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We present a procedure to link the deformation parameter β of the generalized uncertainty principle
(GUP) to the two free parameters ω̃ and γ of the running Newtonian coupling constant of the asymptotically
safe gravity program. To this aim, we compute the Hawking temperature of a black hole in two different
ways. The first way involves the use of the GUP in place of the Heisenberg uncertainty relations, and
therefore we get a deformed Hawking temperature containing the parameter β. The second way involves
the deformation of the Schwarzschild metric due to the Newtonian coupling constant running according
to the asymptotically safe gravity prescription. The comparison of the two techniques yields a relation
between β and ω̃, γ. As a particular case, we discuss also the so-called ξ-model. The relations between
β and ω̃, ξ allow us to transfer upper bounds from one parameter to the others.
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I. INTRODUCTION

It is well known that the formulation of a consistent
quantum theory of gravity is still an open task in modern
theoretical physics. Many of the approaches to the problem
existing today in the literature (for a partial list see e.g.,
[1–7] and references therein), share one particular property.
Namely, the basic parameters that enter into the action
defining the model at hand, such as Newton’s constant,
electromagnetic coupling, the cosmological constant etc.,
become scale dependent quantities. This does not come as a
surprise of course, since scale dependence at the level of the
effective action is a generic feature of ordinary quantum
field theory. In theories of gravity, the scale dependence is
expected to modify the horizon, the thermodynamics as
well as the quasinormal modes spectra of classical black
hole backgrounds [8–16]. Also, the Sagnac effect [17], the
evolution of trajectories of photons [18], some cosmologi-
cal solutions [19], and transverse wormhole solutions [20]
have been investigated. In the context of theories beyond
classical general relativity, apart from the aforementioned
approach based on scale-dependent gravity, there is yet

another method, which is usually called “improved”
asymptotically safe (AS) gravity [21–23]. For renormali-
zation group (RG) - improved cosmologies and inflationary
models from asymptotic safety see e.g., [24–29], and for
recent progress [30–38]. In that scenario, the main idea is to
integrate the beta function for the gravitational coupling in
order to compute Newton’s constant as a function of some
energy scale k, GðkÞ. After that, Newton’s constant is
inserted into the classical black hole solution and the
improved lapse function is obtained. It is essential to notice
that the gravitational coupling depends on some arbitrary
renormalization scale k. Finally, a link between the energy
scale k and the radial coordinate r is established. Only after
this final step, the complete form of an improved black hole
solution is obtained. Those extended solutions, inspired by
the asymptotic safety program, are expected to modify the
classical black hole solutions by incorporating quantum
features. Similar black hole solutions, free of the central
singularity, can be found, e.g., in Refs. [39–41], although
they are not directly connected with the asymptotically safe
gravity (ASG) program. Another important stream of ideas
that try to describe the interplay between quantum effects
and gravity is the research line known under the name of
generalized uncertainty principle (GUP). Although some
seminal work on possible generalizations of the funda-
mental Heisenberg uncertainty principle (HUP) [42] can be
traced back to more than seventy years ago [43], these
concepts have been intensely revived and made more
precise in the last thirty years [44–50]. In a nutshell,
several re-analysis of the measurement process, in particu-
lar of the famous Heisenberg microscope argument, have
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shown, with plenty of details, that, when the action of
gravity is taken into account, the fundamental uncertainty
relation should be modified as

ΔxΔp ≥
ℏ
2

�
1þ β

4l2
P

ℏ2
Δp2

�
¼ ℏ

2

�
1þ β

�
Δp
MP

�
2
�
: ð1Þ

Here lP is the Planck length, MP the Planck mass, and
we work in units where 2G0MP ¼ lP, ℏ ¼ 2MPlP,
c ¼ kB ¼ 1. As said, studies in this framework focus on
understanding the effects of gravity on the formulation of
uncertainty relations. Therefore, it turns out natural that the
most relevant modifications to the HUP have been pro-
posed in contexts such as string theory, noncommutative
geometry, and studies of black hole physics [44–50]. The
dimensionless parameter β in (1) is not fixed a priori by the
theory, however in some models of string theory it is
generally assumed that β ∼Oð1Þ [44].
The aim of this paper is to present and discuss a link

between the free parameters of ASG, i.e., the renormaliza-
tion scale, and the deforming parameter β of the generalized
uncertainty principle. Here we shall use the GUP to
compute the Hawking temperature of a given black hole,
obtaining it as a function of the deformation parameter β.
The same deformed temperature can however be computed
as well via the ASG deformation of Schwarzschild metric.
This will yield a relation between β and the ASG free
parameters.
The paper is organized as follows. In the Sec. II we

shortly recall the main results of the renormalization group
approach leading to the ASG-improved classical Newton
potential, as well to the ASG modification of the
Schwarzschild metric. In Sec. III we compute the GUP-
deformed Hawking temperature. In Sec. IV we compute the
ASG-deformed Hawking temperature. In Sec. V we com-
pare such two deformations and relate the respective
deformation parameters. In Sec. VI we give a precise
evaluation of the ASG parameters. Section VII is devoted to
discuss a particular example. Conclusion are shortly
presented in Sec. VIII.

II. RUNNING NEWTONIAN COUPLING AND
BLACK HOLE METRICS

As we briefly summarized in the Sec. I, the main steps
towards the construction of a renormalization group
improved Schwarzschild metric are essentially three (we
make particular reference to Ref. [21]): first, we integrate
the beta function for the gravitational coupling to compute
Newton’s constant as a function of some energy scale k,
namely GðkÞ. It is essential to notice that the gravitational
coupling depends on some arbitrary renormalization scale
k. After that, a link between the energy scale k and the
radial coordinate r must be established [the so-called
“identification of the infrared cutoff,” namely k ¼ kðrÞ].
Finally, the GðrÞ Newton’s constant is inserted into the

classical black hole solution and we obtain the improved
lapse function of the metric. It is only after this final step
that the complete solution of a “renormalization improved”
black hole becomes concretely usable for explicit calcu-
lations. The above steps are detailed in Appendix.
So, the basic idea of the AS gravity approach in order to

obtain the renormalization improved, classical Newtonian
or general relativistic, solutions is to replace everywhere the
Newton constantG0 with the running constantGðrÞ, whose
explicit form is given by [21]

GðrÞ ¼ G0r3

r3 þ ω̃G0ℏðrþ γG0MÞ ; ð2Þ

where, in accordance with our conventions, c ¼ kB ¼ 1
and we retained ℏ. Here ω̃ and γ are dimensionless
numerical parameters, whose concrete value will be dis-
cussed later.
The line element for the spherically symmetric,

Lorentzian metric preserves the usual form, that is

ds2 ¼ fðrÞdt2 − fðrÞ−1dr2 − r2dΩ2; ð3Þ

where r is the radial coordinate, and dΩ2¼dθ2þsin2θdϕ2

is the line element of the unit two-sphere. But now,
according to the above prescriptions, the lapse function
fðrÞ of our ASG improved Schwarzschild geometry reads

fðrÞ ¼ 1 −
2MGðrÞ

r
¼ 1 −

2G0Mr2

r3 þ ω̃G0ℏðrþ γG0MÞ ; ð4Þ

withGðrÞ given by (2) andM the mass of the black hole. Of
course, we suppose ω̃ ≠ 0, otherwise we would go back to
the standard Schwarzschild metric. Two very important
limiting cases should be considered. The first corresponds
to the low energy scales (r → ∞, or k → 0), which implies

fðr → ∞Þ ≃ 1 −
2G0M

r
; ð5Þ

so we recover the standard Schwarzschild metric at large
distances, and this behavior is independent from the values
of ω̃ and γ. The second corresponds to the high energy
scales (r → 0, or k → ∞). Here we have to distinguish two
subcases: if γ ≠ 0, then

fðr → 0Þ ≃ 1 −
2r2

ω̃γG0ℏ
; ð6Þ

and thus the lapse function corresponds to a deSitter
(ω̃γ > 0) or an anti-deSitter (ω̃γ < 0) core of our metric,
depending on the sign of ω̃γ; if γ ¼ 0, then

fðr → 0Þ ≃ 1 −
2Mr
ω̃ℏ

; ð7Þ
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so in this case we have a so-called conic singularity at the
origin. Clearly, the ℏ at denominator is the hallmark of the
quantum character of the correction that the ASG approach
gives to the core of the standard Schwarzschild metric.
Note that in both cases the central singularity is wiped out.

III. GUP-DEFORMED HAWKING TEMPERATURE

The argument based on Heisenberg microscopy [42]
suggests that the size δx of the smallest detail of an object
(theoretically detectable with a beam of photons of energy
E) is roughly given by

δx ≃
ℏ
2E

ð8Þ

since ever larger energies are required to explore ever
smaller details. On the other hand, the uncertainty relation
(1) implies that the GUP version of Eq. (8) is

δx ≃
ℏ
2E

þ 2βl2
P
E
ℏ
; ð9Þ

which relates the (average) wavelength of a photon to its
energy E. The thermal GUP corrections to the Hawking
spectrum are traced in many references [51–56].
Equation (9) allows us to derive a relation between the
mass and the temperature of a Schwarzschild black hole. To
this aim, consider an ensemble of unpolarized photons of
Hawking radiation just outside the event horizon of a
Schwarzschild black hole. The position uncertainty of
such photons can be estimated to be δx ≃ 2μRS, where
RS ¼ 2G0M is the Schwarzschild radius of the black hole.
We fixed μ ¼ π to recover the standard semiclassical
Hawking temperature when β → 0 (see below). The equi-
partition principle imposes that the average energy E of
unpolarized photons of the Hawking radiation is related to
the temperature T as E ≃ T, so that Eq. (9) yields

M ¼ ℏ
8πG0T

þ β
T
2π

: ð10Þ

Inverting this relation, and expanding in β, we obtain

TðMÞ ¼ ℏ
8πG0M

�
1þ βM2

P

4π2M2
þ…

�
: ð11Þ

In deriving (11) we have assumed the thermal character of
the correction induced by the GUP. There are, however,
different approaches in which the corrections do not respect
the exact thermality of the spectrum, and thus need not be
reducible to a simple shift of the temperature (an example is
the corpuscular model of a black hole of Refs. [57]).
Further aspects of the GUP are discussed (among the many
papers) in Refs. [58].

IV. HAWKING TEMPERATURE FROM THE
ASG-DEFORMED SCHWARZSCHILD METRIC

Of course, the Bekenstein-Hawking temperature for the
general class of black holes with metrics of type (3) can be
computed with a well-known general procedure [59] for
any arbitrary function fðrÞ. By assuming that f has a simple
zero at some rh, namely fðrhÞ ¼ 0 and f0ðrhÞ ≠ 0, and that
it increases monotonically from zero to fðþ∞Þ ¼ 1 for
r > rh, then the Bekenstein-Hawking temperature on the
horizon r ¼ rh is

TBH ¼ ℏ
4π

f0ðrhÞ: ð12Þ

Here the above calculation can be in principle performed
exactly, using for fðrÞ the expression given in Eq. (4),
although a cubic equation would be involved (see Ref. [21]
for this procedure). However, to our scope, since we have in
mind to match the ASG-deformed temperature with the
GUP-deformed temperature in order to extract the relation
between β and ðω̃; γÞ, it results much more doable and clear
to write fðrÞ of Eq. (4) in the form of a small perturbation
over the Schwarzschild metric (we follow [60–64])

fðrÞ ¼ 1 −
2G0M

r
þ 2G2

0ω̃Mℏðrþ γG0MÞ
r4

þO
�
1

r5

�

¼ 1 −
2G0M

r
þ εðrÞ ð13Þ

with

εðrÞ ≃ 2G2
0ω̃Mℏðrþ γG0MÞ

r4
; ð14Þ

and this can be done since jεðrÞj ≪ 2G0M=r for any
r > 2G0M. For any metric of the form (13) the horizon
equation fðrÞ ¼ 0 reads

r − 2G0M þ rεðrÞ ¼ 0; ð15Þ

which can be solved to the first order in εðrÞ by

rh ¼ a −
aεðaÞ

1þ εðaÞ þ aε0ðaÞ ¼ a½1 − εðaÞ þOðε2Þ�; ð16Þ

where a ¼ 2G0M. Using now Eqs. (12), (13), and (16), we
can expand in ε and arrive at the deformed Hawking
temperature

TBH ¼ ℏ
4π

f0ðrhÞ

¼ ℏ
4πa

f1þ ½2εðaÞ þ aε0ðaÞ� þ εðaÞ½εðaÞ
− 2aε0ðaÞ − a2ε00ðaÞ� þOðε3Þg; ð17Þ
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where for sake of completeness we report also the second
order in ε. The symbol 0 stands for the derivativewith respect
to r ( 0 ≡ ∂r).

V. RELATION BETWEEN β AND ω̃; γ

By comparing the first orders of the expansions of the
GUP-deformed Hawking temperature given in Eq. (11),
and of the ASG-Schwarschild temperature (17), one
obtains

β ¼ 4π2M2

M2
P

½2εðaÞ þ aε0ðaÞ�; ð18Þ

where a ¼ 2G0M. Finally, using the expression (14) for
εðrÞ we arrive at

β ¼ −4π2ω̃ð1þ γÞ: ð19Þ

This is the general relation between the ASG parameters
ω̃, γ and the deformation parameter β of the GUP.

VI. ESTIMATE OF PARAMETERS ω̃, γ, β

As we said in Sec. II, the ASG-improved Newtonian
potential can be obtained from the standard Newton
formula

VðrÞ ¼ −
G0Mm

r
ð20Þ

by simply replacing the experimentally observed Newton
constant G0 with the running coupling GðrÞ given in
Eq. (2). Thus we get

VASGðrÞ ¼ −
GðrÞMm

r
¼ −

G0Mmr2

r3 þ ω̃G0ℏðrþ γG0MÞ ; ð21Þ

which can be expanded for large r as

VASGðrÞ¼−
G0Mm

r

�
1−

ω̃G0ℏ
r2

−
γω̃G2

0ℏM
r3

þO
�
G2

0ℏ
2

r4

��
:

ð22Þ

We should notice that the corrections to the standard
Newtonian potential predicted by the ASG approach are
all of quantum nature. This is clearly suggested by the
presence of ℏ in each term of correction. In fact, there are no
correction terms of classical origin, coming from some kind
of post-Newtonian approximation. On the other hand,
corrections of quantum origin to the classical Newtonian
potential have been elaborated by several researchers
[65,66] in the last three decades or so. In particular, it
was pointed out by Donoghue [66,67] that the standard
perturbative quantization of Einstein gravity leads to a well
defined, finite prediction for the leading large distance

quantum correction to Newtonian potential. The numerical
coefficients of the quantum expansion have undergone a
certain evolution over the years [68], but the result today
accepted by the community [69] reads

VQuantumðrÞ ¼ −
G0Mm

r

�
1þ 41

10π

G0ℏ
r2

þ…

�
: ð23Þ

This is an expansion at first order in ℏ (up to classical terms
due to the nonlinear nature of general relativity,which can be
reabsorbed by a change of coordinates), where the first
correction term represents a genuine quantum correction
proportional to ℏ.
The comparison of the two expansions (22) and (23)

fixes the parameter ω̃, which results to be

ω̃ ¼ −
41

10π
: ð24Þ

The ASG parameter γ is not fixed by these considerations.
In this regard, we can follow two different paths:

(i) We can refer to the considerations developed in
Ref. [21]. Those classical general relativistic argu-
ments fix γ ¼ 9=2. Using this value of γ and the
Eqs. (19), (24), we can compute the β parameter of
the GUP, which results to be

β ¼ 451π

5
: ð25Þ

As we see β results to be of order 102 as suggested
by some models of string theory [44].

(ii) We can first compute β by following the procedure
described in Ref. [61], namely comparing the GUP
Hawking temperature (11) with the Hawking tem-
perature of a Schwarzschild metric corrected
through the Donoghue potential (23). This yields
β ¼ 82π=5. Then, using (19), (24), we get

γ ¼ 0: ð26Þ

Given the indeterminacy of the arguments used in [21] to
fix γ, we would incline for the second possibility. Finally,
the study of the metric (4), and of the related (somehow
surprising) black hole features when ω̃ < 0, will be carried
out in Ref. [70].

VII. THE ξ-MODEL

In this section we investigate further an example of
modified, or improved, Schwarzschild solution, described
by the lapse function

fðrÞ ¼ 1 −
2G0Mr
r2 þ ξ

: ð27Þ
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Mathematically, the above lapse function is just a particular
case of the previous (4) with γ ¼ 0 and the identification
ξ ¼ ω̃G0ℏ. Metrics as the above have been studied for
example in Refs. [37,38] as an approximate expression of
the lapse

fðrÞ ¼ 1 − Λη −
Λr2

3
−
2G0Mr
r2 þ ξ

; ð28Þ

where the parameters η and ξ have the dimensions of a
length squared and they are supposed, at least initially, to be
positive. The authors obtained the lapse (28) as the static,
spherically symmetric solution (in the infrared limit) of an
ASG quantum-corrected black hole in an anti–de Sitter
(AdS) spacetime, with a deficit angle Λη. However, the
effect of the latter is negligibly small, as referred to
cosmological observations and, for an astrophysical black
hole, the corrections yielded by the cosmological constant
are extremely small. Therefore, neglecting Λ, the authors
arrive to the expression (27). At a far distance the lapse (27)
correctly reproduces the Schwarzschild solution (recovered
for ξ ¼ 0), and deflection from it is of the order of ξ. At the
origin the metric is finite, however it is not regular, since it
contains a conic singularity. According to Ref. [41], the
metric has a curvature invariant R of the form

R ¼ 2G0M

ξ3=2
gðr=

ffiffiffi
ξ

p
Þ ð29Þ

(where g is a finite function), which means that for any
fixed r the correspondingR can be made arbitrarily large by
simply increasing the mass parameter M. Therefore the
metric (27) for a black hole does not satisfy the so-called
limiting curvature condition. Of course, the same can be
said for the lapse (4) in the case γ ¼ 0.
From (27) we can expand for large r (the regime r2 ≫ ξ),

and get

fðrÞ ¼ 1 −
2G0M

r
þ 2G0Mξ

r3
þO

�
1

r5

�
; ð30Þ

so we can identify the deformation to the Schwarzschild
metric, i.e.,

εðrÞ ≃ 2G0Mξ

r3
: ð31Þ

Thus Eq. (18) gives

β ¼ −
π2ξ

G2
0M

2
P
¼ −

4π2ξ

l2
P

: ð32Þ

As arises from Eq. (32), the GUP parameter β is indepen-
dent on the gravitational mass source, and it is only related
to the fundamental Planck mass scale. In case we assume
ξ > 0 a priori, then β would result negative. This would not
sound particularly weird, if we remember that a negative β
appears in contexts as uncertainty principle on a lattice
[71], or white dwarf stability [72] or decoherence limit of
quantum systems (Tsallis thermostatistics) [73].
However, if we coherently follow the logic of the previous

section, then from (30) we can extract the expansion of the
effective Newtonian potential VN ¼ ½fðrÞ − 1�=2, and by
comparing it with the Donoghue quantum-corrected
Newtonian potential (23), we get

ξ ¼ −
41

10π
G0ℏ ¼ −

82

5π
G2

0M
2
P; ð33Þ

which inserted in (32) yields

β ¼ 82π

5
; ð34Þ

consistentlywith the case (ii) of the previous section (γ ¼ 0).
Two comments are now in order.
(i) Requiring thematchingwith theDonoghue quantum-

corrected Newtonian potential at large r, the param-
eter ξ results actually to be negative, as it resulted
also the parameter ω̃ (see the previous section),
consistently with the identification ξ ¼ ω̃G0ℏ. This
fact has heavy consequences on the structure of the

TABLE I. Upper bounds on ξ derived from gravitational and nongravitational experiments.

β < Physical framework
ffiffiffi
ξ

p
cm <

106 Sapphire mechanical resonator [74] 10−31

1012 Micro- and nanomechanical oscillators (masses ∼MP) [75] 10−28

1020 Lamb shift [76] 10−24

1021 Scanning tunneling microscope [76] 10−23

Violation of equivalence principle [77]
1033 Gravitational bar detectors [78] 10−18

1034 Electroweak measurement [60] 10−17

Charmonium levels [76]
Energy difference in hydrogen levels 1S − 2S [79]

1039 87Rb cold-atom-recoil experiment [80] 10−14

1046 Landau levels [76] 10−11
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metric (27) for singularities, horizons, etc. This will
form the subject of a forthcoming paper.

(ii) In the same vein as in Ref. [62], we can use the
relations (19) (with γ ¼ 0) and (32), connected by
ξ ¼ ω̃G0ℏ, in order to transfer experimental upper
bounds from the GUP parameter β to the ASG
parameters ω̃, ξ.

From (19) it is clear that between β and ω̃ there is a mere
factor ∼40, therefore upper bounds on β are essentially
reflected directly on ω̃. Instead, using (32) in the form
jξj ¼ ðlP=2πÞ2jβj, we obtain for the upper bounds on ξ the
results reported in Table I. Of course, if the GUP parameter
is of the order of unity, β ∼Oð1Þ, then ξ is of the order of
the Planck length squared, that is

ξ ∼ l2
P:

As a general comment, we can say that it is important,
from an experimental point of view, to have revealed a
direct connection between the parameters β, ω̃, ξ, namely
Eqs. (19), (32). This allows us to transfer experimental
upper bounds from one parameter to the other, thus
enriching, at least in principle, the phenomenology avail-
able to researchers in the field.

VIII. CONCLUSIONS

In this paper we have derived an exact relation between
the GUP parameter β and the parameters ω̃; γ characterizing
the asymptotically safe gravity. The shift of the Hawking
black hole temperature, for which the GUP is relevant, is
derived by means of pure quantum mechanical principles,
and no specific representation of the canonical commuta-
tion relation is postulated. On the other hand, the same
temperature is derived geometrically for an ASG-improved
version of the Schwarzschild metric, allowing us to link
the deformed uncertainty relation parameter β with the
renormalization scale, here measured by the parameters
ω̃; γ (or ξ, in a specific example).
As a by-product, from the well-known and up-to-date

upper bounds on GUP parameter β present in literature, we
obtained an upper bound on the renormalization scale
parameters ω̃; ξ (derived in the framework of ASG running
coupling Newtonian constant). Indeed, a common point in
the wide discussions on various models yielding the GUPs
is related to test the size of these modifications of the
uncertainty relations. These aspects appear particularly
interesting in the perspective of a laboratory-scale imitation
of the black hole horizon, with the subsequent possible
emission of an analog Hawking radiation [81].
Aside from the above results, through a comparison with

the quantum corrected Newtonian potential, we have also
determined the exact numerical value of the ASG param-
eters ω̃; ξ, which both result to be negative. The deep
consequences that this fact has on the related black hole
metrics will be explored in Ref. [70].

APPENDIX: RENORMALIZATION
GROUP-IMPROVED SCHWARZSCHILD

SOLUTIONS

In this Appendix we shall review the improved
Schwarzschild solution obtained in [21]. The average
Einstein-Hilbert action, able to avoid ghosts, is given by
(ℏ ¼ 1)

Γk½g� ¼
1

16πGðkÞ
Z

d4x
ffiffiffi
g

p ð−RðgÞ þ 2λ̄ðkÞÞ: ðA1Þ

Here g is the metric, while GðkÞ and λ̄ðkÞ are the running
Newton’s constant and the cosmological constant, respec-
tively. The evolution of the scale-dependent couplings is
governed by the Wetterich equation

∂tΓk ¼
1

2
Tr

�
∂tRk

Γð2Þ
k ½ϕ� þRk

�
; ðA2Þ

where t ¼ lnðkÞ, Γð2Þ
k is the Hessian of Γk with respect to

gμν, andRk is a filtering function [21],Rkðp2Þ ∝ k2Rð0ÞðzÞ,
with z≡ p2=k2 and Rð0ÞðzÞ≡ z

ez−1. Inserting Γk into (A2)
and projecting the flow onto the subspace spanned by the
Einstein-Hilbert truncation, one infers a system of coupled
differential equations for the dimensionless Newton’s
constant gðkÞ≡ k2GðkÞ, and the dimensionless cosmologi-
cal constant λðkÞ≡ λ̄ðkÞ=k2. Since the cosmological con-
stant plays no role within the scope of the present
investigation we may approximate λ ≈ 0. Thus the evolu-
tion of gðtÞ is governed by the equation

dgðtÞ
dt

≡ βðgðtÞÞ ¼
�
2þ B1gðtÞ

1 − B2gðtÞ
�
gðtÞ; ðA3Þ

where the constants B1 and B2 are given by [21]

B1 ≡ B1ð0Þ ¼ −
1

3π
ð24Φ2

2ð0Þ −Φ1
1ð0ÞÞ; ðA4Þ

B2 ≡ B2ð0Þ ¼
1

6π
ð18Φ̃2

2ð0Þ − 5Φ̃1
1ð0ÞÞ: ðA5Þ

Φp
nðwÞ and Φ̃p

nðwÞ are two auxiliary functions defined by

Φp
nðwÞ≡ 1

ΓðnÞ
Z

∞

0

dzzn−1
Rð0ÞðzÞ − zRð0Þ0ðzÞ
ðzþ Rð0ÞðzÞ þ wÞp ; ðA6Þ

Φ̃p
nðwÞ≡ 1

ΓðnÞ
Z

∞

0

dzzn−1
Rð0ÞðzÞ

ðzþ Rð0ÞðzÞ þ wÞp : ðA7Þ

Integrating (A3) to get an explicit form for gðkÞ, and using
the above relation gðkÞ ¼ k2GðkÞ=ℏ (here we restored ℏ),
one obtains the dimensionful Newton’s coupling
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GðkÞ ¼ G0

1þ ω̃G0k2=ℏ
: ðA8Þ

As this equation shows, deviations from the classical
solution are important at high energy or momentum
scales. The classical spacetime is recovered in the opposite
regime, when k → 0. To connect k with the physical
radial coordinate r, in [21] it has been used as the
identification

kðrÞ≡ ℏ

�
rþ γG0M

r3

�
1=2

: ðA9Þ

The renormalization scale kðrÞ is a modified proper
distance, more precisely kðrÞ ∼ ℏ=dðrÞ: this function inter-
polates smoothly the behavior of the proper distance close
to r ¼ 0 and at infinity. The final result of the modification
of the Newtonian gravitational constant is expressed
by Eq. (2).
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