expression:

Rij ¼
1

2
γklð∂i∂lγkj þ ∂k∂jγil − ∂i∂jγkl − ∂k∂lγijÞ

þ γklðΓm
ilΓmkj − Γm

ijΓmklÞ; ð2:12Þ
where Γ is computed from γij, ψ is defined as the Lie
derivative of R along n, and K is the trace of Kij. The
quantities ρ, Sij, S come from the energy-momentum tensor
Tab, i.e.,

ρ¼ nanbTab; Scd ¼ γacγ
b
dTab; S¼ γabTab: ð2:13Þ

It should be noted that the evolution variables are
fR;ψ ; γij; Kijg for fðRÞ gravity, and this is very different
from general relativity inwhich the variables of evolution are
merely fγij; Kijg. If we do not think of R as an independent
dynamical variable, we have to consider evolution equations
whose highest derivative is quartic but not quadratic [38]. It is
also interesting to discuss this issue by the method in [39].
However, it is a little bit complicated and beyond the aim of
present paper.

III. BSSN FORMULATION WITH DYNAMICAL
LAPSE AND DYNAMICAL SHIFT

In general relativity, we know the ADM formulation is
not strongly hyperbolic [19]. But for the BSSN formu-
lation, the strong hyperbolicity will be held [19,29].
Moreover, in the case of fðRÞ, the ADM equations are
still not strongly hyperbolic, while the relevant BSSN
formulation will keep the strongly hyperbolicity when
one chooses suitable parameters [35]. The BSSN formu-
lation is based on the ADM formulation. In this sub-
section, we will show how the BSSN formulation keeps
the strong hyperbolicity in fðRÞ gravity. However, unlike
the method used in Ref. [35] with a fixed shift vector,
we will use pseudodifferential reductions to complete
the analysis under the dynamical lapse and the dynamical
shift.
First, we write down the BSSN formulation explicitly for

fðRÞ gravity which was proposed in Ref. [35]. In BSSN
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formulation, the three metric γij and the extrinsic curvature
Kij are decomposed according to

γij ¼ e4ϕγ̃ij; ð3:1Þ

Kij ¼ e4ϕ
�
Ãij þ

1

3
γ̃ijK

�
; ð3:2Þ

where γ̃ij has unit determinant. A new variable defined as

Γ̃i ≡ γ̃jkΓ̃i
jk ð3:3Þ

is added in the BSSN formulation. In summary, the
variables of evolution for fðRÞ gravity are

fR;ψ ;ϕ; K; Γ̃i; γ̃ij; Ãijg:

The evolution equations of the BSSN formulation for fðRÞ
gravity have the following forms:

∂0R ¼ αψ ; ð3:4Þ

∂0ψ ¼ α

3f00
½−2f þ Rf0 þ 3ðDiDiRþ Kψ þ aiDiRÞf00

þ 3ðDiRDiR − ψ2Þf000 − κ2ðS − ρÞ�; ð3:5Þ

∂0ϕ ¼ −
1

6
αK þ 1

6
∂kβ

k; ð3:6Þ

∂0γ̃ij ¼ −2αÃij þ γ̃ik∂jβ
k þ γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k; ð3:7Þ

∂0K ¼ α

f0

�
−
1

2
f þ f00ðDiDiRþ KψÞ þ f000DiRDiRþ κ2ρ

�

þ α

�
ÃijÃ

ij þ 1

3
K2

�
− γijDiDjα; ð3:8Þ

∂0Ãij ¼ αðKÃij − ÃikÃ
k
jÞ þ e−4ϕðαRij −DiDjαÞTF

−
αe−4ϕ

f0

��
DiDjRþ ψe4ϕ

�
Ãij þ

1

3
Kγ̃ij

��
f00

þ f000DiRDjRþ κ2Sij

�
TF

þ Ãik∂jβ
k þ Ãjk∂iβ

k −
2

3
Ãij∂kβ

k; ð3:9Þ

∂0Γ̃i¼ 2αΓ̃i
jkÃ

jk−
4

3
αmγ̃ijDjKþ12αmÃijDjϕ

þ2αðm−1ÞD̃jÃ
ij−2ÃijDjαþ γ̃jk∂j∂kβ

i

þ1

3
γ̃ij∂j∂kβ

k− Γ̃j
∂jβ

iþ2

3
Γ̃i
∂jβ

j−2αmκ2e4ϕ
Si

f0

þ2αm
f000

f0
γ̃ijψDjR

þ2αm
f00

f0

��
Ãijþ1

3
γ̃ijK

�
DjRþ γ̃ijDjψ

�
; ð3:10Þ

where D̃i is compatible with the conformal metric γ̃ij, and
Sc ¼ −γacnbTab is the momentum density of the matter
fields. It should be noted that the indices of quantities
which have a “tilde” are lowered and raised by the
conformal metric γ̃ij. The expression ½…�TF denotes the
traceless part of terms inside the square brackets with
respect to the metric γ̃ij. The parameter m introduced in
[29,40] manifests how the momentum constraint is added
to the evolution equations for the variable Γ̃i, where the
momentum constraint is expressed as [35]

κ2e4ϕSi −
�
D̃jÃ

ij þ 6ÃijD̃jϕ −
2

3
γ̃ijDjK

�
f0

− f00
��

Ãij þ 1

3
γ̃ijK

�
DjRþ γ̃ijDjψ

�
− γ̃ijf000ψDjR ¼ 0: ð3:11Þ

Here, we consider the gauge condition given in
Refs. [29,41]. For the lapse, it has the form

∂0α ¼ −α2hðα;ϕ; xμÞ½K − K0ðxμÞ�; ð3:12Þ

which is named as the hyperbolic K-driver condition. For
the shift, the hyperbolic Gamma driver type condition,

∂0β
i ¼ α2Gðα;ϕ; xμÞBi; ð3:13Þ

∂0Bi ¼ e−4ϕHðα;ϕ; xμÞ∂0Γ̃i − ηðBi; α; xμÞ; ð3:14Þ

will be applied, where Gðα;ϕ; xμÞ and Hðα;ϕ; xμÞ are
smooth, strictly positive functions, and ηðBi; α; xμÞ is a
smooth function.
Freezing the coefficients in the differential equations at

some fixed point and analyzing the linear constant coef-
ficient problem by means of a Fourier transformation in
space, we get

∂0α̂ ¼ −α2hK̂ þ l:o:; ð3:15Þ

∂0β̂
i ¼ α2GB̂i; ð3:16Þ
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∂0B̂
i ¼ e−4ϕH

�
−
4

3
αm0γ̃ijðiωjK̂Þ

þ 2αðm0− 1Þγ̃ikγ̃jlðiωjÞ ˆ̃Akl − γ̃jkωjωkβ̂
i

−
1

3
γ̃ijωjωkβ̂

kþ 2αm0 f
00

f0
γ̃ijðiωjψ̂Þ

�
þ l:o:; ð3:17Þ

∂0R̂ ¼ αψ̂ ; ð3:18Þ

∂0ψ̂ ¼ −αγijωiωjR̂þ l:o:; ð3:19Þ

∂0ϕ̂ ¼ −
1

6
αK̂ þ i

6
ωkβ̂

k; ð3:20Þ

∂0
ˆ̃γij ¼−2α ˆ̃Aijþ iγ̃ikωjβ̂

kþ iγ̃jkωiβ̂
k−

2i
3
γ̃ijωkβ̂

k; ð3:21Þ

∂0K̂ ¼ −α
f00

f0
γijωiωjR̂þ γijωiωjα̂þ l:o:; ð3:22Þ

∂0
ˆ̃Aij ¼ αe−4ϕ

�
1

2
γ̃klωkωl

ˆ̃γij þ iγ̃kðiωjÞ
ˆ̃Γk

þ 2ωiωjϕ̂þ ωiωj
α̂

α

�
TF

þ αe−4ϕ
f00

f0
ðωiωjR̂ÞTF þ l:o:; ð3:23Þ

∂0
ˆ̃Γi ¼ −

4

3
αmγ̃ijðiωjK̂Þ

þ 2αðm − 1Þγ̃ikγ̃jlðiωj
ˆ̃AklÞ − γ̃jkωjωkβ̂

i

−
1

3
γ̃ijωjωkβ̂

k þ 2αm
f00

f0
γ̃ijðiωjψ̂Þ þ l:o:; ð3:24Þ

where a hat represents the Fourier transformation in space,
for example,

θ̂ðωÞ ¼
Z

d3xθðxÞe−iω·x;

and l.o. denotes terms which depend on lower order spatial
derivatives. The parameter m0 in the evolution equation for
Bi is allowed to be different from the parameter m [29]. By
writing

ωi ¼ jωjω̃i; jωj2 ¼ γijωiωj;

and introducing the variables

â¼ iα−1jωjα̂; b̂i¼ iα−1jωjγijβ̂j; B̂i¼γijB̂
j; r̂¼ ijωjR̂;

Φ̂¼ ijωjϕ̂; l̂ij¼ ijωje4ϕ ˆ̃γij; L̂ij¼e4ϕ ˆ̃Aij;
ˆ̃Γi¼ γ̃ij

ˆ̃Γj
;

ð3:25Þ

one can rewrite the system [Eqs. (3.15)–(3.24)] as a first
order system. According to these variables, one gets a first
order pseudodifferential system of the structure

∂0û ¼ ijωjαPðωÞûþ l:o:; ð3:26Þ

where

û ¼ ðâ; b̂i; B̂i; r̂; ψ̂ ; Φ̂; l̂ij; K̂; L̂ij;
ˆ̃ΓiÞT:

Since the shift cannot change a real eigenvalue into an
imaginary one and it cannot affect the hyperbolicity of the
system, the system (3.26) is strongly hyperbolic if and only
if PðωÞ is diagonalizable and has only real eigenvalues
[17,20]. An ingenious suggestion for doing these calcu-
lations is to decompose the eigenvalue equation

λû ¼ PðωÞû ð3:27Þ

into orthogonal components with respect to ω̃i [9,17,19].
Introduce the splitting

Xij ¼ ω̃iω̃jX þ X0qij=2þ 2ω̃ðiX0
jÞ þ X0

hiji;

Yi ¼ Y 0
i þ ω̃iY; ð3:28Þ

where qij ¼ γij − ω̃iω̃j is the orthogonal projector to ω̃i,
and

X ¼ ω̃iω̃jXij; X0 ¼ qijXij;

X0
i ¼ qikω̃lXkl; X0

hiji ¼ qikqjlðXkl − X0qkl=2Þ;
Y ¼ ω̃iYi; Y 0

i ¼ qijYj: ð3:29Þ

In this subsection, Xij is chosen to be l̂ij, L̂ij, and Yi is

chosen to be b̂i, B̂i,
ˆ̃Γi. Hence, PðωÞ can be decomposed

into three independent parts, and it is written as

P ¼

2
64
PS 0 0

0 PV 0

0 0 PT

3
75; ð3:30Þ

where PS, PV , PT denote scalar part, vector part, and tensor
part, respectively. After some calculations, the results are
shown as follows:
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PS

2
6666666666666666666664

â

b̂

B̂

r̂

ψ̂

Φ̂
l̂

l̂0

K̂

L̂
ˆ̃Γ

3
7777777777777777777775

¼

2
6666666666666666666666664

0 0 0 0 0 0 0 0 −h 0 0

0 0 G 0 0 0 0 0 0 0 0

0 4
3
H 0 0 2m0 f00

f0 H 0 0 0 − 4
3
m0H 2ðm0 − 1ÞH 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 1
6

0 0 0 0 0 0 − 1
6

0 0

0 4
3

0 0 0 0 0 0 0 −2 0

0 − 4
3

0 0 0 0 0 0 0 2 0

−1 0 0 f00
f0 0 0 0 0 0 0 0

− 2
3

0 0 − 2f00
3f0 0 − 4

3
− 1

3
1
6

0 0 2
3

0 4
3

0 0 2mf00
f0 0 0 0 − 4

3
m 2ðm − 1Þ 0

3
7777777777777777777777775

2
6666666666666666666664

â

b̂

B̂

r̂

ψ̂

Φ̂
l̂

l̂0

K̂

L̂
ˆ̃Γ

3
7777777777777777777775

; ð3:31Þ

PV

2
666666664

b̂0i
B̂0
i

l̂0i
L̂0
i

ˆ̃Γ0
i

3
777777775
¼

2
6666664

0 G 0 0 0

H 0 0 2ðm0 − 1ÞH 0

1 0 0 −2 0

0 0 − 1
2

0 1
2

1 0 0 2ðm − 1Þ 0

3
7777775

2
666666664

b̂0i
B̂0
i

l̂0i
L̂0
i

ˆ̃Γ0
i

3
777777775
;

ð3:32Þ

and

PT

"
l̂0hiji

L̂0
hiji

#
¼

"
0 −2
− 1

2
0

#"
l̂0hiji

L̂0
hiji

#
: ð3:33Þ

The eigenvalues of the matrix PS are 0;�1;� ffiffiffi
h

p
;

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4GH=3

p
;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið4m − 1Þ=3p

, where 0 is the triple root.
The eigenvalues of the matrix PV are 0;� ffiffiffiffiffiffiffiffi

GH
p

;� ffiffiffiffi
m

p
.

The eigenvalues of the matrix PT are �1. Therefore, to
guarantee the weak hyperbolicity, we have to set h > 0,
GH > 0, m > 1=4.
Furthermore, provided that m0 ¼ 1, the matrix P is

diagonalizable only if

h ≠ 1; GH ≠ 3=4; h ≠ 4GH=3: ð3:34Þ

Provided that m0 ≠ 1, the matrix P is diagonalizable only if

h ≠ 1; GH ≠ 3=4; h ≠ 4GH=3;

4GH ≠ 4m − 1; m ≠ GH: ð3:35Þ

These are the conditions for the strong hyperbolicity.

IV. ADM FORMULATION WITH MODIFIED
HARMONIC GAUGE

Since the ADM equations are not strongly hyperbolic
with a fixed shift βi and a dynamical lapse α whose
evolution is denoted by a member of the Bona-Masso
family [35], we consider the case where β and α are both
dynamic variables. This consideration of gauge condition
called the modified harmonic gauge was first proposed in
Refs. [16,42] by Reall et al., which is different from the one
by Bona-Masso [36]. We show in this paper that this
generalized harmonic formulation can also be used in fðRÞ
gravity theory. The harmonic gauge of Einstein’s field
equations has many generalizations. One of them is to add a
given source function, denoted by Hν, into the usual
harmonic condition [43,44], and the gauge is written as

∇μ∇μxν ¼ Hν: ð4:1Þ

For keeping general covariance, the generalized harmonic
gauge condition can be expressed as [45]

gαβð4Γμ
αβ − 4

Γ
∘ μ

αβÞ þHμ ¼ 0; ð4:2Þ

where the Christoffel symbols
4
Γ
∘ μ

αβ come from a fixed

smooth background metric g
∘
αβ. Assuming that the back-

ground metric g
∘
αβ is Minkowski in Cartesian coordinates

for simplicity. This means
4
Γ
∘ μ

αβ is vanished. Therefore, in
this subsection, we choose a modified harmonic gauge
given by

g̃αβ4Γμ
αβ þHμ ¼ 0; ð4:3Þ

where g̃αβ is defined as
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g̃αβ ≡ gαβ þ hαβ:

The modified quantities hαβ satisfy

hαβ4Γt
αβ ¼

1 − F
α

K; ð4:4Þ

hαβ4Γi
αβ ¼

1 − p
α

γij∂jαþ ðp − 1Þγijγkl
�
∂kγjl −

1

2
∂jγkl

�

þ F − 1

α
βiK; ð4:5Þ

where 4Γt
αβ and K are obtained from the original metric

(2.6) and F, p are constants. Note that when F ¼ 1 and
p ¼ 1, hαβ ¼ 0, Eq. (4.3) becomes Eq. (4.2). We will show
when the following conditions

F ≠ p; F ≠ 1; p≠ 1; F > 0; p > 0 ð4:6Þ

are satisfied, the evolution equation [Eqs. (2.8)–(2.11)]
with modified harmonic condition (4.3) leads a well-posed
formulation. Due to the fact that this system is a mixed first/
second order system, with same ideas as previous sections,
first order pseudodifferential reduction is used. We obtain

∂0α̂ ¼ −α2FγijK̂ij þ l:o:; ð4:7Þ

∂0β̂
i ¼−αpγijðiωjα̂Þþα2pγijγkl

�
iωkγ̂jl−

i
2
ωjγ̂kl

�
þ l:o:;

ð4:8Þ

∂0R̂ ¼ αψ̂ ; ð4:9Þ

∂0ψ̂ ¼ −αγijωiωjR̂þ l:o:; ð4:10Þ

∂0γ̂ij ¼ −2αK̂ij þ γjkðiωiβ̂
kÞ þ γikðiωjβ̂

kÞ; ð4:11Þ

∂0K̂ij ¼ ωiωjα̂þ α

2
γklðωkωlγ̂ij þ ωiωjγ̂kl − ωiωkγ̂lj

− ωjωkγ̂liÞ þ α
f00

f0
ωiωjR̂þ l:o: ð4:12Þ

After introducing the variables

â ¼ iα−1jωjα̂; b̂i ¼ iα−1jωjγijβ̂j;
r̂ ¼ ijωjR̂; l̂ij ¼ ijωjγ̂ij; ð4:13Þ

and the splitting

l̂ij ¼ ω̃iω̃jl̂þ l̂0
qij
2

þ 2ω̃ðil̂
0
jÞ þ l̂0hiji;

K̂ij ¼ ω̃iω̃jK̂þ K̂0 qij
2

þ 2ω̃ðiK̂
0
jÞ þ K̂0

hiji;

b̂i ¼ b̂0i þ ω̃ib̂; ð4:14Þ

we have the following results:

PS

2
66666666666664

â

b̂

r̂

ψ̂

l̂

l̂0

K̂

K̂0

3
77777777777775
¼

2
66666666666664

0 0 0 0 0 0 −F −F
−p 0 0 0 p

2
− p

2
0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 2 0 0 0 0 −2 0

0 0 0 0 0 0 0 −2
−1 0 − f00

f0 0 0 − 1
2

0 0

0 0 0 0 0 − 1
2

0 0

3
77777777777775

2
66666666666664

â

b̂

r̂

ψ̂

l̂

l̂0

K̂

K̂0

3
77777777777775
;

ð4:15Þ

PV

2
64
b̂0i
l̂0i
K̂0

i

3
75 ¼

2
64
0 p 0

1 0 −2
0 0 0

3
75
2
64
b̂0i
l̂0i
K̂0

i

3
75; ð4:16Þ

and

PT

� l̂0hiji

K̂0
hiji

�
¼

�
0 −2
− 1

2
0

�� l̂0hiji

K̂0
hiji

�
: ð4:17Þ

The eigenvalues of the matrix PS are �1;� ffiffiffiffi
F

p
;� ffiffiffiffi

p
p

,
where �1 are the double root. The eigenvalues of the
matrix PV are � ffiffiffiffi

p
p

; 0. The eigenvalues of the matrix PT

are �1.
Hence, F > 0 and p > 0 guarantee the weak hyper-

bolicity of the evolution equation [Eqs. (2.8)–(2.11)].
Furthermore, condition (4.6) means the evolution equations
[Eqs. (2.8)–(2.11)] with modified harmonic condition (4.3)
are strong hyperbolic.

V. MODIFIED Z4 FORMULATION WITH
MODIFIED HARMONIC GAUGE

We extend equations of motion (2.2) in a general
covariant way by introducing an extra four-vector Za

[46–48], so that the set of basic fields will become
fgμν;Zμg. To be specific, the modification is carried out
in the following way:

Σab − κ2Tab ¼ 0 → Σab − κ2Tab þ l1∇aZb

þ l2∇bZa − l3gab∇cZc − k1ðnaZb þ nbZa

þ k2ncZcgabÞ ¼ 0; ð5:1Þ
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where k1 and k2 are real constants. In the above equation,
we have added three other different parameters,

l1; l2; l3; l1 þ l2 − l3 ≠ 0;

into the usual Z4 formulation. These three parameters
can be unequal with each other. Note that it is a key
point for the strong hyperbolicity. Splitting the four-
vector Za as Za ¼ Za þ naΘ with Za ¼ γabZb and
Θ ¼ −naZa.
The harmonic gauge condition (4.2) in this subsection is

modified as the following form [47]:

∂0α ¼ −α2ζðK −mΘÞ; ð5:2Þ

∂0β
i ¼ −α2ð2 μVi þ c∂i ln α − d∂i ln

ffiffiffi
γ

p Þ − ξβi; ð5:3Þ
where

Vi ¼ ∂i ln
ffiffiffi
γ

p
−
1

2
∂
jγji − Zi: ð5:4Þ

What is worth mentioning is that when

ζ¼1; m¼0; μ¼1; c¼1; d¼1; ξ¼0; Zi¼0;

ð5:5Þ
Eqs. (5.2) and (5.3) are going to be Eq. (4.2) with Hμ ¼ 0.
Projecting Eq. (5.1) onto ni or γij with some calculations,
we finally arrive at the evolution system,

∂0Θ ¼ α

l1 þ l2 − l3

�
1

2
f −

1

2
Rf0 þ 1

2
ðRþ K2 − KijKijÞf0 − ðDiDiRþ KψÞf00 − f000DiRDiR − κ2ρ

�

− ZkDkαþ αl3
l1 þ l2 − l3

DkZk −
αl3

l1 þ l2 − l3
ΘK −

α

l1 þ l2 − l3
k1ð2þ k2ÞΘ; ð5:6Þ

∂0Zi ¼
α

l2
½f0ðDjKi

j −DiKÞ þ f00ðKi
jDjRþDiψÞ þ f000ψDiR − κ2Si�

þ αl1
l2

DiΘ − ΘDiα −
αðl1 þ l2Þ

l2
KijZj −

αk1
l2

Zi þ Zk∂iβ
k; ð5:7Þ

∂0R ¼ αψ ; ð5:8Þ

∂0ψ ¼ α

3f00

�
−

3ðl1 þ l2Þ
2ðl1 þ l2 − l3Þ

f þ l1 þ l2 þ 2l3
2ðl1 þ l2 − l3Þ

Rf0 þ 2ðl1 þ l2Þ þ l3
l1 þ l2 − l3

ðDiDiRþ KψÞf00 þ 3aiDiRf00

þ 2ðl1 þ l2Þ þ l3
l1 þ l2 − l3

DiRDiRf000 − 3ψ2f000 − κ2Sþ 3l3
l1 þ l2 − l3

κ2ρþ ðl1 þ l2 − 4l3Þðl1 þ l2Þ
l1 þ l2 − l3

DiZi

þ l1 þ l2 − 4l3
2ðl1 þ l2 − l3Þ

ðRþ K2 − KijKijÞf0 − ðl1 þ l2 − 4l3Þðl1 þ l2Þ
l1 þ l2 − l3

ΘK

þ
�
−
l1 þ l2 − 4l3
l1 þ l2 − l3

k1ð2þ k2Þ þ 2k1ð1þ 2k2Þ
�
Θ
�
; ð5:9Þ

∂0γij ¼ −2αKij þ γik∂jβ
k þ γjk∂iβ

k; ð5:10Þ

and

∂0Kij ¼ α

�
Rij − 2Ki

kKjk þ KKij −
1

α
DiDjα

�
− α

f00

f0
ðDiDjRþ ψKijÞ − α

f000

f0
DiRDjR

þ α

f0

�
−
1

6
Rf0 þ 1

3
f000DkRDkRþ 1

3
ðDkDkRþ KψÞf00 − 1

6
ðRþ K2 − KklKklÞf0

−
l1 þ l2

3
DkZk þ

l1 þ l2
3

ΘK þ 1

3
κ2S

�
γij þ 2Kkði∂jÞβk

þ α

f0
½−κ2Sij þ ðl1 þ l2ÞDðiZjÞ − ðl1 þ l2ÞΘKij�: ð5:11Þ
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Only keeping the principal terms and doing the Fourier transformation, we get

∂0α̂ ¼ −α2ζðγijK̂ij −mΘ̂Þ; ð5:12Þ

∂0β̂i ¼ −α2
�
2μ

�
1

2
γkliωiγ̂kl −

1

2
iωjγ̂ji − Ẑi

�
−
d
2
γkliωiγ̂kl

�
− αciωiα̂þ l:o:; ð5:13Þ

∂0Θ̂ ¼ α

4ðl1 þ l2 − l3Þ
f0γijγkl½ðiωiÞðiωlÞγ̂kj þ ðiωkÞðiωjÞγ̂il − ðiωiÞðiωjÞγ̂kl − ðiωkÞðiωlÞγ̂ij�

−
α

l1 þ l2 − l3
f00γijðiωiÞðiωjÞR̂þ αl3

l1 þ l2 − l3
γijiωiẐj þ l:o:; ð5:14Þ

∂0Ẑi ¼
α

l2
f0ðγjkiωkK̂ij − γjkiωiK̂jkÞ þ

α

l2
f00iωiψ̂ þ αl1

l2
iωiΘ̂þ l:o:; ð5:15Þ

∂0R̂ ¼ αψ̂ ; ð5:16Þ

∂0ψ̂ ¼ α½2ðl1 þ l2Þ þ l3�
3ðl1 þ l2 − l3Þ

γijðiωiÞðiωjÞR̂þ αðl1 þ l2 − 4l3Þðl1 þ l2Þ
3f00ðl1 þ l2 − l3Þ

γijiωiẐj

þ αðl1 þ l2 − 4l3Þf0
12f00ðl1 þ l2 − l3Þ

γijγkl½ðiωiÞðiωlÞγ̂kj þ ðiωkÞðiωjÞγ̂il − ðiωiÞðiωjÞγ̂kl − ðiωkÞðiωlÞγ̂ij� þ l:o:; ð5:17Þ

∂0γ̂ij ¼ −2αK̂ij þ γjkðiωiβ̂
kÞ þ γikðiωjβ̂

kÞ; ð5:18Þ

and

∂0K̂ij ¼
α

2
γkl½ðiωiÞðiωlÞγ̂kj þ ðiωkÞðiωjÞγ̂il − ðiωiÞðiωjÞγ̂kl − ðiωkÞðiωlÞγ̂ij� − ðiωiÞðiωjÞα̂

− α
f00

f0
ðiωiÞðiωjÞR̂þ γij

�
αf00

3f0
γklðiωkÞðiωlÞR̂ −

α

12
γmnγkl½ðiωmÞðiωlÞγ̂kn þ ðiωkÞðiωnÞγ̂ml

− ðiωmÞðiωnÞγ̂kl − ðiωkÞðiωlÞγ̂mn� −
αðl1 þ l2Þ

3f0
γkliωkẐl

�
þ αðl1 þ l2Þ

2f0
ðiωiẐj þ iωjẐiÞ þ l:o: ð5:19Þ

After introducing the variables

â ¼ iα−1jωjα̂; b̂i ¼ iα−1jωjγijβ̂j; r̂ ¼ ijωjR̂; l̂ij ¼ ijωjγ̂ij; ð5:20Þ

and the splitting

l̂ij ¼ ω̃iω̃jl̂þ l̂0
qij
2

þ 2ω̃ðil̂
0
jÞ þ l̂0hiji;

K̂ij ¼ ω̃iω̃jK̂þ K̂0 qij
2

þ 2ω̃ðiK̂0
jÞ þ K̂0

hiji;

b̂i ¼ b̂0i þ ω̃ib̂;

Ẑi ¼ Ẑ0
i þ ω̃iẐ; ð5:21Þ

we have the following results:
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PS

2
66666666666666666664

â

b̂

Θ̂
Ẑ

r̂

ψ̂

l̂

l̂0

K̂

K̂0

3
77777777777777777775

¼

2
66666666666666666666664

0 0 mζ 0 0 0 0 0 −ζ −ζ
−c 0 0 2μ 0 0 d

2
d
2
− μ 0 0

0 0 0 l3
l1þl2−l3

− f00
l1þl2−l3

0 0 − f0
2ðl1þl2−l3Þ 0 0

0 0 l1
l2

0 0 f00
l2

0 0 0 − f0
l2

0 0 0 0 0 1 0 0 0 0

0 0 0
ðl1þl2−4l3Þðl1þl2Þ

3f00ðl1þl2−l3Þ
2ðl1þl2Þþl3
3ðl1þl2−l3Þ 0 0 − ðl1þl2−4l3Þf0

6f00ðl1þl2−l3Þ 0 0

0 2 0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0 0 −2
−1 0 0

2ðl1þl2Þ
3f0 − 2f00

3f0 0 0 − 1
3

0 0

0 0 0 − 2ðl1þl2Þ
3f0

2f00
3f0 0 0 − 1

6
0 0

3
77777777777777777777775

2
66666666666666666664

â

b̂

Θ̂
Ẑ

r̂

ψ̂

l̂

l̂0

K̂

K̂0

3
77777777777777777775

; ð5:22Þ

PV

2
666664
b̂0i
Ẑ0
i

l̂0i
K̂0

i

3
777775 ¼

2
666664

0 2μ μ 0

0 0 0 f0
l2

1 0 0 −2
0 l1þl2

2f0 0 0

3
777775

2
666664
b̂0i
Ẑ0
i

l̂0i
K̂0

i

3
777775; ð5:23Þ

and

PT

"
l̂0hiji

K̂0
hiji

#
¼

�
0 −2
− 1

2
0

�" l̂0hiji

K̂0
hiji

#
: ð5:24Þ

The eigenvalues of the matrix PS are � ffiffiffiffiffiffiffiffiffiffi
l1=l2

p
;�1;

� ffiffiffi
ζ

p
;� ffiffiffi

d
p

, where �1 are the double root. The eigen-
values of the matrix PV are � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl1 þ l2Þ=ð2l2Þ

p
;� ffiffiffi

μ
p

. The
eigenvalues of the matrix PT are �1.
Hence, l1l2 > 0, ζ > 0, d > 0 and μ > 0 guarantee the

weak hyperbolicity of the evolution equation [Eqs. (5.6)–
(5.11)]. Furthermore, the condition of strong hyperbolicity
for the evolution equation [Eqs. (5.6)–(5.11)] with modi-
fied harmonic conditions [Eqs. (5.2)–(5.4)] is given by

l1 ≠ l2; l1 ≠ ζl2; l1 ≠ dl2; ζ ≠ 1;

d ≠ 1; ζ ≠ d; l1 þ l2 ≠ 2l2μ: ð5:25Þ

It should be noted that the purpose of introducing Zμ is
applying constraint-damping techniques. From this tech-
nique, one will get more accurate results in numerical
relativity. Hence, Zμ is not a physical quantity, but just a
quantity for the purpose of numerical computation. One
may directly use Eqs. (5.6)–(5.11) for the numerical
evolution of Z4 formulation in fðRÞ gravity if he/she likes.
Our hyperbolicity analysis is based on these equa-
tions (5.6)–(5.11). Therefore, it is inconsequential for the
asymmetry of the original Z4 equation under the condi-
tion l1 ≠ l2.

VI. CONCLUSIONS AND DISCUSSION

In this paper, without using the equivalence between
fðRÞ gravity and Brans-Dicke theory, the IVP of fðRÞ
gravity has been systematically studied. Three formula-
tions have been considered. All of them are first order
in time and second order in space, and are based on the
ADM decomposition of theory. It is found that these
formulations are all strongly hyperbolic with suitable
gauge conditions.
The first order pseudodifferential reduction performed in

the space derivatives is the main tool used to analyze the
hyperbolicity of these three formulations in this article.
There are no new constraints added to the system since this
technique does not increase the number of equations. It
emphasizes that well-posedness essentially captures the
absence of divergent behavior in the high frequency limit of
the solutions for a given system [19].
For the BSSN formulation with the so-called hyperbolic

K-driver condition and the hyperbolic Gamma driver
condition, the condition to keep the strong hyperbolicity
is given by Eqs. (3.34) and (3.35). For general relativity,
with the same gauge condition, one can find the condition
to maintain the strong hyperbolicity in [29]. The differences
between general relativity and fðRÞ gravity are given by
additional conditions h ≠ 1 and GH ≠ 3=4. These con-
ditions are peculiar in fðRÞ gravity.
The conditions to keep the strong hyperbolicity for the

ADM formulation with modified harmonic gauge condition
are F ≠ p, F ≠ 1, p ≠ 1, F > 0 and p > 0. In general
relativity, it turns out the principal matrix P is diagonaliz-
able if and only if F > 0 and F ≠ 1 [17]. Therefore, among
these conditions, F ≠ p and p ≠ 1 are more important for
fðRÞ gravity. Since we have F ≠ p, in some sense, it means
that the gauge equations for the lapse and shift function
have to be scaled differently.
In last formulation (which can be called a generalized Z4

formulation), a four-vector Za has been added. Interes-
tingly, in fðRÞ gravity, we find that the strong hyperbolicity
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cannot be kept if one writes the Z4 formulation as the one in
general relativity. Hence, the Z4 formulation here expressed
as in Eq. (5.1) with l1 ≠ l2 plays a vital role in the proof of
the strong hyperbolicity. In a sort of sense, it is a correct Z4
formulation for the fðRÞ gravity.
Another useful scheme in number relativity is so-called

the Bondi-Sachs formalism. Recently, Giannakopoulos
et al. have shown that the metric equations of motion
for general relativity appear to only be weakly hyperbolic
in the Bondi-Sachs formalism [49], so it may be difficult
to find a strongly hyperbolic metric formulation of gen-
eral modified gravity theories in the Bondi-Sachs for-
malism. Therefore, it is of obvious importance for the
modified gravity to study the hyperbolicity of Bondi-Sachs

formalism [50,51]. Corresponding investigations will be
reported elsewhere.
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