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In this work, we explore the construction of the most general vector-tensor theory with an SU(2) global
symmetry in the vector sector as a proposal for a modified theory of gravity. We start with a general Lagrangian

containing terms involving symmetric and/or antisymmetric combinations of the covariant derivative of the
vector field plus an arbitrary function of the vector field times the Ricci scalar. Then, we study the degeneracy of
the full theory to determine whether it can be healthy or not. We find relations among some of the free functions
in the Lagrangian that are necessary for the healthiness of the theory in correspondence with the several ways in
which the kinetic matrix can be turned degenerate. Finally, we take the decoupling limit of the theory and find
additional conditions on the free functions that are necessary for the healthiness of the longitudinal modes.
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I. INTRODUCTION

It is the common wisdom in science that, at the end, all
theories are effective. In their purpose of describing nature in
the most faithful way, each scientific theory comes with its
own built-in range of applicability, and general relativity
(GR) is not the exception. Perhaps, the most emblematic
phenomenon in GR that signals the breakdown of the theory
is the existence of singularities. Whether a consistent
quantum gravity theory or just a modification of the classical
gravitational theory is needed to bypass the failures of GR, it
is something unknown at the moment. Therefore, the quest
for advancement in the understanding of the gravitational
interaction calls for an exploration of both alternatives.

In the world of the (classical) modified gravity theories,
Lovelock’s theorem [1,2] in the early 1970s gave the
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community a strong lesson: there is no way to modify GR
in four dimensions if the action is to be constructed with the
metric and its first- and second-order derivatives and the field
equations are to be of second order. Thus, one of the most
reasonable ways to proceed is to add more gravitational
degrees of freedom, for example, a scalar field. This is the
realm of the Horndeski-inspired gravity theories.

The family of Horndeski-inspired theories of modified
gravity is growing. The story began in 1974 when Gregory
W. Horndeski constructed the most general scalar-tensor
theory that gives rise to second-order field equations [3]. Two
years later, he exported the ideas of his previous work to the
case of a vector-tensor theory with a U(1) gauge invariance
[4]. These pioneer works slept well under the dust of time
until his scalar-tensor theory was rediscovered in 2009 as the
Galileon theory [5-9]. They being just the next step to extend
the Lovelock’s results on gravity theories, it is quite surpris-
ing that the modified gravity community took almost40 years
to pay appropriate attention to Horndeski’s efforts.

Much has been done since 2009 in the study of the
theoretical, astrophysical, and cosmological consequences
of these theories (see the following interesting reviews and
references therein: [10-13]). Multi-Galileon theories have
been constructed [14-23], the p-form Galileons have been
too [24-26], so has been the generalization to the Proca
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theory1 [28-32], as well as has been the generalization of
the SU(2) Yang-Mills theory2 [33-36] (see also Ref. [37]).
Even more, the generalized scalar-vector-tensor theory that
merges the Horndeski theory with the generalized Proca
theory (GP) has been built quite recently [38]. It was later
recognized that the Ostrogradski-ghost-free theories space3
is much wider. Having second-order field equations for the
purely scalar, vector, and tensor sectors of these theories, as
well as for the mixed sectors, is desirable, very convenient
indeed, but unnecessary to avoid the hateful Ostrogradski’s
ghost as long as the respective Lagrangians are degenerate.
Thus, several new terms were added to the original
Lagrangians, terms that give rise to higher-order field
equations without spoiling the healthiness of the theories.
Such new terms were collectively called “beyond”: beyond
Horndeski terms [42,43], beyond Proca terms [44,45], and
beyond SU(2) Proca terms [34,35].

The complete set of Lagrangian pieces that preserve the
healthiness of the scalar-tensor theory no matter if the field
equations are second order or not gives shape to what is
called the extended scalar-tensor theory or the degenerate
higher-order scalar-tensor theory (DHOST) [46-49]. The
degeneracy of the kinetic matrix corresponds to the primary
constraint-enforcing relation required for the propagation
of the right number of degrees of freedom. This is not
enough, in general, but it is for DHOST [50]. In the similar
fashion, the complete set of Lagrangian pieces that preserve
the healthiness of the vector-tensor theory was intended to
be obtained in Ref. [51], its authors having reached partial
success. This is because there is no proof yet that the
primary constraint-enforcing relation is enough to close the
constraint algebra [52-54]. Moreover, the authors did not
investigate whether the mixed and nonmixed sectors of the
theory are healthy or not. Something similar happened with
the construction of the GSU2P*: in Ref. [33], the action was

"This is the extension of the 1976 Horndeski’s vector-tensor
theory to the case of broken gauge invariance. The reason for the
explicit breaking of the invariance under local U(1) transformations
comes from the severe restrictions the latter imposes when trying to
implement a vector field as a new gravitational degree of freedom.
Horndeski’s 1976 construction gives faith of this circumstance. The
res?ective no-go theorem in flat space-time is presented in Ref. [27].

This is also known as the generalized SU(2) Proca theory
(GSU2P).

Ostrogradski’s ghost is responsible for a Hamiltonian un-
bounded from below [39], see also Refs. [40,41].

*As with the GP, the construction of a gauge-invariant GSU2P
is highly restrictive and actually not necessary: the GSU2P
pretends just to be an effective theory without any connection
to the gauge theories that describe the electromagnetic and
nuclear fundamental interactions. The global invariance of this
theory under SU(2) internal transformations has actually to do
with the natural realization of the cosmological principle (see
Refs. [34,55]). On the other hand, the invariance under global
transformations presents quite frequently in nature; for instance,
special relativity, as an effective theory of space and time, is a
theory invariant under global Poincaré transformations.

built having in mind just the primary constraint-enforcing
relation which turned out not to be sufficient because a
secondary constraint-enforcing relation was unveiled in
Refs. [52,53]. Several terms were discarded in the original
GSU2P because they were equivalent to others in the
Lagrangian up to total derivatives; unfortunately, those
total derivatives did not satisfy the secondary constraint-
enforcing relation, forcing the reconstruction of the GSU2P
from scratch, a task that was carried out successfully in
Refs. [34,35].

It is the purpose of this paper to give a step ahead in the
construction of the extended version of the GSU2P. To this
end, we follow the techniques of Refs. [46,51] to build the
version of the GSU2P that implements the primary con-
straint-enforcing relation in the most general possible way.’
To make it less difficult, although it is already difficult
enough, we concentrate just in the sector of the theory that
involves two first-order derivatives of the vector field with
the addition of a nonminimal coupling to the Ricci scalar
via an arbitrary function of the vector field. We impose
additional restrictions to the obtained theory coming from
the requirement that the decoupling limit of the Lagrangian
is degenerate as well. We expect to complete our task in
the future by investigating the addition of more terms to
the Lagrangian that exhibit nonminimal couplings to the
curvature,’ the constraint algebra of the theory, and the
other mixed and nonmixed sectors of it. Interesting astro-
physical and cosmological applications surely await us,
such as those already explored for the EVT [58] and the
GSU2P [55,59].

The layout of the paper is as follows: in Sec. II, we
introduce the extended SU(2) Proca action, split conven-
iently into four pieces. The 3 + 1 decomposition of this
action is performed in Sec. I1I. In Sec. IV, a clever change of
basis is carried out so that it is much less difficult to obtain
the conditions for the degeneracy of the kinetic matrix. The
latter is performed in Sec. V. The same recipe is followed
for the decoupling limit of the theory in Sec. VI. Finally, the
conclusions are presented in Sec. VII.

The GP and the GSU2P implement the primary constraint-
enforcing relation so that the temporal component of the vector
field is the one that does not propagate. In the extended vector-
tensor theory (EVT) [51] as well as in the extended version of the
GSU2P we want to start building in this paper, the nonpropagat-
ing degree of freedom can be any linear combination of
components of the vector field, see also Refs. [56,57].

We already know from Ref. [34] that couplings to both the
Riemann tensor and the Einstein tensor are nontrivial.

"The cosmological inflationary application of the GSU2P [55]
is indeed very interesting: constant-roll inflation is realized as an
attractor curve whose attraction basin covers most of the available
phase space. This contributes significantly to the solution of the
inflationary initial conditions problem. In addition, the scenario is
free of big bang singularities and can help with the production
of primordial black holes that might serve as dark matter as
described in Ref. [60].
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Throughout the text, greek indices are space-time indices
and run from O to 3, while latin indices, the first of the
alphabet, label both internal SU(2) group indices and the
vectors in the two bases introduced in the text. These latin
indices run from 1 to 3. The sign convention is the (+ + +)
according to Misner, Thorne, and Wheeler [61].

II. THE EXTENDED SU(2) PROCA ACTION

In this section, we present part of the action of the
new extended SU(2) Proca theory. To some degree, we
follow the seminal works in Refs. [46,51] (scalar-tensor
and vector-tensor degenerate theories, respectively).
Nonetheless, we extend the procedure in those papers to
the case of non-Abelian vector-tensor theories.

First, in order to simplify the discussion, we split the
action into four pieces, three of them being S,, Sy, and the
mixed term S,g, corresponding to terms proportional to
the antisymmetric tensor A§, =V By —V By, the sym-
metric tensor Sy, = V,Bj + V, By, and the combinations
between Ay, and Sj,, respectively. In the previous defi-
nitions, Vﬂ is the space-time covariant derivative, and By, is
the vector field that belongs to the Lie algebra of the SU(2)
group of global transformations under which the action is
made invariant. The fourth piece corresponds to a non-
minimal coupling of By, to gravity via the Ricci scalar.

We begin with the most general action constructed from
two powers of the antisymmetric tensor Ay, and that is
invariant under global SU(2) transformations,

5, — / dhxy/C7 AL AL (1)

where g is the determinant of the space-time metric g,,. In
this expression, the tensor C%,”” is built up out of ¢**, the
orientability four-form £**# in the space-time manifold, the
vector field By, the metric of the SU(2) Lie group (which is
proportional to the Kronecker delta), and the orientability
three-form ¢, in the SU(2) manifold. Since the numbers
of combinations of tensors that can be included in C%,”” is
quite large, we restrict ourselves to the case where there is
at most a second power of Ay,. We can write the tensor

C'"? as follows:
Cl” = B0, HE @
where

EM = ay g g + a6 + a3 BUBS,
+ a49” g "By B, (3)

and

HZZM = ﬁlgypgﬂdaﬂBaaBﬂb + ﬁze"”"ﬂBzBﬂb +ﬁ38”p6ﬂBZBﬂa
+ Bag""Boy By + Bsg" ¢ #*BuaBpy
+B69" 9 F*BuBpa + 19" 4" Baa B;. (4)
The couplings in Egs. (3) and (4) are functions of
X = BiBy, ie., a; = a;(X) and f; = p;(X). Nonetheless,
we omit the argument of these coupling functions, and
similar ones later introduced, throughout the paper.

Similarly, we use the symmetric tensor Sy, to build the
action

S5 = / d*x\/=g[Cl°54,55,. (5)
As before, we split the tensor C/ into two pieces:
Chre = Eres,, + HYY” (6)
where

B0 = 197 + 12975 + 130 BLB% + 7,9 BLB™,
(7)
and
A" = 019" ¢ BBy, + @20 BuBj + 039" ¢ BiB.y,
+ @, ¢ BYBS + ws¢"’ BSBY, + wog"e"" B, By,
(8)

Now, we construct an action containing the tensor
product of Ay, and S, as

&F/meW%%. (9)

Here, the tensor C%,”” is written as

Chr? = Bres,, + HAY?, (10)
where
E*r? = y,g"" BB + 4,6 BUBS, (11)
and

Y77 = k¢ BYB] + k29" BBY, + k3¢’ B4 BY,
+ k4GP BBy, + ks €V Boy By
+ kge B B, By, + K ghvop B)B Sa- (12)

Finally, collecting all the contributions from Eqgs. (1), (5),
and (9), we have that part of the most general non-Abelian
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vector-tensor theory containing up to first-order derivatives
of the vector field By is given by

S= [ @ayTRIOOR + S0+ S5+ S5, (13)

where, for simplicity, we have restricted to two powers of
the first-order derivatives of the vector field, up to two
powers of the vector field itself before multiplying each
derivative term by the respective coupling function, and to a
nonminimal coupling of the vector field with the Ricci
scalar.® Notice that, for f = 1, the first term in the previous
expression is simply the Einstein-Hilbert action (in suit-
able units).

In the following sections, we study the degeneracy of
the extended SU(2) Proca theory given by the action in
Eq. (13). In order to achieve this, we look for some
algebraic relations between the coupling functions, «;,
Pi» vis @;, x; and k;, such that the kinetic matrix of the
theory is degenerate (i.e., it has a zero determinant).
Thus, our first step in the next section is to decompose
the Lagrangian of the theory using the 3+ 1 ADM
formalism [62].

III. 3+1 DECOMPOSITION

In this section, we rewrite the Lagrangian using the 3 4 1
decomposition. This procedure is crucial when we want to
understand the evolution of a theory for a quite general
form of the metric tensor (for instance, when one wants to
study the degeneracy properties of a Lagrangian).
Following Refs. [46,51], we first split the time derivatives
from the spatial ones using a covariant 3 4+ 1 decomposi-
tion of the space-time; i.e., we do not introduce a coordinate
system. Instead, we work with tensors that are decomposed
into timelike and spacelike components.

We assume the existence of a space-time foliation with
three-dimensional spacelike hypersurfaces %,. Then, we
introduce a unit vector n* which is both normal to the
hypersurfaces and timelike (i.e., it satisfies the normaliza-
tion condition n,n* = —1). This foliation induces a three-
dimensional metric h,, on the spatial hypersurfaces X,
which is defined by [46,51,62]

hy = gy +nyn,. (14)

The SU(2) Proca field B can be decomposed using this
induced metric and the normal vector n* as

BY = —n,B¢ + B, (15)

¥There certainly exist nonminimal couplings to gravity involv-
ing either the Riemann tensor or the Einstein tensor (see
Ref. [34]). We expect us to consider them in a future publication.

where B¢ =n”Bj and fBZ = h;B;j are the normal and
spatial projections of By, respectively.

The time direction vector # = d/dt, associated with a
time coordinate ¢ that labels the slicing of spacelike
hypersurfaces, can also be decomposed as

# = Nn# + N*, (16)

where N and N* are the lapse function and the shift vector
(which is orthogonal to n*). We also define the “time
derivative” of any spatial tensor as the spatial projection of
its Lie derivative with respect to # and which we denote by
a dot. Thus, in our case, we have

B! ="V,BY, (17)
B, =nL,BS = ny(#V,BE + BiV,).  (18)

The covariant derivative of the normal vector can be
decomposed into the extrinsic curvature K,, and acceler-
ation vector a,,

vynzz = _nﬂav + K;wv (19)

where
a' = n'V,nt, (20)

1 .
K, = hﬁhZV/,n‘7 = ﬁ(hﬂl/ -D,N, - DUNM), (21)
where D, denotes the three-dimensional covariant deriva-
tive associated with the spatial metric £,,.
Using the above definitions, the covariant derivative of

the vector field reads [46,51]
VﬂBl‘f = nﬂnU(B‘j - a/’B;f) + nﬂ(—fgj + K,/’B/“) +a,B?)
+n,(K,/BS - D,B¢) + D,B¢ — K, B, (22)

such that the only relevant terms for the kinetic part of the
Lagrangian (i.e., the ones with the “time derivative”) are

(vﬂBle)kin = n/,tnyBil + nﬂ<_él/ + Kl,pég)
+n,K,B% - K, B (23)

Thus, the kinetic part of the Lagrangian in Eq. (13),
quadratic in V”B,’f, can be written as

AaAb

Lygn = A BIBY + ZBZ;]B?B,}? + ZCZﬁBfKaﬂ +D“B,B,

+ 28 BIK oy + FPOK 5K (24)

po>
where the expressions for the coefficients are given in
Appendix A. In these expressions, we have also considered
the contribution of the Ricci scalar given by [46,51,62]
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R

(3)R 4 KWKMD —K2— 2vﬂ(al4 — Kn”)’ (25)

where (3R is the three-dimensional Ricci scalar constructed
with A, and K ="K,

Using the previous definitions, the kinetic Lagrangian
can be written in terms of a matrix (which is called the
kinetic matrix) as

Ap By, ¢l ][ B
gl || B
f‘aﬁpﬁ K ap

Lyin = [B B, Kpa] By, Dy
5 5
cy ey

(26)

It is hard to study the degeneracy properties of the
kinetic matrix in its present form. Therefore, in the next
section we propose a suitable vector-tensor basis in order
to have a matrix whose entries are scalars [46,51]. In fact,
we will see that such a basis will lead us to a block-diagonal
matrix.

IV. CHANGE OF BASIS

In this section, we perform a change of bases on the
hypersurfaces X, and the internal space of SU(2) in order to
determine the degeneracy properties of the kinetic matrix
in Eq. (26).

For the internal space, we propose a basis with three
orthonormal vectors {W¢}. These vectors are chosen such
that W¢{ coincides with the direction of B¢ and the other two
normal and orthogonal vectors being arbitrary in the vector
subspace orthogonal to WY,

Bg a a
{Wﬂ={M‘ ,pwﬁ. @7)

= ‘B*

B.|=+/B.,B.”. Thus, the

In the previous expression,
orthonormality relation reads

WIW;, = 6;;. (28)
Notice that the i, j, k indices label in this case the vectors in
the basis.

Similarly, we propose an orthonormal basis with three
vectors {V}} for the three-dimensional hypersurfaces.
These vectors are chosen such that V}, lies along the
direction of fS’}, and the other two normal and orthogonal
vectors being arbitrary in the vector subspace orthogonal

1
to V,,

These three vectors fulfil the relations

ViV =87 and n*Vi =0. (30)

Therefore, all three vectors VL are orthogonal to n*. Notice
that the superindex “1” in the left-hand side of the
definition of V}l corresponds to the labeling “1” of the
three vectors of the basis, while the one on the right-hand
side corresponds to @ =1 of B,‘j.

A. Vector decomposition
Using the two bases { W¢} and {V/,}, we can decompose
B¢ and BZ as

B¢ =B,/W¢ and BY=Biwevi,

(31)

where B, and ﬁf are the components of B¢ and BZ in the
bases {W¢} and {V}}. Combining Eq. (27) with the first
equation of the previous expression, we get

B¢ = |B,|W¢ = B,'W¢ + B.>W4 + B,*W4. (32)

Thus, we see that B, = B,? = 0. Similarly, using Eq. (29),
we observe that

N Y k Lk <k
Bl = \/BIBYV! = VI(WIBY) + V2(WLB3) + V3(WLBS).
(33)

Then, we have W}ﬁ]f = \/B!B% and W%fg’g = sz}’; =0.
Here, we can make a further assumption and set
B =8B =o

B. Tensor decomposition

Finally, using the {V,’l} vector basis, we can define six

independent symmetric matrices (U,’w, I=1,...,6),
1
U/lu/ = V/14V11n szw = ﬁ (}/ﬂu - U/lw)ﬂ
1
U;, = %(v},vf - Viv3),
1 1
Uy, = 72(v,%vg +Viv3), Ui, = %(ngg + ViV)),
1
Us, = 7§(vf,v; +Vivy), (34)

which satisfy the relations’

9, . . . . . .
The symmetrization and antisymmetrization operations are
normalized.
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Ul[wUJ/“’ =6 and or'e) = 5UU[’”“U[,,,. (35) K, = K,Uf“,. (36)
In other words, the basis {U],} spans the space of Introducing the decomposition of B, B . and K, in
symmetric tensors on X,. Then, we can decompose K,,  Eq. (24), we obtain the following Lagranglan containing
using this tensor basis as only scalar quantities:

Lin = AL(BL)? + Ay (B2 + As(BD)? + 2A4(BL)(BY) + 2.A5(BL)(BY) +2A4(B.)(B))
L 2B, (BY)(By) + 2B,(BY) (By) + 2B5(BY) (B)) + 2B,(B)(By) + 285(B)(B)
+286<'”2><A"2>+B6<'”3><“3>

+2C,K,(BL) + 2C,K5(BL) + 205K (B )+2C4K2( )+205 K\(B) + 20K, (B’)

L DB+ Da(BL)? + Da(Br) + Dy(By)(Br) + Ds(By)(B)) + Do(By)(By)

11 22 % 3 3 %
+ D;(B,)* 4 Dy(B,)* + D9(32)2 + D10(33)2 + 911(33)2 + D12(33)2

A2 A3

+ Dia(Ba)(Ba) + Dua(By)(Ba) + Dis(B (B + Dm<Bz><Bg> +Dyy(Ba)(BY)
4 Dw@i)(éé) + D19(1§2)( B) + Dao(By) (Ba) + 7321(33)(33) + Dou(B)(B)

13 13
+2&,K, ( ) + 2521(2(31) + 2531(1( ) + 2541(2( ) + 285K (B;) + 284K, (B))
A A 22 12 13 13
+ 257K5(Bz) + 258K6(Bz) + 259K5(Bz) + 2510K6(Bz) +2811K(By) + 2E1,K,(B,)
Al Al A2 A2 A3 A3
+2€13K5(B3) +2814K6(B3) + 2E5K5(B3) + 2E16K6(B3) + 2E17K5(B3) + 2E13K6(B5)
+ F1K} + F2K3 + 2F3K Ky + Fs(K3 + K3) + Fa(K3 + K3), (37)

where the coefficients are given in Appendix B. We can rewrite this kinetic Lagrangian using two 8 x 8 matrices and one
2 x 2 matrix as follows:

M 0 0 m
'Ckin = (mT m{ mg) 0 Ml 0 m s (38)
0 0 M2 m,

1 2 1 2 341 A2

where we have introduced the vectors'® m = {.~ : E E* ,El ,Bl ,Bl ,Kl,Kz} m,; —{32 32 82 B; ,Bj; ,
B3 ,Ks5,Kg}, and m, = {K3, K, }, and the matrices M, M, and M, have the following structures:

A Ay As By By, By € G D; D3 Dy 0 Dis Dy & &y
Ay Ay As By Bs 0 C3 Cy D3 Dy Dyy Dig 0 0 & &y
As As Ay Bs 0 Bg Cs Cg Dy Dy D9 Dy 0 0 &y &
M= By By Bs Dy Dy Ds & & M, = 0 Dig Dig Dig Dy Dy &3 € C(9)
B, Bs 0 Dy D, Dy & & Dis 0 0 Dy Dy Dy &5
By 0 Bs Ds Dg Dy & &g Dis 0 0 Dy Dy Dy &y &g
Cl C3 CS g] 53 85 f] F3 87 59 gll 813 515 517 f4 0
CZ C’4 C6 52 54 56 f3 f2 88 510 512 814 516 518 0 f4

"It is worth recalling that we are using the notation introduced in Eq. (31).
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M, = (‘7;5 f05> (40)

These matrices correspond to the scalar, vector, and tensor
sectors of the kinetic matrix respectively.

V. DEGENERACY OF THE SCALAR, VECTOR,
AND TENSOR SECTORS

In this section, we investigate the conditions under which
the full kinetic matrix is degenerate. Given the structure of
this matrix, it being block diagonal, we see that there are
three possible ways of setting the determinant equal to zero
(the determinant of each submatrix equal to zero inde-
pendently). In this paper, we focus on the scalar and the
vector sectors. Regarding M, and according to its struc-
ture [see Eq. (40)], the degeneracy of the tensor sector
would lead to a condition which is basis dependent; hence,
we do not consider the tensor sector in this paper.

(1) Degeneracy of the scalar sector

We start with the degeneracy of M. In this case, a
sufficient condition for its degeneracy is given by
71+72=0, y3+ys=0, and y;=0. (41)
Other conditions are possible, of course, but they are
quite difficult to obtain because of the high dimen-
sion of M and the complexity of the matrix entries
presented in Appendix B.

The constraints in Eq. (41) produce one zero
eigenvalue in M which corresponds to a second-
class primary constraint in the language of Dirac’s
algorithm [63] (see an interesting description of this
algorithm applied to Maxwell and Proca vector
fields in Ref. [53]). This relation removes half a
degree of freedom in the scalar sector.

(2) Degeneracy of the vector sector

A sufficient condition for the degeneracy of M is

given by

and X1~ 74— 0. (42)
|

(14:0, }/2+(11:0,

As in the previous case, other solutions are possible
but are quite difficult to obtain because of the same
reasons. The constraints in Eq. (42) produce two
zero eigenvalues which correspond to two second-
class primary constraints that remove one degree of
freedom in the vector sector.

Overall, the sufficient conditions in Egs. (41) and (42)
remove one and a half degrees of freedom. The imposition
of second-class secondary constraints will remove another
one and a half degrees of freedom leading to a total of three
degrees of freedom, one in the scalar sector and the other
two in the vector sector. Hence, no comparison is possible
between the theory developed here and the GSU2P [34] as
the latter was constructed so that the unphysical three
degrees of freedom are all removed from the scalar sector.
Obtaining the second-class secondary constraints is a
nontrivial task as can be deduced from Ref. [53], and its
application to the specific theory is not either (see, for
instance, Ref. [34] for the case of the GSU2P). As such, this
is beyond the scope of this paper.

Hence, a sufficient condition to remove three degrees of
freedom is given by the combination of the constraints in
Egs. (41) and (42), i.e.,

o=y ==y, and ag=y3=y4,=yx; =0. (43)

VI. DECOUPLING LIMIT OF THE THEORY

In this section, we study the decoupling limit of the
constructed theory. Our goal is to check whether the
resulting theory is also degenerate. If the decoupling limit
is not degenerate, the longitudinal modes of the vector
fields considered in the original theory of Eq. (13) are not
healthy. The action of the decoupling limit is found by
using the replacement By — V ,¢“. Given the structure of
Ay, we realize that both S, and S,g vanish in the
decoupling limit. Thus, we find that the action associated
to the decoupling limit comes from the first and the third
terms in Eq. (13),

1
Sui= [ dtry=g 4 {Zﬂvwwak TV 1, VIV
+73(V2p NP )V 9,V Vo + 74(V*p V)V NV, VFV
+ 01 (VAP V atp V'V, VN, + @0 (V0 V) VIV "V, V 1"
+ 03(Vp Vo)V V" VEV PP + 0y (V V)V, NV, VIV

+ s (va¢avb¢b)vﬂvy¢avﬂva¢b + w6(va¢av/}¢b)gﬂaaﬁvﬂvy¢avyva¢b . (44)

We see that this action contains second-order derivatives of ¢“. Therefore, it corresponds to a scalar multiple-field higher-
order theory. In order to study the degeneracy properties of this action, we introduce an auxiliary field which leads to an
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action with first derivatives only (as is done in Ref. [46]). Therefore, we write Zj = Vﬂqﬁ“ in order not to confuse the
auxiliary field with the original field Bj;. By doing so, we obtain the action

1
Sy = /d‘*x,/—g 4 [Zf(ZﬁZ,‘j)R +nV*Z,,NPZ5 + 7,9, Z2,,VH 2

+ 73 (Z/C)Z(m)vﬂzﬂavpzfr + m(Z’;Z”")V”ZWV”Zf;
01 (Z82,4)VEZINP ZE + w0y (Z525)VEZEV 78 + w4 (22Z,4)V , ZEVHZ2

+ 0y (24 25V ZEVFZE + w5(Z5Z5)V  ZEVFZE + w6(ZouZpp ) PN ZNVZE | (45)

As we did before, we use the 3 4+ 1 formalism to rewrite the
covariant derivative of the auxiliary field. Then, we first
express the vector field Zj; using its parallel and orthogonal
components with respect to the hypersurfaces: Zj =
—Zin, + ZZ Following what we did in the vector-tensor
theory, we write the covariant derivative of Zj using the
“temporal” and the “spatial” components. Since V,Z{ =
V,Z;, the temporal derivative of ij can be written in terms of
quantities associated to the foliation itself; therefore, it can be
removed from the covariant derivative. Thus, the kinetic
Lagrangian can be written in terms of 7% and K w only,

Lyin = A 220 + FPOK 5Ky + 2CPZ0K 1. (46)

We can rewrite this action in a matrix form as follows:

Ay C¥ ] [ 7t

. p— ; a
Ekm [Z* Kpa} |: CNIb)g j'; appo Ka/)’

|

where the entries of the kinetic matrix are given in
Appendix C.

Following the methodology outlined for the vector-
tensor theory, we introduce two vector bases: one on the
hypersurface and one in the internal SU(2) space. For the
internal space, we have the set of vectors

Z8
{we} = {W‘f =z W Wg} such that WiW/, = /.

(48)
On the hypersurfaces, we have

1
Il 2 3
Vi Vi

\/ Z,Z}

N

{viy =

V= such that VLV’; = 5;

(49)

Using the two bases in Egs. (48) and (49), we write the
components of the vector field as follows:

ze=7,0we, 24 =ZiWevi. (50)

According to the choice of basis vectors, Egs. (48) and (49),
we have

Z¢ = |Z Wi = Z'Wi + Z2W5 + Z2W. (51)

Kk Rk Xk
WVu=Vu(WiZy) + Va(WiZy) + Vi(WiZ3).
(52)

Without loss of generality, we can make the following
. 5 5 Sk Sk

assumptions: Z,> =Z,> =0, W.Z, =0, and W}Z; =0,

where, from the last two expressions, we can make

sk Ak . .
Z, = 75 = 0. Thus, after employing these assumptions,
we write the kinetic Lagrangian as

somtt ("0 G )(0) @

where the vector components are 1, = (Z:t, Zf, Zi K., K>)
and i, = (K5, K¢, K3, K4). On the other hand, each entry
of the block-diagonal matrix in Eq. (53) has the structure

M] = .A3 A5 A6 Cs C6 > (54)

, 0 0 0

5 0 F, 0 0
M, = b : (55)

0 0 s 0

0 0 0 Fs

where the entries of M, and M, are given in Appendix D.
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Since the kinetic matrix in Eq. (53) is a block-diagonal
matrix, we have two options for setting the full matrix
degenerate.

A sufficient condition to get det M, =0 is given by
yi+r2=0 and y3+y,=0, (56)

which corresponds to the vanishing of just one eigenvalue.
There exist more possibilities to make det M, = 0, but
the dimension of the matrix and the complexity of the
expressions in Appendix D allowed us to find out just this
condition.

On the other hand, if we impose det Mz = 0, we obtain
the necessary and sufficient condition

1
—f, and Y4 = s, (57)

w3 =0, 72:4X

where, in this case, X = ZZZZ since we are considering the
decoupling limit, and we have used X = —Z2 4+ Z?. This
condition corresponds to the vanishing of two eigenvalues.

Since there exist three longitudinal modes in the decou-
pling limit that experience higher-order field equations, it is
necessary to remove three ghost degrees of freedom. The
conditions in Egs. (56) and (57) correspond to second-class
primary constraints that, therefore, remove one and a half
degrees of freedom. The conservation in time of these
primary constraints will lead to other three, secondary and
second-class, constraints that remove another one and a half
degrees of freedom. However, the respective Hamiltonian
analysis and the obtaining and application of the secondary
constraint-enforcing relation are beyond the scope of
this paper.

VII. CONCLUSIONS

What we have done in this paper is to give a step forward
in our intention of building the extended SU(2) vector-
tensor theory that implements all the requirements to be
considered a healthy theory. We have written all the
possible simultaneously diffeomorphism- and group-
invariant terms that can be written with a product of two
first-order derivatives of the vector field By, and a coupling
function of X = B,‘jBZ, and we have added them up to the
nonminimal coupling of an arbitrary funcion of X to the
Ricci scalar. We have found out the conditions for
the degeneracy of the kinetic matrix that guarantee the
implementation of the primary constraint-enforcing rela-
tion [46,51] which, in turn, is a necessary condition for
the propagation of the right number of degrees of freedom.
|

Ay = 4071+ 12)80 + 4wy + ©3)BEBy, — 4@ + @) + @3 + @4 + @5)B.B.yy — 4(r3 + 174)B. 28 41,

We have also checked under which conditions the decou-
pling limit of this theory also has a degenerate kinetic
matrix. Bringing together Egs. (41), (42), (56), and (57), we
conclude there exist at least one class of theories that satisfy
our requirements and that is given by the combination of
Eqgs. (43), (56), and (57),

1
4X

a=y3=r4=)1 =w3=ws =0.

a =y =-y,=-——f, and

(58)

It is clear that this is not the end of the story. The
constraint algebra must be studied for this class of theories
and its respective decoupling limit. Only that way, as was
done for the DHOST in Ref. [50] and for the complete
Maxwell-Proca theory in Refs. [52,53], we could be sure
the constructed theories do propagate the right number of
degrees of freedom and, therefore, are free of the
Ostrogradski’s instability. We expect us to address this
issue in a future publication. We also expect us to address
the rich astrophysical and cosmological consequences of
this theory and compare them with those of the EVT [58]
and the GSU2P [55].
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APPENDIX A: COEFFICIENTS OF THE KINETIC
LAGRANGIAN IN EQ. (24)

The coefficients of the kinetic Lagrangian in Eq. (24)
involving only the vector field are given by

(A1)
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B2, = (k; — k3 + w5 + 20,4)B, By + (k& + k3 + @y + 205)B,, B + (273 + 274 + x1)BIB, 5,
— (K'4 —+ 2K5 - 20)6)323218{1&]&2&3 h6a3na2, (AQ’)

DY = ~Q2ay + 272)h% 8, — (Bs + Bs + ko + w5) BB,
— (k) + @) BB, — (ay + y4 + 1) BIB 5, + 2(B7 — w3)B4B,,h*
+ (Bs + s — 2B7 — k1 — K2 + 203 + w4 + @5) B, By h + (ay + y4 — x1)B.2hPS,,
+ (B1 + K4 = 06) BUBY €, 0,0, h
+ (f1 = Pr+ B3 + k4 — kg + k7 — ) B, Bbepalaza; how phas po
—(B1=Po+ P35+ kg — ke + k7 — wﬁ)BaB*bgpalazag hee pPes ps, (A3)

On the other hand, the coefficients of the terms mixing the vector field with the extrinsic curvature are given by

C =2(ys — w5 — 204) BEBP B, , — 2(y3 + y4 + w5) BIB4B. = 2(y3 + 14 + ws)BIBIB.C
+ 2(27/1 + fX)B*ahaﬁ - 2(},3 + 2601 + 0)2) ZB*uha/j + 40)135323*0}1(1#
—2weB,BY BFee ho@p® — 2we BOBY B* ¢ hPape, (A4)

P03 Palazas

1 1 ALA A 1 1 ALA A D AN A DL
g = (74 + 5k + ws + 5)(1)3?3{“3@ + (74 +5K2 + s + 5)(1>BIZBZB/3L + (k1 + 2w4) B, BEB

N 1 1 A
+ 2}/23ghya - <}/4 += 2 — W5 — 5){])3*2351’11/(1

A aga 1 1 A
+ 2&)333323@}1”& + }/4 + 51('2 - 20)3 —_ 0)5 —_ 5}(1>B€B*HB*Chba

“ 1 1 N

+ 2y, B3hP — (}’4 + Sk ws = EJ(l) B.2BSh*”
PN 1 1 N

+ 203 B BB + <}’4 Tk - 203 — w5 — 5)(1>B?B*a3*ch"ﬁ

— (k3 — @y)B2B4h™ + (275 + k3 + w3) BB, B, h — 2f x BLhP

1 A A A 1 A A AL
- (z K4 — w6> B?nglBﬁnglalazag h¥%2 ps — (E Kqg = wG)B/clngl Bmgxlalazm h*e hPes

2
- (K6 _)(2)BﬁBgB*Cgialazoghbazhaa} n”

1 PN
- (—K4 — K¢ — Wg +}{2> BﬁBﬂCB*aé'ﬁa]aZa}huazhaa3nal

1 A
+ (E K4 - w6> Bf,B/gB*Csmlaz%h”azha“»‘ nal

1 A Aac

- (5 Ky — kg — W6 + 12 | BEB B, 110, 0,0, R WP 1
N pa

- (K6 _XZ)BcBaB*Ce/lalaz(g hyazhﬂ%nal

l _ BﬂBaB c hvazhﬂa3 a
+ 2K4 We aPcPx 8/10:105203 n

1 1 RARA R c vas J,af ,a
+ §K4+606+2K5 +§K‘4+CU6 Bch B* €lala2a3h 3]’1 nvz. (AS)
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Finally, the coefficient of the term involving only the extrinsic curvature is given by

Fbro = -2(y, + a)5)§‘;‘f9l;jf9”bf9“ = 2(ys + wS)B‘jﬁgé’”fg"b - 4a)41§2’.‘1§/j01§’b’1§"b

+2(y3 — w2)B,2B2BSh — 4y, B)B,*BIB,*h™ — 2y, BEB*h + 2(y, — ws)B, 2Bl B ho
—2w3B} B, B B*h - 2(y, — w3 — wS)B/gB*“BZB*”h“/’
— 21, BEBP R 4 2(y, — ws)B,2BUBP heo — 24 BL BLBP B hee

— (y4 — @3 + @5)BIB,“B)B,"h*® — 2y, B*B* h" + 2(y, — ws) B, BB h

- 26033/%321‘30030’17}1[@ - 2(}’4 — W3 — wS)B?BZB*CB*bhﬁP

P 1
+ 27,B.2h WP — 2w3B,*h* WP 4+ 2w;B,, B*B." B, h*° hPr + 3 fhehPr

— 2y, BB WP + 2(yy — ws)B,* BB hPe — 2wy B, BB B W

= 2(r4 — @3 — w3) BLBLB. B

P 1
+ 2}/23*2haphﬂa - 2(1)3B*4haphﬁ6 + 2w3BibBﬁB*bB*6haphﬂ6 + thaphﬂa

+2(y3 — wy)B.2BEBP 17 — dy3 BEB)B B2 + 2 BUBOhP + 2f ¢ BABF 1

4 4y1B*2ha/)’h/)a — 4w, B*4ha/}h/)o- 4 4w|BblBﬁB*hB*ch"ﬁh/m _ fha/}h/m-
- CU@BﬁBZI BﬂCBGbglala2a3 h**2 hP* — a)(,Bﬁl}Z‘ Bacégbglalaz(k hﬁaz h’*®

DA DA pfc ppb aa, |0 N R pac ppb a, 1,00
— weBLB B B e 10, 7% — w0 BEBY B B €4 40, WP hO%

Ao AR A . AL AD A
- a)6BI/lB{‘BGbB*C€/1aIaZa3 h*® %™ + wGBﬁBﬁchB*bgﬂalaz(g h®®pP% p™

nAipapobp c ) P03 4,0 nipacnponp b ) P03
— wsByBIB"" B €4 4,0, P WP 0 + w0 BB BYB. €4 4,0, P P 0

- wGBf,BfB”hB*Cemlazaz h@ h%n® + @gBEBP BB €)y o0, h%?h7% 0
- wd@ﬁ@ﬁ@pbB*CeﬂmaM WP peas pen w6EﬁB“CBZB*b8,1{,IaZ,,3 WP pots o
— wsB! B! ]@"CB*"EMI@(I3 he P n% — oo BB} B"CB*"SMIGM hee WP pe
— wsB!B) B°°B," €y, RO PP — weBLBy' B°B.,” €y, DO WP
— w6BﬁBZ‘ lA?ﬁCB*bz:"Mlazo,3 h% hP%p% — wﬁﬁﬁl}zl lA3”’CB*b(;‘/10(]0,20(3 WP pros p

npDARA pfcn b NANRA pacp b
— BB BB, ey 0 B HOS 0% — w0 BLBY BB e, o WPHOS 0,

APPENDIX B: COEFFICIENTS OF THE KINETIC LAGRANGIAN IN EQ. (37)

The coefficients of the kinetic Lagrangian in Eq. (37) are given by
o
A =40 +7— (1t o+ oy + 0y + o0y + 05)B.7 + (0 + a3)(B))?).
~ 2
Ay =4(ri +r2= (r3 +r4)B2 + (0 +w3)(B,7)?),

A ~ .
As=4(y1 + 72— (13 + 74)B.> + (01 + w3)B* — (0, + 3) (B, )? = (@ + w3)(B,

Ala 2
Ay = 4o, +w3)B, B,

As = 4o, + w3)§11

)2 — (B2,
)2 — (B2,
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By = (2r3 + 2r4 + k1 + Ky + 205 + 204 + 205 +)(1)IA§11\/B*27 (Blg)

B, = (k, —K3+w2+2w4)§12\/3*2, (B1h)

_ _ 5 a2 B2 2 :

By = (k) — k3 + @y + 2w4)\/ B° = (B, )* = (B,")"\/B.”, (B1i)

By = (x; + x5+ @, + 2w5)§12\/ B2, (B1j)
_ » s o B2y 2

Bs = (2 + &3 + s + 209\ B = (B — (B2 /B2 (BIK)

2
Bg = (273 + 24 +11)B1 /B2, (B11)

~ A
C1 =227+ (3 — @2 = 204)B> = 2(y3 + 74 — 0, + 05)(By )* = (y3 + 20, + @,)B.” + fx)\/B.>,  (Blm)

Co=2(2r1 = (3 + 20, + w)B.2 + 20, (B, )2 +fx)\/237, (Bln)
C3=—4(r3 +7’4—w1+0)5)§11§12\/37*2, (Blo)
Cy =4, B,'B,"\/2B2, (Blp)
Cs=—4(y3+7s—w; + w5)§11\/f32 - (1511)2 - (512)2\/37*2, (Blq)

C6E4a)1\/32—(§11>2—(§12)2\/2B*2, (Blr)

Dy =-2(a; +72) + (ag + s + Po — 27 + v4 — k1 — Ky + 203 + wy + w5 — y1)B.2 — (ay + 74 +)(1)1§2
— (Bs + s — 2B + k1 + Ky + 205 + @y + w5) (B )7, (B2a)
Dy ==2(a; —y1) + (ay + 74— x1)B.2 = (ag + 14 — x1) B

— (Bs + o — 2P7 + K1 + K2 + 203 + w4 + ws) (B, )2, (B2b)

Dy ==2(a; +712) + (ag + 74 —x1)B.2 = (@ + s + fs — 2B7 + 74 + K1 + Ky + 203 + 04 + 05 + 1) B

o
+ (Bs + P — 2P7 + k1 + Ky + 203 + w4 + ws) (B )?

+ (s + Bs = 2Py + k1 + Ky + 205 + 0y + w5) (B, )2, (B2c)
D4E(ﬁ5 +ﬂ6—2ﬂ7 —|-K'1 +K2+2w3+w4+w5)§11§12, (BZd)
—_ ~ 1 D2 ~ 1 2 ~ 2 2
Ds = (Bs + fo — 207 + k1 + Ky + 203 + w4 + ws)B; \/ B — (B; )* = (B,")", (B2e)
— ~ 2\/A2 ~ ] 5 ~ D 5
D6:_(ﬂ5 +ﬂ6_2ﬂ7 +K1 +K2+2(U3 +(1)4+(05)Bl B _(Bl ) _(Bl ) s (B2f)

124060-12



TOWARDS THE EXTENDED SU(2) PROCA THEORY PHYS. REV. D 105, 124060 (2022)

Dy = ~2(ay +72) + (ag + Bs + s — 27 + 14 — K1 — ks + 203 + w4 + w5 — 11)B.2 +2(8; — w3) (B, 2, (B2g)
Dy = =2(a +72) + (a4 + 74 = 71)B.2 + 2(8; — 03) (B, )2, (B2h)
Dy ==2(ay +72) + ( + 74 = 1) B2+ 287 — 3)[B* = (B, = (B, ), (B2i)
Do ==2(a1 +72) + (@ + s + fo = 2B7 + 74 — ki — Ky + 203 + w4 + @5 — 1)B.> +2(f} — w3)(§11)2, (B2j)
Dy =2 +72) + (ag + 74 —x1)B.2 + 2(B; — a5) (B, (B2k)
Diy = =21 +72) + (@ + 74 = 21)B.> + 2(B, — ) [B* = (B, = (B,)?] (B21)
D3 =2(p7 - 603)&1]&127 (B2m)
D1y =2(s ~ wn)B) B~ (B, — (B, (B2n)
Dis=—=(f1—Po+ B3+ x4 —Ks +K7_w6)§12\/l;§v (B20)
Dig=—(p) —Po+ B3+ K4 —Kg + K7 — 606)\/@2 - (1A§11)2 - (2}12)2\/;*2’ (B2p)
Dir =208, — )8\ B~ (B2 — (B (B2q)
Dig= (B — b +ﬁ3+K4—K6+K7—0’6)§12\/BT27 (B2r)
Dio= Py = Po+ P+ k4 — K6 + k7 = 606)\/13’2 - (B, - (512)2\/5:;» (B2s)
Dy =2(p7 — a;3)§1 1§|27 (B2t)
Dy, =2(8; — 03)B," \/ — (B, (B2u)
Dy, = 2(f; — w3)B, \/ — (B, (B2v)
E1 = (472 +2(r3 + @3 — 403)B,> + (274 + K + K3 + 43 + 204 + 205 + 1) B - 2fx)§11’ (B3a)

=2V2((rs + @,)B.2 ~ fx)B, . (B3b)

E3=(4yy+ (=274 — Ky — k3 + w3 + 205 + 11)B.2 + (24 + k) + K3 + dws + 2wy + 2ws + ) B* - 2fx)§127 (B3c)
E4=—V2((ky — 02)B.> + 2fx)§12, (B3d)

Es= (472 — (24 + Ky + k3 — 0y — 205 — y1)B.2

+ (214 + K1 + ko + w3 + 204 + 205 + 1) B — 2fx)\/32 - (§11)2 - (Bi")%, (B3e)
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€6 = (s —k3)B.2 = 21\ 2B — (B ) - (B,")?).

&= 2\/5(72 + w3 B - 0)33*2)1}11,

1 N A
Eg = —= (k4 — 2kg — 206 + 2y2)\/ B.2(B*> — (B, )?),
8 \/2(4 6 6 22) ( (B1)?)
1 A )
&g = 7(472 +4w3B% — (274 + k) — 205 — 11)B.?)(B}).
2
& :—L<K —2kg — 2w + 2y )§ '5*\/B.2
10=""5 6 6 2)B1 By s

1 A A ~1 X2
&n = 5(4}’2 + 403 B> — (274 + Kk — 205 —)(1)3*2)\/32 — (B, )* = (B/),

A

1 ~ ~ Y
Enp =——= (k4 — 2k — 206 + 2)(2)311\/ B*z\/B2 - (311)2 - (312)2,

V2
1 " ~
Ein= —E(M — 2ks — 2w6 + 212)(B* — (311)2)\/ B.2,

A

814 = 2\/5(7/2 + 0)332 - 0)33*2)31 B

SISE _2K6_2w6+2)(2)§11§]2\/3*2’

1
ﬁ (k4

1 - 5 2
Ei6 = ﬁ(él}’z +4w3B> — (274 + ky — 205 — y1)B.*) B,

1 A1 [a A )
&= %(’M — 2Kk — 206 + 212) B} \/32 — (B, )*=(B\")*\/B.2,

Eig= %(472 + 403 B> — (274 + k5 — 205 —)(1)3*2)\/32 - (3’11)2 - (§12)2,

Fi=40n+72— 22— 73— s + 02 + 205)B> = (273 + 274 — 0 — 303 — 20)5)(§11)2
—(@; + @3)B.* = (y4 + @3 + wy + w5)B* + f(B?),

Fr=40n1 + 10+ Qo1 +03)(2B)' )~ B.2)B.? - f(X).

F3=v2202r —2((rs - wl)(§11)2 +@1B.2) + (r3 — 0)B*)B. - f +2fx B,

Fa=4((r = 03)B+ (12— 03B, = (ra = 203 = 05) (By  + (14 — w5)B*)B.2) + f,

Fs=(r,+s(B,')? -~ 03B.2)B.> + f.

APPENDIX C: COEFFICIENTS OF THE KINETIC LAGRANGIAN IN EQ. (47)

The kinetic matrix entries in Eq. (47) are given by

Ay =4((r1 +72)0ap + (@01 + @3)Z8Z oy — (01 + 03 + @3 + @04 + ©5)Z, o Zoyy = (73 + 12)Z. 2843
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(B3f)
(B3g)

(B3h)

(B31)

(B3m)

(B3n)

(B30)

(B3s)
(B3t)
(B3u)
(B3v)

(B3w)

(C1)
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Co7 = A(y3 — wy = 204) 202 Z oy — M3 + 14 + 05) 20252, — A(y3 + 74 + 05) Z0Z3Z,°
+ 871 Z. 0" = A(ys + 201 + 02)Z2Z, 07 + AfZ. 0 + 80,2, ZLZ, e

o A Ao 5 ity A
— 4w 2y L 27 €, 0ya, W NT — 406 Lo Lo 2 €4 0y BTN, (C2)

Fbo = 2y, + ws5) 202027200 — 2y, + w3) 202020977 — 409, 2079020070 1 2(y3 — w02) 2.2 2027 P
— 4y 202522, hP — 2722320%“” +2(y4 — ws)Z*ZZ{fZ“haﬂ
_ 2w32fl2,1b2ﬁ020bh‘l/’ —2(ys — w3 — ws)zgzzz*uz*bhap _ 27/22/0}2’”]1"” (s 605)2*22/32”0}1“”
— 20372 2,, 7P 271 — 2(yy — w3 — w5) 2B 207,92, P heT — 2y, 2077 WP + 2y — ws) 2,222 WP
= 203252, 2 27 WP = 2(yy = w3 — w05) ZGZ3ZZ WP + 20 Z 2 HHY + 2ya — w05)Z2ZEZ W
= 203242,,27 2P W7 — 2(yy — w3 — w5) 222, 2, ZP WP — 2y, 282 WPe

. 1
+2w3 22 2,, 2,92, P h WP — 2w3 Z *h*hPr + 3 FhohP? + 2y,Z 2 h% hPe

o a 1
— 203 Z, WP WP? 4 2747, 7,9 Z, P h*P hPe + 3 fhoe hbe

+2(y3 — ) 222820 W7 — 4y 28207, 9 2P e + 4y, Z,2hP e

— 40, Z2 W0 + 4w, 242, 2, 2P P e + 2f y 202 hP + 2y 22 ZPC hee

— w6 Zh 2y 2P 7P 8 s RO 0% — 06 22 2P 2 € 0 P P

— w6 Zh 2y 277 €10, e WP WP — 06 22 2 2P €14 0, PP O

— wg ZZ Z;l) Zo‘b Z*a Eley ayat ho® ppas par 4 wg Zg Zia le: Z*h €y cras Jo ppas

— 06242y 27 7. €10, 0y, WP WP+ 06252 L] 7., €0, g, WP RO 1

. Z/”Zﬂ grby ag ho% pots par 4 ) ZﬁZ/laZ/)Z be hoa oas pa
64a%p ¥ Clajaras 64a b&x Clayaray

—w ZaZi Zpbz ag h/}az ho®Bp® @ leZlaZﬂZ b&' h/}az how
6%a%p * Clajaras 6%a b&* Clayaray

— 06242y 27, €100y, R WP — 06 Z4 23 2P 7, €4 0, KOO P 0

e Ao b S A b
N AV AN Ay A LY L RN /sl AT LY LG

54 50 Sfary b 5150 Saary b
—a)GZaZb‘Zﬂ Z." €100, N W5 N" — 06252, L7 7, 8,10,10,20(3hﬁ"h””’m”’2
54 50 Sfary b 5150 Saary b
— 0 ZLZy 2P 2. €10y 0,0, KON — 06 ZE 23 277, €41 00, WP O 1, (C3)

where X, in this case, is Z;Z{ since we are considering the decoupling limit.

APPENDIX D: COEFFICIENTS OF THE KINETIC LAGRANGIAN IN EQ. (53)

The elements of the matrix Ml in Eq. (54) are given by

- -

Ai=4+1rn—-(+r+ o+ o+ o3 + 04+ 05) 2,2+ (0 + w3)(Z; )?), (Dla)
Ay =4(w) + 603)%1 'z (D1b)
. 21 /a9 5 14y 5 24

Ay =4+ w3)Z, \ 27— (2, )" = (Z)7)°, (Dlc)
~ )

Ay =4(r +r2= (13 +74) 2.2 + (01 + 03)(Z)7)?), (D1d)
. 22 [an 5 1y, %20,

As =4(o) + 03)Z1\ 27 = (Z, )" = (Z,7)", (Dle)
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~ A

A 1 )
As=4(ri+ 72— (13 + 1) Z2 + (01 + 03)2° = (0 + @3)(Z) ) = (01 + 03)(Z,7)?), (DIf)
~ A A1

Cr =221+ (r3 — 0 —204)2> = 2(r3 + 74 — 01 + 0s)(Z, )* = (r3 + 20) + @,)Z,> + fx)\/Z.2.  (Dlyg)

G =221 — (13 + 20, + 0,)Z.> + 2601(%11)2 +fx)\/22.2,

(D1h)
~ Y ) .
Ci=—4(rstrs—o +ws)Z) Z,"\/ 2.2, (D1i)
C~4 = 4(0] 22*22]1512, (Dl_])
C.=_4 5 1 2052 _ (5 o (522
s=—4r3trs— o tws)Z \/Z* (27 =(Z,)" = (Z)")), (D1k)
5 ~ 1 2752 ~ 1 2 ) 2
Co=4m 2, 2222~ (22— @), (1)
Fr=4[r1 +12)Z.% = (01 + 03)Z.* = 202 2% + xZ7 = (y4 + 203 + 04 + w5)Z*
A A1
(73 + 274 — 03 = 205) 2% = (273 + 274 — 01 = 33 — 205)(Z, )*)Z,7], (D1m)
~ A ~q A
Fr=V202020 + (r3 — @) 2 = 2(ys — 01)(Zy )* = 20, 2,%)Z,% + 2fx2* - f], (D1In)
~ |
Fy=42r +r+ Qo +03)((Z) ) -2.2)]Z2.° - f, (Dlo)
where X is as in Appendix C.
On the other hand, the two nonzero entries of M, in Eq. (55) are given by
Fi= 4,2, - 7222 -2, - 60324 = (14— 2w3 — ws)Z*z(Zl)z + (ra— ws)Z*zzz] +f (D2a)
Fs=4[nZ2 + 02 2(Z,' )2 - 2.2)] + f. (D2b)
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