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The inclusion of the Weyl squared term in the gravitational action is one of the most simple, yet
nontrivial modifications to general relativity at high energies. Nevertheless the study of the spherically
symmetric vacuum solutions of this theory has received much attention only in recent times. A new type of
asymptotically flat wormhole which does not match symmetrically at a finite radius with another sheet of
the spacetime is presented. The outer spacetime is characterized by a Newtonian potential with a Yukawa
correction, and has gravitational properties that can be arbitrarily close to the ones of a Schwarzschild black
hole. The internal spacetime instead possesses a singularity at r ¼ ∞ with the topology of a 2-dimensional
sphere. The expansion scalar of geodesics reaching this singularity diverges in a finite amount of proper
time, with a striking resemblance with the future singularity of the big rip cosmological scenario. In terms
of the external Yukawa hair and mass M, these new wormholes fill a large region of the two-dimensional
parameter space of physical solutions withM > 0. On the contrary black holes, both of Schwarzschild and
non-Schwarzschild nature, are confined on a line. We argue that this type of wormholes are ideal black hole
mimickers.
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I. INTRODUCTION

The recent discovery of a new class of black holes [1] has
shown that the spectrum of classical solutions derived from
quadratic corrections to the classical Einstein-Hilbert
Lagrangian is far from being clearly understood. The case
of Einstein-Weyl theory, defined by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½γR − αCμνρσCμνρσ� ð1Þ

is particularly instructive. Spherically symmetric, asymp-
totically flat solutions with vanishing Ricci scalar R and
non-zero Ricci tensor Rμν posses regular horizons and obey
the first law of thermodynamics [1]. However, in spite of
much analytical [2–4] and numerical [5,6] efforts the role
played by the asymptotic field in determining the global
property of the solutions and the structure of the singularity
still deserves further investigation [7].
This scenario has to be contrasted with the more familiar

one in fðRÞ theories, as in this case spherically symmetric
solutions have been extensively studied in the past [8,9],
along with their stability properties in various astrophysical
contexts [10,11].
The inclusion of the squared Weyl tensor term to the

standard Einstein-Hilbert Lagrangian has a long history.

Albeit originally motivated by the possibility of perturba-
tive renormalization [12], in more recent times its presence
has emerged [13–15] in the framework of the asymptoti-
cally safe program for quantum gravity [16,17] and of the
fakeons theory [18,19]. In this work we shall not discuss
the viability of the theory defined in (1) at the quantum
level because we would like to focus on the classical
content of the theory extending the investigation started in
[7] to include wormhole solutions. In fact, although a
wormhole class of solutions have been found in [5], their
weight in the space of all the possible spherically sym-
metric and asymptotically flat solutions, and their global
properties are still unknown. Indeed the so called
“nonsymmetric” wormholes (no-sy WHs) found in [5]
cannot be analytically described in simple terms and their
interpretation is still elusive. In this work we shall fill this
gap and study this class of solutions in detail.
The numerical approach described in [7] for black holes

is clearly advantageous also in the case of wormholes,
allowing to investigate the dependence of the local metric
coefficient on the asymptotic field, which is described
by the sum of a Schwarzschild and Yukawa term, in a
systematic manner. In particular, it is possible to determine
the properties of the metric close to the wormhole throat as
a function of the mass and the Yukawa coefficient at large
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distances. Once the metric functions and their derivatives
have been determined at the throat radius, it is possible to
extend the integration to the other patch of spacetime and
characterize its behavior at large distances. We show that
these wormholes connect an asymptotically flat metric with
a singular spacetime where the temporal and radial com-
ponents of the metric vanish exponentially at infinity. This
new type of singularity is perceived by infalling observers
in a similar way as the future singularity of the big rip
cosmological scenario [20], with the expansion scalar of
congruences of geodesics going to an infinite positive value
in a finite amount of proper time. For external observers,
instead, the singularity lies at the edges of the causal
structure, and therefore is naked only in the infinite past
limit. Having no trapped surfaces, however, these singu-
larities are always avoidable with a sufficient amount of
energy. It is interesting to note that a similar spacetime has
been found in [21] as solution of general relativity coupled
with a quantum corrected stress-energy tensor, and an
analytical no-sy WH spacetime have been found in the pure
squared Weyl tensor theory [22], suggesting that no-sy
WHs are indeed a common prediction of semiclassical
theories of gravity.
At last, as the parameter space of possible solutions is

getting understood [23], we also show that no-sy WHs
densely populate this two-dimensional space, at variance
with the BH class that is confined on two lines. In addition,
no-sy WHs populate a large portion of the part of the
parameter space with physical solutions with a positive
mass, and are present for arbitrarily large masses.
Schwarzschild black holes appear therefore only as a
limiting case of no-sy WHs in this large mass limit.

II. EQUATIONS OF MOTION AND
ANALYTICAL APPROXIMATIONS

A. Nonlinear equations of motion

The equations of motion of the Einstein-Weyl theory can
be derived from the minimization of the action (1). In
tensorial form they are written as

Hμν ¼ γ

�
Rμν −

1

2
Rgμν

�
− 4α

�
∇ρ∇σ þ 1

2
Rρσ

�
Cμρνσ

¼ 0; ð2Þ

and, thanks to the traceless nature of the Weyl tensor, their
trace is simply

Hμ
μ ∝ R ¼ 0: ð3Þ

We now focus on static and spherically symmetric
spacetimes, and choose the ansatz for the metric in
Schwarzschild coordinates

ds2 ¼ −hðrÞdt2 þ dr2

fðrÞ þ r2dΩ2: ð4Þ

Exploiting the trace equation (3) we can recast the
equations of motion (2) as a system of two second order
ordinary differential equations in hðrÞ and fðrÞ, as already
shown in [5,7]. Explicitly these equations are

4hðrÞ2ðrf0ðrÞ þ fðrÞ − 1Þ − r2fðrÞh0ðrÞ2
þ rhðrÞðrf0ðrÞh0ðrÞ þ 2fðrÞðrh00ðrÞ þ 2h0ðrÞÞÞ ¼ 0;

αr2fðrÞhðrÞðrf0ðrÞ þ 3fðrÞÞh0ðrÞ2
þ 2r2fðrÞhðrÞ2h0ðrÞðαrf00ðrÞ þ αf0ðrÞ − γrÞ
þ hðrÞ3ðrð3αrf0ðrÞ2 − 4αf0ðrÞ þ 2γrÞ
− 2fðrÞð4αþ 2αr2f00ðrÞ − 2αrf0ðrÞ þ γr2Þ
þ 8αfðrÞ2Þ − αr3fðrÞ2h0ðrÞ3 ¼ 0: ð5Þ

Even if the symmetries of the spacetime greatly simplify
the equations, it is clear that the full nonlinear system
cannot be solved exactly, and either approximations or
numerical methods have to be used. In this section we will
show the analytical approximations needed to study
numerically the full system of equations (5), and to extract
their physical properties.

B. Linearized equations and solutions
in the weak field limit

In this work we are interested in asymptotically flat
spacetimes, i.e., solutions that describe isolated objects
without a cosmological constant. We can therefore consider
the weak field limit at large distances, in which the metric is
a perturbation of the Minkowski spacetime. As described in
[5,7,24] we write the functions hðrÞ and fðrÞ as

hðrÞ ¼ 1þ ϵVðrÞ; fðrÞ ¼ 1þ ϵWðrÞ; ð6Þ

and expand (2) at linear order in ϵ. It is convenient to
consider the combinations

Hμ
μ ∝ ∇2VðrÞ þ 2YðrÞ ¼ 0;

Hi
i −Ht

t ∝
�
∇2 −

3γ

4α

�
∇2VðrÞ −∇2YðrÞ ¼ 0; ð7Þ

where YðrÞ ¼ r−2ðrWðrÞÞ0, which can be easily solved
using Fourier modes. Imposing asymptotic flatness and
fixing a parametrization of time (i.e., imposing hðrÞ → 1 as
r → þ∞) we can suppress some of the free parameters of
the solution of (7) and obtain
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hðrÞ ¼ 1 −
2M
r

þ 2S−2
e−m2r

r
;

fðrÞ ¼ 1 −
2M
r

þ S−2
e−m2r

r
ð1þm2rÞ; ð8Þ

with m2
2 ¼ γ

2α and M being the ADM mass in Planck units,
which is the Schwarzschild solution with exponentially
suppressed corrections. We note that in the Newtonian limit
the gravitational potential ϕðrÞ ∼ 1

2
ðhðrÞ − 1Þ will have a

Yukawa correction, as expected for a massive mediator of
the interaction, which can be either attractive or repulsive
according to the sign of the “charge” S−2 . We will see in
Sec. III B that the sign and the relative values of M and S−2
will be crucial for having a no-sy WH type of solution.

C. Series expansion at finite radii

At finite radii we can expect the solutions to be well
approximated by series expansions. The different families
of solutions allowed by the equations of motion have been
exhaustively studied and classified in [3,5] using a variation
of the Frobenius method. Taking an expansion of the metric
functions in the form

hðrÞ¼ ðr− r0Þt
�XN
n¼0

htþn
Δ
ðr− r0ÞnΔþOððr− r0ÞNþ1

Δ Þ
�
;

fðrÞ¼ ðr− r0Þs
�XN
n¼0

fsþn
Δ
ðr−r0ÞnΔþOððr− r0ÞNþ1

Δ Þ
�
; ð9Þ

it is possible to classify the solutions as ðs; tÞΔr0 . The
families known at present time are shown in Table I, where
in the second column we made manifest the number of free
parameters after imposing asymptotic flatness and a spe-
cific time parameterization. We note that in [25] a non-
Frobenius family with logarithmic corrections to the
ð−1;−1Þ10, and with one additional free parameter, has
been found and there are hints that it might populate a large
area of the parameter space. We also specify that there are
some differences in the notation used in our work and

in [3,5], the main being the different sign for the exponent s
due to their metric ansatz in terms of the function AðrÞ ¼
1=fðrÞ for the families around r0 ¼ 0.
As specified in the introduction, our main goal is to

describe the physical properties of the nonsymmetric
wormhole type of solutions, that is solutions belonging
to the ð1; 0Þ2r0 family; having the maximum number of free
parameters allowed in the theory, this family is expected to
populate a nonzero measure region of the parameter space.
We highlight here the behavior of the metric around the
“throat” r ¼ rT

hðrÞ ¼ h0 þ h1=2ðr − rTÞ12 þ h1ðr − rTÞ þOððr − rTÞ32Þ
fðrÞ ¼ f1ðr − rTÞ þ f3=2ðr − rTÞ32 þOððr − rTÞ2Þ; ð10Þ
which is characterized by a divergent radial component of
the metric grr ¼ 1=fðrÞ and a regular, but with divergent
derivative, temporal component of the metric gtt ¼ −hðrÞ.
Moreover, this family of solution is completely determined
by the four parameters ðrT; h0; h1=2; f1Þ, of which only
specific combinations will lead to asymptotically flat
solutions.

1. Wormhole behavior of ð1;0Þ2r0 solutions

The metric in (10) is defined only for radii r > rT , but
having regular curvature invariants at r ¼ rT we expect this
to be a coordinates artefact. The simple extension to the
region r < rT with an expansion in terms of semi-integer
powers of ðrT − rÞ, suffers from a severe pathology, namely
we have to choose between having discontinuities in the
curvature invariants or having two temporal coordinates.
The other possible extension is to consider a wormhole type
of spacetime, where we join two r > rT patches at the
“throat” r ¼ rT . We believe that this is the most sensible
choice.
The wormhole nature of these type of solution is

manifest after the coordinate transformation

r ¼ rT þ 1

4
ρ2; ð11Þ

in which the metric has the form

ds2 ¼ −h0
�
1þ h1=2

2
ρþOðρ2Þ

�
dt2

þ dρ2

f1 þ f3=2
2
ρþOðρ2Þ

þ
�
rT þ 1

4
ρ2
�

2

dΩ2: ð12Þ

This is manifestly well behaved around ρ ¼ 0, and then we
can extend the metric to the ρ < 0 region, corresponding to
a second r > rT patch of a wormhole-type spacetime [5].
In contrast with standard wormhole solutions, however, the
metric (12) is not symmetric under the parity operation
ρ → −ρ. Going back to the r coordinate, we see that the
metric on other side of the throat can be described
switching the sign of the semi-integer terms in (10), that is

TABLE I. Families of solutions around finite and zero radii in
Einstein-Weyl gravity.

Family
No of free
parameters Interpretation

ð0; 0Þ10 2ð→0Þ Regular solution/True vacuum
ð−1;−1Þ10 3ð→1Þ Naked singularity/Schwarzschild interior
ð−2; 2Þ10 4ð→2Þ Bachian singularity/Holdom star
ð0; 0Þ1r0 4ð→2Þ Regular metric

ð1; 1Þ1r0 3ð→1Þ Black hole

ð1; 0Þ1r0 2ð→0Þ Symmetric wormhole

ð1; 0Þ2r0 4ð→2Þ Nonsymmetric wormhole

ð4=3; 0Þ3r0 3ð→1Þ Not known
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hðrÞ ¼ h0 − h1=2ðr − rTÞ12 þ h1ðr − rTÞ −Oððr − rTÞ32Þ;
fðrÞ ¼ f1ðr − rTÞ − f3=2ðr − rTÞ32 þOððr − rTÞ2Þ: ð13Þ

Looking at the explicit form of the parameters it can be
proved that the expansion (13) is exactly the one in (10)
after the substitution h1=2 → −h1=2.

D. Solution around vanishing metric

Given the wormhole nature of the metric in (10), we
present a spacetime characterized by two regions both
mapped by r ∈ ½rT;þ∞Þ. It is natural to ask how the metric
behaves in the second patch, and in particular if it can be
asymptotically flat in both the spacetime patches.
From our numerical work we found a common behavior:

once imposed asymptotic flatness in the first patch, the
metric in the second patch results to be nonasymptotically
flat, with fðrÞ diverging and hðrÞ vanishing for r → þ∞,
corresponding to both grr and gtt vanishing at large radius.
At the present time, nonasymptotically flat solutions are
expected in Einstein-Weyl gravity, but there is no analytical
approximation of such solutions.
Following what we have from the numerical results we

proceed by looking for a metric with grrðrÞ and gttðrÞ
vanishing for r → þ∞. In order to do this we expand the
metric functions as

hðrÞ ¼ ϵh1ðrÞð1þ ϵh2ðrÞ þOðϵ2ÞÞ;

fðrÞ ¼ 1

ϵf1ðrÞð1þ ϵf2ðrÞ þOðϵ2ÞÞ ; ð14Þ

then we can solve our equations of motion (5) order by
order in ϵ, starting from Oðϵ−1Þ. An exact solution of the
equations at first order can be found, and it has the form

h1ðrÞ ¼ Che−a rr2

f1ðrÞ ¼ Cfe−a rr2 ð15Þ

in which a, Ch, Cf are free parameters, with the constraint
a > 0, in order to be consistent with the initial assumption
gtt; grr → 0 for r → þ∞. Now it is convenient to rewrite
the ansatz (14) as

hðrÞ ¼ Che−a rr2ð1þ h̃2ðrÞe−a r þOðe−2a rÞÞ

fðrÞ ¼ 1

Cfe−a rr2ð1þ f̃2ðrÞe−a r þOðe−2a rÞÞ ; ð16Þ

where the expansion in ϵ is substituted by an expansion in
the variable y ¼ e−a r. When expanding (5) order by order
in y, the first orders become a system of second order linear
differential equations in h̃2ðrÞ and f̃2ðrÞ. The solution can
be found in a polynomial form

h̃2ðrÞ ¼ h̃0 þ h̃1rþ h̃2r2 þ h̃3r3;

f̃2ðrÞ ¼ f̃0 þ f̃1rþ f̃2r2 þ f̃3r3; ð17Þ

where f̃1 result to be another free parameter and the other
coefficients are completely determined by the four free
parameters ðCf; Ch; a; f̃1Þ. Similarly the functions h̃3ðrÞ
and f̃3ðrÞ at order Oðe−3arÞ can be found, obtaining two
sixth degree polynomials in r but with no other free
parameters appearing. The total number of free parameters
of these solutions results then to be four, the correct number
needed to connect these solutions with the ð1; 0Þ2r0 family.
Although we do not discuss the convergence of this
expansion, we believe that a certain convergence radius
r� exists, such that for r ≫ r�, the solution is well
approximated by (16). The numerical behavior found with
our data is in agreement with this expansion already at first
order, as we will show in Sec. III C.

III. NUMERICAL RESULTS AND THE
STRUCTURE OF THE SPACETIME

A. Metric characterization with the
shooting method

The shooting method has proven to be extremely
useful for extracting the relevant physical properties of
numerical solutions in quadratic gravity [7,26]. We con-
sider the metric to be described by the weak field
limit approximation (8) at large distances (r ¼ r∞), and
by the series expansion (10) at sixth order close to the
throat (r ¼ rT þ rϵ). Equations (5) are then numeri-
cally integrated with guessed values of the parameters
ðM; S−2 ; rT; h0; h1=2; f1Þ from both boundaries to a fitting
radius r ¼ rf, where the continuity of hðrÞ, fðrÞ and their
derivatives is imposed with the use of a root finding
algorithm. Once the convergence is achieved, this pro-
cedure fixes the value of the parameters ðrT; h0; h1=2; f1Þ
that set the initial condition (13) at the other side of the
throat for an additional integration toward r → þ∞ (but
with inverted sign for ρ), allowing us to study the second
patch of the spacetime.
Throughout this analysis we integrated the equations

using an adaptive stepsize method which switches between
a midpoint and an implicit Euler methods, according to the
stiffness of the system, with a tolerance of 10−14, imple-
mented using the WOLFRAM language. The continuity of the
metric is obtained through the Newton’s method used by
the FindRoot function defined in this language, with a
precision of 10−4. The large distance radius has been fixed
as r∞ ¼ 15 in order to have Yukawa corrections greater
than the tolerance threshold, and the distance from the
throat as rϵ ¼ 10−3 in order to discard terms smaller than
such threshold. The precise value of the fitting radius does
not affect the accuracy of the shooting method, but is
crucial for obtaining convergence efficiently; a value
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sufficiently close to the throat, in particular we used
rf ¼ rT þ 5 × 10−2, has been found optimal for our pur-
poses. We specify here that the equations have been
rescaled in terms of the Spin-2 particle mass m2 in order
to have dimensionless quantities, and then all the scales of
the solutions will be determined by the only free parameter
of the theory α; the length unit will be l2 ¼ 4

ffiffiffiffiffiffiffiffi
2πα

p
lp, and

the mass unit will be m2 ¼ ð4 ffiffiffiffiffiffiffiffi
2πα

p Þ−1mp. For future
reference, we remember that with the notation used in
(8) the Schwarzschild mass parameterM has the dimension
of length.
While for the one-parameter families described in [7,26]

it was sufficient to fix either the event horizon or the stellar
surface radii to find convergence for all the other param-
eters, the two degrees of freedom of no-sy WHs require
some preliminary steps in our procedure. First of all, we
have optimal convergence by fixing at the beginning of the
integration the weak field parameters M and S−2 instead of
some throat parameter (e.g., the throat radius). We can mark
the limits of the area in the M-S−2 parameter space where
no-sy WHs can be found with an exploratory scan of this
space. At practical level this means that the equations of
motion are integrated using (8) as initial conditions with
values of M and S−2 chosen on a grid, and the values for
which the equations are singular at a finite radius r > 0 are
saved in order to be used in the shooting method. As a cross
check, the code where the shooting method is implemented
never reaches convergence whenever initial values of M
and S−2 different from the one found with this scan are used.
This preparatory integration is also used to find an educated
guess for the parameters to use at the beginning of the
shooting method, with a great increase in convergence
efficiency. The preliminary scan of the parameter space is
not only useful for improving convergence, but gave us

relevant insight on the “phase diagram” of the theory, that is
how the parameters M and S−2 of the solutions determine
the family they belong to. We will present the phase
diagram of Einstein-Weyl gravity in further work.

B. The family of no-sy WH solutions

Before discussing the details of no-sy WH solutions, we
would like to present the global trend for some of the
parameters of the ð1; 0Þ2r0 family. In particular we believe
that the most informative parameters are the gravitational
ones, M and S−2 , the throat radius rT , and the value of the
temporal component of the metric at the throat h0, that can
be linked to the redshift of a photon emitted at such distance
and measured at infinity by zðrTÞ ¼ 1=

ffiffiffiffiffi
h0

p
. In Fig. 1 we

simultaneously show the area of the phase diagram popu-
lated by no-sy WHs, and the relations between the throat
parameters rT , h0 and the gravitational ones M, S−2 . No-sy
WHs are found in two distinct regions: for a repulsive
contribution of the Yukawa term in the potential (8), i.e.
S−2 > 0, the region of no-sy WHs is delimited by the
Schwarzschild and non Schwarzschild black holes lines,
and has a smooth transition into a region populated by
horizonless solutions belonging to a logarithmic correction
of the ð−1;−1Þ10 family; for an attractive contribution of the
Yukawa term, i.e., S−2 < 0, the region is still delimited by
the Schwarzschild and non-Schwarzschild black holes
lines, but is unbounded for large M and S−2 . In both cases
black holes appear as a transition between no-sy WHs and
solutions of the ð−2; 2Þ10 family. In particular we would like
to stress the fact that, if we consider only positive mass
solutions as physical, no-sy WHs populate almost half of
the physical region of the phase diagram. If there are no
criteria, e.g., symmetry arguments, for selecting solutions
with S−2 ¼ 0, it is then natural to consider no-sy WHs as

FIG. 1. Trend of the two main throat parameters in the phase diagram. In function of the gravitational parametersM and S−2 we show
the throat radius rT in the left panel, and the redshift parameter h0 in the right panel.
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much more viable candidates than Schwarzschild black
holes as generic vacuum solutions, even in the large
mass limit.
The relations of the throat radius rT and the redshift

parameter h0 are useful consistency checks. We see from
Fig. 1 that the throat radius increases with an increasing
mass, and in particular is consistent with the Schwarzschild
mass-radius relation rH ¼ 2M as the Yukawa charge goes
to zero. We note that the throat radius increases also as the
Yukawa charge decreases, and then in the large mass limit,
where no-sy WHs are present only for negative values of
S−2 , no-sy WHs are always larger than the Schwarzschild
black hole with the same mass. At last, as the gravitational
parameters of a no-sy WH gets closer to the ones of a
black hole, be it either of the Schwarzschild or non-
Schwarzschild families, the redshift of a photon emitted
at the throat increases, and the topological sphere defined
by rT becomes an infinite redshift surface in this limit. In
other words, for large masses, if the Yukawa charge is
sufficiently small no-sy WHs are optimal black hole
mimickers.

C. The no-sy WH spacetime

We discuss here the main features of the no-sy WH
solutions. The numerical results of the shooting method
allowed us to characterize the no-sy WHs in the whole
available space ρ ∈ ð−∞;þ∞Þ. We present the common
behavior found for all the solutions studied, except for
a small area located in the region of positive Yukawa
charge. These exceptions correspond to solutions
with the wormhole throat less than a maximum radius
rT ≤ 1ffiffi

3
p , in our unit, so we expect them to appear only at

microscopical scales. For simplicity we do not discuss the
behavior of these exceptions, instead we focus on all the
other solutions, recalling that, on the contrary, they can
have an arbitrary large radius. In what follows, we have
chosen the region of spacetime with positive ρ as the
asymptotically flat region. With this choice for r → þ∞,
ρ → þ∞, the metric is determined by (8) with the line
element

ds2 ¼ −
�
1 −

2M
r

þ 2S−2
e−m2r

r

�
dt2

þ 1

1 − 2M
r þ S−2

e−m2r

r ð1þm2rÞ
dr2 þ r2dΩ2; ð18Þ

for r → rT, ρ → 0�, it is determined by (10), (13) with the
line element

ds2 ¼ −h0ð1� h1=2ðr − rTÞ12 þOðr − rTÞÞdt2

þ 1

f1ðr − rTÞ �Oððr − rTÞ32Þ
dr2 þ r2dΩ2; ð19Þ

and for r → þ∞, ρ → −∞, it is determined by (16) with
the line element

ds2 ¼ −Chr2e−a rð1þOðe−a rÞÞdt2
þ Cfr2e−a rð1þOðe−a rÞÞdr2 þ r2dΩ2: ð20Þ

In Fig. 2 an example of no-sy WH spacetime is presented.
In terms of the ρ-coordinate, the functions hðρÞ and fðρÞ,
as well as gρρðρÞ are smoothly matched from both the
patches in ρ ¼ 0.
The function hðρÞ results to be monotonic, meaning that

an observer would feel a gravitational force always in
direction of decreasing ρ. This corresponds to an attractive
central force in the asymptotically flat patch and a repulsive
central force in the second patch.
In Fig. 3 we show the embedding diagram of no-sy WHs

around r ¼ rT . This is built in order to have a radial
displacement dr on the horizontal plane corresponding to a
displacement of proper distance dr̃ ¼ drffiffiffiffiffiffi

fðrÞ
p on the surface

embedded. The embedding diagram is clearly similar to
what we have for solutions with horizon, since in both cases
fðrÞ vanishes at a certain radius, however here the non
symmetric behavior of such wormholes is explicit. Since
fðrÞ rapidly grows in the second patch, when fðrÞ > 1 the
proper distance dr̃ becomes shorter than dr and the
spacetime cannot be further embedded.
Finally we show the details of the metric for ρ < 0. In the

previous plots the metric functions seem to have an
exponential character in this region. We considered the
ratio between the metric functions and their first deriva-
tives. In particular in Fig. 4 we plotted the derivative of this
ratio, which for an exact exponential is expected to vanish.
We found the following limits

d
dr

�
f0ðrÞ
fðrÞ

�
¼ f00ðrÞ

fðrÞ −
�
f0ðrÞ
fðrÞ

�
2

→
2

r2
;

d
dr

�
h0ðrÞ
hðrÞ

�
¼ h00ðrÞ

hðrÞ −
�
h0ðrÞ
hðrÞ

�
2

→ −
2

r2
; ð21Þ

that do not depend on the particular solution considered.
This asymptotic behavior can be analytically integrated,
finding again the first order of the asymptotically vanishing
metric (16) and confirming that the solutions in the second
patch are given by this expansion at large radius.
The nonflat behavior (16) brings several implications for

the spacetime structure of the second patch.
With such behavior the asymptotic surface r → þ∞,

ρ → −∞ results located at a finite proper distance from
the wormhole throat. Indeed the proper radial distance is
given by

r̃max ¼
Z

∞

rT

drffiffiffiffiffiffiffiffiffi
fðrÞp ; ð22Þ
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and this integral converges with fðrÞ interpolated between
(10) and (16). The proper volume of the entire ρ < 0 region
is finite: it is given by

Vp ¼ 4π

Z
∞

rT

dr
r2ffiffiffiffiffiffiffiffiffi
fðrÞp ; ð23Þ

that converges again.

From the monotonicity of hðρÞ, the surface r → þ∞ also
results to be attractive.
These considerations completely changes the nature of

the second patch and highlights the nonsymmetric nature of
these solutions. In Sec. IV we focus on the peculiar features
of the metric at the surface r → þ∞ of the second patch.

1. Geodesic dynamics and photon sphere

Before we discuss the details of the asymptotic surface of
the second patch, we show the geodesic dynamics of the
no-sy WH spacetime. We start recalling that a general
geodesic in a static spherically symmetric spacetime can be
defined as the integral line of the vector field Vμ with
components

FIG. 2. Metric of a no-sy WH solution with M ¼ 0.5 and S−2 ¼ −0.3: in the panels on the left the metric is in function of the
r-coordinate, while in the panels on the right is in function of the ρ-coordinate; solid and dashed lines indicate whether we are in the
asymptotically flat or in the asymptotically vanishing patch, respectively.

FIG. 3. Embedding diagram of a no-sy WH solution with
M ¼ 0.55 and S−2 ¼ 0.14: the yellow part corresponds to the
ρ > 0 region, the red curve corresponds to r ¼ rT , the blue part
corresponds to the ρ < 0 region.

FIG. 4. Details of the metric in the asymptotically vanishing
region of a no-sy WH solution with M ¼ 0.5 and S−2 ¼ −0.3.
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Vt ¼ dt
dτ

¼ E
hðrÞ ;

Vr ¼ dr
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
E2

hðrÞ −
L2

r2
þ κ

�s
;

Vθ ¼ dθ
dτ

¼ 0;

Vϕ ¼ dϕ
dτ

¼ L
r2
; ð24Þ

with κ ¼ −1 and τ the proper-time for a timelike geodesic,
or κ ¼ 0 and τ an affine parameter for a null geodesic, and
where we considered θ ¼ π=2 without loss of generality.
First we note that the wormhole nature is manifest in the

geodesic dynamics around the throat. Indeed, recalling the
transformation (11), the radial component in (24) can be
written in terms of ρ as

dρ
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

ðr − rTÞ
�

E2

hðrÞ −
L2

r2
þ κ

�s
: ð25Þ

With fðrÞ given by the metric around the throat (10),
Eq. (25) can be integrated obtaining a smooth geodesic that
goes from positive to negative ρ. Together with this,
Eq. (24) tells that dr

dτ is forced to vanish at the throat. On
the contrary, with this type of metric it is not possible to
build a differentiable geodesic that goes from r > rT to
r < rT , confirming the interpretation of the ð1; 0Þ2r0 as a
wormhole solution family.
The second thing we want to highlight is that, if a free-

falling object enters into the wormhole throat from the
asymptotically flat patch it will proceed until it reaches the
surface r → þ∞ of the second patch.
In order to enter into the wormhole, the radical argument

in (25) must be positive: around the throat we have fðrÞ ¼
f1ðr − rTÞ þOððr − rTÞ32Þ so for positive f1 we get the
condition

E2

hðrTÞ
>

L2

r2T
− κ: ð26Þ

Once entered in the second patch, dρdτ cannot vanish, indeed
we have

E2

hðrÞ >
E2

hðrTÞ
>

L2

r2T
− κ >

L2

r2
− κ; ð27Þ

since hðrÞ results decreasing in the asymptotically vanish-
ing region. This means that a free-falling object will
inevitably reach ρ ¼ −∞, since it is attracted by the
gravitational force, and the angular momentum conserva-
tion contributes in the same direction.

Moreover this happens in a finite interval of proper time.
The proper time interval needed to fall into this surface is

τs ¼
Z

∞

rð0Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞð E2

hðrÞ −
L2

r2 þ κÞ
q dr; ð28Þ

that is certainly convergent due to the asymptotic behav-
ior fðrÞ

hðrÞ ¼ Oðe2arr4 Þ.
For a distant observer in the asymptotically flat patch

instead, a particle falls into the wormhole throat in a finite
time interval, but the time needed to reach the surface
ρ → −∞ results divergent, as it is given by

t ¼
Z

rðtÞ

rð0Þ

Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðE2hðrÞ − ðL2

r2 þ κÞhðrÞ2Þ
q dr: ð29Þ

Around the throat we have hðrÞ ¼ h0 þOðr − rTÞ and
fðrÞ ¼ f1ðr − rTÞ þOððr − rTÞ32Þ so the integral in (29)
converges to a finite time interval for the distant observer.
On the other hand, with the asymptotic behavior (16) the

integrand in (29) tends to a constant but it must be integrated
to infinity, so the integral diverges for rðtÞ → þ∞.
The geodesic behavior around the throat implies that the

photon sphere (see e.g., [27]) of no-sy WHs is always
located in the asymptotically flat patch. For a distant
observer in this patch, a no-sy WH appears like an
ultracompact object located inside its photon sphere. The
asymptotic surface ρ → −∞ appears like an attractive
horizon “inside” the throat. Instead any free-falling
observer in the second patch falls into this surface in a
finite amount of proper time but it can always spend energy
to escape.

IV. THE NATURE OF THE SINGULARITY
AND DISCUSSION

The peculiar properties of the spacetime at the hyper-
surface defined by r → þ∞ in the asymptotically vanish-
ing patch strongly suggest that it should be a singular
region. Indeed the behavior (16) implies the following
limits for the curvature invariants:

R ¼ 0 for r → þ∞;

RμνRμν ¼ O

�
e2ar

r6

�
for r → þ∞;

RμνρσRμνρσ ¼ O

�
e2ar

r6

�
for r → þ∞; ð30Þ

with the Ricci scalar being identically zero for our e.o.m.,
but with divergent squared Ricci tensor and Kretschmann
scalar. Quite interestingly, the squared Weyl tensor results
regular due to a cancellation between the divergent part of
the Kretschmann scalar and the squared Ricci tensor.
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In particular using the precise result for h̃3ðrÞ and f̃3ðrÞ in
(16) it is possible to prove the limit

CμνρσCμνρσ ¼ 3m4
2 for r → þ∞; ð31Þ

that does not depend on the particular solution considered.
This result is crucial for the application of the finite action
principle [28], that is getting much attention in recent times
for its applications in quadratic theories of gravity [29–31].
We also note that, beside the singular nature of the
curvature invariants, the fact that a timelike geodesic
reaches an infinite radius in a finite proper time is a strong
indication that the spacetime is geodesically incomplete. As
it is clear that the hypersurface at r → þ∞ is a singular
region, it is a new kind of singularity with unique physical
properties. To begin with, the causal structure of the
spacetime is radically different from the standard solutions
of general relativity. As shown in the conformal diagram of
figure 5, we see that the causal structure of a no-sy WH is
equivalent to the one of a maximally extended Minkowski
with a singularity at the “internal” J þ

I and J −
I . This is not

surprising, considering that the t-r sector of a no-sy WH
spacetime is conformally equivalent to the Minkowski one
after the coordinate transformation

ds2 ¼ hðrÞð−dt2 þ dr�2Þ þ r2dΩ2; ð32Þ

where the tortoise coordinate goes to zero at the throat. The
relevant information that is manifestly shown in Fig. 5,
however, is that the singularity is at the edges of the causal
structure. In otherwords, a distant observer can communicate

with the singularity only in an infinite amount of time.
Furthermore, if we recall the definition of the redshift of a
photon emitted at radius r and measured at infinity
zðrÞ ¼ 1ffiffiffiffiffiffi

hðrÞ
p , we see that the singularity is actually on an

infinite redshift surface and, as for an event horizon, an
infinite amount of energy is required to leave it. The
singularity is therefore naked only in its infinite past section,
and can be interpreted as the equivalent of a white hole
singularity. The problem of dealing with naked singularities
in no-syWH spacetimes is then reduced to finding a collapse
mechanism for the generation of such objects; however, we
postpone this study to further work.
We now consider the behavior of a congruence of

infalling geodesics with tangent vector (24), where with
infalling we mean that has a negative Vr in the asymp-
totically flat patch, and a positive Vr in the asymptotically
vanishing one. Following the discussion in chapter 4 of
[32], we consider the vector field Zμ, which represent the
separation of points in nearby geodesics, that satisfies the
equation

d
dτ

Zμ ¼ Bμ
νZν; ð33Þ

where we have defined the deviation tensor

Bμν ¼ hρμhσν∇ρVσ ð34Þ

with hμν being the metric of either the hypersurface
orthogonal to the geodesic in the timelike case or the
surface transverse to the geodesic in the null case. The first
thing we want to highlight is that the expansion scalar

θ ¼ hμνBμν ð35Þ

does not go to a negative infinite value at the singularity, as
it happens in the Schwarzschild case, but it goes to a
positive infinite value as in the limit of outgoing geodesics
reaching spatial infinity in asymptotically flat solutions.
However, the peculiar feature here is that the expansion
scalar goes to infinity in a finite proper time. It is in fact
possible to prove that the expansion scalar at large radii
satisfies

θðτÞ > 1

ðτs − τÞα ; ð36Þ

with 0 < α < 1 and τs being the proper time (or the affine
parameter) at which the geodesic reaches the singularity,
and then that it diverges in the limit τ → τs. The second
thing we want to highlight is the behavior of the deviation
vector Zμ. If we restrict ourselves to radial geodesics, using
the definition of proper time (28) and the asymptotic
expansion (15) we can solve the differential equations (33)
close to the singular surface as

FIG. 5. Conformal diagram of a no-sy WH spacetime; the
dotted lines indicate surfaces of constant time and radius.
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Zμ ¼

8>>><
>>>:

ZtðrÞ ∼ ctr;

ZrðrÞ ∼ crr;

ZθðrÞ ∼ cθr;

ZϕðrÞ ∼ cϕr;

Zμ ¼

8>>><
>>>:

ZtðrÞ ∼ ct;

ZrðrÞ ∼ cr;

ZθðrÞ ∼ cθr;

ZϕðrÞ ∼ cϕr;

ð37Þ

in the timelike and null cases respectively. While null
geodesics diverge only for geometrical aspects, timelike
geodesics experience extreme tidal forces in the radial and
temporal directions, that actually diverge as they get closer
to the singularity. The presence of such disruption of
timelike observers at a finite value of the proper time
has a remarkable resemblance with the big rip cosmological
scenario, where the expansion of the universe diverges in a
finite amount of cosmological time. This big riplike
singularity is however localized inside a topological sphere
of radius r ¼ rT for an observer in the asymptotically flat
patch, and has an “origin” in the topological sphere of
radius r ¼ rT for an observer in the asymptotically vanish-
ing one.
With the information at our disposal, we can now have an

insight on how no-sy WHs are perceived by observers:
(i) infalling observers coming from the asymptotic flat
patch are attracted by the no-sy WH just as by other
compact objects, but after they have reached the radius
r ¼ rT they start to feel a repulsive force, and tidal
forces in all directions: they are quickly pushed away
to spatial infinity, and the tidal forces become so
strong that are able to break all the binding energies
and completely disrupt the observer in a finite amount
of proper time, just like in the big rip cosmological
scenario; however, in principle observers can always
turn on a rocket and escape their fate;

(ii) distant observers in the asymptotically flat patch see
an attractive object enclosed inside the topological
sphere of radius r ¼ rT ; the object is smaller than its
photon sphere, and the light emitted outside this
sphere will be absorbed by the object; however,
particles can emit light from inside the object, but
this emission is expected at extremely low frequen-
cies: first of all photons are exponentially redshifted,
and the temperature of a ball of gas is expected to
decrease, as the volume increases as can be seen from
(37); moreover, distant observers will never see the
disruption of the infalling gas, that is instead perceived
as “frozen” inside the object.

In conclusion, we can interpret no-sy WHs as black hole
mimickers with a “singularity by disruption” instead of a
“singularity by compression” that, for this reason, is always
avoidable.

V. CONCLUSIONS

In this paper we give a complete description of the non-
symmetric wormhole (no-sy WH) type of solutions of
Einstein-Weyl gravity. With different analytical approxi-
mations, and using a shooting method procedure, we
managed to link the properties of the spacetime at large
distances to the ones close to the wormhole throat, and also
to explore the second patch of the spacetime. No-sy WH
solutions are characterized by an asymptotically flat patch,
where they are described by a newtonian potential with a
Yukawa correction, and by an asymptotically vanishing
patch, where geodesics reach a singular surface in a finite
proper time; the two patches are joined at the “throat,” that
is the topological sphere with the minimum radius that can
be reached in this kind of spacetime. The values of the
ADM mass and the Yukawa charge for which we have this
type of solutions reveal that no-sy WHs populate a large
area of the physical part of the parameter space of the
theory, and that they are a much more viable candidate to be
the generic vacuum solution of Einstein-Weyl gravity than
black holes. The behavior of the metric close to the throat,
instead, suggests that no-sy WHs are optimal black hole
mimickers, with the throat being an extremely high redshift
surface, and with the photon sphere having a radius always
larger than the throat. The singularity in the asymptotically
vanishing patch has the peculiar behavior of resembling the
big rip cosmological singularity, with the presence of
extreme tidal forces in all directions that completely disrupt
timelike observers in a finite proper time. Despite having
no horizons, the singularity results naked only in the
infinite past, being at the edges of the causal structure of
the solution. The absence of horizons, however, guarantees
that there are no trapped surfaces, and with enough energy
an outgoing geodesics can always escape from the singu-
larity and reach the asymptotically flat region. All these
properties suggest that no-sy WHs might be the substitutes
predicted by quadratic gravity to black hole solutions. In
order to make a definite statement, however, is fundamental
to address the stability of the solutions, that we plan to
tackle in future, and subsequently the formation of no-sy
WHs, their rotating counterparts, and the properties of an
accretion disk surrounding them.
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