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Boson stars are stationary, axially symmetric solutions of a complex scalar field theory coupled to
gravity. Recently, multisolitonic configurations interpreted as static chains of multiple boson stars bound
by gravity and carrying no angular momentum were reported. We propose to generalize those solutions to
the stationary case by constructing chains of rotating boson stars and analyze their properties. The
nonlinear elliptic field equations are solved using the finite element method. We find that chains with an
even number of constituents exhibit the same spiral-like frequency dependence of their mass, angular
momentum and Noether charge as single boson stars. In contrast, sequences of chains with an odd number
of constituents show nontrivial loops starting and ending at the flat vacuum. As a consequence, such
solutions cannot be uniquely parametrized by a single parameter. We conjecture that all rotating chains
correspond to excitations of single boson stars or pairs of them. We also analyze their flat space limit and
find that they reduce to chains of Q-balls.

DOI: 10.1103/PhysRevD.105.124052

I. INTRODUCTION

Nontopological solitons were first established by Rosen
[1] and Friedberg et al. [2] and since have been a topic of
great interest in field theory. They consist in nontrivial
stationary and spatially localized solutions of a nonlinear
physical theory in flat space which have a finite energy. In
contrast to topological solitons, their existence is guaran-
teed by the conservation of a Noether charge rather than a
topological charge. A simple example of these solitons are
Q-balls, introduced by Coleman [3], which are nontopo-
logical solitons in a complex scalar field theory with a
harmonic time dependence and a suitably chosen self-
interacting potential. This theory presents a global phase
invariance which provides the conserved charge Q. The
complex field corresponds to interacting massive bosons. In
light of this, Q-balls can be seen as an agglomerate of
massive bosons in flat space tied together by their self-
interactions and the charge Q is related to the number of
particles [2,3]. The minimization of the energy of a
multiparticle system with conserved charge Q favors
a configuration in which particles are glued together in a
soliton, rather than a configuration with individual free
particles. This ensures the existence of Q-balls [3].
For spherically symmetric Q-balls, the complex field

may be written as Φ ¼ ϕðrÞeiωt where ϕ is a real function
of the radial coordinate, ω is a constant frequency and t is
the time coordinate. The harmonic time dependence is a
crucial ingredient which, together with a well-chosen
potential, allows the existence of solitons [4]. Because of

the spherical symmetry, surfaces of constant energy density
are spheres. Solutions exist in a finite frequency range
ωmin < ω < ωmax: the upper bound corresponds to the
mass of the scalar field whereas the lower bound depends
on the shape of the potential [2,3,5]. The mass M of a Q-
ball and its chargeQ reach their minimal values at a critical
frequency ωcr ∈ ðωmin;ωmaxÞ and they both diverge at the
boundaries of the frequency domain. For a fixed frequency
ω, there are infinitely many spherically symmetric Q-balls
labeled by the number n of nodes of their ϕ profile [6].
Solutions with n ≥ 1 are called radially excitedQ-balls and
are unstable, whereas solutions with n ¼ 0 are referred to
as fundamental Q-balls and are stable in the range ωmin <
ω < ωcr [2]. In general, finding Q-ball solutions requires
solving a nonlinear differential equation numerically;
however, it has been found recently that very accurate
analytical approximations of stable Q-balls can be
obtained [7].
Rotating generalizations of Q-balls exist [6,8]. The

rotation is achieved by adding an additional phase factor
eimφ to the scalar field, where φ is the azimuthal angle and
m is the integer rotational number. Rotating solutions are
classified according to their behavior under reflections with
respect to the equatorial plane. The energy density iso-
surfaces of such spinning Q-balls consist in one or more
tori and the field configuration carries an angular momen-
tum J directly related to the charge by J ¼ mQ. Their
angular momentum is thus quantized at the classical level
and as a consequence, for a fixed Q, there are no slowly
rotating Q-balls (with arbitrarily small J). Apart from a
different spatial profile and a nonzero angular momentum,
spinning Q-balls share the same properties as the*romain.gervalle@lmpt.univ-tours.fr
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spherically symmetric ones regarding the frequency
dependence of their mass or charge.
Boson stars (BSs) arise when Q-balls are coupled to

gravity [5,9,10]. They represent solitonic configurations
with globally regular geometry (no horizon or singular-
ities). Because of the attractive nature of gravitation, BSs
exist also if the scalar field potential contains no self-
interaction terms and hence only a mass term [11,12]. In
this case, the solutions are often called mini-boson stars
because their maximum mass is very small, except for tiny
values of the boson mass [13]. BSs can carry angular
momentum (like spinning Q-balls) [8,14,15] and obey the
quantization relation J ¼ mQ. Although the spacetime
geometry of BSs is regular everywhere, ergoregions may
appear for rotating BSs [15,16]. It is also worth mentioning
that self-gravitating solitons exist also if the scalar field is
replaced by a vector or a spinor field [17–19].
Previous studies of BSs (for reviews, see Refs. [5,13,20–

22]) were motivated by different elements. First, the
discovery of the Higgs boson [23,24] has proven that
fundamental scalar fields exist in nature. In this sense, BSs
can be seen as a toy model for solitonic configurations of
more realistic fields. Second, they can have applications in
astrophysics by mimicking black holes and thus avoiding
the presence of an event horizon [25,26]. Third, scalar
fields are also a fundamental ingredient in many cosmo-
logical models, such as primordial inflation models (infla-
ton) [27] or quintessence models of dark energy [28].
In the present work, we consider BSs which have flat

space counterparts (Q-balls): the scalar field potential
contains self-interactions carried by terms quartic and sextic
in jΦj. Although the domain of existence of solutions is also
a finite frequency range as for Q-balls, the presence of
gravity has a crucial influence on the frequency dependence
of the mass and the charge. Close toωmax, BSs emerge from
the trivial vacuum at which M and Q vanish (rather than
diverge in the Q-ball case). Constructing a sequence of
fundamental BSs, the ðω;MÞ and ðω; QÞ curves present a
spiraling behavior so that the solutions are no longer
uniquely determined by their scalar field frequency. The
configurations tend to a limiting solution with finite mass
and charge at the center of the spiral [9]. For excited BSs
[29], the spiraling pattern occurs for nonrotating configu-
rations. For even-parity rotating solutions, the spiraling
behavior is replaced by a loop pattern: BS sequences start
and end at ωmax where they approach the vacuum configu-
ration. For excited rotating BSs with odd parity, the
frequency dependence pattern has not been studied yet.
The aim of this paper is to construct chains of rotating

BSs and analyze their properties. In the nonrotating case,
chains with two constituents were first considered by
Yoshida and Eriguchi [30] and then generalized to larger
numbers of constituents in Ref. [31]; they consist in static,
axisymmetric equilibrium configurations interpreted as
several BSs located along the symmetry axis which are

tied together by the gravitational attraction and are kept
apart from each other by a scalar repulsion [32,33]. Adding
a nonzero angular momentum to these solutions is a very
natural generalization and we numerically construct the
rotating chains. While the numerical scheme commonly
employed in the literature is based on the finite difference
method [34,35], we use a different algorithm to solve the
nonlinear elliptic partial differential equations (PDEs): the
finite element method.
The rest of the paper is organized as follows. In Sec. II,

we describe the model, recalling the action, the general
field equations and the conserved quantities. We also give
the ansatz for the axisymmetric fields and specify the
boundary conditions. In Sec. III, we present our numerical
approach based on the finite element solver FreeFem++ [36].
In Sec. IV, we reproduce sequences of already known
solutions—rotating BSs with even/odd parity [8,15] and
nonrotating chains of BSs [31]—to test our numerical
solver; we also construct new rotating solutions in this
section and analyze their properties and their flat space
limit. Section V gives our conclusions and perspectives. In
the Appendix, we give the coupled set of elliptic PDEs to be
solved. The metric signature is chosen to be ð−;þ;þ;þÞ.

II. THE MODEL

A. Action and conserved quantities

We consider the theory of a complex scalar field Φ
minimally coupled to Einstein’s gravity. The (dimension-
less [37]) action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
4α2

−
1

2
gμνð∂μΦ�

∂νΦþ ∂νΦ�
∂μΦÞ

− UðjΦj2Þ
�
; ð1Þ

where R is the Ricci scalar of the spacetime metric gμν, α is
the gravitational coupling andU is the scalar field potential.
The simplest BSs can be obtained with a potential con-
taining only a mass term [11,12] but here we consider a
self-interacting potential

UðjΦj2Þ ¼ jΦj6 − λjΦj4 þ u20jΦj2; ð2Þ

where u0 is the mass of the scalar excitations around the
vacuum (boson mass) and λ > 0 is a parameter determining
the self-interactions.
If we remove gravitational interactions and fix the

background metric to be Minkowski, the theory describes
the so-called Q-balls, intensively studied in the literature
[2,3,5,6,8,15,38–40]. In this sense, BSs contained in the
theory (1) with the sextic potential (2) can be seen as
gravitating Q-balls. The values of parameters in the
potential are those commonly employed in the literature
(see for example Refs. [6,8,15])
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u20 ¼ 1.1; λ ¼ 2: ð3Þ

With these values, the potential has a global minimum at
jΦj ¼ 0 for which it vanishes and a local minimum at some
finite value of jΦj.
Varying the action (1) gives the field equations which

consist in a nonlinear Klein-Gordon equation

�
∇μ∇μ −

dU
djΦj2

�
Φ ¼ 0; ð4Þ

together with the Einstein equation

Eμν ≡ Rμν −
1

2
gμνR − 2α2Tμν ¼ 0; ð5Þ

where Tμν is the stress-energy tensor which reads

Tμν ¼ ∂μΦ�
∂νΦþ∂νΦ�

∂μΦ

−gμν

�
1

2
gαβð∂αΦ�

∂βΦþ∂βΦ�
∂αΦÞþUðjΦj2Þ

�
: ð6Þ

We are interested in stationary axisymmetric solutions,
and therefore the spacetime possesses two Killing vector
fields which are, in adapted coordinates

ξ ¼ ∂t; χ ¼ ∂φ; ð7Þ

where t, φ are respectively the asymptotic time and
azimuthal coordinates. We also assume that spacetime is
asymptotically flat and therefore, the mass M and angular
momentum J of the solutions can be obtained from the
Komar expressions [41]

M ¼ 1

α2

Z
Σ
RμνnμξνdV

¼ 2

Z
Σ

�
Tμν −

1

2
gμνT

�
nμξνdV; ð8Þ

J ¼ −
1

2α2

Z
Σ
RμνnμχνdV

¼ −
Z
Σ

�
Tμν −

1

2
gμνT

�
nμχνdV; ð9Þ

where Σ is a spacelike hypersurface, nμ is the normal vector
to Σ such that nμnμ ¼ −1 and we have used the Einstein
equation (5) in the second equalities to replace the Ricci
tensor Rμν by the stress-energy tensor.
In addition, the theory (1) possesses a global Uð1Þ

symmetry corresponding to the invariance under trans-
formations Φ → Φeiβ, with a constant β. The 4-current
associated to this symmetry is

jμ ¼ −iðΦ∂μΦ� −Φ�
∂μΦÞ; ∇μjμ ¼ 0; ð10Þ

and integration over a spacelike hypersurface Σ of its
timelike component gives the conserved Noether charge

Q ¼
Z
Σ
jμnμdV: ð11Þ

B. Ansatz and boundary conditions

In a system of adapted coordinates for which the Killing
vectors are given by Eq. (7), the stationary axisymmetric
spacetime metric is independent of t, φ and the line element
can be put in the Lewis-Papapetrou form [42,43]

ds2 ¼ −fdt2 þ l
f

�
hðdr2 þ r2dθ2Þ

þ r2sin2θ

�
dφ −

w
r
dt

�
2
�
; ð12Þ

where the four functions f, l, h and w depend on the quasi-
isotropic spherical coordinates ðr; θÞ. The symmetry axis of
spacetime is the set of points such that the norm χμχμ ¼
ðl=fÞr2 sin2 θ is vanishing. It corresponds to θ ¼ 0 or π
(the z axis in cylindrical coordinates). The Minkowski
spacetime is recovered when f ¼ l ¼ h ¼ 1 and w ¼ 0.
For the scalar field Φ we adopt the stationary ansatz

commonly used in the Q-ball/BS literature [14]

Φ ¼ ϕðr; θÞeiωtþimφ; ð13Þ
where ϕ is a real function, ω is the constant frequency
parameter and m is the constant rotational number. The
latter has to be an integer to ensure the single valuedness of
the scalar field. We will assume without loss of generality
that m is positive. Note that the harmonic time and
azimuthal dependences disappear at the level of the
stress-energy tensor and factorize in the field equations.
As pointed out in the Introduction, solitonic solutions to the
field equations will exist in a finite frequency range. In the
Q-ball case, the boundaries of this range are completely
determined by the shape of the potential [6] whereas for
BSs, the lower bound will also depend on the gravitational
coupling α and the rotational number m.
With the line element (12), the normal vector in Eqs. (8),

(9), and (11) is n ¼ ffiffiffi
f

p
dt and the volume element is

dV ¼ ð1= ffiffiffi
f

p Þ ffiffiffiffiffiffi−gp
drdθdφ so that the charge and mass are

Q ¼ 4π

Z
∞

0

dr
Z

π

0

dθr2 sin θ
l3=2h
f2

�
ωþmw

r

�
ϕ2; ð14Þ

M ¼ 4π

Z
∞

0

dr
Z

π

0

dθr2 sin θ
l3=2h
f2

×

�
fUðϕ2Þ − 2ω

�
ωþmw

r

�
ϕ2

�
; ð15Þ

while for the angular momentum, one finds the quantiza-
tion relation
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J ¼ mQ; ð16Þ

which was first derived in Ref. [14].
Alternatively, M and J can be read off from the

asymptotic expansions of the functions f and w [44]

M ¼ 2π

α2
lim
r→∞

r2∂rf; J ¼ 2π

α2
lim
r→∞

r2w: ð17Þ

Since the computation of the mass and angular momentum
fromEqs. (15)–(16) should agreewith Eq. (17), this provides
a way to check the numerical accuracy of our solutions.
Now injecting Eqs. (12)–(13) into the Einstein-Klein-

Gordon equations (4)–(5) gives a coupled set of five PDEs
for the unknown functions ϕ, f, l, h, w whose explicit
expressions are given in the Appendix. The set of PDEs is
elliptic and is solved as a boundary value problem with
appropriate boundary conditions.
Because the theory depends only on the norm of the

scalar field jΦj, the solutions are classified according to the
behavior of the function ϕ under reflections with respect to
the equatorial plane θ ¼ π=2,

P ¼ 1 ðeven parityÞ : ϕðr; π − θÞ ¼ ϕðr; θÞ;
P ¼ −1 ðodd parityÞ : ϕðr; π − θÞ ¼ −ϕðr; θÞ: ð18Þ

The geometry, however, is left invariant under these
reflections,

fðr; π − θÞ ¼ fðr; θÞ; lðr; π − θÞ ¼ lðr; θÞ;
hðr; π − θÞ ¼ hðr; θÞ; wðr; π − θÞ ¼ wðr; θÞ: ð19Þ

This allows us to reduce the integration domain to
ðr; θÞ ∈ ½0;∞Þ × ½0; π=2�.
For r → ∞ the metric is assumed to approach the

Minkowski metric and the scalar field goes to its vacuum
value. Therefore the boundary conditions at infinity are

fjr→∞ ¼ 1; ljr→∞ ¼ 1; hjr→∞ ¼ 1;

wjr→∞ ¼ 0; ϕjr→∞ ¼ 0: ð20Þ

Then regularity of the solutions at the origin requires that

∂rfjr¼0 ¼ 0; ∂rljr¼0 ¼ 0;

hjr¼0 ¼ 1; wjr¼0 ¼ 0; ð21Þ

while for the scalar field

∂rϕjr¼0 ¼ 0 if m ¼ 0 and P ¼ 1;

ϕjr¼0 ¼ 0 otherwise: ð22Þ

Reflection symmetry with respect to the equatorial plane
requires that

∂θfjθ¼π=2 ¼ 0; ∂θljθ¼π=2 ¼ 0;

∂θhjθ¼π=2 ¼ 0; ∂θwjθ¼π=2 ¼ 0; ð23Þ

while the conditions for the scalar field depend on the
parity,

∂θϕjθ¼π=2 ¼ 0 if P ¼ 1;

ϕjθ¼π=2 ¼ 0 if P ¼ −1: ð24Þ

Finally axial symmetry and regularity imply on the sym-
metry axis the conditions

∂θfjθ¼0 ¼ 0; ∂θljθ¼0 ¼ 0;

hjθ¼0 ¼ 1; ∂θwjθ¼0 ¼ 0; ð25Þ

and for the scalar field

∂θϕjθ¼0 ¼ 0 if m ¼ 0;

ϕjθ¼0 ¼ 0 if m ≥ 1: ð26Þ

Furthermore, the absence of a conical singularity also
requires that ∂θhjθ¼0 ¼ 0. This additional constraint is
not imposed in practice but we checked that it effectively
holds after the resolution, up to numerical accuracy.
Let us also mention that the finite energy condition for

the scalar field at infinity also gives us the maximal bound
for the field frequency

ω ≤ ωmax ¼ u0; ð27Þ

which ensures an asymptotically exponential falloff of the
scalar field function.

III. NUMERICAL APPROACH

To construct rotating BSs and chains of them, the set of
five coupled nonlinear elliptic PDEs for the functions
ðϕ; f;l; h; wÞ is solved numerically with the boundary
conditions defined in the previous section. Numerical
computations are performed using the finite element solver
FreeFem++ [36] together with the Newton-Raphson method
to treat nonlinear equations. There are very few examples in
the literature of using the finite element method in general
relativity, e.g., Zeng et al. [45] used it in the context of BSs,
but the software they employed was not mentioned. To our
knowledge, this is the first time that the FreeFem++ solver has
been used for relativistic gravitational problems.
The finite element scheme requires equations to be in a

weak form. As a first step, Eqs. (A1)–(A5) are multiplied
by f=ðr2lhÞ such that the second derivative terms are

f
lh

∂
2
rX þ f

r2lh
∂
2
θX ¼ ½…�; ð28Þ
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with X denoting the functions ϕ; f;l; h and w. This is
the structure of the Laplace-Beltrami operator Δϕ≡
1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp

gμν∂νϕÞ for the metric given in Eq. (12). To

avoid the use of a cutoff radius, we introduce a new
compactified coordinate

x≡ r
1þ r

; ð29Þ

which maps the semi-infinite interval r ∈ ½0;∞Þ to a finite
one x ∈ ½0; 1�. Finally, the PDEs are multiplied by test
functions, integrated over the whole domain, and the
second derivatives are integrated by parts.
The main advantage of the finite element scheme is that

one is not restricted to a regular, rectangular grid for
discretization. The FreeFem++ software has its own internal
mesher which allows for irregular (triangular) meshes [36].
Typically we choose a nonuniform repartition of triangles
with a higher density close to infinity at x ¼ 1; however,
depending on the solution profiles, we can also choose a
higher density close to the origin at x ¼ 0 or close to the z
axis at θ ¼ 0.
The Einstein equation (5) contains two components,

Er
θ ¼ 0, Er

r − Eθ
θ ¼ 0, which are not solved in practice.

Integrating them over a spacelike hypersurface gives an
estimation of numerical errors. In addition, we also evaluate
the relative difference on the mass and angular momentum
computed from Eqs. (15)–(16) and from Eq. (17). We have
noticed that increasing the number of points Nθ in the θ
direction does not significantly change the errors.
Therefore, we fix Nθ ¼ 25 and present the dependence
of the error indicators on the number of points Nx in the x
direction in the left panel of Fig. 1. In the rest of the paper,
we choose Nx ¼ 200 so that our typical errors are at most
of the order of 10−5 and the computation time for obtaining
one solution on a personal computer with a parallelized
code is about 30 seconds.

The right panel of Fig. 1 shows a convergence test of
our code. We compute the mass and the charge for
increasing values of Nx and evaluate the differences
ΔM≡MðNx þ 1Þ −MðNxÞ, ΔQ≡QðNx þ 1Þ −QðNxÞ.
The latter are shown against Nx in the figure with a
logarithmic scale for both axes. After an oscillating phase
when the number of points is too small, all the curves
become straight lines with a slope of −4. This shows a
fourth-order convergence in the number of mesh points.
The input parameters of our code are the gravitational

coupling α, the scalar field’s frequency ω and the rotational
number m. The parity is imposed via the appropriate
boundary conditions while the number of individual
constituents of the chain is fixed by a suitable initial guess
of the ϕ function. For the metric functions, the initial guess
is chosen to be Minkowski. We start with a small
gravitational coupling α together with an input value for
ω close to ωmax. Once a solution is obtained, α can be
increased by small steps and we construct sequences of BSs
by varying ω also by small steps.

IV. THE SOLUTIONS

We have constructed numerical solutions corresponding
to chains of rotating BSs. Some of them had already been
considered in the literature—for example, even (odd) parity
configurations of Ref. [15] correspond to single BSs (BS
pairs)—but we have also constructed solutions which have
never been studied before.
What we call the number of constituents in the chain

corresponds to the number of extrema of the scalar field
amplitude ϕ or, equivalently, the number of maxima of the
energy density. Chains of BSs are classified according to
the parity of the scalar field function: chains with an even
(odd) number of constituents have an odd (even) ϕ profile.
To illustrate this, we present in Fig. 2 typical examples of

rotating solutions where the different functions of interest,
ϕ, Tt

t, f, are plotted against the quasi-isotropic cylindrical

FIG. 1. Left panel: various error indicators against the number of points Nx in the x direction for a typical chain of BSs with three
constituents. Right panel: differences ΔM ≡MðNx þ 1Þ −MðNxÞ and ΔQ≡QðNx þ 1Þ −QðNxÞ for typical chains with two and
three constituents against Nx. Note that the peaks of the curves occur because of the logarithmic scale when the plotted quantities are
coincidentally close to zero.
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coordinates ρ ¼ r sin θ and z ¼ r cos θ. Single BSs are
shown in the first row, and the ϕ function (left column)
shows a single peak—just as the energy density Tt

t does
(middle column)—and has a parity P ¼ 1. Pairs of BSs are
shown in the second row, and the scalar field amplitude is

now antisymmetric: it has a parity P ¼ −1 with one peak
and one trough. Therefore the number of extrema is two
while the energy density possesses two symmetric peaks,
i.e., two maxima. We also show the lapse squared function
f (right column); its profile exhibits as many minima as the

FIG. 2. Chains of BSs with one to five constituents (from top to bottom) on the fundamental branch for α ¼ 0.25, ω ¼ 0.9 andm ¼ 1.
The plots represent the scalar field amplitude ϕ (left), the energy density Tt

t (middle) and the metric function f (right) against the
cylindrical coordinates ðρ; zÞ.
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number of constituents in the chain and they are located
where the maxima of the energy density are. For chains
with a larger number of constituents, the profiles present
very similar features: the ϕ amplitude shows alternating
peaks and troughs which are related to symmetric peaks for
the energy density and symmetric troughs for the lapse.
Considering a surface of constant energy density gives the
spatial structure of the solutions. Single BSs have a typical
torus shape just like rotating Q-balls (see e.g., Ref. [39]),
pairs have a double tori shape, triplets correspond to triple
tori and so on. All these solutions are rotating generaliza-
tions of the static chains presented in Ref. [31].

A. Single boson stars and pairs

Wewill now recall the main results on single and pairs of
BSs [8,15]. The solutions emerge from the vacuum at the
maximal value of the scalar field frequency ωmax ¼ u0.
Contrary to their flat space counterparts (rotating Q-balls)
the mass M and charge Q of BSs do not diverge in this
upper limit but rather vanish. Decreasing ω spans the first
or fundamental branch of solutions; it ends at a frequency
ωmin whose value depends on the gravitational coupling α
and the rotational number m. Considering the upper panels
of Fig. 3, one sees that the massM remains finite when the

minimal frequency is reached but the curves show their first
backbending. Then the sequences of solutions can be
extended by moving towards larger frequencies. Second
branches of solutions start after the first backbendings, third
branches after the second backbendings, etc.
The curves for single and pairs of BSs exhibit an

inspiraling behavior, approaching a limiting solution at
the center of the spirals. A complete determination of
spirals is however extremely difficult in general [8].
Therefore to avoid very time-consuming numerical com-
putations, we only present the first few branches in our
figures. If we traced ðω; QÞ diagrams they would show a
similar inspiraling pattern as was seen in Refs. [8,15].
Examples of profiles for solutions on the second branch can
be seen in Fig. 4. For the chains with one or two
constituents considered in this subsection, the main features
remain unchanged but the extrema of the scalar field
amplitude and the energy density are sharper and closer
to the z axis as compared to solutions on the fundamental
branch. This means that the ϕ function presents in this
region very high second derivatives, rendering the numeri-
cal computations more challenging.
We also present the frequency dependence of the

maximal value of the scalar field function ϕmax (lower left
panel) and the minimal value of the metric function fmin

FIG. 3. Scaled mass M (upper panels), maximal value of the scalar field amplitude ϕmax (lower left panel), and minimal value of the
metric function fmin (lower right panel) against the frequency ω for single BSs (dash-dotted curves) and pairs (solid curves). Different
values of the rotational numberm and gravitational coupling α are presented. The onset of ergoregions is indicated by red dots. The scale
for fmin is quadratic.
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(lower right panel). Instead of an inspiraling behavior, these
two quantities present damped oscillations. On the one
hand, the maximal value of the scalar field amplitude goes
from zero at ωmax when the solutions emerge and then
grows as we move to the different branches. On the other

hand, the minimal value of the lapse function begins from
the vacuum value

ffiffiffiffiffiffiffiffiffi
fmin

p ¼ 1, and then approaches zero
after (presumably) infinitely many oscillations.
From the comparison between the curves for α ¼ 0.25

(upper left panel) and α ¼ 1 (upper right panel), one can

FIG. 4. Chains of BSs with one to five constituents on the second branch with m ¼ 1, α ¼ f0.25; 0.25; 0.25; 0.25; 0.15g and ω ¼
f0.5; 0.7; 0.7; 0.7; 0.7g (from top to bottom). The plots represent the scalar field amplitude ϕ (left), the energy density Tt

t (middle) and
the metric function f (right) against the cylindrical coordinates ðρ; zÞ.
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see that a larger gravitational coupling α increases the
minimal value of the frequency ωmin and thus reduces
the domain of existence of solutions. The influence of the
rotational number on the value of ωmin is more complicated.
Indeed, for rotating (m ≥ 1) single BSs and pairs of BSs,
increasingm decreases the value of ωmin, but when we pass
from nonrotating (m ¼ 0) to rotating solutions (m ≥ 1),
whether the minimal frequency increases or decreases
depends on the gravitational coupling α. For example,
ωmin increases for BS pairs with α ¼ 0.25 if we compare
the m ¼ 0 to the m ¼ 1 sequence (upper left panel of
Fig. 3). In contrast, for α ¼ 1.0 (upper right panel), ωmin
decreases when m goes from 0 to 1.
The figures also show the onset of ergoregions which

occurs only when m ≥ 1. The ergosurface is defined as the
set of points such that

gtt ¼ −f þ l
f
w2sin2θ ¼ 0; ð30Þ

and the ergoregion resides inside this hypersurface. Thus in
the static case, one has w ¼ 0 so that gtt ¼ −f is always
nonzero. The onset of ergoregions is indicated by red dots
on the curves. Generically, an ergoregion emerges on the
first or second branch and then the solutions further down
the spiral all possess one. The presence of an ergoregion for
regular objects like BSs is related to a superradiant
instability [16] and a light ring instability [46].
Therefore the physical relevance of solutions which have
an ergoregion is reduced.
Finally, we have also computed the Ricci scalar R and

the Kretschmann scalar K ¼ RαβμνRαβμν for sequences of
single BSs and pairs. We present in Fig. 5 their maximal
values as functions of the frequency ω. This provides new
information about the limiting configuration at the center of
the spirals. Indeed, the curves start from zero when the
solutions emerge from the flat vacuum and then the
increase of Rmax orKmax as one moves towards the different
branches becomes larger and larger. If the spirals are indeed

infinite, it strongly suggests that the curvature invariants
diverge and become infinite for the limiting solutions. As a
result, the latter are certainly singular and thus unlikely to
be numerically obtained.

B. Chains with odd numbers of constituents

Let us consider higher chains of BSs with an odd number
of constituents. The scalar field amplitude of such solutions
is characterized by an even parity (P ¼ 1) with one BS
being centered in the equatorial plane and the other ones
located symmetrically in the upper and lower semispaces;
see for example the triplet and quintet in Fig. 2.
Interestingly, the properties of such chains are very differ-
ent from those of single BSs. The ðω;MÞ diagrams for
triplets are shown in Fig. 6. For all rotating solutions
(m > 0) the curves no longer present the inspiraling
behavior but instead form nontrivial loops. There are only
two branches of solutions: a first one starting at the
maximal value of the scalar field frequency ωmax, extending
until the backbending is reached, and a second branch
leading all the way back to the vacuum configuration.
The denominations first and second branches can thus

seem ambiguous in this case but one can distinguish
solutions belonging to one or the other. Indeed, on the
fundamental branch, when ω is close to its maximal value
(high-frequency regime), the peaks and troughs of the ϕ
profile (left column of Fig. 2) are similar in shape and
located along a line parallel to the z axis whereas on the
second branch, the central BS dominates in amplitude and
the different constituents no longer form a line. For
example in the third row of Fig. 4, the two satellites are
located at a larger ρ coordinate than the central BS. In
addition, on the second branch, the central trough of the f
profile overlaps with that of the satellites (right column of
Fig. 4). With regards to ðω;MÞ diagrams, for a given value
of the frequency ω close to ωmax, the fundamental branch is
always the one with a lower mass. This suggests that the
fundamental branch in the high-frequency regime is more

FIG. 5. Maximal values of the Ricci scalar R and the Kretschmann scalar K against the frequency ω for single BSs (dash-dotted
curves) and pairs (solid curves) with m ¼ 1 and two different values of the gravitational coupling α.
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stable than the second branch. However for lower values
of ω, this mass hierarchy is inverted.
As seen in the upper left panel of Fig. 6, the curves for

different values of the gravitational coupling α present
different features. Although the two branches always inter-
sect at some value of the frequency, the curves in the low-
frequency regime can present more complicated patterns
whenα is small. For example the curves forα≳ 0.25 are very
similar in shape but for α ¼ 0.15, the second branch exhibits
two successive backbendings before returning to the vacuum
configuration. One can also see that ergoregions do not

necessarily occur: for BS triplets with rotational number
m ¼ 1, they only appear below a critical value αcr ≲ 0.25.
Because of the loop structure, if there is an onset of
ergoregion (red dots), a termination (red triangles) neces-
sarily occurs: the second branch terminates at the flat vacuum
configuration which obviously does not have ergoregions.
Thus the solutions in the high-frequency regime should not
have one either. Finally, as for single BSs, increasing the
value of α reduces the domain of existence of solutions.
We have also investigated the influence of the rotational

number on odd chains; see the upper right panel of Fig. 6

FIG. 6. Triplet of BSs: the ω dependence of the scaled mass M for different gravitational coupling α and rotational number m (upper
panels), maximal value of the scalar field amplitude ϕmax (middle left panel), minimal value of the metric function fmin (middle right
panel) and maximal values of the curvature invariants R, K (lower panel) for different values of α andm ¼ 1. The onset and termination
of ergoregions are indicated respectively by red dots and triangles. In the upper right panel, the curve for BS quintets with m ¼ 1 is also
shown for comparison.
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where sequences of solutions have been constructed with a
fixed value of α andm ¼ 0, 1, 2. A larger rotational number
seems to increase the minimal value of the scalar field
frequency and thus reduces the domain of existence of the
solutions. We also note that rotating odd chains have a
different branch structure than the static ones. Indeed, for
m ¼ 0, α ¼ 0.15, the nonrotating triplets exhibit the same
inspiraling pattern as single and pairs of BSs. In fact, as
noted in Ref. [31], static triplets can have a loop structure
for large gravitational coupling whereas rotating triplets
seem to never show the spiral pattern, even when α is small.
More importantly, the authors of Ref. [31] had shown that
when the nonrotating odd chains present the loop structure
(large α), the second branch overlaps with the fundamental
branch of a spherically symmetric radially excited single
BS sequence.
We expected a similar phenomenon for rotating odd

chains because they present a loop structure. However it
turns out that our solutions coincide exactly with excited
rotating single BSs previously constructed in Ref. [29]. On
the one hand, we have found no other solutions different
from the radially excited BSs of Ref. [29]. On the other
hand, the chain structure of the solution profiles (see Fig. 2)
is in total agreement with their nonrotating counterparts—
the static chains of Ref. [31]. We conclude that rotating
chains with an odd number of constituents exist, and
correspond to radial excitations of single BSs. To support
this result, we present in Fig. 7 the mass of single BSs,
triplets and quintets versus their charge Q. One can see that
for a given charge, the less energetic solution always lies on
the sequence of single BSs. Even in the region where the
different curves overlap, the single BS sequence is still
below the two others. Therefore if triplets and higher odd
chains are unstable, they could possibly radiate their energy
keeping their charge fixed, and decay into a single BS. To
rigorously confirm such a scenario, fully time-dependent
simulations would be required, which is out of the scope of
the present paper.

For the sake of completeness, we also show in the middle
and lower panels of Fig. 6 the maximal value of the scalar
field amplitude ϕmax, the minimal value of the metric
function fmin and the maximal values of the curvature
invariants Rmax, Kmax against the frequency ω for BSs
triplets. The curves also form loops but contrary to the
ðω;MÞ diagrams they do not intersect. It is worth noting
that whereas single BSs and pairs with fixed rotational
number m could be uniquely parametrized by ϕmax, fmin,
Rmax or Kmax, this is not possible for higher odd chains
because of the loop structure. This peculiarity was also
noted in Ref. [29] but with another parameter.
We have checked that this loop behavior occurs for the

BS quintets (see the upper right panel of Fig. 6) and expect
this scenario to represent a generic pattern for all rotating
chains with a higher odd number of constituents.

C. Chains with even numbers of constituents

We now turn to rotating chains with a higher even
number of constituents. Such solutions are characterized by
the odd parity P ¼ −1 of their ϕ amplitude just like BS
pairs. Although they are very natural generalizations of the
previously obtained configurations [15,31], this is the first
time that such solutions have been explicitly constructed.
Whereas the triplets and higher odd chains have a different
branch structure than single BSs, the ðω;MÞ diagrams for
even chains are all similar to those for BS pairs. Indeed, one
can see in the upper panels of Fig. 8 the inspiraling
behavior with (presumably) infinitely many branches. In
the upper left panel, the rotational number is fixed (m ¼ 1)
and we consider different values for the gravitational
coupling. Again, larger values for α yield a smaller domain
of existence of the solutions. Like rotating pairs, the
sequences present an ergoregion onset (red dots) and all
solutions located further down the spiral possess one.
At the same time, the higher even chains of BSs also

share some properties with the odd chains. For example, in
the upper right panel of Fig. 8 we show sequences of
quartets with α ¼ 0.15, m ¼ 0, 1, 2 and one can see that
solutions with a larger rotational number have a smaller
domain of existence just like the triplets of Fig. 6. Another
similarity with the odd chains is the profile of the solutions
as we move on the second branch. Configurations of the
fundamental branch begin with all constituents aligned and
parallel to the z axis (see fourth row of Fig. 2) whereas on
the second branch, the central BS pair dominates in
amplitude and the satellites are located at a larger ρ
coordinate than the two central constituents (see fourth
row of Fig. 4). Further in the sequence, the situation
between odd and even configurations becomes different.
For odd chains, the amplitude of extrema globally
decreases as the solutions dissolve to the trivial vacuum;
see for example the middle left panel of Fig. 6 where the
maximal value ϕmax of the scalar field amplitude for triplets
is shown. In contrast for even chains, only the amplitude of

FIG. 7. Scaled massM against the scaled chargeQ for chains of
BSs with odd numbers of constituents with m ¼ 1 and α ¼ 0.15.
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the outer satellites decreases while the central pair con-
tinues to grow in amplitude as we move to the different
higher branches; see the middle left panel of Fig. 8 where
ϕmax vs ω is shown for quartets.
Unfortunately, we cannot conclude on the finiteness of

the maximal value of the scalar field amplitude ϕmax at the
center of spirals since the central pair of the ϕ profile
becomes extremely sharp, rendering the numerical compu-
tation very challenging. Regarding the minimal value of the
metric function fmin, one can see in the middle right panel
of Fig. 8 that it approaches zero as we move towards more
involved spirals.

Even if it is unclear weather the scalar field function
remains finite or not as we approach the center of spirals,
the limiting solutions are certainly singular. This can be
inferred from the lower panel of Fig. 8 where the maximal
values of curvature invariants R and K are presented as
functions of the frequency ω. These values increase as one
moves towards the different branches, and the increase
itself becomes larger and larger, suggesting that the
curvature invariants diverge for the limiting configurations.
We expect the spirals to occur for all even chains,

although so far we have checked it only for quartets and
sextets.

FIG. 8. Quartet of BSs: the ω dependence of the scaled massM for different gravitational coupling α and rotational number m (upper
panels), maximal value of the scalar field amplitudeϕmax (middle left panel),minimal value of themetric function fmin (middle right panel)
andmaximal values of the curvature invariantsR,K (lower panel) for different values ofα andm ¼ 1. The onset of ergoregions is indicated
by red dots. Note the quadratic scale for fmin. In the upper right panel, the curve for BS sextets withm ¼ 1 is also shown for comparison.
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Finally we conjecture that the chains with a higher even
number of constituents also coincide with excitations of BS
pairs just as the chains with a higher odd number of
constituents are radial excitations of single BSs. In support
of this conjecture, we show in Fig. 9 the masses of pairs of
BSs, quartets and sextets as functions of the charge Q. For
all solutions with an even number of constituents greater
than or equal to four (quartets and sextets in the figure)
there is a pair configuration with the same charge and lower
mass. As for the odd chains of Fig. 7, in the region where
the curves overlap, the sequence of BS pairs is still below
the two others. Therefore, chains with a higher even
number of constituents can decay into a pair of BSs
keeping their charge fixed. As a result, the higher even
chains are probably unstable and can consistently be seen
as excitations of BS pairs.

D. Flat space limit

Let us finally consider the flat space limit of the rotating
chains of BSs as the gravitational coupling α approaches
zero. Constructing full sequences of rotating solutions with
small values of α turns out to be numerically very
challenging [8,15]: only a part of the fundamental branch
can be easily constructed. We have thus fixed the value of
the boson frequency ω by choosing a solution on the
fundamental branch, and then varied only α. We expect our
results to apply for every BS chains belonging to the
fundamental branches.
In the upper panel of Fig. 10, we present the mass M of

the chains with one to four constituents as a function of the
gravitational coupling α. It appears that limiting solutions
exist when α → 0. For single BSs and pairs, these solutions
are the rotating Q-balls with even and odd parity obtained
in Refs. [6,8,15]. More interestingly, the triplets and
quartets also have Q-ball counterparts in the absence of
gravity; the limiting solutions thus correspond to chains of
Q-balls (also referred to as Q-chains). To our knowledge,
such configurations have never been reported in the
literature although chains of nonrotating Q-balls minimally

coupled to a U(1) gauge field have been constructed
recently [47].
The profile of the scalar field function ϕ for theQ-chains

is very similar to those of BSs; see the upper panel of
Fig. 11. By increasing the resolution of the mesh used for
the discretization, we have checked that the chains of Q-
balls are numerically stable: increasing the number of grid
points for a given solution does not change the ϕ profile and
in particular, the distance between neighboring constituents
remains unchanged.
We construct the sequences of Q-chains by varying the

frequency ω and present in the lower panel of Fig. 10 their
mass M as a function of ω. The frequency dependence of
the charge Q is qualitatively similar. The main features
already known for single Q-balls or pairs seem to also hold
for chains with higher numbers of constituents. The mass
and the charge diverge in the upper limit of the frequency
domain at ω ¼ ωmax where ωmax is still given by Eq. (27).
The domain is also bounded from below at a finite value of
the frequency determined uniquely in terms of the potential
parameters [6,8,15]

ωQ-ball
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 −

λ2

4

r
: ð31Þ

FIG. 9. Scaled massM against the scaled chargeQ for chains of
BSs with even numbers of constituents withm ¼ 1 and α ¼ 0.15.

FIG. 10. Upper panel: mass M of BS chains with one to four
constituents on the fundamental branch against the gravitational
coupling α for ω ¼ 0.9 and m ¼ 1. Lower panel: massM against
the frequency ω for the chains of Q-balls with one to four
constituents, m ¼ 1.
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Mass and charge diverge as well in this limit. It is worth
noting that contrary to the BS case, the different constitu-
ents of these Q-chains remain aligned throughout the
sequence.
Up to the numerical accuracy, the mass of aQ-chain with

n constituents coincides with n times the mass of a single
Q-ball. This is not very surprising since in the absence of
gravity, the different constituents interact together only via
the scalar interaction which is short ranged. Furthermore,
the distance between neighboring Q-balls in a chain is
sufficiently large to ensure that they almost do not interact
and as a consequence, the energy of the whole Q-chain is
very close to the sum of the energies of the different
constituents taken individually.
It remains to clarify how the higher branches of BS chains

evolve in the flat space limit. For the single BSs, this
analysis has already been carried out by Kleihaus et al. [8].
They found that the spiral is shifted to the low frequencies
and that the minimal frequency for the BSs becomes smaller
than the one forQ-balls as α approaches zero. Therefore for
very small values of α, the BSs belonging to higher branches
in the spiral have their frequency in the range

ω ∈ ½ωminðα → 0Þ;ωQ-ball
min �; ð32Þ

and they do not have a flat space limit with finite charge
or mass.

For the rotating chains of BSs with even numbers of
constituents, the ðω;MÞ diagrams also exhibit the spiraling
pattern. Although we have not been able to construct full
sequences for small values of the gravitational coupling, we
can nevertheless conjecture that the higher branches of BS
chains with even numbers of constituents do not have a
regular flat space limit just like the single BSs.
We now turn to the chains of BSs with an odd number of

constituents. Such configurations have their second branch
starting at ωmin and ending at ωmax where the solutions
converge to the flat vacuum. Choosing a solution on the
second branch and fixing the value of ω, we are able to find
the limiting solution for vanishing gravitational coupling.
We present the α dependence of the mass for BS triplets and
quintets on the second branch and compare to the curves for
the fundamental branch in the upper panel of Fig. 12.
Interestingly, the two flat space solutions are different,
indicating the existence of new families of Q-balls.
We construct the sequences of these new families of

solutions for triplets and quintets and show them in the
lower panel of Fig. 12. For every frequency the second
families are more energetic than the first ones. A typical
example of a ϕ profile for a triplet is shown in the lower
panel of Fig. 11: a central constituent is centered in the

FIG. 11. Q-ball triplets of the first family (upper panel) and
second family (lower panel) with ω ¼ 0.9 and m ¼ 1. The scalar
field functionϕ is plotted against the cylindrical coordinates ðρ; zÞ.

FIG. 12. Upper panel: massM of BS triplets and quintets on the
first and second branches against the gravitational coupling α for
ω ¼ 0.9 and m ¼ 1. Lower panel: mass M against the frequency
ω for the two families of Q-ball triplets and quintets with m ¼ 1.
For comparison, the curve for single Q-balls is also shown.
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equatorial plane and is surrounded by the other companions
but the different constituents are not aligned. We can see
that the two satellites are close to the centralQ-ball and thus
the interaction between them is no longer negligible,
leading to a high energy of the global configuration as
compared to the first family.
As a result, the set of rotating solutions in the Q-ball

theory is much richer than expected. There is still an open
problem to check whether the Q-chains are stable or not. If
the chains of BSs are unstable as we conjecture, it seems
very unlikely that their flat space counterpart would be
stable in the absence of an attractive interaction provided by
gravity.
We expect our results to generalize for higher numbers of

constituents and for all rotational numbersm ≥ 1. However
the flat space limit of the nonrotating (m ¼ 0) chains of BSs
found by Herdeiro et al. [31] remains an open issue. We
have tried the same strategy as in the rotating case to find
the limiting solutions for α → 0 but we obtained numeri-
cally unstable configurations: increasing the grid resolution
leads to an increase of distances between the neighboring
constituents.

V. CONCLUSION AND PERSPECTIVES

We have addressed the rotating generalization of the
static chains of BSs reported recently in Ref. [31]. They are
solitonic configurations of a self-interacting complex scalar
field minimally coupled to Einstein gravity which possess a
harmonic time dependence governed by the boson fre-
quency ω and a nonzero angular momentum. Similar
chains were also studied in Ref. [48] but for a scalar field
without self-interactions. Since the single rotating BSs have
a toroidal shape [8], the chains of BSs we have considered
here consist of a stack of multiple tori.
The scalar field amplitude changes sign between two

neighboring constituents in a chain. This yields a repulsive
scalar interaction between the neighboring BSs [32,33]. For
an equilibrium configuration to exist, the repulsion between
the different constituents has to be balanced by an attractive
interaction. In the present case, this ingredient for the
existenceof chains is providedby thegravitational attraction.
We have numerically constructed the rotating chains of

BSs by using the finite element method implemented in the
FreeFem++ solver. To test the robustness of our code, we have
reproduced already known solutions: rotating single BSs,
pairs [8,15] and nonrotating chains [31]. Convergence tests
have been carried out and they showed a fourth-order
convergence in the number of points used for the discre-
tization. To the best of our knowledge, this is the first time
this finite element software has been used for gravitational
problems and we are confident that it can be used for more
sophisticated models.
We have found rotating chains of BSs with up to six

constituents but they are likely to exist for an arbitrarily
large number of constituents. The solutions exist in a

finite frequency range just like the single BSs or the pairs.
The upper bound is completely fixed by the mass of the
scalar excitations around the vacuum whereas the lower
bound depends on the strength of the gravitational coupling
α and on the rotational number m present in the harmonic
azimuthal dependence of the scalar field. We have con-
structed sequences of solutions with fixed α,m and focused
our interest on the frequency dependence of parameters
such as the mass, the maximal value of the scalar field
function or the maximal values of curvature invariants. We
have also discussed a qualitative argument regarding the
stability of the chains and analyzed their flat space limit as
the gravitational coupling approaches zero.
On the one hand, the sequences of chains with an odd

number of constituents do not present a spiraling pattern
when their mass is considered as a function of the frequency,
as single BSs do. Instead, the ðω;MÞ diagrams form non-
trivial loops starting and ending at the flat vacuum. The
consequence is that such solutions cannot be uniquely para-
metrizedby a single parameter. It turnsout that theBS triplets
were previously obtained in the literature [29] and the
configurations were referred to as radially excited BSs. We
emphasize that the starting point of the present work was the
nonrotating chains ofBSs considered inRef. [31]. Only after
constructing the BS triplets, we discovered that they corre-
spond to the solutions of Ref. [29]. As a result, all the chains
with an odd number of constituents may correspond to
excitations of a single BS. To illustrate this, we have shown
that for a fixedNoether charge, triplets and quintets aremore
energetic than a single BS.We expect this mass hierarchy to
also hold for all chains with a higher odd number of
constituents. Because the charge is related to the number
of particles in a configuration and has to be conserved,
triplets, quintets and other higher odd chains are likely to
decay into a single BS with the same number of particles or
equivalently, with the same charge. When the gravitational
coupling approaches zero, the odd chains of BSs reduce to
twodifferent familiesofQ-ball chainswhichhaveneverbeen
reported in the literature.
On the other hand, the sequences of chains with an even

number of constituents present a spiraling frequency
dependence of their mass and an oscillating pattern when
the maximal value of the scalar field, the minimal value of
the lapse or the maximal values of the curvature invariants
are considered as functions of the frequency. Furthermore,
the evolution of curvature invariants along the sequences
indicates that the limiting solutions at the centers of spirals
are certainly singular. We have also found chains ofQ-balls
with even numbers of constituents corresponding to the flat
space limit of even BS chains. Although we have checked
these properties only for pairs, quartets and sextets, we
expect our results to be generic for all chains with a higher
even number of constituents. Similarly as for the odd
chains, we have shown that for a given charge, the quartet
and the sextet are more energetic than the fundamental BS
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pair and are thus likely to be unstable. As a result, we
conjecture that all the chains with a higher even number of
constituents correspond to excitations of BS pairs.
A dynamical study of the chains of BSs is still lacking,

both to confirm the possible decay of the chains with a
number of constituents greater than or equal to three into
single BSs or pairs and to find potential scenarios for the
formation of these objects. It is worth noting that the
dynamical evolution of such a nonlinear physical system is
certainly very complex and cannot be inferred from the
present work. Although some numerical time evolution and
stability analysis of BSs with a self-interacting potential

have already been performed [21,49–51], they only con-
cerned nonrotating or rotating single BSs [52]. In any case,
the onset of ergoregions in the sequences of BS chains
indicates the presence of an instability for the configura-
tions which possess one.
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APPENDIX: SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

The set of coupled elliptic PDEs we obtain after injecting the ansatz (12)–(13) into the field equations is the following:

r2ϕ;rr þ ϕ;θθ þ 2rϕ;r þ cot θϕ;θ ¼ −
h
f2

ðlðrωþmwÞ2 − r2lfU0ðϕ2Þ − f2m2 csc2 θÞϕ −
1

2l
ðr2l;rϕ;r þ l;θϕ;θÞ; ðA1Þ

r2f;rr þ f;θθ þ 2rf;r þ cot θf;θ ¼
l
f
ð8α2hðrωþmwÞ2ϕ2 − 4r2α2fhUðϕ2Þ þ sin2 θðw − rw;rÞ2 þ sin2 θw2

;θÞ

þ 1

f
ðr2f2;r þ f2;θÞ −

1

2l
ðr2l;rf;r þ l;θf;θÞ; ðA2Þ

r2l;rr þ l;θθ þ 3rl;r þ 2 cot θl;θ ¼
8α2l2h
f2

ððrωþmwÞ2ϕ2 − r2fUðϕ2ÞÞ − 8α2m2 csc2 θlhϕ2 þ 1

2l
ðr2l2

;r þ l2
;θÞ; ðA3Þ

r2w;rr þ w;θθ þ 2rw;r þ 3 cot θw;θ ¼ 8α2 csc2 θmhðrωþmwÞϕ2 þ 2w −
2

f
ðrf;rðw − rw;rÞ − f;θw;θÞ

þ 3

2l
ðrl;rðw − rw;rÞ − l;θw;θÞ; ðA4Þ

r2h;rrþh;θθþ rh;r¼
4α2h2

f2
ðr2flUðϕ2Þþð3m2 csc2 θf2−lðrωþmwÞ2Þϕ2Þ−4α2hðr2ϕ2

;rþϕ2
;θÞþ

2h
l
ðrl;rþ cotθl;θÞ

−
h
2f2

ðr2f2;rþf2;θÞþ
3hl
2f2

sin2 θððw− rw;rÞ2þw2
;θÞþ

h
2l2

ðr2l2
;rþl2

;θÞþ
1

h
ðr2h2;rþh2;θÞ; ðA5Þ

where we have introduced the compact notation ϕ;μ ≡ ∂μϕ.
If we fix the metric to be Minkowski f ¼ l ¼ h ¼ 1, w ¼ 0 and set to zero the gravitational coupling α, only one PDE

remains, Eq. (A1), and it describes rotating Q-balls.
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