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One of the open problems in developing binary black hole (BBH) waveforms for gravitational wave
astronomy is to model the intermediate-mass-ratio regime and connect it to the extreme-mass-ratio regime.
A natural approach is to employ the effective-one-body (EOB) approach to the two-body dynamics that, by
design, can cover the entire mass ratio range and naturally incorporates the extreme-mass-ratio limit. Here
we use recently obtained numerical relativity (NR) data with mass ratios m1=m2 ¼ ð7; 15; 32; 64; 128Þ to
test the accuracy of the state-of-the-art EOB model TEOBResumS in the intermediate-mass-ratio regime. We
generally find an excellent EOB/NR consistency around merger and ringdown for all mass ratios and for all
available subdominant multipoles, except for the l ¼ m ¼ 5 one. This mode can be crucially improved
using the new large mass ratio NR data of this paper. The EOB/NR inspirals are also consistent with the
estimated NR uncertainties. We also use several NR datasets taken by different public catalogs to probe the
universal behavior of the multipolar hierarchy of waveform amplitudes at merger, that smoothly connects
the equal-mass BBH to the test-mass result. Interestingly, the universal behavior is strengthened if the
nonoscillatory memory contribution is included in the NR waveform. Future NR simulations with
improved accuracy will be necessary to further probe, and possibly quantitatively refine, the TEOBResumS

transition from late inspiral to plunge in the intermediate-mass-ratio regime.

DOI: 10.1103/PhysRevD.105.124061

I. INTRODUCTION

While ground based gravitational wave detectors like
Laser Interferometer Gravitational Wave Observatory
(LIGO)-Virgo [1,2] are particularly sensitive to comparable
(stellar) mass binaries, third generation (3G) ground detec-
tors [3] and space detectors, like Laser Interferometer
Space Antenna (LISA), will also be sensitive to the
observation of very unequal mass binary black holes [4].
These will allow the search and study of intermediate mass
black holes, either as the large hole in a merger with a
stellar mass black hole (a source for 3G detectors) or as
the smaller hole in a merger with a supermassive black hole
(a source for LISA).
LISAwill be sensitive to the inspiral and merger of black

hole systems where the primary is significantly (10–1000
times) larger than the secondary. These intermediate-mass-
ratio inspiral systems are crucial LISA sources, but their
gravitational waveforms are poorly understood, with com-
ponent mass scales distinct enough to present challenges for

waveform modeling, particularly in numerical simulations,
and yet hard to match to black hole perturbation theory
computations in the extreme-mass-ratio inspirals regime.
The evolution of these large mass ratio binaries has been

approached via perturbation theory and the computation of
the gravitational self-force exerted by the field of the small
black hole on itself [5–11]. The resolution of the binary
black hole problem in its full nonlinearity has been only
possible after the 2005 breakthroughs in numerical rela-
tivity (NR) [12–14], and a first proof of principle has been
performed in [15] for the 100∶1 mass ratio case, following
studies of the 10∶1 and 15∶1 [16] ones. In the case of [15]
the evolution covered two orbits before merger, and while
this proved that evolutions are possible, practical applica-
tion of these gravitational waveforms requires longer
evolutions. Other approaches to the large mass ratio regime
recently followed [17,18]. A new set of evolutions that are
based on the numerical techniques refined for the long-term
evolution of a spinning precessing binary with mass ratio
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q≡m1=m2 ¼ 15 [19] have been used in [20] to perform
a sequence of binary black hole simulations with increas-
ingly large mass ratios, reaching to a 128∶1 binary that
displays 13 orbits before merger. Based on a detailed
convergence study of the q ¼ 15 nonspinning case,
Ref. [20] applied additional mesh refinements levels
around the smaller hole horizon to reach, successively,
the q ¼ 32, q ¼ 64, and q ¼ 128 cases. Reference [20]
also computed the remnant properties of the merger, as well
as gravitational waveforms, peak frequency, amplitude,
and luminosity. The obtained values were consistent with
corresponding phenomenological formulas, reproducing
the particle limit within 2%.
Beside the direct use of NR simulations, the analysis of

gravitational wave (GW) sources is mostly done using
waveform models that are obtained from the synergy
between analytical and numerical relativity results. The
effective-one-body (EOB) approach [21–25] is a way to
deal with the general-relativistic two-body problem that,
by construction, allows the inclusion of perturbative [e.g.,
obtained using post-Newtonian (PN) methods] and full NR
results within a single theoretical framework. It currently
represents a state-of-the-art approach for modeling dynam-
ics and waveforms from binary black holes, conceptually
designed to describe the entire inspiral-merger-ringdown
phenomenology of quasicircular binaries [26–32] or even
eccentric inspirals [33–35] and dynamical captures along
hyperbolic orbits [34,36–38].
The TEOBResumS model is the EOB waveform model that

currently shows the highest level of NR faithfulness [39]
against all the spin-aligned NR waveforms available (see
also Ref. [40,41] for the precessing case). The model has
been tested [30,42] against NR simulations available up to
q ¼ 18. Although the model generates waveforms that look
qualitatively sane and robust also for larger mass ratios,
only a direct comparison with NR data can effectively
probe its performance in the large-q regime.
The aim of this paper is to provide EOB/NR waveform

comparisons to validate the TEOBResumSmodel (at least) up to
q ¼ 128. To do so, we exploit the NR waveform data
discussed above and presented in Ref. [20]. This paper is
organized as follows: Section II reviews both the NR wave-
forms we are going to use and the basics of the EOB model
TEOBResumS. Section III exploits various sets of NR data to
probe the universal behavior of the multipolar hierarchy of
waveform amplitudes at merger, showing consistency with
test-mass results. The EOB/NR phasing comparisons are
discussed inSec. IV,while Sec.V reports a fewconsiderations
about the impact of NR systematics on informing EOB
waveform models. Concluding remarks are collected in
Sec. VI. We use geometrized units with c ¼ G ¼ 1.

II. NR AND EOB WAVEFORM DATA

Let us start by fixing our waveform conventions. The
multipolar decomposition of the strain waveform is given by

hþ − ih× ¼ D−1
L

X

lm

hlm−2Ylmðθ;φÞ; ð1Þ

where DL is the luminosity distance, and −2Ylmðθ;φÞ
are the s ¼ −2 spin-weighted spherical harmonics.
For consistency with previous works involving the
TEOBResumS waveform model, we work with Regge-
Wheeler-Zerilli normalized multipoles [43,44] defined as
Ψlm ¼ hlm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðlþ 1Þlðl − 1Þp
, and each mode is

decomposed in amplitude and phase,

Ψlm ¼ Alme−iϕlm: ð2Þ

The binary has masses ðm1; m2Þ. We adopt the convention
that m1 ≥ m2, and thus we define q≡m1=m2 ≥ 1, M ¼
m1 þm2 and the symmetric mass ratio as ν≡m1m2=M.

A. NR simulations

In Ref. [20] we performed simulations of the merger of
small mass ratio binary black holes, reaching a 128∶1 case
with 13 orbits before merger. In order to perform this
simulation we have used the LazEv code [45] with eighth-
order spatial finite differences [46], fourth-order Runge-
Kutta time integration with a Courant factor ðdt=dx ¼ 1=4Þ,
and a grid structure developed for the q ¼ 1=15 simulations
in [19] adapted for the 128∶1 with three additional refine-
ment levels (totaling 15) from the external boundaries of the
simulation down to the horizon of the smaller hole. It is
noteworthy here the recent extension of these techniques to
the 1000∶1 mass ratio binary in [47].
We use here the simulations presented in Ref. [20], to

which we refer the reader for additional technical details
(see also Refs. [48,49]). Reference [48] explored different
gauge choices in the moving puncture formulation in order
to improve the accuracy of a linear momentum measure
evaluated on the horizon of the remnant black hole
produced by the merger of a binary. Similarly, Ref. [49]
investigated the benefits of adapted gauges to large mass
ratio binary black hole evolutions. We found expressions
that approximate the late time behavior of the lapse and
shift, ðα0; β0Þ, and use a position and black hole mass
dependent shift damping term, η½x⃗1ðtÞ; x⃗2ðtÞ; m1; m2�. We
found that this substantially reduces noise generation at the
start of the numerical integration and keeps the numerical
grid stable around both black holes, allowing for more
accuracy with lower resolutions. We tested this gauge in
detail in a case study of a binary with a 7∶1 mass ratio, and
then use 15∶1 and 32∶1 binaries for a convergence study.
NR waveforms [50,51] are being directly applied to GW
parameter estimation, demonstrating how source parame-
ters for generic binary black holes (BBHs) can be inferred
based directly on solutions of Einstein’s equations. Specific
cases have been performed for the GW150914 and
GW170104 [52–54] events, finding excellent agreement
between Rochester Institute of Technology (RIT) and
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SXS [52,55–66] waveforms up to l ¼ m ¼ 5 modes,
but for comparable masses between q ¼ 1=0.85 and
q ¼ 1=0.43. The direct use of theoretical waveform infor-
mation to interpret gravitational wave observations and to
determine the precise nature of the astrophysical sources
has proven to be a remarkable success when applied to
O1/O2 BBH events [67] and beyond [68]. And the recent
release of the RIT binary black hole waveform public
catalog includes 1881 simulations [69].
We only report here the information that is pertinent for

our targeted EOB/NR comparisons. In particular, let us
remember that we follow Ref. [70] to set up quasicircular
initial data that allow our simulations to have a negligible
amount of initial eccentricity. Similarly, we use the pro-
cedure of Ref. [71] to accurately extrapolate the waveform
to infinity. The code natively outputs the Weyl scalar Ψ4

that is then transformed to the strain by applying a standard
integration procedure in the frequency domain [72].
We consider mass ratios q ¼ ð7; 15; 32; 64; 128Þ. For q ¼
ð7; 15; 32Þ, we could complete runs at three resolutions,
named low (L), medium (M), and high (H), so to have a
complete convergent series. This allowed us to Richardson-
extrapolate the waveform to infinite resolution and thus
give an estimate of the phase uncertainty. Figure 1 reports
the phase differences between the resolution-extrapolated
l ¼ m ¼ 2 waveform (indicated as ∞) and each finite
resolution. All waveforms are aligned at merger point
(marked with t − tmrg ¼ 0), where merger is defined as
the peak of the quadrupolar amplitude A22. We remark that
the Δϕ22ðtÞ≡ ϕ∞

22 − ϕL;M;H
22 is fundamentally a linear

function of time during the inspiral up to merger, and its
slope “decreases” as the resolution is increased.1 This well-
known effect related to resolution will be useful later when
interpreting EOB/NR phase comparison. Finally, Fig. 1
indicates that a phase uncertainty Δϕ22 between ∼0.2 and

∼0.4 rad looks like a reasonable (conservative) error bar
estimate on resolution extrapolated waveforms.

B. Effective-one-body framework

We use here the most advanced quasicircular version of
the TEOBResumS model [30,42] that also includes several
subdominant modes completed through merger and ring-
down. More precisely, we use here the MATLAB private
implementation of the model (and not the public one
written in C [42]) that relies on the iterative determination
of the next-to-quasicircular correction parameters and not
on the fits described in Ref. [42]. Let us recall that this
waveform model exploits NR waveform data in two ways.
On the one hand, NR waveforms are used to inform two
dynamical parameters that enter directly the EOB
Hamiltonian (both in the orbital and spin-orbital sector).
On the other hand, NR waveform data are used in the
description of merger and ringdown via a certain fitting
procedure [73] of NR data. The model exploited SXS data
up to q ¼ 10, with five more datasets with q ¼ 18 [30].
Test-mass data obtained using Teukode [74] are also used
to inform the fits of amplitude and frequency at the peak of
each multipole. The resulting TEOBResumS waveform model
has been validated against several hundreds of NR simu-
lations, of different accuracy, including mass ratios up to
q ¼ 18. For larger mass ratios the model generates wave-
forms that looks sane, in general, nonpathological (exclud-
ing extremely spinning cases), but a systematic validation
of their quality has not been done so far for the lack of
suitable NR data, and it will be the focus of Sec. IV below.

III. MULTIPOLAR HIERARCHY AT MERGER

The multipolar structure of the waveform amplitude at
merger has a universal structure that can be described by the
mass ratio ν and an effective spin parameter. This hierarchy
emerges when leading order PN expressions are suitably
factorized. In particular, Ref. [27] pointed out a quasiuni-
versal behavior in the symmetric mass ratio ν and spin
parameter Ŝ of the l ¼ m ¼ 2 merger frequency (see
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FIG. 1. Estimate of the phase uncertainty on our simulations with q ¼ f7; 15; 32g: accumulated phase differences between finite
resolution waveform data and resolution extrapolated waveform (labeled with∞). We consider three resolutions: low (L), medium (M),
and high (H). The slope of the linear drift decreases as the resolution increases. The NR-RIT waveforms are aligned at merger time.

1Note, however, the different behavior for q ¼ 32, suggesting
that the low resolution is not high enough to correctly capture this
behavior.
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Fig. 33 therein). Working in the test-mass limit, Ref. [75]
identified a simple structure of the multipolar peak ampli-
tudes Amax

lm ¼ maxtðAlmÞ in terms of the multipolar
order ðl; mÞ,

Amax
lm =ν ≈ ec1ðlÞmþc2ðlÞl; ð3Þ

where the coefficients ciðlÞ are listed in Table VI of [75];
for l > 2, the coefficient c1 is practically independent of l.
Here we show that this structure is present in any BBH
multipolar waveform and can be recovered by analytically
removing the leading ν dependence in each multipole. On a
practical level, this finding is important to construct the
ringdown part of the EOB waveform [73] in order to design
accurate and physically motivated fits to NR data.
From PN theory (see, e.g., [76]), the leading ν depend-

ence of Amax
lm is

ˆ̂Alm ≡ Amax
lm

νjclþϵðνÞj
; ð4Þ

where

clþϵðνÞ ¼ Xlþϵ−1
2 þ ð−ÞmXlþϵ−1

1 : ð5Þ

In the expressions above, ϵ≡ πðlþmÞ is the parity of
lþm, ϵ ¼ 0 if lþm is even, and ϵ ¼ 1 if lþm is odd.
Although this structure is used in Refs. [27,34] to

accurately fit the multipolar amplitude values around
merger, it has not been spelled out explicitly before and,
in particular, not in connection with test-mass results.

Figure 2 contrasts the values of ˆ̂Alm for several comparable
mass binaries (solid lines) with the corresponding test-mass
values taken from Ref. [75] (dotted lines) up to lmax ¼ 8,
when available. We use the following SXS datasets: SXS:
BBH:1354 (q ¼ 1.832), SXS:BBH:1178 (q ¼ 3), SXS:
BBH:0298 (q ¼ 7), and SXS:BBH:1107 (q ¼ 10). Each
dataset is taken at the highest resolution available and
choosing N ¼ 2 extrapolation order [77],2 in order to
assure a more robust representation of merger and ring-
down parts. For SXS data, we have all multipoles up to
lmax ¼ 8, while our RIT waveforms are limited to
lmax ¼ 6, and we only focus on the m ¼ l and m ¼
l − 1 modes. From Fig. 2 one sees that the test-mass
hierarchy between the modes is preserved also in the
comparable-mass case. The figure also highlights the
“quantitative” consistency between the test-mass and com-

parable-mass m ¼ l and m ¼ l − 1 values of ˆ̂Alm.
We observe a degradation of the accuracy of NR simu-
lations with both low values of m and levels of radiation
(high l).
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FIG. 2. Multipolar hierarchy of merger amplitudes: ν-reduced maximum amplitude for each multipole, Eq. (4) versus l and m. The
test-mass values (dotted lines) are compared with the NR values for various q. Up to q ¼ 10 we use SXS data. For q > 10 (bottom
panels) we use only RITwaveforms. Note the consistency between all the l ¼ mmodes. The plot highlights the well-known decrease of
importance of the subdominant multipoles with m < l as the mass ratio is decreased. For each value of l, an approximate exponential
dependence on m is found, with qualitative consistency between the test-mass and the comparable-mass cases. The oscillations present
in the SXS l ¼ 7 and l ¼ 8 modes for small values of m denote inaccuracies in the simulations.

2Each waveform in the SXS catalog is available with extrapo-
lation orders N ¼ 2; 3; 4. The general rule is to use N ¼ 2 when
one is mostly interested in the late part of the waveform, choose
N ¼ 4 for the inspiral, and N ¼ 3 for a compromise.
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A. Data at I + and memory effect

Additional insight may be given by considering a
different type of numerical waveforms provided in a
separate section of the SXS catalog, the Ext-Cauchy-
characteristic evolution (CCE) catalog. This section con-
tains asymptotic waveforms whose evolution has been run
with SpEC [78] and that have been computed in two ways:
(i) using the CCE3 scheme implemented in SpECTRE [79]
and (ii) using the extrapolation procedure implemented in
the PYTHON package SCRI [80–82]. The latter waveforms
are crucially augmented by the nonoscillatory memory
contribution as described in Mitman et al. [83], using a
technique that exploits Bondi-Metzner-Sachs balance laws.
This calculation relies on the extraction from the numerical
spacetime of the full set of Weyl scalars, as discussed in
Ref. [84]. By contrast, CCE proceeds by exploiting Cauchy
data yielded by NR simulations as a boundary on a timelike
worldtube at finite radius, combining it with an exterior
evolution on null hypersurfaces reaching Iþ. Though these
templates should, in principle, be more accurate, due to
difficulties in choosing initial data, the waveforms of the
kind (i) exhibit spurious oscillations and are hence unsuited
for our purposes. The latest implementation of the SpECTRE
CCE module [85] is able to extract waveforms either
from finished simulations or from a generalized harmonic
simulation simultaneously running in SpECTRE, but this
kind of data is currently not readily available.
Interestingly, Ref. [83] proved the consistency between

CCE waveforms and extrapolated waveforms improved by
the addition of the nonoscillatory memory contribution.
The same work also pointed out that the memory

calculation turns out to be incorrect by 50% for some
unknown reason, starting from the l ¼ 3, m ¼ 0 contri-
bution (see especially Sec. IIIB.2 of Ref. [83]). Despite
these drawbacks and open issues, it is meaningful to

perform the same analysis of the ˆ̂Alm quantities using
SCRI-extrapolated waveforms (with the nonoscillatory
memory) taken from the Ext-CCE catalog. In this case,
the recommended extrapolation order for the strain h data is
N ¼ 5. We focus on q ¼ 4 nonspinning data: Figure 3
shows the triple comparison between: (i) standard extrapo-
lated q ¼ 4 SXS data; (ii) the SCRI-extrapolated data plus
the addition of memory and (iii) RIT data. On the one hand,
the figure highlights the consistency between SXS and RIT
data. On the other hand, the most interesting outcome of the
analysis is the “much improved consistency” between the

test-mass and q ¼ 4 scaled amplitudes ˆ̂Alm for l ¼ 2, most
remarkably for the l ¼ 2, m ¼ 0 mode.

IV. EOB/NR TIME-DOMAIN PHASING
COMPARISON

In this section we study the EOB/NR waveform con-
sistency, comparing higher multipoles and mass ratios to
reach to an improvement of some EOB fitting parameters of
particular relevance for large mass ratios.

A. SXS/RIT/EOB consistency for q= 7

We start our analysis considering a BBH configuration
with q ¼ 7, a mass-ratio regime where both SXS and
RIT data are well under control. A similar consideration
applies to the EOB waveform. It is thus instructive to drive
a triple comparison SXS/EOB and RIT/EOB so to better
learn the differences between the two NR simulations,
using the EOB waveform as a reference waveform. For
SXS, we use the SXS:BBH:0298 configuration, taken at
the highest available resolution and with N ¼ 3 extrapo-
lation order since we want to have good control also of the
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FIG. 3. Multipolar hierarchy of merger amplitudes for q ¼ 4 from RIT data (left panel), standard SXS data (central panel, SXS:
BBH:2030 dataset), and SXS waveforms extrapolated to Iþ using the PYTHON package SCRI of Ref. [84] (right panel) with the addition
of the contribution of the displacement memory as described in Ref. [83]. Note the improved consistency of the SCRI-extrapolated data
and test-mass data for all l ¼ 2 multipoles, as well as for the l ¼ m ones.

3As explained in Ref. [79], Cauchy-characteristic extraction
only refers to the transformation from Cauchy coordinates to
the set of quantities that are involved in the characteristic
evolution. We adopt here their convention and denote as
Cauchy-characteristic evolution the whole process of Cauchy-
characteristic extraction and characteristic evolution.
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inspiral. For what concerns RIT, we are using resolution
extrapolated waveforms so to similarly minimize the
phase uncertainty during the inspiral. The comparison
is shown in Fig. 4. The waveforms are aligned just before
merger time, using our usual alignment procedure [86]
that minimizes the EOB/NR phase difference in the
frequency interval ½ωL;ωR� ¼ ½0.2; 0.3�. The top row of
the figure shows the real part of the l ¼ m ¼ 2 mode,
followed (in the second row) by the phase difference
and the relative amplitude difference. We recall
that the RIT waveform is extrapolated in resolution: the
EOB/NR phase difference accumulated in this case is

compatible, though larger, than the SXS one, but con-
sistent with the NR uncertainty estimated in the previous
section. The picture also highlights the consistency
between ringdowns, although the RIT one globally looks
more accurate, with a slightly smaller phase difference.
This might be traced back to the fact that (N ¼ 2)-
extrapolated SXS data (more accurate during merger
and ringdown) were used to construct the ringdown model
and not the N ¼ 3 ones that we are using here. Still, the
right panel of Fig. 4 proves the reliability and robustness
of the NR-fitting procedure behind the construction of the
EOB ringdown model.
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FIG. 4. EOB/NR comparison for q ¼ 7 configuration using either SXS:BBH:0298 (left column) or the resolution-extrapolated RIT
data presented here (right column). Waveforms are aligned on the frequency interval ½ωL;ωR� ¼ ½0.2; 0.3�, close to merger. The top row
reports the real part of the l ¼ m ¼ 2 mode, as well as the phase difference ΔϕEOBNR

22 ≡ ϕEOB
22 − ϕNR

22 and the relative amplitude
difference. The bottom panels compare amplitude and frequency of both the (2,2) and (2,1) waveform mode. Consistently with previous
work [29], the plot shows the purely analytical EOB waveform (dashed, orange) and the one improved by NQC corrections (blue), as
explained in the text. The grey line is the EOB orbital frequency. The consistency between the two NR waveforms is remarkable: the
phase difference accumulated by the RIT one is, however, globally slightly larger, though of the same order of the NR uncertainty
estimate of Fig. 1.
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The third and fourth rows of Fig. 4 complement the
above information showing amplitude and frequencies for
both the l ¼ m ¼ 2 and l ¼ 2, m ¼ 1 modes. Each panel
of the figure incorporates several curves: (i) the NR one
(black); (ii) the TEOBResumS one (red); (iii) the EOB orbital
frequency (grey); (iv) the purely analytical EOB waveform,
without NR-tuned next-to-quasicircular (NQC) corrections
nor NR-informed ringdown (orange); (v) the curve
improved by NQC corrections (light blue). The figure
confirms that RIT data are generally closer to the EOB
waveform for both modes, as well as it highlights the
excellent EOB/NR consistency already achievable with
the purely analytical waveform. An important takeaway
message of Fig. 4 is that the presence of a linear-in-time
EOB/NR phase difference for RIT data during the inspiral

does not harm the quality of the merger and ringdown
description. This observation will turn out to be useful in
the next section, where we will similarly be analyzing RIT
data with larger mass ratios.
This general good agreement of SXS and RIT NR

waveforms supplements those observed for the sources
of GW150914 [52] and GW170104 [53] for the more
comparable mass ratios and up to l ¼ 4 modes.

B. RIT/EOB comparison for large mass ratios

Let us focus now on the l ¼ m ¼ 2 EOB/NR phasing
comparisons for q ¼ f15; 32; 64; 128g, that we display in
Fig. 5. Likewise the q ¼ 7 case, waveforms are aligned just
before merger. For q ¼ f15; 32g we provide comparisons
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FIG. 5. EOB/NR-RIT comparison for various mass ratios. For q ¼ f15; 32g we use resolution-extrapolated waveforms, while for
q ¼ f64; 128g we adopt the highest resolution available. The waves are aligned in the late inspiral, on the frequency interval
½ωL;ωR� ¼ ½0.2; 0.3�. For each mass ratio, the upper panel compares the real part of the waveforms, while the bottom panel shows the
phase difference ΔϕEOBNR

22 ≡ ϕEOB
22 − ϕNR

22 and the relative amplitude difference. Note the high EOB/NR consistency during the merger
and ringdown phase. For q ¼ 128 the differences in the ringdown are due to NR inaccuracies.
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with the resolution-extrapolated waveform, while for
q ¼ f64; 128g we use the highest resolution available.
The plots show a remarkable EOB/NR agreement during
merger and ringdown, despite not having used any of this
data to inform TEOBResumS. The secular EOB/NR dephas-
ing accumulated during the inspiral is related to the finite
resolution of the simulation, and it is of no concern at
the moment. Note, in particular, that for q ¼ 15, the
phase difference accumulated towards early frequency is
ΔϕEOBNR

22 ∼ −0.2 rad, that is of the order of the estimated
NR uncertainty. The accumulated ΔϕEOBNR

22 is at most of
the order of ∼1 rad up to q ¼ 64. Seeing the coherence
between q ¼ f15; 32; 64g, we think that this value is
consistent with a (conservative) error estimate of the NR
uncertainty (especially considering that q ¼ 64 data are not
extrapolated in resolution), and thus we can claim that NR
data, in a sense, are loosely testing also the radiation-
reaction dominated epoch of the waveform up to q ¼ 64.
By contrast, this statement is certainly not correct for
q ¼ 128, that is a much more demanding simulation.
Higher resolution will be probably needed here to mutually
test the two approaches in this regime. For the moment, we
think we can claim that TEOBResumS is here giving the
most accurate (approximate) representation we have for an
inspiral waveform of a q ¼ 128 BBH.

C. Higher multipolar waveform modes

Let us finally complete our analysis considering higher
modes. The TEOBResumS modes completed through merger
and ringdown are (2,1), (3,3), (3,2), (4,4), (4,3), and (5,5).
When tested all over the (nonspinning) parameter space, all
modes are generated robustly, without evident pathological
features, except for the (5,5) one. This mode displays
unphysical behavior already for q ≳ 15. This was already
noted by one of us during the first development of
the model in Ref. [29], while driving comparisons with
a q ¼ 18 NR dataset obtained using the BAM code of
Ref. [87], although not explicitly reported. Figure 6 is an
EOB/NR amplitude and frequency comparison using
the q ¼ 18 BAM data of Ref. [87]. This complements
the l ¼ m ¼ 2 mode comparison shown in Fig. 12 of
Ref. [29]. The picture highlights the incorrect behavior of
the l ¼ m ¼ 5 mode amplitude after merger. Similarly, the
analytical frequency does not match the NR one. Building
an improved analytical description of the l ¼ m ¼ 5 mode
will be the subject of the next section.

1. Improved analytical description of the l =m=5 merger
and ringdown waveform

The ringdown (or better saying, the “postpeak”) descrip-
tion of each multipole within TEOBResumS is based on the
NR-informed fitting procedure introduced in Ref. [73].
This approach, originally discussed for the l ¼ m ¼ 2
mode, was extended to higher modes and gives one of the

essential building blocks of TEOBResumS [29,30]. The
method also yields a stand-alone time-domain waveform
model that can be used in targeted ringdown analyses
[88,89] and improvement in the modeling of the amplitude
already exists [90]. Here we build upon Ref. [29] and
improve the (nonspinning) fits for the l ¼ m ¼ 5 postpeak
waveform presented there. To do so, we (i) use a new
sample of carefully chosen SXS datasets, with N ¼ 2
extrapolation order and mass ratio 1 < q ≤ 10; (ii) comple-
ment this data with a q ¼ 18 BAM waveform already used
in previous work [29] and all the q ¼ f15; 32; 64; 128g
datasets discussed above. This is essential to correctly
connect the comparable-mass regime with the extreme-
mass-ratio limit. We present here new fits for the amplitude
peak Â55, for the three parameters ðc3A; c3ϕ; c4ϕÞ entering the
postpeak description (see Ref. [73] for details), and for
Δt55, the time lag between the peaks of the (2,2) and (5,5)
modes. This quantity is especially important because it is
the one that assures that the postpeak waveform is attached
to the inspiral waveform at the correct point.
Following Ref. [29], both Â55 and Δt55 are fitted

after factorization of their values in the test-mass limit
and for the amplitude of the leading-order dependence
on ν. We use different SXS simulations depending on the
quantity we have to fit. In the left panel of Fig. 7 we show
the raw points for Â55 and ðc3A; c3ϕ; c4ϕÞ, extracted from

FIG. 6. EOB/NR comparison for q ¼ 18 using the NR data of
Ref. [87]. The unphysical behavior of the l ¼ m ¼ 5 mode after
merger is evident.
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q ¼ f1; 1.5; 2; 3; 4; 5; 6; 8; 9.89g SXS simulations, with the
best-fit functions superposed. They are given by

Âpeak
55 ¼ 1 − 0.97509νþ 11.20088ν2; ð6Þ

c3A ¼ −0.59703þ 9.11875ν; ð7Þ

c3ϕ ¼ 4.22624 − 59.69283νþ 373.31260ν2; ð8Þ

c4ϕ ¼ 1.36397þ 14.911137ν: ð9Þ

The accurate representation of Δt55ðνÞ is a crucial element
to assure that the postpeak waveform is attached at the
correct place. As a consequence, we were especially careful
in selecting the NR datasets that are listed in Table I. We
selected the SXS simulations under the conditions that the
values are “stable” with ν, i.e., small variations of ν yield
small variations in Δt55. This is not always the case when
using data in the SXS catalog and extra care should be
exerted in the dataset choice since the (5,5) mode seems
particularly sensitive to the appearance of unphysical
effects. The points of Table I are shown in the right panel
of Fig. 7. We see that the behavior of Δt55 for q ¼
ð32; 64; 128Þ is rather complicated, and it is necessary to
have this data in order to correctly enforce the ν → 0 limit.
The fit for Δt55 reported in the figure explicitly reads

Δt55 ¼ n0
1þ n1νþ n2ν3 þ n3ν3 þ n4ν4

1þ d1νþ d2ν2
; ð10Þ

where

n0 ¼ 6.6195; ð11Þ

n1 ¼ −91.2039; ð12Þ

n2 ¼ 2556.5123; ð13Þ

n3 ¼ −11325.217; ð14Þ

n4 ¼ 27767.2164; ð15Þ
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FIG. 7. NR points and interpolating fits for the quantities entering the postpeak description of the (5,5) mode. Note the special
behavior of the Δt55 that is necessary to correctly capture the values for q ¼ 32 and q ¼ 64. The previously implemented fit (incorrectly
informed by other SXS datasets) is superposed for completeness.

TABLE I. Time delay Δtlm between the l ¼ m ¼ 2 NR
waveform peak and the corresponding peaks for l ¼ m multi-
poles up to l ¼ 6. The second column indicates the identification
number of each simulation from the SXS and RIT waveform
catalog. Exception to this are the q ¼ 18 dataset, obtained in
Ref. [87] using the BAM code and the test-mass limit waveform
obtained using Teukode [74,91].

No. ID q ν Δt44 Δt55 Δt66
1 SXS:BBH:1153 1 0.25 3.6587 … 6.65044
2 SXS:BBH:0198 1.203 0.2479 3.4943 … …
3 SXS:BBH:1354 1.832 0.2284 … 4.8445 …
4 SXS:BBH:1166 2 0.2̄ … 4.4172 …
5 SXS:BBH:0191 2.507 0.2038 2.1388 … …
6 SXS:BBH:1178 3 0.139 1.601 4.196 …
7 SXS:BBH:0197 5.522 0.0988 3.6521 4.6133 4.520
8 SXS:BBH:0298 7 0.1094 3.7126 4.6045 5.2422
9 RIT:BBH:0416 7 0.1094 4.2687 4.6794 4.6301
10 SXS:BBH:0301 9 0.09 4.2998 5.2108 5.7425
11 SXS:BBH:1107 10 0.0826 4.3957 5.3862 6.087
12 RIT:BBH:0373 15 0.0586 4.34 4.7081 4.658
13 BAM [87] 18 0.0499 4.4054 5.1464 5.8734
14 RIT:BBH:0792 32 0.0294 2.8970 2.9929 2.0056
15 RIT:BBH:0812 64 0.0151 2.946 2.7026 1.996
16 RIT:BBH:0935 128 0.0077 3.524 5.0108 4.4429
17 Teukode ∞ 0 5.2828 6.5618 7.7
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d1 ¼ −66.0362; ð16Þ

d2 ¼ 1762.4169: ð17Þ

Let us finally briefly comment on the Δt44 and Δt66 points
listed in Table I. The Δt44 points are shown in the left panel
of Fig. 8, together with the fit of Ref. [30], that is currently
implemented in TEOBResumS (dashed line on the plot). We
see that, similarly to the Δt55 case, Δt44 shows a special
behavior for small ν that is not captured by the fit. Since we
have found that this does not have a relevant influence on
the modelization of the l ¼ m ¼ 4 mode for large mass
ratios (see the corresponding plots in Fig. 9 below), we
have decided to keep the standard TEOBResumS fit. The
Δt66 points display the same qualitative behavior of the
Δt55 ones, and thus it is necessary to use a sufficiently
flexible rational function to fit them robustly (solid line in
the plot). In conclusion, our analysis shows that NR
simulations of large mass ratio binaries encode important
information that needs to be taken into account so that the
TEOBResumS model correctly tends to the test-mass limit.
Simpler interpolations to the test-mass limit can eventually
introduce systematic effects that may invalidate robust
performance all over the parameter space.

2. Global comparison

Figures 9 and 10 illustrate the EOB/NR agreement
around merger for all modes that are robustly completed
through merger and ringdown, i.e., (2,2), (2,1), (3,3), (3,2),
(4,4), (4,3), and (5,5). Note that here, to ease the compari-
son, we are not using resolution-extrapolated waveform
data, but highest resolution data instead. The reason for this
choice is that the extrapolation process can fictitiously
magnify the oscillations in the frequency that are present
during the ringdown in some modes, e.g., the (2,1) mode.
Note that these oscillations are of “physical” origin, as due
to the mixing of positive and negative frequency quasi-
normal modes, as extensively investigated in the test-mass
limit [92–94]. Still, their amplitude is still sensitive to

resolution (especially for the larger mass ratios discussed
below), so that we will not focus on this feature in this
paper. Analogously to the q ¼ 7 case mentioned above, for
each mass ratio and mode reported in Fig. 9, we compare
four curves: (i) the NR one (black); (ii) the purely analytical
one (orange); (iii) the waveform augmented with NQC
corrections (light blue); and (iv) the full waveform com-
pleted with merger and ringdown (red). We note now the
robustness of the l ¼ m ¼ 5 mode that is modeled using
the new NR-informed ringdown fits described above. Note,
however, that some unphysical features appear in the (4,3)
mode amplitude as the mass ratio is increased. In this case,
the feature is coming from the NQC correction to the
amplitude, while the behavior during ringdown is robust
and consistent with the NR waveform for “any” mass ratio.
The improvement of the (4,3) mode for large values of the
mass ratio will require a new NQC-determination strategy
that will be investigated in future work.

V. INFORMING EOB MODELS USING NR
SIMULATIONS: HUNTING FOR SYSTEMATICS

EOB analytical waveform models are informed by NR
simulations. The idea of incorporating in the model
strong-field bits of information extracted from NR was
suggested already two decades ago [95] at the dawn
of the EOB development. Nowadays, NR-informing
EOB models is a crucial step to make them highly faithful,
with respect to, error-controlled NR waveform data
[28–30,34,35,39,42,96–98]. In particular, the spin-aligned
TEOBResumS model incorporates NR information in: (i) the
ringdown part, as discussed above; (ii) the NQC corrections
to the waveform; (iii) an effective 5PN function ac6ðνÞ
entering the orbital interaction potential Aðr; νÞ, i.e., the
ν-dependent deformation of the Schwarzschild potential
1 − 2=r; and (iv) an effective next-to-next-to-next-to-
leading order (i.e., at 4.5PN accuracy) function c3ðνÞ
entering the spin-orbit coupling term of the Hamiltonian.
Here we are only dealing with nonspinning configurations,
so our interest is limited to ac6ðνÞ. Reference [29] used
several SXS datasets to determine ac6ðνÞ as

ac6ðνÞ ¼ n0
1þ n1νþ n2ν2 þ n3ν3

1þ d1ν
; ð18Þ

where the coefficients ðn0; n1; n2; n3; d1Þ are given by
Eqs. (4.3)–(4.7) of [29]. The (pointwise) determination
of this function relies on EOB/NR time-domain phasing
comparisons. For each selected value of q, ac6 is varied
manually until the EOB/NR phase agreement is smaller
than (or of the same order as) the NR phase uncertainty at
merger. For SXS this (probably conservative) error is
estimated by taking the difference between two resolutions
at merger time. This is done using data extrapolated at
infinity withN ¼ 3 order. For example, for q ¼ 7, Ref. [29]
used the SXS:BBH:0298 dataset, and the phase uncertainty

0 0.05 0.1 0.15 0.2 0.25
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 0.05 0.1 0.15 0.2 0.251

2

3

4

5

6

7

8

FIG. 8. Behavior of the Δt44 and Δt66 points of Table I. For the
Δt44 we also superpose the current fit implemented in TEOBRe-
sumS. The differences with the NR data for small values of ν do
not seem to impact the EOB/NR waveform agreement (see
Fig. 9). The behavior of Δt66 is qualitatively analogous to the
Δt55 one.
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at merger estimated in this way gives δϕNR
mrg ¼ −0.0775 rad

(see Table I of [29]). Figure 11 shows our current state-
of-the-art for q ¼ 7 and SXS:BBH:0298. With ac6ðνÞ
given by Eq. (18), one has ΔϕEOBNR

22 ∼ −0.244 rad at

merger point that is of the same order as, but larger than,
the corresponding NR uncertainty δϕNR

mrg mentioned above.
Figure 11 is obtained with ac6ð7=64Þ ≈ −25.562 from
Eq. (18) and delivers an analytic model that is NR faithful

FIG. 9. EOB/NR comparison of amplitude and frequency including higher modes. The l ¼ m ¼ 5 mode uses the new ringdown fit
described in Sec. IV C 1. We report the purely analytical waveform (orange, dashed), the NQC-completed waveform (light blue, dash-
dotted) and the one completed through merger and ringdown (red, dashed).

NUMERICAL-RELATIVITY VALIDATION OF … PHYS. REV. D 105, 124061 (2022)

124061-11



FIG. 10. EOB/NR comparison of amplitude and frequency including the higher modes not considered in Fig. 9. Note that the (4,3)
amplitude becomes increasingly inaccurate before merger (due to the imperfect action of the next-to-quasicircular factor) as q increases.
We report the analytical waveform (orange, dashed), the NQC-completed waveform (light blue, dash-dotted) and the one completed
through merger and ringdown (red, dashed).
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for any purpose. However, the TEOBResumS model is robust
and flexible enough to allow us to be even “less”
conservative and actually reach the NR-error level men-
tioned above. With ac6 ¼ −33 we get a dephasing at merger
∼ − 0.06 rad, as illustrated in Fig. 12. Comparing Fig. 11
and 12 one sees that the EOB phasing during the long
inspiral is very accurate4 and the change in ac6 only affects
the last five or six orbits. On the basis of this analysis, it
seems evident that the level of NR faithfulness that
TEOBResumS can reach “depends on” the NR uncertainty.
Note in this respect that the SXS simulations were not

performed with the scope of accurately informing an EOB
model. As a consequence, their uncertainties (see, e.g.,
Table I of Ref. [29]), obtained by taking the difference of
two resolutions, might be either too large or too small for
our purposes. In fact, seeing all the complications of NR
simulations, the best setup to NR informing the EOBmodel
would be to have at hand different error-controlled NR
simulations with equivalent length obtained with different
numerical methods. The open question is then to determine
to which extent our ac6ðνÞ function is independent of the
choice of NR data. To attempt an answer, the left panel of
Fig. 13 shows the EOB/NR phasing comparison for q ¼ 7
using RIT NR data extrapolated to infinite resolution. The
alignment interval is the same of Fig. 11, but the phase
difference accumulated up to merger is ≃ − 1 rad. Given
our error estimate on the q ¼ 7 RITwaveform in Fig. 1, we
expect the NR phase uncertainty to be ∼0.3 rad up to
merger. The same conclusion comes from Fig. 4, where
both RIT and SXS waveforms show a high degree of
consistency among themselves and with the TEOBResumS

one when aligned during the late plunge phase. We
conclude that the effect in Fig. 13 is related to the numerical
errors accumulated during the inspiral that are probably
larger than the SXS ones, as already suggested in Fig. 1
above. However, on the basis of the complexity of NR
simulations and the very different numerical methods
employed to obtain the SXS and RIT data, it is not a priori
completely excluded the existence of subtle systematics on
both sides. A similar behavior of the phase difference is
found also for the q ¼ 32 and q ¼ 64 datasets, although it
is more compatible with the phase uncertainty.
We conclude this discussion on the dependence of the

EOB tuning on NR data with the following exercise. Let us
suppose to fully trust the q ¼ 7 RIT data and use them as a
target to inform ac6. To do so, we will need a new value of
ac6, more negative than the current −25.562, so to attempt to
absorb the phase difference around merger. The result of
this exercise is shown in Fig. 14: for ac6 ¼ −51, the phase
difference at merger is reduced to ∼ − 0.25 rad, compatible
with the NR phase uncertainty. This tuning, however, has
only a marginal effect on the phase difference during the
inspiral, giving thus another indication that one needs
improvements on the NR side. This suggests that
TEOBResumS is flexible, because it can be tuned to NR
when needed, but at the same time “rigid and robust,” in the
sense that it can be used as an auxiliary tool to spot
uncertainties (or systematics) in the NR simulations. This is
especially true during the inspiral, where TEOBResumS

performs best.
From our brief analysis it is clear that TEOBResumS can

be robustly informed only using NR simulations with very
well-controlled (and small, ≲0.1 rad) numerical uncertain-
ties. If this seems to be true for SXS, it is not yet the case for
our RIT data, although we clearly proved the consistency
between the two NR datasets. However, after this first
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FIG. 11. EOB/NR phasing comparison with SXS:BBH:0298
(q ¼ 7, nonspinning) extrapolated with N ¼ 3. The vertical dash-
dotted lines indicate the alignment region. The phase difference at
merger point, ∼ − 0.25 rad, is consistent with (and notably larger
than) the NR phase uncertainty δϕNR

mrg ¼ −0.0775 rad.
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FIG. 12. Same EOB/NR phasing comparison with SXS:
BBH:0298 of Fig. 11 but using now ac6 ¼ −33 instead of the
value given by Eq. (18): the EOB/NR phase difference at merger
is now slightly smaller than the NR phase uncertainty
δϕNR

mrg ¼ −0.0775 rad.

4The phase difference oscillates around zero due to the small
residual NR eccentricity.
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exploration of the large mass ratio regime and comparisons
of NR waveforms with those of EOB, we have learned that
NR can inform analytic models to improve the fits in this
computationally challenging regime. The NR waveforms
we used were still first explorations, particularly for
q ¼ ð32; 64; 128Þ, and we can now revisit these scenarios
with improved accuracy. This is clearly true also for the
q ¼ 7 case that would serve as an additional benchmark for
the corresponding SXS dataset and the related NR-
informed quantities within TEOBResumS. We also note
that, as indicated by Figs. 11 and 12, shorter NR simu-
lations, with only 10 orbits or less, might be sufficient
for additionally informing TEOBResumS, provided that they
can be pushed to an accuracy comparable to that of SXS
data. Some of the areas of immediate improvements are:

(i) the use of improved gauge conditions, as described in
Ref. [49]; (ii) the use of different grid structures than in [20]
to emphasize either inspiral or ringdown accuracy;
(iii) lengthy simulations with global increase in the reso-
lution; and (iv) reduction of the initial eccentricity with the
methods of [99] or [100].

A. Mass ratio q= 15: impact of high PN test-mass terms
in the waveform and radiation reaction

While this paper was under review, a new q ¼ 15 long-
inspiral (∼30 orbits) SXS waveform became avail-
able [101]. Although this waveform is not yet accessible
through the SXS catalog, the authors of Ref. [101] kindly
shared it with us. The presence of such a long inspiral
allows us to perform a more demanding test of
TEOBResumS and complement the explorations of the
previous section by also focusing on the impact of the
analytical radiation reaction for such a large mass ratio.
Figure 15 shows the standard time-domain phasing com-
parison, with the EOB waveform aligned to the NR one
during the inspiral. The phase difference accumulated at
NR merger is ΔϕEOBNR

22 ðtNRmrgÞ ∼ −0.61 rad. As we will see
below, once the time-domain phase difference is recasted in
the form of EOB/NR unfaithfulness F̄EOBNR with the
Advanced LIGO noise, as it is standard in EOB/NR works
[30,42], this phase difference is practically negligible,
giving F̄EOBNR around 3 × 10−4. Still, since the expected
phase uncertainty in the SXS waveform is certainly smaller
than the EOB/NR phase difference at merger, it is interest-
ing to modify TEOBResumS so to attempt to reduce further
ΔϕEOBNR

22 ðtNRmrgÞ. As a first attempt, we modified ac6. We
found that in doing so it is possible to reduce the phase
difference accumulated at merger, but the corresponding
value of ac6 is very different with respect to the one
currently predicted by the fit. This means that it would
not be possible to find a new simple analytical functional
form that can easily fit the old values together with the new
one. This suggests that the physical information that is
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FIG. 13. EOB/NR phasing comparison with the waveforms aligned during the early inspiral (vertical dash-dotted lines in the plots).
We use here resolution-extrapolated waveforms. For q ¼ 15 and q ¼ 32 the comparison is clearly affected by residual initial eccentricity
in the simulation.
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FIG. 14. Attempt of NR-informing ac6 using the q ¼ 7 RIT data.
For ac6 ¼ −51 we can reduce the phase difference around merger
at ∼ − 0.2 rad, compatible with the NR uncertainty, but this does
not affect the phase difference during the inspiral.
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currently missing in the model comes from elsewhere and
cannot be reabsorbed in an effective tunable parameter
entering the EOB potential A. As a first alternative route we
can intervene on the dissipative sector of the model, i.e., the
radiation reaction (and waveform). The TEOBResumS model
uses resummed residual waveform amplitudes ρlm [76]
with 3þ3 PN accuracy (i.e., 3PN ν-dependent terms are
hybridized with test-mass terms up to 6PN, multipole by
multipole [30]), except for the l ¼ m ¼ 2 and l ¼ 7, 8 that
are kept at the standard 3þ2PN accuracy.5 In addition,
all 3þ3PN-accurate modes are resummed using suitable
Padé approximants, as discussed in detail in Ref. [30] to
which we refer the reader for additional technical infor-
mation. The ρ22 function implemented in TEOBResumS

formally reads

ρ22ðxÞ ¼ 1þ c1ðνÞxþ c2ðνÞx2 þ c3ðνÞx3 þ c4x4 þ c5x5;

ð19Þ
where x is the PN ordering parameter that for circular orbits
is given by x ¼ Ω2=3, whereΩ is the orbital frequency. Here
we explicitly indicated that up to 3PN the coefficients
depend on ν, while ðc4; c5Þ are only the test-mass ones. See
specifically Eq. (C1) of [76]. To explore the impact of
(some of) the missing physical elements, we can simply
add to this function the test-mass 6PN contribution c6x6 as
obtained from Ref. [102]. The EOB/NR phasing obtained
with this improved model is shown in Fig. 16: the phase
difference at merger is almost “halved” with respect to

Fig. 15, ΔϕEOBNR
22 ðtNRmrgÞ ≃ −0.36. To test the robustness of

this finding, that relies on a truncated PN-expansion
for ρ22, we redo the same test resumming the 3þ3PN
accurate ρ22 with a (4,2) Padé approximant, following
the same prescription adopted in the test-mass limit.
The result is consistent with the above, as we find
ΔϕEOBNR

22 ðtNRmrgÞ ≃ −0.4. Let us additionally mention that
it is similarly easy to obtain ΔϕEOBNR

22 ðtNRmrgÞ ≃ 0 by tuning
the ν-dependent contribution to the 4PN correction c4,
that is still analytically unknown (see, however, [103–105]
for recent work aiming at obtaining the full contribution).
From these simple considerations it seems that TEOBResumS
should be improved by adding more PN information in the
waveform amplitudes and, consequently, in the fluxes.
These changes in the fluxes will necessarily require a new
determination of the effective EOB parameters informed by
NR simulations, analogously to what was recently done in
Ref. [39]. It must be stressed, however, that at the level of
EOB/NR unfaithfulness (or mismatch) F̄EOBNR [39] with
the Advanced LIGO noise, the impact of these changes in
the model is minimal, as illustrated in Fig. 17. As a last
analysis we explored what happens when we hybridize the
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FIG. 16. EOB/NR phase comparison for q ¼ 15 though in-
cluding the 6PN test-mass term in the ρ22 function. The phase
difference at merger is halved with respect to Fig. 15.
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FIG. 17. EOB/NR unfaithfulness for q ¼ 15, using the SXS
waveform of [101], with Advanced LIGO noise according to
standard definitions [39]. Note that the effect of the 6PN term is
small but visible.
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FIG. 15. EOB/NR phase comparison using the standard
TEOBResumS with a newly released SXS waveform [101] with
q ¼ 15. We have ΔϕEOBNR

22 ðtNRmrgÞ ∼ −0.61 rad.

5Note that the choice for l ¼ 7; 8 was already demonstrated to
be inaccurate in the test-mass limit [90].
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3PN ν-dependent information with the “full” analytical
test-mass knowledge (up to 22PN) computed in Ref. [102],
i.e., we work at 3þ19PN order. Note that we do not apply
any additional Padé approximant to the 22PN Taylor series
that represents each ρlm function. The EOB/NR phasing
in this case is shown in Fig. 18, and it is practically
equivalent to the one of Fig. 15 discussed above, with
ΔϕEOBNR

22 ðtNRmrgÞ ≃ −0.32. In other words, the high-order
test-mass PN information is irrelevant up to q ¼ 15, and the
standard resummed TEOBResumS flux (modulo the consid-
erations regarding the 6PN term mentioned above) is
sufficient for any practical purpose up to this value of
the mass ratio.

VI. CONCLUSIONS

It is generally believed that a state-of-the-art EOB-
based waveform model, specifically TEOBResumS, is not
robust and trustable outside the so-called “domain of
calibration,” i.e., that region of the parameter space
covered by the NR simulations that are used to inform
the model. We explicitly proved that this is not true, at
least for TEOBResumS. Specifically, we have used recently
published NR simulations [20,48,49] of coalescing BBHs
with mass ratios from 15 to 128 to validate TEOBResumS

in the large mass ratio regime. This is the first comparison
of a semianalytical waveform model to NR simulations
in this corner of the parameter space. The excellent
mutual consistency we have found between NR and
EOB waveform data gives additional evidence that
TEOBResumS is currently the most robust, versatile,
and NR-consistent EOB-based spin-aligned waveform
model available. Our work complements then the find-
ings of Refs. [30,39,42].

In summary:
(i) Focusing first on the (2,2) mode, we find an

excellent degree of EOB/NR consistency during
merger and ringdown up to q ¼ 128;

(ii) For the inspiral, the numerical truncation error
increases progressively with the mass ratio. Still,
the EOB/NR dephasings we find are coherent with
the expected NR uncertainty;

(iii) Similar consistency through merger and ringdown is
found for all available EOB higher modes, (2,1),
(3,3), (3,3), (3,2), (4,4), and (4,3), except for the
(5,5) mode.

(iv) The native implementation of the (5,5) multipole
develops unphysical features at merger and during
ringdown, which are related to inaccuracies in the
NR-informed fits of Ref. [30]. These features show
up for q≳ 15. We thus use the new NR data
discussed here to inform an improved l ¼ m ¼ 5
ringdown description. With this new input, the
model is tested to be accurate up to q ¼ 128, and
it is smoothly connected with results in the test-
particle limit. The new fit discussed here is imple-
mented in the last public version of TEOBResumS.

Our findings highlight the importance of producing highly
accurate NR simulations that cover the transition to merger
and ringdown in all crucial corners of the parameter space.
It also shows the robustness of the analytical scheme that is
used to construct the merger-ringdown part of the EOB
multipolar waveform [73]; once new NR data are available,
one can just use them to improve the NR-informed fits,
easily removing pathological behaviors that may occur in
the analytical waveform around merger. Sparse, but very
accurate, NR simulations remain the only tool available to
incorporate an accurate merger-ringdown description
within waveform models. We hope that the control of
quantities like Δtlm, the delay between the peak of each
multipole and the l ¼ m ¼ 2 one, becomes of primary
importance for forthcoming NR simulations.
Let us finally stress that our RIT NR simulations

effectively allow us to quantitatively probe “only” the
plunge, merger, and ringdown regime of TEOBResumS.
In principle, we would need “long” simulations with mass
ratio q > 10, with a typical SXS accuracy, to probe the
radiation-reaction driven long inspiral. One should, how-
ever, be aware that the radiation reaction of TEOBResumS

incorporates a large amount of PN information in
resummed form, in particular, “hybridizing” ν-dependent
terms with test-mass results up to (relative) 6PN accuracy
[30] for all flux modes up to l ¼ 6. The l ¼ 7 and l ¼ 8
modes, however, rely on less PN information, and an
improvement with test-mass data (following Ref. [90])
could be useful. In general, these improvements to the
dissipative sector of the model are expected to be important
for constructing long-inspiral waveform templates for 3G
detectors. As a preliminary study, we proved this is indeed

FIG. 18. EOB/NR phase comparison for q ¼ 15 replacing the
standard TEOBResumS flux with the 3þ19PN one, as discussed in
the text. The EOB/NR phasing agreement is comparable to the
one of Fig. 16.
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the case using a ∼30 orbits SXS simulation for q ¼ 15 that
became available during the peer-review process of this
paper [101]. By contrast, “shorter” NR simulations, ∼10
orbits, with reduced eccentricity and accuracy comparable to
the SXS ones, would be useful to more accurately probe the
full transition from late inspiral to plunge and merger,
possibly informing the EOB dynamics for large mass ratios.
This data would also independently benchmark the NR-
informed EOB interaction potential, that currently only relies
on strong-field information extracted from SXS simulations.
These kinds of simulations are within reach of our numerical
techniques and will be pursued in the future.
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