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We study scalar test-field perturbations on top of a Kerr–black-bounce background, i.e., a family of
rotating regular black holes and/or rotating traversable wormholes that can mimic Kerr black holes. We
compute the quasinormal modes for a massless field in both the regular black holes and wormhole
branches, confirming the stability of the former and identifying a set of growing modes that renders the
latter unstable. We further compute the superradiance amplification factors, for massless and massive
fields, in the regular black hole branch, confirming that these objects superradiate, though to a lesser degree
than the corresponding Kerr black holes.
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I. INTRODUCTION

Over the past century, general relativity (GR) and black
holes have been extensively tested with great success. In
particular, the recent detection of gravitational waves from
the coalescence of binary compact objects [1–4] and the
observation of the shadow cast by the supermassive body at
the center of M87 [5] were huge leaps in the direction of
getting a direct confirmation about the existence of black
holes and thus testing the robustness of GR. Nonetheless,
the existence of singularities in GR and the inability to
resolve them within the classical framework of the theory
indicates the breakdown/incompleteness of the theory at
high energy scales (typically in the Planckian regime) and
in particular at black hole cores. While it is widely believed
that quantum effects may cure singularities, we currently
lack a consistent UV-complete quantum theory of gravity to
settle the issue. However, we can still gain relevant insights
by postulating different quantum gravity scenarios and
studying the corresponding regularized effective spacetime
geometries stemming from them. Indeed, current observa-
tional bounds/constraints on compact objects leave room
for studying and speculating about some of these geom-
etries as black-hole alternatives/mimickers [6,7]. To this
end, a large number of models—inspired by quantum
gravity scenarios and other arguments—have been pro-
posed over the years. Only a few of them, however,
represent viable outcomes of gravitational collapse [8,9].
Two examples in this category are regular black holes
(trapped regions characterized by a regular core) and
wormholes. Instances of both these types of compact
objects are commonly seen in the literature (particularly
within semiclassical or quantum theories of gravity) [10],

and for this reason the research focus is now shifting more
toward testing whether these alternative geometries give
rise to characteristic signatures albeit closely mimicking the
typical features of classical GR black holes.
After the release of the Event Horizon Telescope

Collaboration’s picture of the central massive object of
M87 [5], considerable effort has been put into computing
shadows of well-motivated candidate ultracompact objects
belonging to theories alternative to GR [11]. In order to
probe other plausible signatures of these black-hole mim-
ickers, the computation of the quasinormal modes (QNMs)
has also been the subject of intense scrutiny. Any deviation
from the classical black-hole picture is expected to have
an imprint on the QNM spectrum. Since the postmerger
ringdown of a classical black hole is described in terms of
the QNMs, this opens up the possibility of testing any
deviations from GR by analyzing the ringdown signals as
obtained by LIGO and Virgo [12–15], or in the future by the
proposed third generation detectors [16]. QNMs are com-
puted within the perturbative regime of the background
theory and are sensitive to the boundary conditions imposed
at asymptotic infinity as well as on the horizon [17–19].
Hence any modification to the near-horizon geometry, such
as in the case of the exotic compact objects [20,21], where
the event horizon is removed due to quantum effects (or,
exoticmatter fields), as well as any deviations from thewell-
studied Kerr geometry can be directly linked to gravita-
tional-wave observations via the QNM analysis [22].
Besides studying the QNM spectrum and the shadow

measurements for these black-hole mimickers (or, a few
other candidate spacetimes), as well as looking for devia-
tions from GR, it is also important to explore the stability of
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these objects under small perturbations. In particular, if
they are rotating (mimicking a Kerr black hole) and possess
an ergosphere, one must carefully address the issues arising
due to superradiant instability [23–28]. For example, a
highly reflective as well as rapidly rotating black-hole
mimicker would suffer from superradiant instability
[29–34]. This is because, the amplified (superradiant)
modes get further amplified due to reflection from the
reflective surface in the near-horizon region of the black-
hole mimicker and their repeated passage through the
ergoregion, while for black holes all these amplified modes
would have been absorbed by the event horizon, thus
taming superradiant instability. Therefore it is of utmost
importance to study the phenomenon of superradiance
for rotating black-hole mimickers, in order to understand
their viability.
It is worth stressing that among the possible black hole

mimickers, regular black holes are further plagued by
another kind of instability, linked to the required existence
of an inner horizon. Indeed, these structures typically suffer
from the so-called “mass inflation” instability [35,36]
which renders them at most metastable solutions possibly
leading to other regular geometries [8,9] (if one postulates
that quantum gravity will always avoid the formation of a
singularity). This mechanism (which also applies in the
presence of a cosmological constant [37]) cuts short the
ongoing debate about the survival of the strong cosmic
censorship conjecture [38–42], but challenges the regular
black-hole scenarios as a viable resolution of singularities.
Also in order to side step this issue, we shall focus here

on the Kerr–black-bounce scenario [43], a family of regular
black holes and/or traversable wormholes capable of
mimicking Kerr black holes to an impressive extent. In
particular, these solutions, in the black-hole case, are
regularized by a wormhole throat which can be large
enough to avoid the presence of an inner horizon and
hence its associated mass inflation instability. Notably,
these geometries are also simple in that they are described
by a single additional parameter, other than the mass and
the spin, that regularizes the singularity and basically
describe the size of the wormhole throat. Indeed, this class
of compact objects interpolates smoothly between regular
black holes and traversable wormholes, depending on the
choice of the spin and this regularizing parameter. For all
these reasons, Kerr–black-bounce solutions recently
received considerable attention [44–49] and we here
contribute to the study of their phenomenology by inves-
tigating the dynamics of a scalar test field propagating on
top of the Kerr–black-bounce background. Specifically, we
consider a massless scalar field and compute the QNMs;
when the background is a traversable wormhole, we further
search for unstable modes and derive the ensuing instability
timescale. Finally, we endow the field with a mass and
study the superradiance by computing the amplification
factors.

The paper is organized as follows: We start by reviewing
the basic aspects of the Kerr–black-bounce scenario in
Sec. II. Perturbations of this background due to a scalar test
field are introduced in Sec. III, while specification to the
QNM case is deferred to Sec. IV, in which the QNM
frequencies associated with the Kerr–black-bounce sce-
nario are determined. We study the spectrum of super-
radiant amplification in Sec. V, then we conclude in the
subsequent section. Hereafter we have set the fundamental
constants G ¼ c ¼ 1.

II. BACKGROUND METRIC

In this section we briefly review the background space-
time, which is described by the Kerr–black-bounce
metric [43]:

ds2 ¼ −
�
1 −

2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ l2

p

Σ

�
dt2 þ Σ

Δ
dr02 þ Σdθ2

−
4Masin2θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ l2

p

Σ
dtdφþ Asin2θ

Σ
dφ2 ð1Þ

withM and a being the mass and the spin of the spacetime,
and l a real positive regularizing parameter, with

Σ¼ r02þl2þa2cos2θ; Δ¼ r02þl2−2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02þl2

p
þa2;

A¼ðr02þl2þa2Þ2−Δa2sin2θ: ð2Þ

Note that, in the limit l → 0, the Kerr–black-bounce metric
reduces to theKerrmetric. The above line element effectively
adds rotation to the Simpson–Visser black-bounce metric
[10,50,51] through the Newman–Janis algorithm and has
been recently extended to charged spacetimes [52].
The coordinates ðt; r0; θ;φÞ are convenient to classify the

spacetime. According to the value of the parameter l, the
line element in Eq. (1) describes a regular black hole or a
traversable wormhole. Notice that r0 may take negative
values as well, in the sense that the metric is symmetric
under the exchange r0 → −r0, meaning that the spacetime
describes two identical patches glued at r0 ¼ 0; we will
refer to the two patches as “our universe,” for r0 > 0, and
the “other universe,” for r0 < 0. When l ≠ 0, the spacetime
is free of singularities and r0 ¼ 0 represents a regular finite
traversable surface, i.e., r0 ¼ 0 represents a wormhole
throat, whose nature (timelike, null or spacelike) depends
on the specific values of a and l. The line element
presented in Eq. (1) may have coordinate singularities
for values of r0 such that Δ ¼ 0, which turn out to be the
event horizons,

r0� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2� − l2

q
; r� ≡M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð3Þ

Thus, depending on the choice of the parameters, we may
have two (if a < M and l < r−), one (if a < M and
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r− < l < rþ) or no coordinate singularities (if a < M and
l > rþ, or if a > M). Note, in particular, that for
r− < l < rþ, the regular black hole has no inner horizons;
as mentioned in the Introduction, this is quite an attractive
feature—one not shared by most regular black holes
described in the literature—as it entails this spacetime
might avoid mass inflation. The complete classification,
including the limiting cases, together with the correspond-
ing Penrose diagrams, can be found in Ref. [43]. Here, we
will only distinguish between configurations with l < rþ,
which we will call regular black holes, and l > rþ, to
which we will refer to as (traversable) wormholes. The
intermediate case l ¼ rþ, corresponding to a wormhole
whose throat is null and coincides with the (extremal) event
horizon, will often require specific considerations.
For the scope of this paper, it is better to perform

the coordinate transformation to a new radial coordinate
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ l2

p
and work with the metric

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

δΔ
dr2 þ Σdθ2

−
4Marsin2θ

Σ
dtdφþ Asin2θ

Σ
dφ2 ð4Þ

with now

Σ¼ r2þa2cos2θ; Δ¼ r2− 2Mrþa2; δ¼ 1−
l2

r2
;

A¼ ðr2þa2Þ2−Δa2sin2θ: ð5Þ

With these coordinates ðt; r; θ;ϕÞ we recognize the metric
in Eq. (4) as a particular case of the Johannsen family
[53,54]. Note that now r ≥ l, with r ¼ l representing the
wormhole throat; the horizons, if any, are located at r ¼ r�.
We stress here that the line element in Eq. (1), or

alternatively in Eq. (4), is motivated by quantum gravity
arguments and is not a general relativistic solution. Yet, it is
reasonable to think that, once the configuration settles
down and becomes stationary, quantum gravity effects will
be accountable in terms of an effective stress-energy tensor.
This effective stress-energy tensor is proportional to the
Einstein tensor and describes the matter content of
the solution. Details can be found in Ref. [43], but the
important fact is that the matter content of the spacetime is
localized close to the origin r0 ¼ 0 (i.e., r ¼ l) and energy
density and pressures fall off as 1=r4. This means that the
spacetime is effectively vacuum even close to the throat and
hence the line element in Eq. (1) describes a good black-
hole mimicker.

III. SCALAR PERTURBATIONS

In this section we will study the perturbation on
the background Kerr–black-bounce geometry due to a
test scalar field. For this purpose, we start with the

Klein–Gordon equation □ϕ ¼ μ2ϕ for a massive scalar
field ϕ with mass mϕ ¼ ℏμ. Further, assuming the decom-
position ϕ ¼ eimφe−iωtSðθÞRðrÞ, with m and ω being the
azimuthal number and the frequency of the perturbation,
the Klein–Gordon equation separates into an angular
equation

1

sin θ
d
dθ

�
sin θ

dS
dθ

�

þ
�
a2ðω2 − μ2Þcos2θ þ Alm −

m2

sin2θ

�
S ¼ 0; ð6Þ

i.e., the spheroidal harmonics equation, whose eigenvalues
Alm are also characterized by the harmonic number l, and a
radial equation

ffiffiffi
δ

p d
dr

� ffiffiffi
δ

p
Δ
dR
dr

�
þ
�
K2

Δ
− μ2r2 − λ

�
R ¼ 0; ð7Þ

where K¼ðr2þa2Þω−am and λ ¼ Alm − 2amωþ a2ω2.
In the nonrotating limit, Eq. (6) reduces to the spherical

harmonics equation with eigenvalues Alm ¼ lðlþ 1Þ. More
generally, Eq. (6) must be solved perturbatively in aω or
numerically [55]. In our computations, we have evaluated
the angular eigenvalue both numerically with the Leaver
method [56] and approximately with a high-order expan-
sion in aω.
For the radial equation, on the other hand, two limits are

worth considering: one corresponding to spatial infinity,
i.e., r → ∞, and one to the near-horizon or near-throat
region, depending on the background geometry.
At spatial infinity, the radial function has the following

asymptotic behavior

RðrÞ ∼ 1

r
eqrrMðμ2−2ω2Þ=q; q ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − ω2

q
: ð8Þ

The sign of the real part of q determines the behavior of the
wave function at r → ∞. IfℜðqÞ > 0 the solution diverges,
while for ℜðqÞ < 0 the solution tends to zero. The general
solution will be a linear combination of both cases.
In the massless case, Eq. (8) reduces to a simpler form,

RðrÞ ∼ 1

r
e�iωrr�2iMω ð9Þ

where the plus (minus) sign corresponds to outgoing
(ingoing) waves. It is to be noted that the asymptotic
solution at spatial infinity is independent of the parameter
l, but for determining the near-horizon or near-throat
asymptotic solution, l would play an important role, which
we explore now.
When the regularizing parameter l satisfies l < rþ, the

metric in Eq. (4) describes a regular black hole and the two
independent solutions close to the event horizon behave as
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RðrÞ∼ ðr−rþÞ�iσ; σ¼ am−2Mωrþ
γðrþ− r−Þ

; γ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−

l2

r2þ

s
:

ð10Þ

For traversable wormholes with regularizing parameter
l > rþ, close to the throat the two linearly independent
solutions are asymptotic to

RðrÞ ∼ exp

�
� iω̃ða2 þ l2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2lðr − lÞp
ΔðlÞ

�
;

ω̃2 ¼
�
ω −

am
a2 þ l2

�
2

−
ΔðlÞðl2μ2 þ λÞ

ða2 þ l2Þ2 −
ΔðlÞ2

ða2 þ l2Þ3 ;

ð11Þ

where ΔðlÞ means Δ evaluated at r ¼ l.
In the particular case in which the throat of the wormhole

becomes a null surface and coincides with the black-hole
horizon, i.e., for l ¼ rþ, the corresponding solutions are of
the form

RðrÞ ∼ exp

�
�i

am − 2Mωrþ
rþ − r−

ffiffiffiffiffiffiffiffiffiffiffi
2l

r − l

r �
: ð12Þ

In Eqs. (10) to (12) the plus (minus) sign corresponds to
outgoing (ingoing) waves.

A. Boundary conditions

For determining the QNMs or the superradiant ampli-
fication factors, one needs to supplement Eq. (7) with
appropriate boundary conditions. Such boundary condi-
tions define the physical problem at hand and depend on
whether the spacetime contains a black hole or not.

QNMs encode the scalar’s late-time response to an initial
perturbation that is localized in space. For this reason, we
demand purely outgoing waves at spatial infinity. In the
regular black hole case, we further demand that no radiation
comes out of the horizon. The null throat case is analogous
to the regular black hole, in this respect: As can be deduced
by inspecting the conformal diagrams of Fig. 1, in this case
the wormhole throat coincides with the horizon and is
therefore a causal boundary. (The only causal curves that
reach r ¼ þ∞ after having crossed r ¼ l originated from
the “other universe” in the past analytical extension of the
spacetime.) Hence, we impose purely ingoing boundary
conditions at the null throat. When l > rþ, instead, the
throat is traversable in both directions and the “two
universes” are causally connected. Since the geometry
on the two sides of the wormhole is symmetric, we assume
that the scalar field will inherit the symmetry of the
background. This assumption translates into perfect reflec-
tion at the throat, which we implement by demanding
RðlÞ ¼ 0. Alternatively, one can require the derivative of
the radial function to vanish at the throat; such Neumann
boundary conditions are associated to another family of
QNMs, whose computation is beyond the scope of
this paper.
Superradiance is, in essence, a scattering experiment

whereby an ingoing wave is sent in from infinity, it scatters
off the compact object and is then measured again at
infinity. As both ingoing and outgoing radiation must be
present at spatial infinity, we allow for both solutions of
Eq. (11). For regular black holes and null wormholes, the
conditions at the inner boundary (i.e., at the horizon) are
the same we impose for the QNMs computation. In the
traversable wormhole case, however, the assumption of
perfect reflection at the throat is no longer justified. Indeed,
that assumption would entail that the same scattering

FIG. 1. Penrose diagrams of regular black hole, null-throat wormhole and traversable wormhole. The white area represents “our
universe” while the gray area is the “other universe.”
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experiment is performed simultaneously in the “two uni-
verses.” We rather resolve to study superradiance from the
perspective of “our universe” alone, thus assuming no
ingoing radiation at infinity in the “other universe”; of
course, it is possible to do otherwise, but that investigation
lies beyond the scope of this work. Under this circum-
stance, a simple argument—which we report in Sec. V—
ensures that no supperradiant amplification can occur,
regardless of the exact boundary conditions imposed at
the throat. Our choice of boundary conditions is summa-
rized in Table I.
Clearly, different/other choices of boundary conditions

are possible. For instance, the symmetry between the “two
universes” could easily be broken, e.g., by the presence of
some matter on one side of the wormhole but not the other;
if this were the case, perfect reflection at the throat could
not be justified. Alternatively, one could imagine a situation
in which the background is still symmetric but the
perturbation is not, as in a scattering problem whereby a
wavepacket is prepared in our universe and sent toward the
object; in such a case, boundary conditions at the throat
might not be needed at all. Finally, one might envisage a
scenario in which the exotic matter that keeps the wormhole
open is not transparent to the perturbation; this would make
the dynamics nonconservative even at the test-field level.
All these possibilities, though interesting, lie beyond the
scope of this work.

IV. QUASINORMAL MODES AND (IN)STABILITY

QNMs can be obtained by various analytical methods
but the complicated form of the potential makes it difficult
to solve the perturbation equation without added assump-
tions or imposing restrictions on the parameter space. In
this section, we focus on obtaining the QNMs numerically
by the direct integration and shooting techniques. This
approach is valid both for the black-hole and the wormhole
branches. For the regular black holes, the QNMs can
also be approximated using the more analytic WKB
approach [57,58], and its generalization to rotating

backgrounds [59,60]. Below we first detail the two meth-
ods, then present our results.

A. Methods

1. Direct integration

The direct integration technique [61] works as follows.
First, consider the nonrotating case. For the black hole, we
integrate Eq. (7) supplied with the correct boundary
conditions both from infinity and from the horizon to an
intermediate point (typically the maximum of the scalar
potential) and then we shoot for the value of ω such that
the radial function and its derivative are continuous at the
intermediate point. The same procedure is followed for the
null-throat wormhole, though this case is technically more
subtle—we provide more detail in Appendix B. For the
wormhole, we only integrate from infinity and shoot for the
value of ω such that the solution is zero at the throat.
In practice, infinity is taken to be at some large value of

r—e.g., 75M. Similarly, the integration must start or stop a
small distance away from the horizon or the throat, since
the coefficients of the differential equation diverge there.
These parameters, along with the location of the inter-
mediate point, are varied by small amounts in order to
assess the stability of our numerical results, which are
stable within a numerical accuracy of, typically, order 10−3

or less. Moreover, shooting requires an initial guess for the
value of the QNM frequency ω. In the black hole case, we
looked for solutions in the vicinity of the tabulated value
of the corresponding fundamental QNM of Kerr. The
wormhole case requires a more thorough mapping of the
solutions to the eigenvalue problem.
For the rotating case, starting with a small value of a=M,

we start by considering the nonrotating QNM frequencies
as initial guess values and then we solve for the angular
eigenvalue. Next, we integrate the radial equation as in the
nonrotating case and we shoot for the frequency ω. We
repeat this procedure as long as the frequency ω converges
to a constant value; in practice, this is often achieved within
five iterations. The QNM frequencies for configurations
with higher values of a=M are determined by using a
previous frequency as initial guess and following their
behavior as a function of the spin parameter.

2. WKB

Alternatively, for regular black holes and null-throat
wormholes, the QNMs can be determined with the WKB
approach as well.
Let us begin with the nonrotating case again. In a

nutshell, the WKB approximation connects two solutions
in a matching region, and gives the best results when the
matching region is around the maximum of the scalar
potential, which in this case does not depend on the
frequency of the perturbation. Hence, the potential can

TABLE I. Behavior of the radial function close to the inner
boundary, i.e., the horizon for regular black holes and the throat
for wormholes, and asymptotically, according to the physical
problem under investigation.

Inner boundary

Regular black hole (l < rþ) Pure absorption, cf. Eq. (10)
Null-throat wormhole (l ¼ rþ) Pure absorption, cf. Eq. (12)
Traversable wormhole (l > rþ) (QNMs) pure reflection,

RðlÞ ¼ 0

Infinity, cf. Eqs. (8) and (9)

QNMs Purely outgoing
Superradiance Ingoing and outgoing
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be Taylor-expanded around the maximum of the potential
and, at leading order, the QNM frequencies are given by

ω2 ¼ V0 − i
ffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00

0

q �
nþ 1

2

�
; n ¼ 0; 1;…; ð13Þ

where a prime represents a derivative with respect to the
tortoise coordinate, and the subscript “0” means evaluated
at the maximum of the potential. The integer n is the
overtone number and the QNM with n ¼ 0 is called the
fundamental mode. Higher order corrections to this equa-
tion have been computed, as well as approaches to increase
its accuracy [58,62–65]. In our computations, good agree-
ment with the numerical results are achieved considering a
fourth-order approximation. This is also motivated by the
fact that for scalar perturbations in a Kerr background,
especially for the lowest l values, agreement of order 3%
with numerical results requires at least a fourth-order WKB
approximation [65].
The rotating case is more involved, as the scalar potential

and the angular eigenvalues do depend on the frequency.
The strategy in this case is to work perturbatively in powers
of aω. For aω sufficiently small, we expect to obtain good
accuracy with this truncated series. In our computations, we
have considered orders up to the sixth—the highest for
which analytical results are available. This choice allows us
to explore intermediate values of the spin parameter. The
procedure to determine the QNM frequency is then, in
essence, equivalent to the WKB method in the nonrotating
case, and we need to numerically solve an equation of
the form

ω2 ¼ fða;ω;l; n; l; mÞ; ð14Þ

in order to determine ω, given a, l, n, l andm. Generically,
Eq. (14) will contain a number of spurious roots which we
discard by starting with the well-defined solution for a ¼ 0
and following the roots for increasing a=M.

B. Results

1. Regular black holes

Some of our results are presented in Fig. 2, where solid
lines are obtained with the direct integration method, while
dashed lines come from the WKB method. We verified that
the results are not affected significantly by changes in the
parameters entering our numerical routines (i.e., the loca-
tions of the numerical infinity, of the numerical horizon and
of the intermediate point). Clearly, the two methods are in
good agreement for a≲ 0.5M, although less so for the l ¼
m ¼ 0 mode. This is not surprising, as the WKB approxi-
mation is expected to hold best for values of l larger than
the spin of the perturbation (l > 0 in this case). In the
nonrotating limit, our results are also in agreement with
those in Ref. [66], obtained both with the WKB and time-
domain methods. The fundamental QNM frequencies, as
presented in Fig. 2, show a clear dependence on the
regularizing parameter l, though the relative variations
in their magnitude are rather mild. Each fundamental mode
is accompanied by a whole tower of overtones which can in
principle be computed with the same methods.

FIG. 2. QNMs for regular black holes and null-throat wormholes (empty circle for the l ¼ rþ case): real (top panels) and imaginary
parts (bottom panels) of the QNM frequencies have been plotted as functions of the dimensionless regularizing parameter ðl=MÞ, for the
first few l ¼ m modes, for selected values of the spin parameter. The solid lines arise out of the direct integration scheme; while the
dashed lines correspond to the WKB approximation, valid up to a=M ≲ 0.5.
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2. Null-throat wormholes

As mentioned before and as explained in detail in
Appendix B, the null-throat case is technically more
involved than the regular black hole one. The structure
of the space of solutions is also more complex, as multiple
modes (all stable) lie close to one another. As a result, we
need higher accuracy in our numerical routines and very
precise initial guesses for the shooting. Otherwise, it is
possible that small variations in the spacetime and inte-
gration parameters cause the numerical routine to “jump”
between nearby modes, e.g., from the fundamental mode to
an overtone.
Despite the hurdles, a solid qualitative picture does

emerge: wormholes with a null throat are stable, in the
sense that their QNMs have negative imaginary part; and in
all of the cases we have studied there exists a mode that can
be reached along the curves of Fig. 2, the empty circle, in
the limit l → rþ.

1 In other words, wormholes with a null
throat seem to be phenomenologically akin to regular black
holes, and a limiting case thereof, in all respects hereby
considered.

3. Wormholes

Given the different boundary conditions, there is no
reason to expect that the curves of Fig. 2 will cross over
smoothly to the wormhole branch. Lacking guidance from
known results, the frequency space had to be spanned more
broadly in order to confidently identify the QNMs. More
specifically, we considered a rectangular grid of points in
the ℑðωÞ − ½ℜðωÞ > 0� space, wide enough to enclose our
rough expectations for the QNM frequency, and computed
the quantity arg½RðlÞ�. A plot of this quantity permits to
visually locate the zeroes of RðlÞ in the frequency space,
since the argument yields a recognizable pattern around

them.2 In this way, we were able to pick accurate guesses
for our shooting routine.
As a result of this investigation, we were able to pinpoint

a “fundamental” QNM, which we tracked under changes of
the rotation parameter a and regularizing parameter l—see
Fig. 3. This mode is stable and is the least damped of a
family of stable modes, which we identify as the overtones.
In addition to these, for high enough values of the spin

parameter, and for ℜðωÞ < mΩH, being ΩH the would-be
horizon angular velocity, a second family of QNMs
appears. All of the modes in this second family are
unstable; the imaginary parts of their QNM frequencies
are very small, but positive, and span several orders of
magnitude, between approximately 10−6=M and 10−15=M,
corresponding to instability timescales in the approximate
range 10 to 1010 ðM=M⊙Þs. For some specific cases, a few
of these modes have been presented in Fig. 4.
Once again, the qualitative picture presented herein is

unaffected by changes in the parameters that specify the
numerical routines (the values of the numerical infinity and
of the numerical throat). However, as in the null-throat
wormhole case, high accuracy and precise initial guesses
for the QNM frequencies are required in our numerical
routine, otherwise the numerical value of the QNM
frequencies found with the shooting technique could not
converge. Furthermore, when changing the spacetime
parameters for not-so-close-by configurations, the shooting
can jump from the fundamental mode to an overtone,
meaning that we had to consider a quite narrow parameters
grid. Despite these numerical difficulties, our results clearly
show that there are unstable modes for the traversable
wormhole configurations.
Our results on the instability timescale are compatible

with those in Ref. [30], where Kerr-like wormholes are

FIG. 3. QNMs for rotating wormholes: real (top panels) and imaginary parts (bottom panels) of the QNM frequencies have been
plotted as a function of the dimensionless parameter ϵ ≔ ðl=rþÞ − 1, depicting how much the wormhole throat is shifted from the
would-be black-hole horizon. We have presented the QNM frequencies for the first few l ¼ m modes, for selected values of the spin
parameter.

1In same cases, the empty circle seems not to lie in the black-
hole curve: this is due only to numerical precision.

2This is analogous to what theMathematica’s ComplexPlot
function does.
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modeled by the Kerr metric with a mirror at finite Boyer–
Lindquist radius larger than the would-be horizon.

V. SUPERRADIANCE FOR REGULAR
BLACK HOLES

The existence of an ergoregion, and the fact that some of
its features depend on l, motivate an investigation into the
phenomenon of superradiance: bosonic waves propagating
on top of a Kerr black hole background can get amplified at
the expense of the hole’s rotational energy. It is reasonable
to expect that the same will happen in a Kerr–black-bounce
background, though to a different degree—cf. [28]. In what
follows we first build an intuition on the relevant physics by
analyzing the Penrose process in the vicinity of a Kerr–
black-bounce regular black hole, then compute the spec-
trum of superradiant amplification, for massless and mas-
sive scalar fields and for different values of l.
We do not repeat the same analysis for the wormholes, as

these are known to yield no supperadiant amplification
according to an argument presented in Ref. [67]. To
understand why, think of a scattering experiment whereby
a monochromatic wave, with amplitude I , is sent from past
null infinity in our universe toward the wormhole: part of
the radiation will be reflected and part will be transmitted,
will cross the throat and reach the future null infinity in the
other universe. Let the amplitudes of the reflected and
transmitted waves—as read off at infinity—be R and T ,
respectively. As a consequence of the equation of motion,
one can write the following relation

−iωourðjI j2 − jRj2Þ ¼ −iωotherjT j2 ð15Þ

(the two sides of the equation are nothing but the
Wronskian, which is r-independent, computed at infinity
in our universe, on the left, and in the other, on the right).
Crucially, because of the symmetry of the spacetime the

frequency of the wave at infinity in our and in the other
universe coincide, ωour ¼ ωother. Hence jRj2 ≤ jI j2, i.e.,
superradiant amplification cannot happen. As already men-
tioned in discussing boundary conditions in Sec. III A,
alternative scenarios can be conceived; their exploration
however lies beyond the scope of this work.

A. The Penrose process around regular black holes

Classical analyses of the maximal efficiency of the
Penrose process [68] are summarized in Ref. [69]—see
also [70–72]. In this framework, one typically considers
particles on the equatorial plane and splitting at their
turning points, i.e., with vanishing radial velocities; and
further notices that the most efficient extraction of energy
requires both decay products to be photons. One finds

η ¼ Eoutput − Einput

Einput
¼ 1

2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gtt

p
− 1Þ; ð16Þ

where gtt must be evaluated at the point of splitting. Hence,
the maximal efficiency is achieved for particles splitting at
the inner edge of the ergoregion and its value is governed
by the magnitude of gtt at that point. (For an extremal Kerr
black hole one finds η ≈ 20%.)
Since in our spacetime the component gtt is the same as

in Kerr, we must conclude

ηmax ¼
1

2

� ffiffiffiffiffiffiffi
2M
r̃

r
− 1

�
where r̃ ¼ maxðrþ;lÞ; ð17Þ

i.e., the maximal efficiency of the Penrose process is
completely insensitive to l as long as this is smaller than rþ.
This argument, however, does not provide a complete

picture of the energetics of the Penrose process. Indeed, if
we aim at using it to gain insight into other processes linked
to the ergoregion, we cannot limit our attention to its

FIG. 4. Unstable QNMs for rotating wormholes: real (top panels) and imaginary parts (bottom panels) of the QNM frequencies have
been presented as a function of the dimensionless regularizing parameter ϵ ≔ ðl=rþÞ − 1, for the first few unstable l ¼ m modes for
selected values of the spin parameter. As evident, the imaginary part of the QNM frequencies are positive, signaling instability.
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maximal efficiency and the many assumptions that this
brings about. In particular, we should consider decays that
take place at any point in the ergoregion, not just its inner
edge, and—crucially—away from the turning point.
Let us stick to equatorial motion. Take a particle with

mass μ, energy E and angular momentum along the rotation
axis L. Its motion is effectively one-dimensional and
governed by

r2 _r2

δ
¼ T ð18Þ

where the dot denotes differentiation with respect to an
affine parameter along the geodesic and

T ¼ τ1E2 − 2τ2Eþ τ3; ð19Þ

τ1 ¼ r4 þ a2ðr2 þ 2MrÞ; ð20Þ

τ2 ¼ 2aMLr; ð21Þ

τ3 ¼ L2a2 − Δðμ2r2 þ L2Þ: ð22Þ

We may write Eq. (18) as

τ1E2 − 2τ2Eþ τ̃3 ¼ 0 ð23Þ

with τ̃3 ¼ τ3 − r2 _r2=δ, which has formally two roots

V� ¼ τ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ22 − τ1τ̃3

p
τ1

¼ ωL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2L2 − τ̃3=τ1

q
; ð24Þ

here ω ¼ −gtϕ=gϕϕ is the angular velocity of frame drag-
ging. Actually, only the root Vþ is acceptable, since it must
be E > ωL for the particle’s momentum to be future-
directed.
Since δ ≤ 1, we have that τ̃3 ≤ τ̃3jl¼0 and therefore

Vþ ≥ Vþjl¼0. Thus, particles moving in this spacetime are
generically more energetic than their counterparts in Kerr.
When in particular E < 0, i.e., for Penrose’s negative
energy states, jEj ≤ jEjjl¼0: these are “less negative” than
their Kerr counterparts, ceteris paribus.
We would like to emphasize that the above analysis

involving the Penrose process is a warm up exercise,
while our main aim is to study superradiance. Our results
demonstrate that there are certain quantities associated with
the Penrose process, e.g., maximal efficiency, which are
independent of the parameter l, while some others, e.g.,
energy extraction by a particle in radial motion with a fixed
angular momentum, predict smaller values, in the same
coordinate chart as Kerr. Of course, this is not conclusive
and does not exhaust all possible scenarios involving the
Penrose process, but is one indication toward less amount
of energy being extracted from such regular black holes.

This prompts us to study the superradiance of the Kerr–
black-bounce spacetime in detail.

B. Numerical results

Consider first an incident massless wave with amplitude
I coming from infinity and producing a reflected wave
with amplitude R. The asymptotic solution to Eq. (7) can
be written as

R ∼ Ie−iωrr−2iMω−1 þReiωrr2iMω−1: ð25Þ

The Kerr–black-bounce spacetime is asymptotically
indistinguishable from the Kerr spacetime, hence the
energy fluxes of scalar fields at infinity can be defined
by the above asymptotic behavior exactly as in the Kerr
spacetime [73]. In particular, the ingoing and outgoing
fluxes are proportional to the modulus of the amplitudes,
and we can define a quantity Z0;l;m which gives the
amplification or absorption factor for scalar waves with
quantum numbers ðl; mÞ off a black hole. In this case,

Z0;l;m ¼ dEout

dEin
− 1 ¼ jRj2

jI j2 − 1: ð26Þ

In the Kerr spacetime, for massless scalar fields, this
quantity can be positive only for frequencies satisfying [27]

ω < mΩH; ð27Þ

where ΩH is the horizon angular velocity. The same
reasoning can be applied to our case yielding an identical
result. The angular velocity of the horizon of the regular
black hole in the Kerr–black-bounce scenario, is still
given by

ΩH ¼ a
2Mrþ

; ð28Þ

as in Kerr. Thus, we expect the superradiant interval not to
depend on l.
For generic values of the frequency, the angular and

radial equation must be integrated numerically. For each
couple ðl; mÞ and value of aω we first compute the angular
eigenvalue and then we integrate the radial equation for a
fixed value of l from the horizon with ingoing boundary
conditions until a sufficiently large radius. Our numerical
solution is compared to the expansion in Eq. (25) to extract
the amplitudes and finally determine the amplification
factor Z0;l;m. To increase the accuracy of these computa-
tions, we have used a higher-order expansion near the
horizon and at infinity.
To obtain a spectrum of the amplification factor, we

repeat the routine for several values of ω for different values
of the black-hole parameters and the scalar field quantum
numbers. An example of our results is shown in Fig. 5 for
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an l ¼ m ¼ 1 scalar wave scattered off a highly spinning
black hole with a=M ¼ 0.99 and selected values of the
regularizing parameter l.
Similarly to what happens for a Kerr black hole, the

amplification factor is larger for higher values of the spin
parameter and for the minimum allowed value of l ¼ m,
i.e., l ¼ m ¼ 1. Modes with m ≤ 0 are not superradiant
while the phenomenon is less pronounced for other values
of ðl; mÞ. Figure 5 confirms the general arguments in
Sec. VA on the Penrose process and shows that super-
radiance is reduced for l ≠ 0 and vanishes for l → rþ.
Note, incidentally, that this behavior disproves the intuition
according to which the spatial extent of the ergoregion
determines the amount of superradiance. Indeed, as shown
in Appendix A, both the volume of the ergoregion and the
area of the ergosurface actually increase with l. We also
notice that, although the superradiant threshold frequency
does not depend on l, the position and the maximum value
of Z0;l;m do. In particular we observe a drift of position of
the maximum toward smaller frequencies for larger values
of l=M. For values of the frequency larger than the
superradiant threshold, the amplification factor approaches
rapidly the value −1.
In the nonrotating limit superradiance disappears and our

results agree with those of Ref. [74] on the scalar absorption
cross section.
These results can easily be extended to massive scalar

fields. Once the appropriate boundary conditions are
taken into account, the numerical procedure is identical.
In Fig. 6 we show spectra of the amplification factor for an
l ¼ m ¼ 1 scalar wave scattered off a regular black hole
with a=M ¼ 0.99 and selected values of the regularizing
parameter l and the mass parameter μ. Massive waves can
be superradiant in the frequency range μ < ω < mΩH,
while they are trapped near the horizon and exponentially
suppressed at infinity for ω < μ. We notice that even in this
case superradiance is reduced both for larger values of l=M
and μM. Moreover, there could be a degeneracy in the

sense that the spectrum of a massive wave off a Kerr black
hole might look like the spectrum of a massive (but also
massless) wave off a regular black hole with the same spin.

VI. CONCLUSIONS

In this paper we have studied and analyzed some
phenomenological aspects of scalar test-field perturbations
on top of the novel family of rotating black-hole mimickers
proposed in Ref. [43]. In view of testing GR and compact
objects, these geometries are appealing as they smoothly
interpolate between regular black holes and traversable
wormholes, depending on the value of the regularizing
parameter that enters the metric.
First, we have computed the scalar QNMs. For the

regular black hole spacetime, we have used both the WKB
approximation, as well as the direct integration of the scalar
perturbation equation. Our analysis demonstrates that there
is a deviation of the QNM spectrum from that of Kerr black
holes due to the nonzero value of the regularizing parameter
l. Wormholes with a null throat (which coincides with the
horizon) phenomenologically behave as black holes and
their QNMs are in continuity with those of regular black
holes. On the other hand, the presence of the throat for
traversable wormholes modifies the boundary conditions,
and hence the QNM spectra. In particular, we have imposed
Dirichlet boundary conditions at the throat obtaining QNM
frequencies with greatly suppressed imaginary part as
compared to the black-hole case and in some scenarios
even positive. This seems to indicate that rotating travers-
able wormholes are unstable to small perturbations. This is
somewhat expected for rotating horizonless objects, albeit
this instability could be tamed by relaxing the purely
reflective conditions at the throat and allow for partial
absorption.

FIG. 5. Spectra of the amplification factor for a massless scalar
with l ¼ m ¼ 1 off a regular black hole with a ¼ 0.99M for
selected values of the regularizing parameter.

FIG. 6. Spectra of the amplification factor for a massive scalar
with l ¼ m ¼ 1 off a regular black hole with a ¼ 0.99M:
different colors distinguish among choices of the mass parameter,
while linestyles mark the values of the regularizing parameter
(solid l=M ¼ 0, dashed l=M ¼ 0.3, dotted l=M ¼ 0.6, dash-
dotted l=M ¼ 0.9).
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Second, we have studied the phenomenon of super-
radiance for both massless and massive test scalar fields
around rotating regular black holes. It turns out that both
the Penrose process and superradiance are suppressed by
the regularizing parameter l. For example, in the Penrose
process, the particles’ energies become less negative,
compared to their counterparts in Kerr, as l gets larger
(and let us stress that the faster is the black hole spin the
closer has to be l to the outer horizon in order to remove
the inner horizon and the associated mass-inflation insta-
bility). Similarly, for superradiance, the amplification of
the modes depends on l: the larger l=M the smaller the
amplification factor, meaning that l actually stabilizes the
black hole against superradiant instability. In the black-
hole-to-wormhole limit l → rþ, the amplification factor
gets suppressed and it vanishes for the null-throat worm-
hole, while in the wormhole branch there cannot be
superradiant amplification, at least as long as the wormhole
is symmetric and the throat can be modeled by a purely
reflective surface. Relaxing these conditions at the throat
and allowing for partial absorption, might also resolve the
instability of traversable wormholes against small pertur-
bations. We hope to clarify this and the above discussed
open issues in future investigations.

ACKNOWLEDGMENTS

E. F., S. L. and J. M. acknowledge funding from the
Italian Ministry of Education and Scientific Research
(MIUR) under the Grant No. PRIN MIUR 2017-
MB8AEZ. Research of S. C. is funded by the INSPIRE
Faculty fellowship from DST, Government of India (Reg.
No. DST/INSPIRE/04/2018/000893) and by the Start-Up
Research Grant from SERB, DST, Government of India
(Reg. No. SRG/2020/000409).

APPENDIX A: PROPERTIES OF THE
ERGOREGION

Superradiance and the ensuing instability are linked to
the existence of an ergoregion, i.e., a portion of the
spacetime in which the Killing vector associated to time
translations—which is timelike at spatial infinity—
becomes spacelike. With this appendix, we aim at spelling
out some of its relevant details in Kerr–black-bounce
spacetimes. A quick inspection of the metric in Eq. (4)
allows to identify the ergoregion with the locus of points for
which Σ − 2Mr ≤ 0. Equality is met at

r ¼ r�ergðθÞ ≔ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ

p
: ðA1Þ

When a > M—a case we never consider in this article—
there are no horizons and the curves r�ergðθÞ, along with the
throat r ¼ l, mark the boundary of the ergoregion; note
that for l > 2M no ergoregion exists. When instead a ≤ M,
the ergoregion stretches between rþergðθÞ and the horizon, if

there is one, or the wormhole throat. When l > rþ, in
particular, the ergosurface does not extend to the poles but
is limited to polar angles θ ∈ ½θ�; π − θ��, with

θ� ≔ arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2M − lÞp

a

�
; ðA2Þ

i.e., it is a solid of revolution whose section is shaped as a
crescent and whose axis coincides with the axis of
symmetry of the spacetime. At any given time, the area
of the ergosurface is given by the integral [75]

Aerg ¼
Z

dθ dϕ
ffiffiffi
S

p
ðA3Þ

where ϕ ∈ ½0; 2π�, θ ∈ ½0; π� or θ ∈ ½θ�; π − θ�� when
l > rþ and S is the determinant of the two-dimensional
induced metric. Specifically, we have

S ¼
�
grr

�
drerg
dθ

�
2

þ gθθ

�
gϕϕ

¼ Σ
�
1þ a2cos2θ

δðr2erg −M2Þ
�
2sin2θðMrerg þ a2sin2θÞ; ðA4Þ

which should be evaluated at r ¼ rerg.
Since δ ≤ 1, as long as l < rþ, we expect

Aerg ≥ Aergjl¼0, i.e., that the area be larger than its Kerr
analogue; for l > rþ, instead, Aerg is a continuously
decreasing function of l that reaches zero for l ¼ 2M.
Note, incidentally, that surfaces of constant r, such as the
horizon, have the same area in our spacetime as they have
in Kerr: the l-dependence comes in as soon as different
radii are spanned.
The volume of a constant-t slice of the ergoregion is

given by

Verg ¼
Z

dr dθdϕ
ffiffiffi
h

p
ðA5Þ

where r ∈ ½maxðrþ;lÞ; rerg�, θ ∈ ½0; π� when l ≤ rþ or
θ ∈ ½θ�; π − θ�� otherwise, and ϕ ∈ ½0; 2π�. We have

h ¼ grrgθθgϕϕ ¼ ΣAsin2θ
Δδ

: ðA6Þ

The integrand in Eq. (A5) has poles at r ¼ rþ and r ¼ l,
i.e., along the inner edge of the ergoregion. The integral
itself is usually convergent, unless l ¼ rþ: in this case the
two poles coincide and the integral diverges logarithmi-
cally. Something analogous happens for extremal Kerr
black holes, see [31]. In any case, since δ ≤ 1, the volume
of the ergoregion will be larger than that of the correspond-
ing Kerr as long as l < rþ; for larger values of l, instead,
the volume will strictly decrease and reach zero for
l ¼ 2M.
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The fact that both the area of the ergosurface and the
volume of the ergoregion increase with increasing l, while
superradiant amplification gets tamed, disproves the intui-
tive notion that a larger ergoregion entails “more super-
radiance”. A better understanding of the physics of this
phenomenon is provided by the analysis of the Penrose
process in the equatorial plane given in Sec. VA.

APPENDIX B: SINGULARITIES OF THE
RADIAL EQUATION

In this appendix, we elucidate some subtleties concern-
ing the behavior of the solution to the radial Eq. (7) close to
its singular points. First of all, write Eq. (7) in canonical
form:

R00 þ αðrÞR0 þ βðrÞR ¼ 0; ðB1Þ

where

αðrÞ ¼ ð ffiffiffi
δ

p
ΔÞ0ffiffiffi
δ

p
Δ

; ðB2Þ

βðrÞ ¼ 1

δΔ2

�½ðr2 þ a2Þω − am�2
Δ

− λ − μ2r2
�
: ðB3Þ

Note that

αðrÞ ¼ 1

2

�
1

rþ l
þ 1

r − l

�
−
1

r
þ 1

r − rþ
þ 1

r − r−
: ðB4Þ

The poles of the coefficients α and β are singular points for
the differential equation. Following standard terminology
[76], we call irregular those singular points where αðrÞ
or βðrÞ have a pole of order higher than one or two,
respectively, and regular the singular points where the
divergences of αðrÞ and βðrÞ are less severe. According to
this convention, we find

(i) regular singular points at r ¼ rþ; r−; 0;þl (and −l,
technically) when l ≠ r�, and

(ii) an irregular singular point at r ¼ ∞.
As l → 0, the three poles of α located at r ¼ �l; 0 exactly
cancel each other out and the two poles r ¼ �l in β also
disappear; the resulting equation (second-order ODE with
two regular and one irregular singular points) is of the

confluent Heun type. The “confluent” case in which
l ¼ r� is particularly nasty, as two regular singular points
merge into an irregular singular point.
Using the throat-penetrating coordinate r0 instead of the

Johannsen coordinate r does not change the picture: δ
disappears from the equation but Δ is not a polynomial of
degree two and its zeroes have a more complicated
structure.
In the vicinity of a regular singular point r0, the equation

admits a (possibly divergent) power-series solution of the
form (Frobenius’ method)

RðrÞ ¼ ðr − r0Þs
X
n∈N

anðr − r0Þn ðB5Þ

with s satisfying the indicial equation

sðs − 1Þ þ α0sþ β0 ¼ 0; ðB6Þ

here

α0¼ lim
r→r0

ðr−r0ÞαðrÞ and β0¼ lim
r→r0

ðr−r0Þ2βðrÞ: ðB7Þ

Close to r ¼ rþ, we have s ¼ �i am−2Mωrþ
ðrþ−r−Þγ , hence Eq. (10).

Similarly, close to r ¼ l, we find s ¼ 0; 1=2, although
s ¼ 0 must be excluded since it does not give rise to a
solution.
Close to an irregular singular point, one can construct a

generalization of Frobenius’ series. The solution will
consist of an exponential prefactor, encoding the leading
divergent behavior, and a power series in the variable
ðr − r0Þc, with c some number. Proceeding in this way, one
can recover the standard result of Eq. (8). More interest-
ingly, in the particular case l ¼ rþ, close to r ¼ l the
solution turns out to be

RðrÞ¼ exp

�
�i

am−2Mωrþ
rþ−r−

ffiffiffiffiffiffiffiffiffiffi
2l
r−l

r �X
n∈N

anðr−lÞn=2;

ðB8Þ

(hence, in particular, c ¼ 1=2). Such behavior renders the
numerical integration of the null-throat wormhole case
particularly difficult.
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