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Estimating the source parameters of gravitational waves from compact binary coalescence (CBC) is
a key analysis task in gravitational-wave astronomy. To deal with the increasing detection rate of CBC
signals, optimizing the parameter estimation analysis is crucial. The analysis typically employs a
stochastic sampling technique such as Markov Chain Monte Carlo (MCMC), where the source
parameter space is explored and regions of high-Bayesian posterior probability density are found. One
of the bottlenecks slowing down the analysis is the nontrivial correlation between masses and spins of
colliding objects, which makes the exploration of mass-spin space extremely inefficient. We introduce a
new set of mass-spin sampling parameters which makes the posterior distribution simpler in the new
parameter space, regardless of the true values of the parameters. The new parameter combinations are
obtained as the principal components of the Fisher matrix for the restricted 1.5 post-Newtonian
waveform. Our reparametrization improves the efficiency of MCMC by a factor of ∼10 for a binary
neutron star with a narrow-spin prior (jχ⃗j < 0.05) and ∼100 for a binary neutron star with a broad-spin
prior (jχ⃗j < 0.99), under the assumption that the binary has spins aligned with its orbital angular
momentum.

DOI: 10.1103/PhysRevD.105.124057

I. INTRODUCTION

In September 2015 the first direct detection of
gravitational waves (GWs), which was radiated from the
coalescence of a binary black hole (BBH), took place [1].
Since the first detection, 90 gravitational-wave signals from
compact binary coalescence (CBC) have been reported by
the LIGO-Virgo–KAGRA Collaboration [2–5], including
the coalescence of a binary neutron star (BNS) with
electromagnetic (EM) follow-up observations [6].
Estimating source parameters from a CBC signal is an

important task in gravitational-wave astronomy. The esti-
mated source location is crucial for the EM follow-up
observations, and the masses and spins of colliding objects
are important for studying the formation history of compact
binaries [7,8].
This parameter estimation analysis typically employs

Bayesian inference using stochastic sampling techniques,
such as Markov Chain Monte Carlo (MCMC) [9,10] and
nested sampling [11]. While the stochastic sampling is
known to be efficient for estimating high-dimensional
parameters, it is still computationally costly, taking more
than weeks for a BNS event without any approximate
methods. Speeding it up is necessary to deal with the
increasing detection rate of CBC signals. It is also crucial

for the follow-up observations of EM counterparts rapidly
fading after the merger.
Efficient exploration of the parameter space is essential

for optimizing the stochastic sampling. One-dimensional
jumps can efficiently explore the parameter space if
parameters are not strongly correlated. However, they are
extremely inefficient if parameters are strongly correlated,
which is the case for a CBC signal. One solution for
this is to use parametrizations minimizing the correlations
between parameters. Based on this idea, current analysis
pipelines, such as LALInference [12], PyCBC Inference [13], and
BILBY [14], use chirp massM≡ ðm1m2Þ3=5ðm1 þm2Þ−1=5
and mass ratio q≡m2=m1, to reduce the correlation
between component masses, m1 and m2, where m1 ≥ m2.
However, the masses are correlated with spins [15], and
this choice of parameters does not fully minimize their
correlations.
In this paper, we introduce an alternative set of mass-spin

parameters which has significantly reduced correlations
between parameters. The new parameters, referred to as μ1
and μ2, have been studied in literature for efficient template
placement [16–18] and to find the best measurable combi-
nations of physical parameters [19–21]. In contrast to them,
we use these parameters in the MCMC sampling process.
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We show that using the new parametrizations significantly
speeds up the parameter estimation, without any loss of
accuracy of the estimation.
This paper is organized as follows. In Sec. II we

introduce the basics of parameter estimation and the
correlation between mass and spin parameters. In
Sec. III we introduce a new set of mass-spin parameters,
which has significantly reduced correlations between
parameters, and explain a sampling method using them.
In Sec. IV we describe injection tests for studying the
performance of our new sampling strategy and introduce
their results. Finally we present our conclusion in Sec. V.

II. BACKGROUND

In this section we explain the basics of Bayesian
parameter estimation using MCMC. Then, we introduce
the correlation between mass and spin parameters, which
makes the parameter estimation analysis of a CBC signal
significantly inefficient.

A. Parameter estimation using MCMC

In the Bayesian inference, the inference result is the
posterior distribution pðθjdÞ which is the probability
distribution of the parameters θ when the observation data
d is given. The posterior distribution is calculated by the
Bayes’ theorem,

pðθjdÞ ∝ pðdjθÞpðθÞ; ð1Þ

where pðdjθÞ is the likelihood at θ and pðθÞ is the prior
distribution. We assume that the data of a detector is
modeled as the sum of Gaussian, stationary random noise n
and a gravitational-wave signal h,

dðtÞ ¼ nðtÞ þ hðt; θÞ: ð2Þ

Then the likelihood for a single detector becomes

pðdjθÞ ∝ exp

�
−
1

2
ðd − hðθÞ; d − hðθÞÞ

�
: ð3Þ

Here ðx; yÞ indicates the noise-weighted inner product,

ðx; yÞ≡ 4ℜ

�Z
fmax

fmin

df
x̃�ðfÞỹðfÞ
SnðfÞ

�
; ð4Þ

where fmin and fmax are the low- and high-frequency
cutoffs of the analysis respectively, and SnðfÞ is the one-
sided power spectral density (PSD) of the detector. For
multiple detectors, the likelihood of the combined data is
the product of that of each detector, assuming the noise at
each detector is statistically independent.
Even though the posterior distribution has a simple form

of Eq. (1), it is not easy to get the properties of this

distribution. A practical method is to generate samples that
follow the distribution. MCMC is an efficient method for
the sampling from the posterior distribution. A new sample
is drawn stochastically based on the current sample. The
most basic MCMC is the Metropolis-Hastings (MH)
algorithm [10]. In the MH algorithm, drawing a sample
is divided into two steps; proposal and acceptance-
rejection. Selecting appropriate proposal distribution is
critical to the performance of MH algorithm. However,
if the posterior distribution has a complicated structure
owing to the correlation of parameters, it is a hard task to
find efficient proposal distribution in advance.

B. Correlation between masses and spins

The phase evolution of gravitational waves is predomi-
nantly characterized by the masses and spins of colliding
objects, especially, the leading term in the post-Newtonian
expansion solely depends on chirp mass M. Thus, the
chirp mass is precisely determined from gravitational
waves, and the contour of the mass distribution approx-
imately follows the fixed line ofM. This leads to the strong
correlation betweenm1 andm2, which makes the stochastic
sampling in the m1–m2 coordinate system inefficient. As
explained in Sec. I, the LALInference software uses M and
mass ratio q as independent sampling parameters to solve
this issue.
The dominant spin contribution appears at the 1.5 post-

Newtonian order through the following combination,

β ¼ 1

12

X2
i¼1

�
113

�
mi

m1 þm2

�
2

þ 75η

�
χi; ð5Þ

where η is symmetric mass ratio,

η ¼ m1m2

ðm1 þm2Þ2
; ð6Þ

and χi is the component of the spin angular momentum S⃗i
along the orbital angular momentum L⃗i normalized by m2

i ,

χi ≡ L
jLj ·

cSi

Gm2
i
: ð7Þ

Since it also affects the frequency evolution, it is correlated
with M and q. Figure 1 shows the posterior samples for a
binary neutron star signal in the M–q–β space. It shows
that the mass and spin parameters are correlated non-
trivially. Even M and q are strongly correlated with each
other again in this case. The samples are along a character-
istic curve; thus, the mass-spin space needs to be explored
along the curve, which makes the sampling difficult and
inefficient.
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III. METHODOLOGY

In this section we construct an alternative set of mass-
spin sampling parameters, which has a significantly
reduced correlation between the parameters. Following
[19,21], we construct them as the principal components
of the Fisher matrix for the restricted post-Newtonian
waveform. We also discuss the practical choice of sampling
parameters, sampling method and its extension to the case
of multiple detectors.

A. Restricted post-Newtonian waveform

To construct the efficient sampling parameters, we make
use of a restricted post-Newtonian waveform model. Here
we take into account terms up to the 1.5 post-Newtonian
order to incorporate the dominant spin contribution. The
waveform is given by

h̃ðfÞ ¼ A
�

f
fref

�
−7
6

e−iΨðfÞ; ð8Þ

with the phase function

ΨðfÞ ¼ ψ1

�
f
fref

�
−5
3 þ ψ2

�
f
fref

�
−1

þ ψ3

�
f
fref

�
−2
3

þ ψ4 þ ψ5

�
f
fref

�
: ð9Þ

The phase expansion coefficients are related to the physical
parameters as

ψ1 ¼
3

128
ðπGMfref=c3Þ−5

3; ð10aÞ

ψ2 ¼
55

384

�
ηþ 743

924

�
η−

2
5ðπGMfref=c3Þ−1; ð10bÞ

ψ3 ¼
3

32
ðβ − 4πÞη−3

5ðπGMfref=c3Þ−2
3; ð10cÞ

ψ4 ¼ −2ϕc −
π

4
; ð10dÞ

ψ5 ¼ 2πfreftc; ð10eÞ

where ϕc is merger phase, tc is merger time, and β is the
combination of spins as defined in (5). fref is a reference
frequency introduced to make phase expansion coefficients
dimensionless, and we use fref ¼ 200 Hz following
[19,21]. The amplitude A in Eq. (8) is a function of the
chirp mass and the extrinsic parameters, and the signal-to-
noise ratio (SNR) ϱ≡ ðh; hÞ−1=2 is proportional to A.

B. Principal component analysis

We use the restricted post-Newtonian waveform to study
the approximate structure of the posterior distribution in the
mass-spin space. By substituting the restricted 1.5P post-
Newtonian waveform into the likelihood for a single
detector (3), we obtain

pðdjψÞ ∝ exp
�
−
1

2
ðhðψ̂Þ − hðψÞ; hðψ̂Þ − hðψÞÞ

− ðn; hðψ̂Þ − hðψÞÞ
�
; ð11Þ

where we use the phase coefficients ψ ¼ fψ ig5i¼1 instead of
physical parameters to parameterize the waveform, and ψ̂ i
is their true values. In the limit of a high signal-to-noise
ratio, the posterior distribution has a sharp peak around ψ̂ .
We expand hðψÞ as a Taylor series around hðψ̂Þ and
approximate it to leading order. Then Eq. (11) becomes
Gaussian,

pðdjψÞ ∝ exp

�
−
1

2

X
i;j

ΓijΔψ iΔψ j

�
; ð12Þ

where

Γij ≡
�
∂h
∂ψ i

;
∂h
∂ψ j

�
ð13Þ

is the Fisher information matrix (FIM) for ψ, and

FIG. 1. Posterior samples from a simulated signal, which is
presented as #S2 in Sec. IV. Two-dimensional plots are marginal
distributions and contours represent the 1σ, 2σ, and 3σ regions.
The red star marks the true values of the parameters.
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Δψ i ≡ ψ i − ψ̂ i −
X
k

ðΓ−1Þik
�
n;

∂h
∂ψk

�
: ð14Þ

We construct combinations which depend on
ðM; q; χ1; χ2Þ but not tc and ϕc, in consideration of the
easy availability. We thus consider the posterior margin-
alized over ϕc and tc, or equivalently ψ4 and ψ5. The
marginal posterior is then

pðfψ1;ψ2;ψ3gjdÞ ∝ pðfψ1;ψ2;ψ3gÞ

× exp

�
−
1

2

X
i;j

Γ̃ijΔψ iΔψ j

�
; ð15Þ

where pðfψ1;ψ2;ψ3gÞ is the prior distribution of
ðψ1;ψ2;ψ3Þ, Γ̃ is the 3 × 3 FIM,

Γ̃ij ¼ Γij −
X
k;l

Γikγ
klΓlj; ð16Þ

i, j ¼ 1, 2, 3, k, l ¼ 4, 5 and

γ ¼
�Γ44 Γ45

Γ54 Γ55

�−1
: ð17Þ

We can diagonalize Γ̃ using an orthogonal matrix U as

Γ̃ij ¼
X
m;n

UT
imλmδmnUnj; ð18Þ

where fλmg3m¼1 are the eigenvalues in descending order
λ1 > λ2 > λ3. Using this, Eq. (15) takes a simple form,

pðμjdÞ ∝ pðμÞ
Y
n

e−
1
2
λnΔμ2n ; ð19Þ

with a new set of parameters

μn ≡
X
i

Uniψ i; ðn ¼ 1; 2; 3Þ: ð20Þ

Equation (19) can be represented as product of each
parameter’s function if the prior distribution pðμÞ is
separable. This implies that if the parameters are not
strongly correlated in the prior, the posterior distribution
in the μ space becomes very simple. Thus, we use μn as an
alternative sampling parameter.
Before discussing the sampling method using μn, we

discuss the dependence of μn on masses and spins. The
original FIM is given as

Γ¼4jAj2

2
666666664

I−17=3 I−5 I−14=3 I−4 I−3
I−5 I−13=3 I−4 I−10=3 I−7=3

I−14=3 I−4 I−11=3 I−3 I−2
I−4 I−10=3 I−3 I−7=3 I−4=3
I−3 I−7=3 I−2 I−4=3 I−1=3

3
777777775
; ð21Þ

with

Ia ≡
Z

fmax

fmin

�
f
fref

�
a df
SnðfÞ

: ð22Þ

fmax is usually set to the innermost stable circular orbit
frequency,

fisco ¼
1

63=2πGðm1 þm2Þ=c3
; ð23Þ

for inspiral-only waveform models. Thus, Γ, and hence μn,
generally depends on masses. However, in this work, we fix
fmax to 2048 Hz instead. Then U does not depend on the
physical parameters, and depends only on fmin and the
power spectral density of the detector. For typical BNS
events, fisco ≃ 4400=ðM=M⊙Þ Hz is higher than 1000 Hz
for BNS events. Since SnðfÞ gets larger in f > 1000 Hz for
the current ground-based detectors, and ðf=frefÞα simply
decreases for α < 0, the contributions to Iα for 2048 Hz <
f < fisco or fisco < f < 2048 Hz are suppressed. Thus, our
choice of fmax is a reasonable approximation for BNS
events. Actually, even if we change fmax to 1000 Hz, the
coefficients of μ1 and μ2 are changed up to 5.6% compared
to when fmax ¼ 2048. In Sec. IV we show that μn obtained
under this choice of fmax is useful even for BBH events.

C. Practical choice of sampling parameters
and sampling strategy

Next, we discuss our choice of sampling parameters
including μn. In this paper, we restrict ourself to a
system whose spins are aligned with the orbital angular
momentum and consider only four mass-spin parameters
ðm1; m2; χ1; χ2Þ. We will discuss a potential extension
of our method to the case of full-spin components in
Sec. V.
As a surrogate set of mass-spin parameters, we choose

ðμ1; μ2; q; χ2Þ. The prior distribution in ðμ1; μ2; q; χ2Þ space
can be represented as

pðμ1; μ2; q; χ2Þ ¼
pðm1; m2; χ1; χ2Þ

jJj : ð24Þ

jJj is the Jacobian determinant, which can be calculated as
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jJj ¼
����ðU11U23 −U21U13Þ

∂ψ1

∂M
∂ψ3

∂χ1

þðU12U23 −U22U13Þ
∂ψ2

∂M
∂ψ3

∂χ1

����
����Mm2

1

����; ð25Þ

where

∂ψ1

∂M
¼ −

5

128

πGfref
c3

ðπGMfref=c3Þ−8
3; ð26Þ

∂ψ2

∂M
¼−

55

384

�
ηþ743

924

�
η−

2
5
πGfref
c3

ðπGMfref=c3Þ−2; ð27Þ

∂ψ3

∂χ1
¼ 113þ 75q

12ð1þ qÞ2
3

32
η−

3
5ðπGMfref=c3Þ−2

3: ð28Þ

To include q is necessary to avoid the singularity of the
Jacobian at m1 ¼ m2, which is an obstacle for the use of η
as a sampling parameter [12]. A natural candidate for the
sampling parameters including q might be ðμ1; μ2; μ3; qÞ.
However, in that case the Jacobian determinant becomes 0,
since ðμ1; μ2; μ3Þ depend on χ1 and χ2 only via ψ3.
We can generate posterior samples efficiently in

ðμ1; μ2; q; χ2Þ. To obtain the posterior distribution for
physical parameters, we need a transformation from
ðμ1; μ2; q; χ2Þ to ðm1; m2; χ1; χ2Þ. m1 and m2 are calculated
as follows: First, x≡ μ1 − ðU13=U23Þμ2, is calculated.
Then M is calculated as a solution of the following
equation,

�
U11 −

U13

U23

U21

�
ψ1 þ

�
U12 −

U13

U23

U22

�
ψ2 ¼ x: ð29Þ

Since the left-hand side of (29) is a decreasing function of
M, we can use a simple bisectional search to find the
solution. m1 and m2 are easily calculated from M and q.
Finally, given ðμ2; m1; m2; χ2Þ, χ1 is easily calculated.

D. Multiple detector case

We can also construct μ parameters satisfying Eq. (19)
when we have data from multiple detectors. For instance,
suppose we have three detectors, LIGO-Livingston (L),
LIGO-Hanford (H), Virgo (V), and the Fisher matrix for the
detectors are ΓL, ΓH, and ΓV respectively, then the like-
lihood becomes

pðdjψÞ ∝ exp
�
−
1

2
ΓLHVΔψ iΔψ j

�
; ð30Þ

where ΓLHV ≡ ΓL þ ΓH þ ΓV. The Fisher matrix for each
detector is proportional to the square of the SNR of the
signal at the detector, so we write

ΓLHV ¼ ϱ2LΓ̂L þ ϱ2HΓ̂H þ ϱ2VΓ̂V; ð31Þ

where

Γ̂L ¼

2
66666664

I−17=3 I−5 I−14=3 I−4 I−3
I−5 I−13=3 I−4 I−10=3 I−7=3

I−14=3 I−4 I−11=3 I−3 I−2
I−4 I−10=3 I−3 I−7=3 I−4=3
I−3 I−7=3 I−2 I−4=3 I−1=3

3
777777775
L

ðI−7=3Þ−1L ;

ð32Þ

TABLE I. Test cases.

Spin prior range Case M½M⊙� q χ1 χ2

Single detector cases
Narrow #S1 1.64 1.0 0.02 0.02
jχ1j; jχ2j < 0.05
Semibroad #S2 1.64 1.0 0 0
jχ1j; jχ2j < 0.4 #S3 1.64 0.7 0 0

#S4 1.64 1.0 0.3 0.3
#S5 1.64 0.7 0.3 0.3

Broad #S6 1.64 0.7 0.5 0.5
jχ1j; jχ2j < 0.99 #S7 28.2 0.84 0.26 0. 32

Multiple detector case
jχ1j; jχ2j < 0.4 #M 1.64 0.9 0 0

TABLE II. Prior range of μ1 and μ2 parameters used in each
case.

Case Minimum Parameter Maximum

#S1 148.615862 ≤ μ1 ≤ 156.940475
−76.106636 ≤ μ2 ≤ −41.460751

#S2–#S5 145.212081 ≤ μ1 ≤ 158.693980
−97.311606 ≤ μ2 ≤ −30.738354

#S6 139.474278 ≤ μ1 ≤ 162.409836
−133.057127 ≤ μ2 ≤ −12.663454

#S7 −1.520207 ≤ μ1 ≤ 1.834994
−20.906248 ≤ μ2 ≤ −0.742144

#M 145.231364 ≤ μ1 ≤ 158.702923
−96.789911 ≤ μ2 ≤ −30.549108

TABLE III. Injected extrinsic parameters. They are shared in all
cases.

Parameter Injected value Unit

ϕc Merger phase 1.3 rad
tc Merger time 0 s
dL Luminosity distance 200 Mpc
ψ Polarization angle 2.659 rad
ι Orbital inclination 0.4 rad
α Right ascension 1.375 rad
δ Declination −1.2108 rad
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is parameter independent and therefore can be calculated in
advance with the PSD of the detector L, and similarly for
H and V.
Using the point estimate of SNRs given by the detection

pipeline, we can calculate ΓLHV, Γ̃LHV, and ULHV quickly.
Note that if the PSDs for detectors are very similar we can
just use Uij calculated from any single detector regardless
of the SNRs.

IV. INJECTION TEST

To confirm the effectiveness of the new sampling
parameters, we conduct a series of injection tests, where
CBC signals are artificially injected into simulated
Gaussian noise and their source parameter values are
recovered by parameter estimation analyses. The analyses
are performed under the assumption that the sources have
spins aligned with their angular momenta, and only the two
spin components ðχ1; χ2Þ are sampled. They are performed
with the conventional set of sampling parameters
ðM; q; χ1; χ2Þ and our new set of sampling parameters
ðμ1; μ2; q; χ2Þ, and their efficiency and estimation results
are compared.
The signal injection and parameter estimation process

are managed through BILBY [14]. The injected CBC signals

are generated by the IMRPhenomD waveform model [22,23],
and the same waveform model is used for recovering the
source parameter values. The IMRPhenomD describes not
only inspiral phase, but also merger and ringdown phases in
contrast with the PN waveform we used in constructing the
parameters. The waveform calculations are done via
LALSimulation [24]. The integration range of the likelihood
is from fmin ¼ 20 Hz to fmax ¼ 2048 Hz.
For parameter estimation, we use PTMCMCSampler [25].

Parallel tempering (PT) [26,27] is the main feature of this
sampler and it makes the sampling efficient especially
when the probability distribution is multimodal. Though
PT can reduce the autocorrelation of samples, it is not used
in our tests since we are more interested in the convergence
than searching modes. For the same reason, we fix the
starting point of the sampling to the injected parameter
values.

PTMCMCSampler provides several built-in jump proposals,
and custom proposals can be added to the sampling
process. In here, two built-in proposals, single component
adaptive metropolis (SCAM), and adaptive metropolis
(AM) are used with the same weights. We use default
options, with a minor modification; if there is no accepted
proposal until the adaptation stage, the scale of jump
proposals is changed by 1=2.

FIG. 2. Mass-spin part of the estimated posterior distribution in the injection test case #S2. The same posterior samples are plotted in
the two different sets of mass and spin parameters. Dashed lines on each one-dimensional marginal distribution represent the 1σ region.
Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ regions, respectively. The red lines represent
the injected value.
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A. Test cases

Table I lists the CBC signals we simulated and the spin
prior range for each. Most of our injected signals are in the
BNS mass range, where the parameter estimation analysis
is computationally costly and its speedup is necessary. The
massive case #S7 is to test the effectiveness of our sampling
parameters in the BBH mass region, where our choice of
fmax ¼ 2048 Hz for calculating μn is not valid. The lengths
of data used for the analyses are 4 s for #S7 and 128 s for
the other cases. For 128 s-data cases, we use the focused,

reduced-order quadrature (FROQ) technique in the calcu-
lation of likelihoods to speed up the estimation [21].
Our new set of sampling parameters deals with the

correlation of masses and spins, which are measured by the
frequency evolution of the signal. Thus, it is expected to be
enough to test them with data from a single detector. In
most of the tests (#S1–#S7), the analysis takes into account
only the single detector, LIGO-Livingston. The last case
#M is the exception, where a signal is injected into data of
LIGO-Livingston, LIGO-Hanford, and Virgo, and all the

FIG. 3. Comparison of the estimated posterior distribution with (blue) and without (orange) reparametrization at the 108th iteration in
the injection test case #S2. Dashed lines on each one-dimensional marginal distribution represent the 1σ region. Three contours on each
two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ regions, respectively. The red lines represent the injected value.
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data are used for parameter estimation. Their design
sensitivities are used for generating Gaussian noise, and
also as the PSDs used for calculating likelihood.
Since our method deals with the inefficiency coming

from mass-spin degeneracy in the waveform, it is expected
to have greater effect when spin parameters have broader
prior range. To confirm this, we test cases with different
spin prior range. The narrow spin prior jχ1;2j < 0.05
covers expected spins at merger of known BNS [6,28].
The semi-broad spin prior jχ1;2j < 0.4 covers all known
neutron stars [6,29]. For this prior range, we consider

four injected signals (#S2–#5) to test the effectiveness of
our sampling parameters for various mass and spin values.
The broad spin prior jχ1;2j < 0.99 is used as a prior
agnostic about the astrophysical nature of compact
binaries.
In all the cases, the prior is uniform in component masses

m1, m2, and spins χ1, χ2. For the sampling to be efficient,
the explored range of M is restricted to be 1.63 M⊙ ≤
M ≤ 1.65 M⊙ for the cases except for #S7, and 25 M⊙ ≤
M ≤ 31 M⊙ for #S7. The range of q is restricted to
be q > 1=8.

FIG. 4. Snapshots of the posterior samples at the 105th (blue) and the 108th (orange) iteration in the injection test case #S2. The left
and the right panels show samples generated without and with our reparametrization, respectively. Dashed lines on each one-
dimensional marginal distribution represent 1σ region. Three contours on each two-dimensional marginal distribution representthe 1σ,
2σ, and 3σ regions, respectively. The red lines represent the injected value.

FIG. 5. Normalized autocorrelations of the generated samples in the two injection test cases, #S2 (left) and #M (right). The dashed and
solid lines represent the sampling using conventional sampling parameters and new parameters, respectively. The symbols of parameters
other than masses and spins are introduced in Table III.
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For the estimation with reparametrization, we also set
constraints on the range of μ1 and μ2 directly, to suppress
invalid jump proposals. We just set the range by calculating
the minimum and maximum values in the prior ranges of
ðM; q; χ1; χ2Þ. Table II shows thevalues for each case. Since
the range of M is narrow, when the Jacobian (25) is
evaluated during the sampling, it is evaluated with the
injected value of M rather than its current value. This
approximation makes the prior pðμ1; μ2; q; χ2Þ dependent
only on q, and thus easy to be implemented. This approxi-
mation is optional and not necessary for our method. In the
real data analyses, we should not use it since the chirp mass
estimated by the detection pipeline could be biased signifi-
cantly, especially for massive BBH events.
Other than masses and spins, there are seven parameters

characterizing a CBC signal; merger phase, merger time,

luminosity distance to the source, polarization angle, the
inclination angle between the line of sight and the orbital
angular momentum, and right ascension and declination of
the source. Their injected values are common in all the test
cases and listed in the Table III. Their prior is the standard
one used in the analysis by the LIGO-Virgo-KAGRA
(See Appendix B of [2]). The range of merger time is
−0.1 s < tc < 0.1 s.
In the multiple-detector case #M, we infer all the 11

source parameters. For the single-detector cases, geomet-
rical parameters such as right ascension and declination are
not measurable. Thus, we infer only six of them; masses,
spins, merger phase, and time, with the other parameter
values being fixed to their injected values.
The PSD difference between #M and the other cases

results in the difference in the parameter conversion. For the

FIG. 6. Estimated posterior distribution with reparametrization in the injection test case #S1. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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single-detector cases, setting fmin ¼ 20 Hz and SnðfÞ to
the design sensitivity of LIGO-Livingston, μ1 and μ2
become

μ1 ¼ 0.97320942ψ1 þ 0.21269341ψ2 þ 0.08732089ψ3;

ð33aÞ

μ2 ¼ −0.22571628ψ1 þ 0.81153242ψ2 þ 0.53895018ψ3:

ð33bÞ

In the multiple detector case, assuming ϱ2L ≃ ϱ2H ≃ ϱ2V
(the optimal SNRs of the injected signal are 10.93, 14.41,
and 8.81 for L, H, and V respectively), μ1 and μ2 become

μ1 ¼ 0.973164ψ1 þ 0.21292605ψ2 þ 0.08726009ψ3;

ð34aÞ

μ2 ¼ −0.22599821ψ1 þ 0.81299212ψ2 þ 0.53662708ψ3:

ð34bÞ
B. Results

In this subsection, we visualize the results, from case #S2
as an example, and discuss what we can find from them.
After that we list the improvement in the estimation
efficiency of all cases.
First, we check whether the posterior distribution

becomes simple in the new parameter space. In Fig. 2,
we visualize the generated samples as one-dimensional and
two-dimensional marginal distributions using CORNER.PY

[30]. The left group is the distributions in ðM; q; χ1; χ2Þ
subspace, which shows strong correlations of parameters in
the two-dimensional plots. On the other hand, in the right
group, ðμ1; μ2; χ1; χ2Þ subspace, the posterior distribution
shows weak correlation between any two parameters.

FIG. 7. Estimated posterior distribution with re-parameterization in the injection test case #S3. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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Especially the μ1–μ2 plot shows a hardly correlated dis-
tribution, which makes the exploration efficient greatly.

Next, we check that the estimation results are the same
regardless to the sampling parameters. Figure 3 shows the
estimation results with conventional and our new sets of
sampling parameters. For better comparison, the density is
not plotted in the two-dimensional plots, and only 1σ, 2σ,
and 3σ contours are plotted. We can see the contours are
very consistent between samplings with two different
sampling parameters. Also, the one-dimensional distribu-
tions clearly agree.

While the reparametrization does not change the result
of estimation, it can reduce the estimation time. Figure 4 is
a comparison of the distribution of posterior samples
generated by the 105th iteration and the 108th iteration.
Only M, q, β of samples are plotted here for simplicity. In
the left plot, which is from the estimation without repar-
ametrization, the distribution at the 105th iteration is quite

different from the converged distribution. In the two-
dimensional plots, we can see an unexplored region. It
takes many more iterations to explore the region and
converge. On the contrary, in the right plot, which is from
the estimation with the mass-spin reparametrization, the
samples are already distributed in the entire converged
distribution region at the105th iteration; the one-dimensional
marginal distribution forM andβ are quite stable at the105th
iteration.
The autocorrelation function of samples can be used to

quantify the enhancement of the convergence speed of
MCMC algorithms [31–34]. In Fig. 5, each curve repre-
sents an normalized autocorrelation function of samples for
each parameter. The left panel is the result from #S2, and
the right panel is from #M. The dashed lines are from the
estimation without reparametrization, and the solid lines are
from the estimation with reparametrization. Compared to
dashed lines, we can see that the solid lines fall to zero

FIG. 8. Estimated posterior distribution with reparametrization in the injection test case #S4. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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faster, which means that the samples are less correlated
with near ones, and thus, statistically independent samples
are generated more frequently. Note that, the autocorrela-
tion functions for extrinsic parameters also fall to zero
faster with reparametrization.
The number of iterations to obtain a statistically inde-

pendent sample is called integrated autocorrelation time
(IAT), and can be calculated as

IAT ≈ 1þ 2
X
τ

ĉðτÞ; ð35Þ

where τ indicates each of iterations and ĉðτÞ is the
normalized autocorrelation function. Therefore we can
approximate the speed-up gain by the ratio of IAT, between
the estimation with and without the reparametrization.

The IAT from all cases are listed in Table IV. A set of
samples has different autocorrelation functions and IATs
for different parameters. Here, we compare IAT maximized
over physical parameters. We can see that our reparamet-
rization reduces the IAT by a factor of ∼10 for BNS with a
narrow-spin prior (jχ⃗j < 0.05) and ∼100 for a broad-spin
prior (jχ⃗j < 0.99). Even for the massive BBH case, the IAT
becomes about 1=3 using our reparametrization.
Although additional time is taken for parameter con-

version in each iteration with our method, its effect to the
total estimation time is small. To check this, we compare
the estimation time directly. In the case #M, it takes
17 minutes to get 1000 statistically independent samples
with reparametrization on ICRR common computer system
[35] [CPU; Intel Xeon Gold 6230 (2.1 GHz)], while
41 hours are needed without reparametrization. In all cases

FIG. 9. Estimated posterior distribution with reparametrization in the injection test case #S5. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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the total estimation time is reduced. For reference, we plot
the estimation results comparison from the test cases other
than #S2 too, in Figs. 6–12.

V. CONCLUSIONS

In this paper we have introduced a new set of mass-spin
parameters for aligned-spin compact binary inspiral wave-
form, which makes the posterior distribution simple and
therefore the estimation efficient. To inspect its effect on the
sampling efficiency, we performed parameter estimation
runs on simulated signals using the new set of mass-spin
sampling parameters. In all test cases, the new set of
parameters improves the efficiency of the sampling process.
The improvement is especially remarkable for the analysis

of binary neutron star signals with a broad prior range of
spins, where the effects of mass-spin correlations are
significant. Quantitatively, the speed-up gain in the analysis
of binary neutron star signals is ∼10 for narrow-spin
priors (jχ⃗j < 0.05), ∼10–100 for semibroad-spin priors
(jχ⃗j < 0.4), and ∼100 for broad-spin priors (jχ⃗j < 0.99).
The results are case dependent, thus they have to be

understood carefully. In the tests, we adopted single
component adaptive Metropolis- and adaptive Metropolis-
jump proposals. The choice is natural, but there could be
other jump proposals that make the sampling with com-
plicated posteriors more efficient. Those proposals may
reduce the improvement of our method since it settles the
inefficiency in a different way. The comparison of the
sampling with our method, the sampling with other

FIG. 10. Estimated posterior distribution with reparametrization in the injection test case #S6. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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proposals, and the sampling with both could be a future
work. Nevertheless, our method has the advantage that it
can solve the problem of degeneracy in any parameter
estimation pipeline with any sampler.
We can combine other parameter estimation techniques

with our reparametrization. Since our method reduces
the number of likelihood evaluations, it could be a nice
duo with methods that cut down the single-likelihood
evaluation time, such as the focused reduced-order
quadrature technique. Our method also can be used with
parallel tempering, which can also reduce the estima-
tion time.
In the narrow-spin prior case (#S1) and the massive case

(#S7), the posterior distribution already has a relatively
simple form in the usual mass-spin parameter space. Even
in these cases, our reparametrization improves the sampling
process, and at least does not worsen the sampling. This
fact, along with the improvement in the multiple-detectors

case, shows our method could be applied to the actual
observation comprehensively.
In this paper we only consider a binary system whose

spins are aligned with its orbital angular momentum. If the
spins are misaligned with the orbital angular momentum,
the precession of the orbital plane is induced, and the
amplitude and phase of the signal are modulated [36].
Since it can break the degeneracy between the distance
and orbital-inclination angle, and improve the accuracy of
source localization [37,38], rapid parameter estimation
(taking into account the precession effects) can be helpful
for multimessenger observations. Even in this case, the
frequency evolution of the signal is predominantly deter-
mined by masses and spin components along the orbital
angular momentum, and our reparametrization may still
make the posterior distribution simple and the analysis
more efficient. We leave the extension of our method to
precessing binary systems for a future work.

FIG. 11. Estimated posterior distribution with re-parameterization in the injection test case #S7. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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FIG. 12. Estimated posterior distribution with reparametrization in the injection test case #M. Dashed lines on each one-dimensional
marginal distribution represent the 1σ region. Three contours on each two-dimensional marginal distribution represent the 1σ, 2σ, and 3σ
regions, respectively. The red lines represent the injected value.
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