
Dynamical behavior of the C-metric: Charged scalar fields, quasinormal
modes, and superradiance

Kyriakos Destounis ,1 Giacomo Mascher ,1,2 and Kostas D. Kokkotas 1

1Theoretical Astrophysics, IAAT, University of Tübingen, 72076 Tübingen, Germany
2Physics Department, University of Trento, Via Sommarive 14, 38123 Trento, Italy

(Received 6 May 2022; accepted 15 June 2022; published 23 June 2022)

The C-metric is a boost-symmetric spacetime solution to the vacuum Einstein field equations which
describes black holes that are uniformly accelerated under the tension of a cosmic string. Only recently the
thermodynamics of accelerating black holes and their modal stability against neutral scalar perturbations were
concisely established. The generalization of accelerating black holes to incorporate an electric charge, namely
the charged C-metric, possess three distinct families of quasinormal mode frequencies; the complex photon
surface quasinormal modes associated with unstable null particles at the equatorial plane of the photon
surface, the purely imaginary acceleration modes whose existence solely depends on the acceleration of
spacetime and the purely imaginary near-extremal modes which dominate the dynamics of the ringdown at
late times when the event and Cauchy horizon approach each other. We extend the quasinormal mode analysis
to charged scalar fluctuations and find that the photon surface modes are continuously deformed with respect
to their neutral counterpart as the scalar charge is increased. We further find that the acceleration and near-
extremal families acquire an oscillation frequency when the scalar charge is introduced. Finally, we study the
superradiant amplification of charged scalar monochromatic waves impinging charged accelerating black
holes. We find that even though the frequency range of superradiant amplification is lessened due to the
acceleration, the amplification factors are considerably elevated with respect to those transpiring in Reissner-
Nordström black holes and are maximized when the scalar charge is significantly large.
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I. INTRODUCTION

Black holes (BHs) are unequivocally amongst the most
fascinating astrophysical objects of our Cosmos. They arise
as exact solutions of the Einstein field equations and serve as
perfect test beds for strong field gravity [1]. Our current
understanding of general relativity (GR) and the constraints
of its modifications stems from BH phenomenology through
numerical and observational investigations [2]. In the
majority of such scenarios, BHs are considered as isolated
objects in vacuum which are barely influenced by their
dynamic environment [3,4], besides accretion. Currently, the
Kerr-Newman family provides a four-dimensional proto-
typical solution of GR, parametrized by its mass, angular
momentum and charge, which describes an isolated, topo-
logically spherical compact object.
Yet, there are further esoteric solutions to GR, that

describe a special class of boost-symmetric BH geometries
which can potentially represent moving compact objects [5].
Among these solutions, the C-metric [6] is a special case of
Petrov type D; hence it can admit charge [7] and rotation [8].
These spacetimes are algebraically general, radiative [9–13]
and possess a plausible Newtonian limit [14]. Their causal
structure can be interpreted as a pair causally disconnected
BHs which uniformly accelerate away from each other in

opposite directions. The perpetual acceleration is provided
by a conical deficit along one polar axis which represents a
finite-width cosmic string [15] that pulls the event horizon.
Cosmic strings do not produce long range local curvature but
generate an overall global conical deficit in the spacetime
which provides the driving force of an accelerating BH.
Thus, one can interpret the C-metric as a BH that has been
accelerated under its interaction with a local cosmological
medium, such as a cosmic string in tension.1

A cosmic string [18–22] is a one-dimensional topological
defect with a stress-energy tensor and a string tension
proportional to its mass per unit length. Cosmic strings
may have formed during a symmetry-breaking phase tran-
sition in the early Universe [23,24], right after cosmological
inflation, and are a generic prediction of quantum field
theories [25] and string theory models [26–28]. Cosmic
string evolution [29–31], their electromagnetic [32] and
gravitational radiation [33,34], as well as their impact on
the cosmic microwave background radiation [35–41], pulsar

1The conical deficit can be replaced by the introduction of a
more physical magnetic field, leading to the Ernst spacetime
[16,17]. This solution does not require the existence of cosmic
strings though has significantly altered nonasymptotically flat
structure.
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timing [42,43], gravitational lensing [44–46], galaxy redshift
surveys [47], galactic formation [48–50] and the GW
stochastic background [51–58] have placed tight constraints
on their parameters and various theories that lead to their
production. Even though there is currently no observational
evidence for the existence of cosmic strings, null results do
not necessarily disprove them.
Beyond classical GR, the C-metric has been utilized to

analyze the splitting of cosmic strings [59], BH pair creation
[60–62] and in the construction of five-dimensional black
rings [63]. Nevertheless, accelerating BHs are not exten-
sively used since their thermodynamics was only recently
established [64–67].
To place the C-metric in the arsenal of BH practitioners,

their stability against perturbations is a prerequisite in order
for further investigations to take place. The separability of
test field master equations [68,69] and the quasinormal
modes (QNMs) of the charged C-metric [70] designate that
such BHs are modally stable against neutral scalar fields,
since their QNM frequencies, which characterize the BH’s
ringdown signal, decay monotonously in time. Furthermore,
the Cauchy horizon of near-extremally charged accelerating
BHs has been shown to be sufficiently stable [71], thus
violating the strong cosmic censorship conjecture [72], while
the shadow of accelerating rotating BHs has been found to
be significantly distorted with respect to that of a Kerr
BH [73].
In this article, we analyze the stability of charged accel-

erating BHs against electrically charged scalar fluctuations,
thus extending current results which regard neutral scalar
fields [70]. We find that the spacetime remains modally stable
by calculating the respective charged scalar QNMs and
discuss their behavior in the complex plane when the charge
coupling between the scalar and BH charge is introduced.
Moreover, due to the similarities of charged accelerating and
Reissner-Nordström-de Sitter (RNdS) BHs [70,71] as well as
charged BHs surrounded by anisotropic fluids [74], we
initiate the study of charged-scalar-wave scattering of such
compact objects and investigate the occurrence of super-
radiance [75–78]; a process through which a wave scattered
off a BH is amplified under the expense of the BH’s energy.
We identify the appropriate frequency range for which
superradiant amplification of charged scalar monochromatic
waves occurs and find that the introduction of acceleration
further augments superradiance with respect to the amplifi-
cation factors found for charged scalar waves impinging
Reissner-Nordström (RN) BHs.
In what follows, we employ the geometrized unit system

such that the gravitational constant and speed of light equal
to unity, that is G ¼ c ¼ 1.

II. THE CHARGED C-METRIC

The charged C-metric is a solution to the Einstein-
Maxwell field equations and generalizes the RN geometry
to include an additional parameter, besides the mass M and

electric charge Q; the BH’s acceleration parameter α. The
line element can be written in spherical-type coordinates
(although the spacetime is not spherically symmetric) so that
it covers one of the charged accelerating BHs, as [79,80]

ds2 ¼ Ω−2ð−fðrÞdt2 þ fðrÞ−1dr2 þ PðθÞ−1r2dθ2
þPðθÞr2sin2θdφ2Þ; ð1Þ

where

Ωðr; θÞ ¼ ð1 − αr cos θÞ; ð2Þ

fðrÞ ¼
�
1 −

2M
r

þQ2

r2

�
ð1 − α2r2Þ; ð3Þ

PðθÞ ¼ 1 − 2αM cos θ þ α2Q2cos2θ: ð4Þ

The electromagnetic potential associated with the charged
BH source is given by Aμ ¼ ð−Q=r; 0; 0; 0Þ. The metric (1)
asymptotes to the RN solution as α → 0 and to the C-metric
whenQ → 0. There is a curvature singularity at r ¼ 0, while
the roots of fðrÞ determine the existence of three null
hypersurfaces (see Fig. 1 in [70]) at

r ¼ rα ≔ α−1; ð5Þ

r ¼ r� ≔ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; ð6Þ

namely the acceleration horizon r ¼ rα, event horizon r ¼
rþ and Cauchy horizon r ¼ r− radius, which satisfy the
inequality r− ≤ rþ ≤ rα. Our analysis will take place at the
static region rþ < r < rα, where fðrÞ is positive and the line
element has fixed signature, implying that PðθÞ > 0 for all
θ ∈ ½0; π�. We particularly avoid the region r ≥ rα since the
uniformly accelerating reference frame of the BH asymp-
totically approaches the speed of light at r ¼ rα, thus events
beyond the acceleration horizon are causally disconnected to
the static region. Since rþ ≤ rα needs to hold, we require
α ≤ 1=rþ, where at the equality the BH becomes extremal
and the event and acceleration horizons coincide.
Additionally, when M ¼ Q, the event and Cauchy horizons
meet and the BH is again extremal.
Conical singularities generally occur on the south θ ¼ 0

and north pole θ ¼ π, due to the fact that the ratio of the
circumference over the radius of the object is not exactly 2π
there, designating the existence of excess or deficit angles.
By specifying the range of φ accordingly, the deficit or
excess angle of one of these topological singularities can be
removed. By assuming φ ∈ ½0; 2πCÞ, where C ¼ 1=PðπÞ a
constant, we can remove the excess angle at θ ¼ π and
interpret the metric as a charged BH that is being accel-
erated along the pole axis θ ¼ 0 by a cosmic string.
Equivalently, we can remove the deficit angle at θ ¼ 0
and obtain an excess angle at θ ¼ π by setting C ¼ 1=Pð0Þ.
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In this case, the charged BH is accelerated along the pole
axis θ ¼ π by a cosmic strut (see [70,79] for a more detailed
discussion).

III. DECOUPLED MASTER EQUATIONS
FOR CHARGED SCALAR FIELDS

The charged C-metric, described by Eq. (1), can be
conformally rescaled by choosing Ω as in Eq. (2) so that

ds̃2 ¼ Ω2ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ PðθÞ−1r2dθ2
þ PðθÞr2 sin2 θdφ2: ð7Þ

Since the C-metric is four dimensional, the conformal wave
equation [see Eq. (B5)] is written as

gμνDμDνϕ −
1

6
Rϕ ¼ 0; ð8Þ

where gμν and R are the metric tensor and the Ricci scalar of
Eq. (1), while Dμ ¼ ∇μ − iqAμ and ϕ is the scalar field
with charge q. The C-metric (1) has been shown to be
asymptotically flat [62,81]; thus it follows that R ¼ 0. This
means that by solving (8), we effectively solve the standard
Klein-Gordon equation for charged scalar fields,

gμνDμDνϕ ¼ 0: ð9Þ

Although Eq. (8) is not separable when using the metric (1),
it can be shown that by using the conformally invariant
equation,

g̃μνD̃μD̃νϕ̃ −
1

6
R̃ ϕ̃ ¼ 0; ð10Þ

where ϕ̃ ¼ Ω−1ϕ, g̃μν ¼ Ω2gμν and D̃μ, Ãμ, R̃ are given in
Appendix A, the radial and polar counterparts of the scalar
field are separable through the ansatz,

ϕ̃ ¼ e−iωteimφ ψðrÞ
r

χðθÞ; ð11Þ

where ω is the frequency and m the azimuthal number of
the scalar field. Hence, by solving Eq. (10) we effectively
solve Eq. (8) and consequently the wave equation (9) which
describes the propagation of charged scalar fields (see
Appendix B for further details).
By expanding (10) with the conformally rescaled space-

time metric (7) we obtain

−
r2∂2t ϕ̃
fðrÞ þ ∂rðr2fðrÞ∂rϕ̃Þ −

2iqQ
fðrÞr ∂tϕ̃þ q2Q2

fðrÞr2 ϕ̃

þ 1

sin θ
∂θðPðθÞ sin θ∂θϕ̃Þ þ

∂
2
φϕ̃

sin2θPðθÞ
þ 1

6
ðr2f00ðrÞ þ 4rf0ðrÞ þ 2fðrÞ þ P00ðθÞ

þ3 cot θP0ðθÞ − 2PðθÞÞϕ̃ ¼ 0; ð12Þ

where the primes denote differentiation with respect to the
function’s variable. Since the azimuthal coordinate φ is
periodic and the conical deficit along θ ¼ π is removed by
requiring C ¼ 1=PðπÞ, then m must have the form
m ¼ m0PðπÞ, with m0 ≥ 0 the principal azimuthal number
associated with the angular number l.
Consequently, by using (11), Eq. (12) reduces to two

decoupled ordinary differential equations for the radial and
polar sectors,

d2ψðrÞ
dr2�

þ ½ω2 − 2ωΦðrÞ − Vr�ψðrÞ ¼ 0; ð13Þ

d2χðθÞ
dz2

− ½m2 − Vθ�χðθÞ ¼ 0; ð14Þ

where

ΦðrÞ ¼ qQ
r

; dr� ¼
dr
fðrÞ ; dz¼ dθ

PðθÞ sinθ ; ð15Þ

and

Vr ¼ fðrÞ
�
λ

r2
−
fðrÞ
3r2

þ f0ðrÞ
3r

−
f00ðrÞ
6

�
−ΦðrÞ2; ð16Þ

Vθ ¼ PðθÞ
�
λsin2θ −

PðθÞsin2θ
3

þ sin θ cos θP0ðθÞ
2

þ sin2θP00ðθÞ
6

�
; ð17Þ

with λ a separation constant.

IV. QUASINORMAL MODES

In order to solve Eqs. (13) and (14), we need to impose
appropriate boundary conditions. For QNMs, we use the
following physically motivated boundary conditions
[62,70,71],

ψðrÞ ∼
�
e−iðω−ΦðrþÞÞr� ; r� → −∞ðr → rþÞ;
eþiðω−ΦðrαÞÞr� ; r� → þ∞ðr → rαÞ;

ð18Þ

χðθÞ ∼
�
eþmz; z → −∞ðθ → 0Þ;
e−mz; z → þ∞ðθ → πÞ: ð19Þ
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Although the purely ingoing (outgoing) boundary condi-
tions (18) at the event (acceleration) horizon are obvious for
QNMs, conditions (19) are taken so that the scalar field
solutions do not blow up at the interval boundaries of θ
[62,70,71].
When α → 0, the separation constant takes the exact

form λ ¼ lðlþ 1Þ þ 1=3 [68]. Hence, we can map each λ
obtained by solving Eq. (14) with boundary conditions (19)
to a certain angular number l, e.g., in the limit α → 0, the
value λ ¼ 1=3 corresponds to l ¼ 0, λ ¼ 7=3 corresponds
to l ¼ 1 and so on.
The solutions to the radial equation (13) with boundary

conditions (18), together with the separation constant
calculated previously, leads to a discrete set of QNMs
ωn depending on the choice of the BH parameters,
magnetic quantum number m, separation constant λ and
overtone number n, where the n ¼ 0 mode is the funda-
mental QNM that dominates the late-time behavior of the
ringdown signal [70,71], while n > 0 modes correspond to
overtones.
To calculate QNMs, we utilize theMathematica package

QNMSpectral developed in [82], which is based on the
discretization of differential equations using pseudospectral
collocation methods [83] and directly solves the resulting
generalized eigenvalue problem.

V. SUPERRADIANT AMPLIFICATION OF
CHARGED SCALAR WAVES

To explore the superradiant amplification of charged
monochromatic incident waves scattering off the charged
C-metric’s photon surface we need to impose particular
boundary conditions to the radial equation (13) to sim-
ulate a scattering experiment. The boundary conditions for
the angular equation (14) should remain the same so that
the scalar waves are regular at the polar boundaries of
integration.
Assume an incident wave from the acceleration horizon,

with amplitude coefficient I , that scatters off the BH. In
turn, the wave will be partially reflected back towards the
acceleration horizon, with reflection coefficient R, and
partially transmitted through the potential barrier and into
the event horizon, with transmission coefficient T . The
above translate to the radial boundary conditions,

ψ ∼
�
T e−iðω−ΦðrþÞÞr� ; r → rþ;

Ie−iðω−ΦðrαÞÞr� þReiðω−ΦðrαÞÞr� ; r → rα:
ð20Þ

Due to the fact that the Wronskian of ψ and its linearly
independent complex conjugate counterpart ψ† does not
depend on r�, the Wronskians at both radial boundaries
coincide, which subsequently leads to the relation,

jRj2 ¼ jI j2 − ω −ΦðrþÞ
ω −ΦðrαÞ

jT j2: ð21Þ

From (21), we observe that when the incident wave’s
frequency satisfies

ΦðrαÞ < ω < ΦðrþÞ; ð22Þ

then the amplitude of the reflected wave is larger than the
amplitude of the incident one, and the scalar wave is
superradiantly amplified under the expense of the BH’s
electromagnetic energy. Notice that when α → 0, Eq. (22)
reduces to the respective superradiant condition for RN
BHs [77,78].
To demonstrate our results, we define the amplification

factor [78],

Zm0
¼ jRj2

jI j2 − 1; ð23Þ

as a function of the incident wave’s monochromatic
frequency ω (not to be confused with the QNMs ωn).
When Zm0

< 0 superradiance does not occur while when
Zm0

> 0 the incident wave is superradiantly amplified with
Zm0

¼ 0 defining the bounds of the superradiant rela-
tion (22).
To numerically integrate Eq. (13) with boundary con-

ditions (20), we expand its solutions at the event and
acceleration horizons to a desired order and match the two
asymptotic solutions at an intermediate regime by imposing
regularity of the solutions and their first derivatives.
Through this numerical process we extract the amplifica-
tion factor for numerous monochromatic incident waves
with varying ω. We have performed convergence tests by
increasing the order of expansion of solutions at the
boundaries of integration and observe that the amplification
factors converge rapidly with the increment of the expan-
sion order. In order to further validate our numerical results,
we have compared the numerical onset and termination of
superradiance by fitting our amplification factor curves to
that designated by the exact relation (22) and have found
excellent agreement.

VI. RESULTS

A. Quasinormal modes of charged scalar fields

The neutral scalar QNMs of accelerating Schwarzschild
and RN BHs have been extensively analyzed in [70]. The
dynamics of perturbations allows for three distinct families
of solutions. The first family consists of the complex photon
surface (PS) QNMs ωPS, which are intrinsically connected
with the null geodesics’ angular frequency and instability
timescale at the equatorial plane of the photon surface and
asymptote to the standard oscillatory QNMs of non-accel-
erating BHs when α → 0 [84]. The acceleration modes ωα,
which are purely imaginary, linearly proportional to the
acceleration parameter and vanish at α → 0 correspond to
another family completely independent of the PS QNMs.
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Finally, a last family, namely the near-extremal (NE) QNMs
ωNE, consists of purely imaginary modes, depend on the
surface gravity of the event (or Cauchy) horizon and only
become relevant in the near-extremal limit Q → M of the
charged C-metric. In this section, we extend the analysis of
[70] to charged scalar QNMs in the available param-
eter space.
Oscillatory QNMs, also referred as photon sphere

modes [72,85–87], share a symmetry with respect to
reflections of the imaginary axis, that is the PS QNMs
come in sets with common imaginary parts and opposite
real parts. This degeneracy occurs due to the ω2 term in
Eq. (13). The inclusion of charge to the scalar field breaks
this symmetry, due to the introduction of a OðωÞ term in
Eq. (13) and a qQ-dependent term in the radial potential
(16), to create two different branches of QNMs, which
belong to the same family [88]. A similar behavior is
observed in accelerating RN BHs as depicted in Fig. 1.
The increment of m0 leads to increased (in absolute value)
oscillation frequencies and lifetime which is consistent
with the behavior of Schwarzschild and RN QNMs when
l increases. The acceleration parameter has the same
qualitative effect to QNMs as in the neutral case [70],
where its increment reduces the QNM’s oscillation fre-
quency and enlarges its lifetime. In contrast, the charge
coupling qQ interacts with the effects of m0 and αM by
increasing the frequency and decay rate of the positive
branch (solid curves in Fig. 1) while increasing the
frequency and decreasing the decay rate of the negative
branch (dashed curves in Fig. 1). Similar branching
behavior has been found in Kerr and Kerr-Newman
BHs [89–92].
The purely imaginary acceleration modes become com-

plex when the charge coupling is introduced, in similarity to
the de Sitter QNMs of RNdS BHs [85,93]. Figure 2 depicts
the particulars of the acceleration QNMs’ migration in the
complex plane when qQ > 0. Initially, as qQ increases, the

family obtains a negative real part which reaches a turning
point beyond which larger qQ values increase the real part
and eventually turn it positive. Such behavior occurs due to
the competition between the OðωÞ term and the radial
potential in Eq. (13). The turning point depends onm0, with
larger m0 having deeper turning points in the complex plane
region with ReðMωαÞ < 0, and αM, with its increment
saturating the turning point. The decay timescales have the
general tendency to remain around the vicinity of the purely
imaginary acceleration modes, for which qQ ¼ 0, for small
m0 and sufficiently large αM.
Analogously, the purely imaginary NE modes obtain an

oscillation frequency when the charge coupling is positive,
in a similar fashion to the NE RNdS QNMs [85,88]. In
Fig. 3 we demonstrate their behavior with respect tom0 and
αM as qQ increases. The modes branch from the imaginary
axis with oscillation frequencies loosely proportional to
qQ. The effect ofm0 and αM is identical to that observed in
[70], where the increment ofm0 (αM) decreases (increases)
their lifetime. Nevertheless, as the charge coupling
becomes stronger, the lifetime of NE QNMs is increased
till it reaches a plateau, in full agreement with the NE
modes of RNdS geometry [85,88].
Throughout the overall QNM analysis, we have not

distinguished any unstable QNMs; therefore we conjecture
that accelerating RN BHs are modally stable against linear
charged scalar fluctuations. Furthermore, we did not recover
QNMs at any regime of the available parameter space that
satisfy the supperadiant relation (22); hence we should not
expect resonant behavior in the amplification factors of
scattered charged scalar waves on accelerating BHs. This
does not guarantee that the phenomenon of superradiance
does not occur in such spacetimes (we tackle this inves-
tigation on the following subsection). Nonetheless, these
results contrast those found in RNdS BHs, where charged
scalar perturbations are superradiantly unstable [93–95] and

FIG. 1. Left: Fundamental (n ¼ 0) charged scalar PS QNMs for an accelerating RN BH with Q ¼ 0.5M, αM ¼ 0.1 and varying
principal azimuthal numberm0. The charge coupling qQ ranges from 0 (circles) to 1 (cross marks). Right: Fundamental (n ¼ 0) charged
scalar PS QNMs withm0 ¼ 0 for an accelerating RN BH withQ ¼ 0.5M and varying acceleration αM. The charge coupling qQ ranges
from 0 (circles) to 1 (cross marks) following the direction of the arrows.
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lead to resonant hyperradiation with the amplification factors
reaching very high levels close to superradiant QNMs [96].

B. Superradiant amplification of charged scalar waves

RN BHs are known to favor the amplification of charged
incident monochromatic scalar waves under the expense of
their electromagnetic energy [77,78]. In this section, we
extend such investigation in the charged C-metric in order
to interpret the effects of acceleration in the phenomenon of
supperadiant scattering.
Figure 4 demonstrates that an accelerating charged BH

amplifies incident monochromatic charged scalar waves. At
the large scalar charge limit qQ ≫ 1 the amplification tends
to 100%, in similarity with RN BHs. The inclusion of
acceleration induces a lower bound for the onset of super-
radiance, in contrast to RN BHs which can amplify incident
waves with arbitrarily small frequencies [78]. Most impor-
tantly, increasing αM leads to further amplification of

incident waves, with respect to RN, even though the
superradiant frequency range is significantly shortened close
to extremal accelerations, i.e. α → 1=rþ (see Fig. 5). In
Fig. 6 we confirm that a favorable combination of accel-
eration and charge coupling maximizes the amplification
such that Z0 → 100%, though our numerical investigation
entails that the charge coupling is more efficient in the
maximization of superradiance than the acceleration.
Nevertheless, the increment of αM diminishes the frequency
range for which accelerating BHs superradiate, in similarity
with Kerr-dS [97] and RNdS BHs [96].
Increasing the BH charge does not seem to play an

important role on the amplification, though it enlarges the
frequency domain where superradiance occurs (see Fig. 7).
In finality, Fig. 8 demonstrates the expected effect of m0

which rapidly diminishes superradiance when increased
and is the fundamental reason why we mainly focused our
analysis on m0 ¼ 0 charged scalar waves. Since we have

FIG. 2. Left: Fundamental (n ¼ 0) charged scalar acceleration modes for an accelerating RN BH with Q ¼ 0.5M, αM ¼ 0.1 and
varying principal azimuthal numberm0. The charge coupling qQ ranges from 0 (circles) to 1 (cross marks). Right: Fundamental (n ¼ 0)
charged scalar acceleration modes with m0 ¼ 0 for an accelerating RN BH with Q ¼ 0.5M and varying acceleration αM. The charge
coupling qQ ranges from 0 (circles) to 1 (cross marks) following the direction of the arrows.

FIG. 3. Left: Fundamental (n ¼ 0) charged scalar NE modes for an accelerating RN BH with Q ¼ 0.999M, αM ¼ 0.5 and varying
principal azimuthal numberm0. The charge coupling qQ ranges from 0 (circles) to 1 (cross marks). Right: Fundamental (n ¼ 0) charged
scalar NE modes with m0 ¼ 0 for an accelerating RN BH with Q ¼ 0.999M and varying acceleration αM. The charge coupling qQ
ranges from 0 (circles) to 1 (cross marks) following the direction of the arrows.
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not found any superradiant QNMs in the previous sub-
section, we did not expect to spot resonant peaks in the
amplification factors and all figures conform with this
result.

VII. CONCLUSIONS

The charged C-metric is a boost-symmetric spacetime
which describes charged BHs that are uniformly accel-
erated under the tension of a cosmic string. The accel-
eration horizon that is generally present in such spacetimes
shares many similarities with the cosmological horizon of
de Sitter BHs and the overall causal structure of the
charged C-metric resembles that of RNdS geometries.
Due to the existence of QNM instabilities [93–95], as
well as the presence of superradiant hyperradiation in
RNdS BHs against charged scalar fields [96], an analogous
investigation of these phenomena in charged accelerating
BHs is of interest.

FIG. 4. Amplification factors of massless charged m0 ¼ 0 monochromatic scalar waves for an accelerating RN BH with αM ¼ 0.2,
Q ¼ 0.99M and varying charge coupling qQ. The horizontal black dashed line designates the onset of superradiant amplification.

FIG. 5. Amplification factors of massless charged m0 ¼ 0
monochromatic scalar waves with qQ ¼ 1 for an accelerating
RN BH with Q ¼ 0.5M and varying acceleration αM. The
horizontal black dashed line designates the onset of superradiant
amplification.

FIG. 6. Left: Amplification factors of massless charged m0 ¼ 0 monochromatic scalar waves with qQ ¼ 0.5 for an accelerating RN
BH with Q ¼ 0.99M and varying acceleration parameter αM. The horizontal black dashed line designates the onset of superradiant
amplification. Right: Same as left with qQ ¼ 10.
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In this work, we have extended the neutral scalar QNM
analysis of [70] to charged scalar perturbations and initiated
the study of superradiance in charged accelerating BHs. In
spite of their resemblance with RNdS spacetime, we did not
obtain any superradiantly unstable charged scalar QNMs,
thus we conjecture that the charged C-metric is modally
stable against charged scalar fluctuations. The introduction
of scalar charge breaks the reflection symmetry of PS
modes with respect to the imaginary axis and leads to a
non-trivial migration of both QNM branches in the com-
plex plane. In turn, the acceleration and NE families of
purely imaginary modes acquire an oscillation frequency
when a scalar charge is introduced and never asymptote to
each other at any limit.
From the behavior of the NE modes and the absence

of superradiantly unstable modes we can conjecture that
the violation of strong cosmic censorship is imminent in the

charged C-metric when charged scalar fields are consid-
ered, in analogy with [88], though the increment of the
scalar charge should alleviate these violations if “wiggles”
of the NE family’s imaginary part, such as those found in
[85], are not present in this spacetime. A more precise
analysis would shed more light into the deterministic nature
of GR regarding charged C-metric geometries.
The absence of QNMs which satisfy the superradiant

condition certainly conveys that the amplification of incident
monochromatic charged scalar waves should resemble that
occurring in RN BHs. More specifically, such superradiant
amplification from accelerating RN BHs should be similar to
that of Kerr-de Sitter BHs [97] due to the existence of the
acceleration horizon which imposes a lower bound for the
onset of superradiance. Indeed, our investigation agrees
qualitatively with the superradiant amplification of massless
scalar waves in Kerr-de Sitter spacetime with a twist; the
increment of the charge coupling qQ can push the ampli-
fication factors arbitrarily close to 100%. Furthermore, the
increment of the acceleration parameter shortens the super-
radiant frequency range though leads to the elevation of
amplification and can also reach to 100% near the extremal
acceleration. Therefore, charged accelerating BHs are more
efficient deposits of energy than RN and Kerr-de Sitter BHs,
though one has to hypothesize the existence of cosmic
strings in order to provide the perpetual energy needed for
BHs to accelerate.
A promising direction to further elucidate these com-

pact objects would be to extend the current analysis in
order to include a cosmological constant to the spacetime
and/or a mass to the charged scalar field. Even so, such
investigation requires an immense amount of work due to
the fact that the Klein-Gordon equation for massive scalar
fields is not conformally invariant anymore and even for
massless fields, the inclusion of a cosmological constant
requires a much more intricate conformal transformation
for the Klein-Gordon equation to be conformally invariant
(see [98–100]).
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APPENDIX A: CONFORMAL
TRANSFORMATIONS

One of the most challenging aspects of the charged
C-metric is the presence of the scale factor Ω−2 which
multiplies all nonvanishing terms of the metric tensor in
Eq. (1). Even though this factor introduces a coupling
between r and θ, which eventually ruins a potential
separation of variables, there is a particular way of rescaling
a spacetime through conformal transformations in order to
achieve separability of perturbation equations. Conformal
transformations occur in many contexts in gravity, e.g. to

FIG. 7. Amplification factors of massless charged m0 ¼ 0
monochromatic scalar waves with qQ ¼ 0.5 for an accelerating
RN BH with αM ¼ 0.2 and varying electric charge Q=M. The
horizontal black dashed line designates the onset of superradiant
amplification.

FIG. 8. Amplification factors of massless charged monochro-
matic scalar waves with qQ ¼ 1 and varying m0 for an
accelerating RN BH with αM ¼ 0.2 and Q ¼ 0.99M. The
horizontal black dashed line designates the onset of superradiant
amplification.
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define the asymptotic structure of spacetime [101–103] and
to relate different representations of modified theories of
gravity [104,105]. In what follows, we collect the appro-
priate conformal transformation relations regarding scalars,
vectors and tensors that appear in the charged Klein-Gordon
equation (10).
A conformal transformation is a position-dependent

rescaling of a spacetime metric gμν, so that g̃μν ¼ Ω2gμν,
where the conformal factor ΩðxμÞ is a dimensionless
positive smooth function of the spacetime position four-
vector xμ. Conformal transformations do not change the
metric signature, the sign of the magnitude of the four-
vectors, the angles between them and, most importantly,
they leave the light cones and the causal structure of
spacetime invariant [106]. By denoting the inverse of gμν as
gμν and the inverse of the conformally rescaled metric g̃μν as
g̃μν we can derive the following:

g̃μνg̃νρ ¼ ΩsgμνΩ2gνρ ¼ Ωsþ2δμρ; ðA1Þ

where s ∈ R is the conformal weight. For g̃μνg̃νρ ¼ δμρ to
hold then, s ¼ −2, thus g̃μν ¼ Ω−2gμν. If we denote ∇μ and

∇̃μ the covariant derivative operators associated with gμν
and g̃μν, respectively, then the relation between the two

operators is ∇̃μVν ¼ ∇μVν − Cρ
μνVρ, where [106,107]

Γ̃ρ
μν ¼ Γρ

μν þ Cρ
μν; ðA2Þ

Cρ
μν ¼ 1

2
g̃ρκð∇μg̃νκ þ∇νg̃μκ −∇κg̃μνÞ: ðA3Þ

Notice that when ∇̃μ is the standard covariant derivative,
then ∇μ ¼ ∂μ and Cρ

μν are the well-known Christoffel
symbols Γρ

μν. However, since ∇μgνρ ¼ 0, we have

∇μg̃νρ ¼ ∇μðΩ2gνρÞ ¼ 2Ωgνρ∇μΩ: ðA4Þ

Using Eq. (A4), we can expressCρ
μν in terms of gμν andΩ as

Cρ
μν ¼ Ω−1gρκðgνκ∇μΩþ gμκ∇νΩ − gμν∇κΩÞ;

¼ δρν∇μ lnΩþ δρμ∇ν lnΩ − gρκgμν∇ρ lnΩ: ðA5Þ

In what follows we will need the covariant derivative of a
scalar field ϕ and the Ricci curvature R≡ gμνRμν, where
Rμν is the Ricci tensor. The covariant derivatives of scalar
fields are equal in both the original and conformal frames,
since they are both equal to the partial derivative
∇̃μϕ ¼ ∇μϕ ¼ ∂μϕ. The Ricci tensor in the conformal
frame reads [106,107]

R̃ ¼ Ω−2ðR − 2ðN − 1Þgμρ∇μ∇ρ lnΩ

−ðN − 2ÞðN − 1Þgμρ½∇μ lnΩ�∇ρ lnΩÞ; ðA6Þ

where N is the spacetime dimension.
Finally, we require knowledge of conformal trans-

formations of the electromagnetic field equations.
Maxwell’s equations are invariant under conformal trans-
formation in four dimensions [106,108]. Physically, this is
true due to the fact that the photon is massless, and
therefore no length or mass scale is associated with the
electromagnetic field. Assuming that the conformal
electromagnetic tensor, associated with the metric g̃μν,
is F̃μν ¼ ΩsFμν, where s is, again, a conformal weight,
then for the nonhomogeneous Maxwell’s equations
∇μFμν ¼ −4πJν, ∇½μFνρ� ¼ 0, with Jμ a four-current, to
be conformally invariant in four dimensions, the con-
formal weight should be s ¼ 0 [106,108]. Thus,

F̃μν ¼ Fμν; F̃μν ¼ Ω−4Fμν; J̃μ ¼ Ω−2Jμ: ðA7Þ

The validity of Maxwell’s equations in the conformally
rescaled spacetime guarantees that

F̃μν ¼ ∇̃μÃν − ∇̃νÃμ ¼ ∂μÃν − ∂νÃμ; ðA8Þ

where Aμ is the electromagnetic four-potential. If we
assume Ãμ ¼ ΩsAμ, then

F̃μν ¼ sΩs−1ð∂μΩAν − ∂νΩAμÞ þΩsFμν; ðA9Þ

and since F̃μν ¼ Fμν then

ðΩs − 1ÞFμν þ sΩs−1ð∂μΩAν − ∂νΩAμÞ ¼ 0; ðA10Þ

which is satisfied if s ¼ 0. Therefore,

Ãμ ¼ Aμ; Ãμ ¼ Ω−2Aμ: ðA11Þ

APPENDIX B: CONFORMAL INVARIANCE OF
THE CHARGED SCALAR WAVE EQUATION

The Klein-Gordon equation for a scalar field ϕ is said to
be conformally invariant if there exists a conformal weight
s such that ϕ is a solution with metric gμν if and only if
ϕ̃ ¼ Ωsϕ is a solution with metric g̃μν ¼ Ω2gμν. Here, we
show that the Klein-Gordon equation for charged scalar
fields in curved spacetime,

gμνDμDνϕ ¼ 0; ðB1Þ

is not conformally invariant if the spacetime dimension
satisfies N ≠ 2. By using the conformal transformations of
Appendix A, we have
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g̃μνD̃μD̃νϕ̃ ¼ Ω−2gμνð∇̃μ − iqÃμÞð∇̃ν − iqÃνÞðΩsϕÞ
¼ Ω−2gμν∇̃μ∇̃νðΩsϕÞ − iqð2sþ N − 2ÞϕΩs−3gμνAμ∇νΩ

− 2iqΩs−2gμνAμ∇νϕ − q2Ωs−2ϕgμνAμAν; ðB2Þ

where the first term of Eq. (B2) is [106]

Ω−2gμν∇̃μ∇̃νðΩsϕÞ ¼ Ωs−2gμν∇μ∇νϕ

þ ð2sþ N − 2ÞΩs−3gμν∇μΩ∇νϕþ sΩs−3ϕgμν∇μ∇νΩ

þ sðsþ N − 3ÞΩs−4ϕgμν∇μΩ∇νΩ; ðB3Þ

and Eqs. (A5) and (A11) were used. If N ¼ 2, we may
choose s ¼ 0 so that Eq. (B2) becomes

g̃μνD̃μD̃νϕ̃ ¼ Ω−2ðgμν∇μ∇νϕ − 2iqgμνAμ∇νϕ

−q2ϕgμνAμAνÞ
¼ Ω−2gμνDμDνϕ ¼ 0; ðB4Þ

where the Lorenz gauge ∇μAμ ¼ 0 was used. Therefore,
g̃μνD̃μD̃νϕ̃ ¼ 0 holds if and only if gμνDμDνϕ ¼ 0 in two-
dimensional spacetimes. However, if N ≠ 2, there is no
choice for s which makes the Klein-Gordon equation
conformally invariant.
Even so, for N > 1 it is possible to modify Eq. (B2) so

that it becomes conformally invariant. If we choose
s ¼ 1 − N=2, then the ∇μΩ∇νϕ terms in (B3) and the
Aμ∇νΩ term in (B2) are eliminated since the prefactor
ð2sþ n − 2Þ ¼ 0. By fixing s ¼ 1 − N=2, we can further
modify the Klein-Gordon equation (B2) with an additional
term of the form βR̃ϕ, where β ¼ −ðN − 2Þ=ð4ðN − 1ÞÞ.

By doing so, the additional terms of the Ricci scalar in the
conformal frame (A6) will cancel out the ϕgμν∇μ∇νΩ and
ϕgμν∇μΩ∇νΩ terms in (B3). Therefore, the modified
Klein-Gordon equation for charged scalar fields (also
known as the covariant wave equation),

gμνDμDνϕ −
N − 2

4ðN − 1ÞRϕ ¼ 0; ðB5Þ

is conformally invariant, when s ¼ 1 − N=2 since

�
g̃μνD̃μD̃ν −

N − 2

4ðN − 1Þ R̃
�h

Ω1−N=2ϕ
i

¼ Ω−1−N=2

�
gμνDμDν −

N − 2

4ðN − 1ÞR
�
ϕ: ðB6Þ

Thus, Eq. (B5) provides a conformally-invariant generali-
zation of the Klein-Gordon equation for charged scalar
fields to curved geometries.
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