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Self-gravitating bodies can have an arbitrarily complex shape, which implies a much richer multipolar
structure than that of a black hole in general relativity. With this motivation, we study the corrections to the
dynamics of a binary system due to generic, nonaxisymmetric mass quadrupole moments to leading post-
Newtonian (PN) order. Utilizing the method of osculating orbits and a multiple scale analysis, we find
analytic solutions to the precession and orbital dynamics of a (generically eccentric) binary in terms of the
dimensionless modulus parameters ¢,,, corresponding to axial m = 1 and polar m = 2 corrections from
oblateness/prolateness. The solutions to the precession dynamics are exact for 0 < e, < 1, and perturbative
in €; < 1. We further compute the leading order corrections to the gravitational wave amplitude and phase
for a quasicircular binary due to mass quadrupole effects. Making use of the stationary phase
approximation and shifted uniform asymptotics (SUA), the corrections to the phase enter at relative
2PN order, while the amplitude modulations enter at —0.5PN order with a SUA amplitude correction at
3.25PN order, relative 2PN order to the leading order SUA correction. By investigating the dephasing due
to generic quadrupole moments, we find that a phase difference >0.1 radians is achievable for €,, > 1073,
which suggests that constraints with current and future ground-based gravitational wave detectors are
possible. Our results can be implemented in parameter estimation studies to constrain generic multipolar

deformations of the Kerr geometry and of neutron stars.

DOI: 10.1103/PhysRevD.105.124050

I. INTRODUCTION

The multipolar expansion provides a powerful tool, widely
used in classical field theories, to characterize the distribution
of nonsymmetric distributions of charges [1] and matter [2].
In general relativity (GR) two classes of multipole moments
can be defined (which are order-Z tensors): the mass
moments Q,,, and the current moments S, (henceforth
|m| < ¢ is the azimuthal number of the multipolar decom-
position and we use units in which G = 1). Current moments
do not have a Newtonian analogue since they are associated
with the gravitational field produced by velocity fields.

Vacuum, stationary black hole (BH) solutions in GR are
also asymmetric and uniquely described by the Kerr metric
[3-5]. The multipole moments of a Kerr BH satisfy closed
form, elegant relations

Q, = M(ia)’N,
S, =iM(ia)’N,

£=24..
£=1,73..., (1)
where N, is a normalization factor [6], O, = Q,, and

Sy, =8, with M = Q,, and S; = aM being the BH’s
mass and spin. Thus, the multipole moments of Egs. (1) are
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entirely determined in terms of the BH’s mass and spin, as
dictated by the no-hair theorems [3,7] (see also [5,8—11]).
All other moments, namely the odd (even) #-components
for the mass (current) multipoles, as well as the m # 0
terms, vanish, as a consequence of axisymmetry and of
equatorial symmetry.

On the other hand, the fact that all multipoles with £ > 2
are proportional to (powers of) the spin—as well as their
specific spin dependence—is a peculiarity of the Kerr metric
(although not necessarily unique to Kerr [12]). Finally, when
nonspinning, any isolated BH must be spherically symmet-
ric and described by the Schwarzschild spacetime.

The remarkable simplicity of BHs represents an excep-
tion though, not shared by other self-gravitating bodies in
the Universe. For example, since no-hair theorems do not
generically apply in the presence of matter, there is no
compelling reason preventing a star from being arbitrarily
deformed away from spherical symmetry, even when
nonspinning. The Earth itself has a complex shape, differ-
ent from an ellipsoid [13].

While self-gravitating perfect fluids in a static configura-
tion do not support deviations from spherical symmetry [14],
this might not be the case for elastic materials [15].

© 2022 American Physical Society
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Furthermore, it was recently shown that exotic compact
objects can break the symmetries of a Kerr BH and have a
much richer structure [16,17]. In particular, smoking gun
evidences for the “non-Kerrness” of a compact object would
be given by the presence of moments that break the equatorial
symmetry (e.g., the current quadrupole S, or the mass
octopole Q5 [18]), and/or the axisymmetry (e.g., a generic
mass quadrupole tensor Q,,, with three independent com-
ponents, m = 0, 1, 2), as in the case of multipolar boson stars
[19] and of fuzzball microstate geometries [20-24].

Checking whether such symmetry properties hold for an
astrophysical dark object provides an opportunity to perform
multiple null-hypothesis tests of the Kerr metric. The
independent measurement of three multipole moments such
as the mass, spin, and (axisymmetric) mass quadrupole Q,,
would, for example, serve as a genuine strong-gravity test of
the uniqueness of the Kerr family [17,25-32]. In this context
it is intriguing that current gravitational-wave (GW) obser-
vations (especially the recent GW190814 [33] and
GW190521 [34,35]) do not exclude the existence of exotic
compact objects other than BHs and neutron stars. Likewise,
current constraints on the spin and multipolar structure of
supermassive objects coming from the Event Horizon
Telescope are weak [36], and do not exclude deviations
from the Kerr spacetime.

The multipolar structure of a compact object leaves a
footprint within the GW signal emitted during the coa-
lescence of a binary system, by modifying at different
orders the post-Newtonian (PN) expansion used to model
the waveform during the inspiral (see [37] for a review).
Until recently, PN corrections coming from the multipole
moments had only been computed for axial and equatorial
symmetry, i.e., focusing on corrections proportional to Q,,
S; and Q4 [25,26,38,39]. Such calculations have been
recently extended to include leading order corrections with
broken equatorial symmetry (while preserving axisymme-
try), proportional to S, and Q3, mostly focusing on extreme
mass-ratio inspirals (EMRIs) [18].

Overall, the dominant contribution of the multipolar
structure is encoded in the (typically spin-induced) mass
quadrupole moment, which enters the inspiral GW phase at
relative 2PN order [38]. For comparable-mass binaries, this
correction is expected to be measured with percent accu-
racy by third-generation ground based detectors and by
LISA [40-44]. The PN results also provide an order of
magnitude estimate for “kludge” waveforms, used to model
the long inspiral phase of an EMRI [45]. In this case it has
been shown that LISA may constrain the mass quadrupole
moment of the massive central object with an accuracy of
one part in 10* [45,46].

The aim of this paper is to extend current PN computations
to binary configurations in which the compact objects show
generic deformations, with no prior assumption on their
underling symmetry. We focus in particular on the leading-
order corrections of the mass quadrupole tensor Q,,,, which

enter the equations of motion to leading order at relative 2PN
order. When moving into an effective one-body frame, the
perturbation due to mass quadrupole effects only depends on
an effective mass quadrupole moment, constituting a degen-
eracy between the individual moments of the compact
objects.

We solve for the dynamics of the binary at relative
Newtonian order, specifically we consider a reduced
problem where the binary is simply described by
Newtonian (or the leading PN order) dynamics, and is
perturbed by the 2PN order mass quadrupole effects. We
use the method of osculating orbits and multiple scale
analysis to solve for the leading order corrections to the
dynamics of the binary. In general, the secular dynamics of
the perturbation induce precession of the orbital angular
momentum. Indeed, we find that alignment between the
orbital angular momentum and the Z-axis of the body can
only be achieved when Q, | = 0. Defining the modulus
€,, and phase a,, parameters as in Egs. (59) and (76), we
find that the secular precession equations can be solved
exactly for ¢; =0 and 0 < ¢, < 1. Such solutions can be
extended by working perturbatively in ¢; < 1.

We extend the solutions to the conservative dynamics of
the binary to include radiation reaction effects through the
balance laws, accounting for all of the corrections due to
mass quadrupole effects. Restricting to the limit of quasi-
circular binaries, we compute the corrections to the
TaylorF2 waveform phase using the stationary phase
approximation (SPA) [47]. Further, we include the correc-
tions due to orbital precession using shifted uniform
asymptotics (SUA), which was originally developed for
spin precessing binaries in [48]. The corrections to the SPA
Fourier phase enter at relative 2PN order. The amplitude
modulations are controlled by the precession phase y»,
which enters at absolute -0.5PN order. Meanwhile, the
corrections to the SUA amplitude enters at relative 3.25PN
order, which is 2PN order beyond the Newtonian order
SUA corrections. A simplistic estimate of the dephasing of
the waveform phase suggests that small modulus values of
€, ~ 107> might be detectable with current generation
interferometers, although a detailed parameter estimation
study is left for future work.

The remainder of the paper is organized as follows. In
Sec. II, we provide an overview of the formalism we use,
and some basic details of the mathematical methods needed
to solve the equations of motion. In Sec. III, we solve for
the conservative dynamics of the binary, specifically the
secular precession effects and the leading order orbital
corrections. The solutions are broken down into the oblate/
prolate (often referred to as ‘“‘spheroidal” for short) case
with €,, = 0 in Sec. Il A 1, the polar case with ¢; = 0 and
0 <ey; < 1in Sec. [II A2, and the axial case with ¢, =0
and ¢; <1 in Sec. ITA3. We provide the general
extension of the exact polar solution to include small €,
in Sec. [l A4. In Sec. IVA, we obtain the leading order
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corrections to radiation reaction effects. Finally, in
Sec. IV B, we compute the SUA TaylorF2 waveform for
quasicircular binaries with generic mass quadrupole effects,
with the main results being the GW Fourier phase given in
Eq. (134), and the GW amplitudes given in Eq. (135).
Throughout this work, we use units where G = 1.

II. FORMALISM

A. Notation and conventions

We follow the same notation as in Ref. [49], briefly
summarized here. We denote the speed of light in vacuum
by ¢ throughout the paper. Latin indices i, j, k, etc. run over
three-dimensional spatial coordinates and are contracted
with the Euclidean flat metric 6. Since there is no
distinction between upper and lower spatial indices, we
will use only the upper ones throughout the paper. The
totally antisymmetric Levi-Civita symbol is denoted by €'/,
Following the STF notation [50], we use capital letters in
the middle of the alphabet L, K, etc. as shorthand for multi-
indices a;...a;, b;...by, etc. Round (), square [], and
angular () brackets in the indices indicate symmetrization,
antisymmetrization and trace-free symmetrization, respec-
tively. For instance,

T(ab) — T(ab) _ %éachc — %(Tab 4 Tba) _ %611ch0' (2)
We call symmetric trace-free (STF) those tensors T/ that
are symmetric on all indices and whose contraction of any

two indices vanishes

T(il.“il) — Ti|~<-i1’
Tiv-ikie-is = (),
Tliv-it) — ivir, (3)

The contraction of a STF tensor T with a generic tensor
U is TFUY = TFU). For a generic vector u' we define
ul* = y'y . uF and u> = u. Derivatives with respect to
the coordinate time ¢ are expressed by overdots.

For a generic body A, the mass and current STF multi-
pole tensors are denoted by Q% and S%, respectively.
Restricted to a two-body system, A =1, 2, we define
the mass ratios 174 = M /M, where M = M, + M, is the
total mass and M, is the mass monopole; M, = Q, in the
Newtonian limit. The symmetric mass ratio is v = 7,7, and
the reduced mass is y = vM. We define the dimensionless
spin parameters y, = ¢S4/ (n4M)?, where S, = /S', S, is
the absolute value of the current dipole moment. The body
position, velocity and acceleration vectors are denoted by
7, v’y = Zi and @i, = 7', respectively. We define the two-
body relative position, velocity and acceleration vectors by
=z -7, v =vh — vl and @' = d} — al, respectively.
We also define the relative unit vector n' = 7 /r, where

r = \/z'7 is the orbital distance. Using these definitions the
radial velocity is given by i = »'n’. Finally, for a binary
system in circular orbit we define the PN expansion
parameter it = (2zFM)'/3/c, where F is the orbital fre-
quency. Note that &t = v + O(c™).

B. Main equations

The post-Newtonian Lagrangian describing the two-
body interaction, up to the relevant multipole moments,
can be written as

L= Epp + 'Cspin + ’Cquad' (4)

Here, L, describes the PN interaction between two point
particles of mass m; and m,, which up to 2PN order is
given in relative coordinates

Loy =Ln+ 2 Lipy + ¢ Lopn +O(c70),  (5)
with

1 M
Ly = = uv? +£

. (©)

,
and the higher PN order terms given in Appendix A. The
term Ly, contains the contributions from current dipoles,
specifically the spin angular momenta of each body, and is
given to second order in spins by [51]

1 . 2M .
Lepin = Eﬂlﬂze”kvlajzk + —21711726”1‘111111(5‘" + k)
r
3
- Fsgsgnw, (7)

where §' = S} + S5 and =* = (15/11)S + (111/112) S, with
Sli,z the spin angular momenta of each body. Finally,

the mass quadrupole contribution reads, to leading PN
order [49],

M i _
Louaa = 5,5 0 + 0(c™2), (®)

where Qéjf-f = anij -1 Q;j , with Q’i{z the mass quadru-
pole moments of each body. In the following we shall
ignore the tidal deformability of the bodies, which corre-
sponds to the part of the Lagrangian describing the internal
dynamics.

In the case of a binary system, the dynamics in the
center-of-mass (COM) frame is described by the orbital
separation z' = zb — zi. From the variation of the above
Lagrangian with respect to the worldline coordinates Zli.z
we can derive the equations of motion of the binary:

[ AT BT Sl i i i
a =2 =24 =% =ap + Qgpin + Aquad- (9)
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The mass and spin contributions are
i M, i i -5/2
dpp =~ 2" + ajpy + aopy + O(c™77), (10)

. 1 o . )
a . = —3{6n’[€/kpnkvP(Sf + )]
r

spin
— lK[p] (48% 4 32X) 4 3ind (28% + =H)]}

15 .
+ 1 sistntin 4 o(c512), (11)
ur

whereas the mass quadrupole contribution is

i 15Qeff

aquad 21/’, <ijk> + 0(6_6)' (12)

The orbital equations of motion must be supplemented
by a suitable set of equations describing the dynamics of
the spin angular momenta of each body. There are two ways
of achieving this, through the fluid description of PN
sources [2] or through effective field theory [52]. Both
methods give the same result, namely

das;

= vk[gfsung], (13)

where S is the spin of one of the bodies, / contains the
spin-orbit and spin-spin couplings

Q= ¢3QY + 0l + O(c2),  (14)

and 7 gM is the torque generated by the monopole-
quadrupole interaction

Qﬁj@n(ka)' (15)

; 3n,M
jk O
TQM - 3

The spin precession equation for the other body can be
found by taking (1 <> 2) in Eq. (13).

The coupled system of orbital equations of motion and
spin precession equations possess constants of motion. The
first is associated with the fact that the Lagrangian in
Eq. (4) is explicitly time independent, and thus has a
conserved Hamiltonian H = p'v' + s'a’ — L, where p' =
OL/0v" and s' = OL/da'. This leads to the conserved
orbital energy of the binary

Eo = Ex + Equaa + ¢ 2Ejpn + ¢3Esq

+ ¢4 [Eypn + Ess] + O(c™7?), (16)
where
1 uM
Ey = —uv* ———, 17
N 2.“” , ( )

Equad 2 N3 Qeff (18)
and the remaining PN terms are given in Appendix A. In
addition, one can define the conserved total angular
momentum J' = e"¥(ri p* + vis*) + S'. The first of these
terms constitutes the orbital angular momentum, which is

L' = pe™rioF[1 + ¢ Lipn + ¢ Lopy]
+ ¢PLL 4+ O(c™?). (19)
The first term in the above is the Newtonian orbital angular

momentum, while the remaining PN and spin-orbit terms

are given in Appendix A. Note that the direction L' = L' /L
is not conserved and obeys the precession equation

dL’ ds’
=L , 20
dt dt (20)
where L = VL'L'. The set of equations has now been
completed.

Before continuing, is it worth pointing out an additional
property of the orbital and spin angular momenta in the case
of generic quadrupole effects. In the absence of radiation
reaction, the magnitude of these angular momenta, specifi-
cally L given in Eq. (19) and S, = +/S}S%, are not
conserved when considering generic quadrupole correc-
tions. This may seem rather confusing when comparing to
the well studied scenario of spin precessing BHs, where the
quadrupole moment scales as QY o« %57 It is well known
from the PN spin precession equations that S, is conserved
in this case [52]. However, a quick contraction of Eq. (13)
with S¢ reveals that the spin magnitude is only conserved
when e”k QUaptka) | §i which need not be true for an
arbitrary quadrupole moment. A similar result can be found
for the conservation of L. While this may seem problematic,
it is important to remember that the conserved quantity is

actually J = V/J'J', which will change only when we
include radiation reaction.

C. Osculating orbits

Consider the problem of solving for the orbital motion
which is described by Eq. (9). To simplify the calculation,
consider the case of Newtonian orbits acted upon by a
perturbing force generated from the higher PN terms, spin,
and mass quadrupole effects, given by the 1PN and 2PN
terms in Eqgs. (10) and (11)—(12), respectively. In such a
case, the action of the perturbing force can be understood
using the method of osculating orbits [2]. For unperturbed
Newtonian orbits, the equations governing any bound
orbit are

?: rKfl, (21)
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B =g+ rgi, (22)
where we recall that r is the relative radial distance, v is
the relative velocity, ¢ is the orbital phase, and [7, ;1] are the
basis vectors that parametrize the orbital plane. The
Keplerian expressions for the radial separation and veloc-
ities are

p

=, 23
'K 14 ecosV (23)
M\ 1/2
g = e<—> sin V, (24)
p
. M\ 1/2
bx = <—3> (1+ecos V)2, (25)
P

where e is the Newtonian orbital eccentricity, p is the
semilatus rectum, and V = ¢ — w is the true anomaly, with
w the longitude of pericenter. In the absence of a perturbing
force, the motion of the binary is planar. However, this is
not necessarily true in the perturbed case, and we need to
generalize the prescription of the orbit further. Defining a
new frame spanned by the vectors [y, &y, &,], the orbit can
be arranged into an arbitrary orientation with respect to this
new frame through the use of Euler angles, as illustrated in
Fig. 1. A sufficient parametrization is [2]

il = [cos Q cos ¢ — cos 1 sin Q sin ¢, sin Q cos ¢

+ cos 1 cos Q sin ¢, sin 1 sin @], (26)

V4

Pericenter

Line of Nodes

FIG. 1. Graphical sketch of the orbital motion (blue solid line)
as viewed in the fundamental reference frame. Here 1 is the
inclination angle, Q is the longitude of the ascending node, @ is
the longitude of pericenter and V is the true anomaly.

A= [—cos Q sin ¢ — cos 1 sin Q cos ¢, —sin Q sin ¢
+ cos 1 cos Q cos ¢, sin 1 cos ¢, (27)
L = [sin ¢ sin Q, —sin 1 cos Q, cos 1], (28)

where 1 is the inclination angle and Q is the longitude of the
ascending node. The Keplerian orbit is now parametrized
by five conserved quantities u* = [p, e, 1, ®, QJ.

The method of osculating orbits posits that, under the
action of any perturbing force, the parameters y“ are no
longer constant, but vary in time according to the per-
turbing force. The trajectory of the binary is parametrized
by 7 =F(t,u*) and ¥ = ¥(z, ), while the equations of
motion are

d > a\y — 5 a

ST = (), 29)
d - -
_U(tv/’la) :fN +fpen’ (30)

dt

with fpm the perturbing force. The method of osculating
orbits promotes the conserved parameters to functions of
the time variable, specifically u* — p“(z), and thus

d_0 a0
dt Ot dt ou*’

(31)

The first term above generates the usual conserved
Keplerian orbits, while the remaining equations are

du® Or
p— 2
dt 8ﬂa 0’ (3 )
du® 0V - .
= Folt®). (33)

Specifying the perturbing force as fpen =R+ S+ WL,
the osculating equations for u“ are [2]

d 3\ 1/2
apP _ (P L (34)
dt M I +ecosV
de [(p\V2] . 2cosV +e(1 +cos?V)
dr <M) {SIHVR—'— 14ecosV s 69
d_(p 112cos(V + w) ’ (36)
dt M 1+ecosV
aQ  (p\'2sin(V+aw) W (37)
d  \M 1 +ecosVsint’
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do 1 [(p\!/2 2+ecosV .
E_E(M> —COSVR—FWSIHVS

sin(V + w)

ti———=W|. 38
COll+ecosV ] (38)

Note that there are only five parameters u“, but
Egs. (32)—(33) are six equations in total. The five equations
for u“ are supplemented by an additional equation for the true
anomaly V in order to complete this system of equations.
Such equation is given by V = ¢x — (& + Qcos1), which
uses the above equations for @ and Q. The action of the
perturbing force on the orbit is now fully specified.

When studying the evolution of the osculating equations,
it is important to realize that they depend on at least two
timescales, the orbital timescale encoded through the
dependence on V and a secular timescale, which is
determined by the perturbing force. In order to obtain
PN accurate solutions, we must then solve the osculating
equations using multiple scale analysis [2] (in this case, two
timescale analysis). Because the equations are parametrized
in terms of V rather than ¢, it is convenient to recast them as
du®/dV = (du“/dt)/(dV/dt) and PN expand to the rel-
evant order. The two scales of the problem then become V
which is the shorter scale, and V := ¢V the longer scale,
where [}, = O(e) with e an order keeping parameter. The
derivative operator then becomes,

d 19} 0
—_ = —, 39
av_ov ov (39)
and our ansatz for the solution is
W= (V) + el (V. V) + 0. (40)

The leading order term above y( is only dependent on the
long secular scale V, since the u® are conserved for
unperturbed Keplerian orbits.

The strategy to solve the osculating equations is to
combine Egs. (39) and (40) with Eqgs. (34)—(38), and
expand to the relevant order in e. The leading order
equation is

dpg Ot

= = FUV;ud), 41
o = Fo(vag) (41)
where F“ are given by the right-hand side of Egs. (34)—(38).
This equation can be solved by realizing that the dependence
on the shorter scale V is purely oscillatory. Upon averaging in
the following fashion,

Eq. (41) reduces to

dp

— = (F)(ug). 43
H— () #3)
which uniquely determines y(. Finally, to obtain u{, we
combine Eq. (43) with Eq. (41) and integrate with respect to
V, specifically

Wi (V.Y =t (V) + / AV [FO(Vigid) — (F) (). (44)

This determines y{ up to a purely secular term u{ .(V),
which is determined by next order equations in €. For the
purposes of the present calculation, it suffices to stop the
analysis here.

III. GENERIC MASS QUADRUPOLE EFFECTS

The perturbing force we desire to investigate is given in
Eq. (12), which is dependent on the effective quadrupole
tensor Q4. In order to calculate the necessary components
of the perturbing force for the osculating equations, we
need to specify the components of this STF tensor. To do
s0, we assume the quadrupole moment is held fixed with
respect to the (XY Z)-frame, which we now refer to as the
body frame. For convenience, this frame is also chosen
such that the direction of the total angular momentum J' is
aligned with the Z-directions €. In this frame, the STF
tensor can be readily decomposed into spherical harmonics,
specifically

2
Qi = W2 ) V5! O (43)
m==2
where Q,, are the spherical harmonic coefficients of the
mass quadrupole, yﬁj} are defined as

Vi =g [asNEYL 00, o)
Wi

with N’ = [sin@cos ¢, sinfsing, cosb], Y,,(0,¢) the
spherical harmonic functions, W, = 4zl!/(21 + 1)!!, and
the integral is performed over the 2-sphere. Note that in
general, the Q,,’s are complex (except when m = 0) while
the components of Q/) are real. It is thus simpler to specify
the components of Q') in terms of the real and imaginary
parts of the Q,,’s, specifically

Q1 =0 +i0l,. (47)
0., =08, +i0,. (48)

The decomposition for the negative m terms follows from
o_, = (—1)’“QL, while Q, is real valued. With this, the
osculating equations for the mass quadrupole correction
become
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di 67\ /2 (1- )%/2
<dl> (5) W{COSI( R cosQ+ Q' sinQ)

+sini[QF,sin(2Q) 4 Q' , cos(2Q)]},

<d§2>:<>1/2(1_"’ )3/2{0051[3Q0+\/_Q+2005( Q)

dt 5) wM'/2pl
~ V60! ,5in(2Q)]
+V/6cos(21) csci(QF

<d_w> -3 (‘) 1/2%{ ~3Q[3+5cos(21)]

(49)

R sinQ+ Q% cosQ)}, (50)

dt 4\5
+2v6[3—5cos(21)]cotz( QR sinQ + Q| cosQ)
+VB[1 = 5cos(21)](Q%, cos(292) — 0/, 5in(292) ).
(51)

while [e, p] do not change on the secular timescale to
leading order and are determined by Eq. (44).

The above osculating equations are actually equivalent to
Eq. (20), describing the precession of the orbital angular
momentum L’ around the total angular momentum J'. In
order for the direction of J? to be conserved, one also has to
consider the precession of the spins, which after orbit
averaging Eq. (13) become

ds: 31, M ik i) # (ka

< dt1> - 2p? (1- 62)3/2€]kQ§j L% 2 (52)
ds: 3InM G (ia) $ (ka

< dt2> - 2[1?3 (1= 62>3/26UkQ§J 'L (53)

For the present calculations, we will neglect the spin-orbit
and spin-spin effects when considering the precession
induced by quadrupole effects. The reason for this is that
the PN precession equations up to the relevant PN order
have only recently been solved analytically in the case
when Q¥ corresponds to the spin-induced quadrupole
moment [53-56]. The case for generic Q% has not been
solved. For simplicity, we shall consider only nonspinning
binaries and hence neglect the relativistic spin-orbit and
spin-spin couplings. In such a scenario, the problem
reduces down to first solving Eqgs. (49)—(51), and then
solving the above spin precession equations for S ’12 In the
following sections we consider the generic problem of
solving the osculating equations.

As a special application of the system of equations given
by Eqgs. (49) —(51) and Eqgs. (52)—(53), we consider the case
where L' and Si, are aligned with the Z-direction of the
body frame in Sec. III B.

A. Precessing solutions

Consider the problem of solving Egs. (49)-(51). In
general, there does not appear to be a closed-form analytic
solution to this system for generic non-zero quadrupole
coefficients [Qy, oR! i Q ] and 1 # 0. However, there are
some special conﬁguratlons which allow for closed-form
solutions. The three cases are as follows:

(i) Spheroidal: O, = 0 = Q,, with O, nonvanishing

(i) Polar: Q4 = 0 with [Qg, O.,] nonvanishing

(iii) Axial: Q., = 0 with [Q, Q4] nonvanishing
Below, we detail each of these cases.

1. Spheroidal case

The spheroidal case considers the scenario where the
compact object has an oblate/prolate spheroidal shape, and
thus the only nonvanishing quadrupole coefficients is the
m = 0 term. A common astrophysical scenario that would
create such an effect is a quadrupole moment induced by
rotation. For the calculation at hand, we leave Q, as a
generic constant. However, in the case of spin-induced
quadrupole moment, Qy = Coy*M* + O(y*) with y the
dimensionless spin parameter, M the mass of the compact
object, and a proportionality factor C, which is dependent
on the equation of state. In the Kerr BH case, C, = —1 and
higher-order spin corrections in Qg vanish identically.

In this scenario, the secular equations simplify to

<%> ~o, (54)
4o 1/2 (1 3/2
<E> = 3<5> (1‘41/72)7/2Q0 COS 1, (55)
d 3 1/2 (1 = ¢2 3/2
<d—‘;> = -2 (g) W 00[3 + 5cos(20)].  (56)

As can be seen from Eq. (54), the inclination angle
becomes constant, and thus, there is no nutation. The only
effect on the binary is the precession of the orbital
plane, encoded through [Q,w]. Taking i = 1, = const.,
and defining

dyrg T\12 Qp(1 = *)*?
Egs. (55)—(56) can be directly integrated to obtain
1
Q =y, ® = 7 sec 1p[3 4+ 5co0s(2i)|wo.  (58)

Note that here we wrote the solutions in terms of the
dependent variable v, instead of time. The reason for this is
that the right hand side of Eq. (57) is function of the orbital
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velocity through [p, e] and will thus change on the radiation
reaction timescale. We expand on this more in Sec. IV A.

2. Polar case

The polar case is named due to the fact that the
nonvanishing quadrupole coefficients [Q, Q+,| corre-
spond to spherical harmonics modes that are even under
spatial reflection, i.e., polar modes. In this scenario, it is
convenient to define the dimensionless parameters v, =
OR,/0Qp and i, = Q' ,/Q,. Further, we define the polar
modulus e, and polar argument a, such that

2 o | /2 1 .
€ = {g (¥5 + ‘%)} , a = Etan_l(tz/fz)- (59)

Finally, we define y, such that

dyy L (F\20(1= )
W = 3(5> W 1- €3 COS 1. (60)

Unlike the spheroidal case, the inclination angle is no
longer constant and the primary effect of the m = £2
modes is to induce nutation of the orbital angular momen-
tum. As a result, the above definition for y, no longer
varies on solely the radiation reaction timescale, but also on
the precession timescale through i. Also, note the presence
of €, in Eq. (60), as opposed to Eq. (57) since ¢, = 0 in the
spheroidal case.

The starting point for solving the secular equations in
this case is to divide Eq. (50) by Eq. (60). Defining
Y = Q+ a,, we arrive at

dV 1+ e;cos(2V)
dyr, Ji-a

The solution to this equation depends on the value of ¢,,
which depends on the specific scenario under consider-
ation. For astrophysical objects, the induction of a quadru-
pole moment on the body is largely expected to be a result
of spin angular momentum creating an m = 0 contribution.
However, such objects are also likely not perfectly sphe-
roidal, but may have small deviations on their surface (e.g.,
mountains on a neutron star) which could contribute to
|m| > 0 modes [15]. Such contributions are expected to be
small, and we could thus assume that ¢, < 1.

Another example of how to generate an |m| > 0 mode on
a compact object is through dynamical tides. A sufficiently
rapid change in the electric tidal moment G;; = 9;;U, with
U the Newtonian potential, can excite f-modes on the
surface of any compact object, e.g., [S7]. In the case of a
spin-aligned binary, this will generate f-modes with m = 0
and m = +£2. In this case, the amplitude of the f-modes are
2PN order, i.e., they scale like O(v*) with v the orbital
velocity. Thus, these effects are potentially subdominant

(61)

compared to an intrinsic spheroidness, and we may once
again assume €, < 1.

Finally, a further example are deformed BHs in modified
gravity, where uniqueness and no-hair theorems might
not hold."

To be as general as possible while still working in the
realm of astrophysical plausibility, we take 0 < e, < 1 for
the remainder of this calculation. Under this assumption,
the solution to Eq. (61) is

1
V = tan~! {1 /ﬂtan 1//2] . (62)
1- €y

Such an expression should be familiar to anyone who has
studied Keplerian orbits, since it takes the same form as the
mapping between the true anomaly V and the eccentric
anomaly u for eccentric binaries, specifically

1 J_rjtan <g>] . (63)

These expressions have known issues with branch cuts when
[wo,u/2] = nz/2 with n an integer. However, it has been
shown [60] through trigonometric identities that an equiv-
alent expression that removes the branch cuts and properly
tracks the secular behavior of V with increasing u is

V_ tan~!
> =

_ p.sinu
V= 2tan! | —4— ), 64
- stan <l—ﬁecosu (64)
where
1-V1-é?
fo=——"—7. (65)

e

Thus, an equivalent expression for V() can be found by
taking V — 2V and u — 2y, specifically

Y=y, +tan‘1[ B sin(2yr,) }

1 — B, cos(2yr) (66)

where 3, = ff,(e = €,).

Moving on to the inclination angle, we proceed by
dividing Eq. (49) by Eq. (60), and then divide by Eq. (61),
to obtain

d e [ tanzsin(2)) }

— 67
AV \/1-& [l +ecos(2V) (67)

'Although such deformed solutions exist (e.g., [58,59]) they
arise from modified field equations that also affect the binary
dynamics in other ways (e.g., by extra dissipative terms). Since
we assume GR, our approach can describe this situation only if
beyond-GR effects to the dynamics (e.g., modified fluxes) are
negligible compared to the multipolar deformations.
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Such an equation can be directly integrated to obtain

sint 1+¢6
singg  \| 1 + €, cos(2V)’

where 1, is the initial value of the inclination angle, i.e.,
1o =1(V =0). Using Eq. (62), this can be rewritten in
terms of y, as the dependent variable, specifically

(68)

sint. |1+ €;cos(2y,)
1 + €y

= . 69
sin 1 (69)

Note that in the limit 7, — 0, the orbital angular momentum
vector becomes aligned with the Z-axis of the body frame
and 1 becomes a constant. Thus, in the limit of alignment,
there is no nutation.

Finally, moving on to the longitude of pericenter, we
obtain an equation for dw/dy, by dividing Eq. (51) by
Eq. (60). After some manipulation, this equation takes the
form

dw _ ci + ¢ cos(2yr,) C(0)
dy, [1 — €, cos(2y,)]\/a_ — bcos(2y,)
where
a, = 14 e, —sin? i, (71)
b = —e, sin® 1, (72)
c; =3—-6(54+4¢)+5(14¢)cos(2t), (73)
¢y =6 (1 +56) —5e,(1 + €;) cos(21p).  (74)

Naturally, this equation can be directly integrated to obtain

secly |co 2b
= 0 2Ry,
RN g [62 <w2 b—a->
2¢, 2
—4(1 EIlI ; . (75
(1 e (22l 2] 09

where @ is the initial value, EIIF and EIIIT are the elliptic
integrals of the first and third kind, respectively. Note that
this equation is divergent in the limit iy, — /2, since w
becomes ill-defined in this limit.

We leave the calculation of the solution to Eq. (60) to the
discussion in Sec. IVA.

3. Axial case

The axial case is defined as the situation when Q, are
zero, while the Q,; coefficients are nonzero, which
correspond to spherical harmonic modes that are odd under
parity. Much of the setup for this case is the same as the

polar case. We define the dimensionless parameters r; =
O",/Qp and i; = Q| /Qy, from which we can define the
axial modulus and axial argument,

2 NS
€ = [g(r% +t%)] . ap =tan”' (iy/1)).  (76)

We also modify the definition of w, to obtain v,
specifically

%:3 r I/ZM‘/I_@COSZ
dt 5 M2 p7/2 e

Lastly, we define V = Q + «a;. With these new variables,
the relevant equations become

(77)

di €, cosV
A _aty 78
dy, V1-—¢€f 78)
aV 1+ 2¢ cot(21) sinV’ (79)
dy 1—€
do  —5cosi+seci+¢€;[3—5cot(2)]cscisinY (80)

dyi

2¢/1—¢t

Unlike the polar case, the evolution of V is not decoupled
from the evolution of ;. It makes sense then to divide
Eq. (78) by Eq. (79) to obtain di/dV . Further, we make the
change of variables y = coti, which gives

dy _ y(1+7%)e cosV
dV  y—(1—y"esinV’

(81)

This equation has a known exact solution, specifically

y=(1+7yd)e sinV + \/y%) + (1 +y3)%e3sin?V,  (82)

where yo = cotiy with 15 = () = 0).

With the solution for : in hand, one can insert this
into Egs. (79)-(80) and try to solve for [V, ).
Unfortunately, there does not appear to be a closed form
solution to these for arbitrary value of €}, even if we enforce
the condition €; < 1. We instead solve the equations
perturbatively in e; < 1, which is the case of most
relevance to astrophysical scenarios. A straightforward
calculation gives

Vi) = w1+ Y eV ), (83)
n=lI
1 —4y3 =
o(y) —wy = T =¥t E €1f0(n)(l//1), (84)

2y 1 +1p =1
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with @, and integration constant, and the first few functions
in each sum given below,

2 .
Vo) = —y—(1 — rg)sin®(y1/2), (85)
0
5 (1-75) . (1+73) .
=y, -0 — 0V Gin(2y,), (86
Vi) =31 7 siny 7 sin(2y),  (86)
(1 =2y +275)
() = ———F——="-COS Y1, (87)
W 147
(1—6y3+28y] (1=3p2 =493 +2¢8) .
Wy = 0 20)% ;) 0 : O)Slnllll
8y 1+75 2vov/ 1475
3—8y2 —dyt —8y0
_B=8n =40 =870 o) (88)

1675/ 1475

Note that the above solutions properly reduce to Eq. (58) in
the limit ¢; — 0.

4. Toward a general solution

Having considered the scenarios where analytic solu-
tions are possible, some of which are in closed form, we
may now work toward constructing general solutions to
Egs. (49)—(51). We showed in Sec. III A 2 that the case with
€; = 0 and e, # 0 admits closed form solutions. We choose
to study the construction of a general solution by starting
with the closed form solutions of Sec. III A 2 and consider
the axial effects as a perturbation. The ansatz for the general
solution will be

1(19) = —2cosy cos (

sint = sin [ ()] + Y _ €11, (w2), (89)
n=1

Q- =Vo(y2) + D _ €V (wa), (90)
n=1

®—wy = oy (y2) + Y €W (w2), (91)
n=1

where [Q, @] are integration constants, and sin,, V,, and
@, are given as functions of y, in Egs. (69), (66), and (75),
respectively. To obtain the relevant equations for
A?‘n) = [I(n), Vi W(,,)], we insert the above ansatz into
Eq. (49)—(51), and expand about ¢; < 1.

To order O(eY), the osculating equations are automati-
cally satisfied. To higher order, we obtain equations of the
schematic form

dA?
() _ pa b b .
dyy F(n) [1//27/\(1)(11/2)’ ---vA(n_l)(Wz)’€2]~ (92)

In practice, we have failed to find closed form solutions to
these equations for arbitrary e,, and have instead sought to

solve them in the limit ¢, < 1. The solutions take the
general form of a power series, specifically

Ay =Y AL (wa). (93)

Defining A = @ — a,, the solutions up to order O(e ¢, ) are

A +"§> sin (‘%) (94)

1
Iy = gsecto sin <%> {6.cosy, sin A — cos(2y)[—6sin A + 9sin(A —y,) + 5sin(A +y,) + 10sin(A 4+ 2y,)]},  (95)

Vii0) = —2cot(219)[cos A = cos(A + )], (96)

1
Vi = 18 {49 4+ 10 cos(21y) + 5 cos(41y)] csc 1gsec’t sin Asin®yr, + cos A sec 1y[—48 cos(21g cos(2y, ) csc 1y

+ 3(=7 + 10 cos[219] + 5 cos[4iy]) cos y, csc igsec?ty + (9 + 10 cos[2zy] + 5 cos[4iy]) cos(3y) esc iysec?i

+ (2 4 cos[21g]) secigtanig)},

1

2

Wio) = g Sec o tan 10{21;/2 sin A[7 4 5cos(21g)] — esc?1p[7 + 4 cos(21y) + 5 cos(41p)] sin (A + &> sin <ﬂ> }, (98)
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W(l,l) :%

1
cscigsectiy{cos A[=2(11 =323 cos[2z] + 65 cos[4y] + 55 cos[61])

+36(2 4 cos[2i)) (3 — 16¢0s[21y] + 5 cos[41y]) cosys +9(12 4 35cos[21g] 4 12cos[41g] + 5 cos[61y]) cos(2y» )
— (1447 cos[21g] + 50cos[41g] + 25 cos[61g)) cos(3yr, )| + sin A[9(—=2 — 37 cos[2ig] + 2 cos[4ig] + 5 cos[61p) ) siny,
+6sin1y (w2 [131 + 188 ¢c0s{2¢} + 65 cos{4iy}] +3[3 +cos{2i }][—1 +5cos{2iy }] sin[2y5])

+ (1447 cos[21y) 4+ 50 cos[4y] + 25 cos[61p) ) sin(4yr,)] }.

We stop the expansion here since the solutions for A?n. %
become increasingly complicated. The above discussion
and results present a schematic of the calculation, and one
can easily extend these results to higher order in €, if
desired.

To provide an estimate of the accuracy of the above
solutions, we compare these analytic results to numerical
evolutions of Egs. (49)-(51). In order to perform the
numerical integration of the equations, we convert them
to equations of the form du“/dys,, and recast them in terms
of €, and a;, instead of the Q,, coefficients. We set
€,=09, &, =0, @y = z/2, and study the behavior of
the solutions for different values of €, specifically
€; = [1077,107°,1073]. The results of this comparison
are shown in Fig. 2. The top panels show the plots of
both the numeric (solid lines) and analytic (dashed lines)
for (from left to right) i, Q, and w. The bottom panels
display the relative difference between the two solutions,
showing the error introduced in each phase. As ¢; decreases
by each order of magnitude, so does the error by a
comparable amount. Note that this has to be the case since
the analytic solutions are exact in the limit ¢ — 0.

(99)

|
B. Nonprecessing solutions
Alignment between the Z-axis of the body frame and £,
specifically 1 =0 and (di/dt) =0, is only possible
when Q4; = 0. When this occurs, the orbital basis of
Egs. (26)—(28) reduces down to

it = [cos(¢p + Q), sin(¢p + Q), 0], (100)
A = [=sin(¢ + Q), cos(¢p + Q),0], (101)
L =10,0,1], (102)

and thus the effect of the mass quadrupole contributions is
to modulate the orbital phase ¢ by Q.

The solutions in this limit can be considered as a special
class of the polar solutions. Defining [w»,€;, @] as in
Egs. (59) and (60), it follows that V = Q + a, still obeys
Eq. (66). The longitude of pericenter reduces to

08F — =103

N

= -5

0.7k £,=10 \\
—— £ =10"7 \

0.6 ;/ \?

0.5

t + constant
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03F
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|
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FIG. 2. Top panel: comparison of the numerical evolution of i (left), Q (middle), and  (right) from Egs. (49)—(51) (solid lines) to the
analytic solutions (dashed lines) given in Sec. IIl A 4 for ¢, = 0.9, a, = 0, a; = n/2. Each color represents a different value of ¢,
specifically 10~ (black/upper), 107> (red/middle), and 107 (cyan/lower). All of the calculations are performed with 7, = z/50. Each
case is offset by a constant value from the others so that they do no overlap. Bottom panels: relative difference between the numeric and

analytic solutions.
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0 —w) = S [1//24' (1 +€2)H<£ZW2|O>]-
\/1—62 1—62

(103)

A straightforward calculation shows that the direction of
pericenter advances at the constant rate

(104)

hm(dw + cos dQ) !
1 =
=0 \dy dy, V1-6

The motion in the aligned limit is now fully specified.

C. Oscillatory effects and orbital motion

As mentioned at the beginning of this section,
(de/dt) = 0 = (dp/dt), and thus the leading order correc-
tion to [e, p] comes from the oscillatory effects of Eq. (44). In
order to complete our solution to the dynamics of the binary
to leading order in the mass quadrupole moment (or alter-
natively, complete to 2PN order), we must also consider these
oscillatory effects in [e, p]. We do not need to consider these
corrections to the angles [1, Q, ], since these terms do not
enter relevant orbital quantities until relative 2PN order, and
thus their oscillatory effects will be further suppressed to
relative 4PN order. Following Eq. (44), the solutions for
[e, p] are schematically

1
e(V)=ey+— g [C¢ cos(kV) + S¢sin(kV)] + O(py?),
0 k=0

(105)

p—%z [C7 cos(kV) + SV sin(kV) + O(pg*)].
k

(106)

where [e, po| are determined by initial conditions. We do not
provide the specific [C;, S;] coefficients in this work, since
they are rather long and unenlightening. However, they can
be readily computed from Eqgs. (34)—(35).

Naively, one might expect that e, would correspond to the
actual (in a geometric sense) eccentricity of the orbit, and
likewise for the semilatus rectum p,. However, this is not in
general true. Indeed, one can easily check that eq = 0 does
not correspond to circular orbits, since lim, _ge(V) # 0. We,
thus, have to redefine these parameters such that they make
physical sense. To do this, we follow [61], and define the new
eccentricity and semilatus rectum as

(108)

-l )
p= :
MQ, + VMQ,

where [Q,,Q,] =
expressions are

[max dV /dt, min dV /dt]. The resulting

. ™ “
?= e +\[58yMp2;QS (1,Q,w) + O(pg*). (109)

p=poll+ P (1,Q
P po[ \/;3uMp2;Q (:2.0) + Or") |

(110)

where 0% = [Q,, R0, and the coefficients [£,,P,]
are given in Appendlx B ThlS allows us to now properly take
the circular limit ¢ — 0, since that is the limit of most
relevance to ground based GW detectors. For the remainder
of the calculation, we work in this limit.

In the next section, we will calculate the leading order
effects due to radiation reaction on the binary, but in order
to complete that, we need two more quantities from the
orbital dynamics, namely the modifications to Kepler’s
third law and the on-shell orbital energy. The former of
these allows us to relate the orbital velocity to the orbital
frequency. To do so, we begin by calculating the correc-
tions to the orbital period, which is computed by

T (VAT
orb _/) (E) .

The orbital frequency is then F = 1/T,,,. With the orbital
velocity v = p ¢ in the limit é = 0, we obtain

(111)

~4 y
v=ii [1 +ﬁ\/§;Q“Qa(z,Q,aﬂ +O(ﬁ8)} . (112)

where it = (2zMF)'/? and the coefficients Q, are given in
Appendix B.

Lastly, we need the on-shell orbital energy in order to
utilize the balance law for radiation reaction. The starting
point is Eq. (16), including only the Newtonian and
quadrupole terms. To evaluate this on shell, one has to
insert Egs. (23)—(25) into this to write E.,, in terms of the
osculating quantities p“. This expression is still dependent
on the orbital timescale through V. To address this, we then
have to combine this expression with Egs. (105)—(106) and
truncate at the relevant PN order. The final result, which is
independent of V, is

it b3 -
2> 0E,(1.Q i3
+361/M3\/; — Q a(la »w)+0(u )

(113)

1
Eop= _5/’”'{ 1

where we have made use of Eqs. (109)—(110), and taken
the limit & — 0. The coefficients E, are also given in
Appendix B.
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It is worth noting that all of the orbital quantities derived
in this section vary on the precessing timescale through
[1, Q, w]. We discuss in detail how to handle this behavior in
the next section.

IV. GW EMISSION

The solutions of the previous section constitute the
solutions to the conservative dynamics of the binary in
the presence of generic mass quadrupole effects. In this
section, we will consider the effects of dissipation on such
systems through the emission of GWs.

A. Radiation reaction

We wish to compute the leading PN order corrections to
the inspiral of compact binaries due to generic quadrupole
effects. In order to do so, it suffices to consider the leading
PN order effects in radiation reaction, which are governed
by the quadrupole approximation. The energy P and
angular momentum J i fluxes due to GWs therein are
governed by

P = 5 1<u>1<u>’ (114)
P 2 ik jla)jike)

with IV the orbital quadrupole moment of the binary. The
quadrupole deformation of the body does not explicitly
contribute to these equations since we are assuming that the
Q,,’s are static. However, they do contribute implicitly
through the definition of I/, specifically

1V = px'x) + O(c7?), (116)
where r is given by Eq. (23) and n' is given by Eq. (26).
Due to the osculating nature of the orbit, when taking the
time derivatives of 1"/, we must act on the elements [z, , Q]
in addition to the orbital phase ¢. For each time derivative
acting on the former, we are required to insert the osculat-
ing equations in Eqgs. (36)—(38), and then accurately PN
truncate them.

In the present calculation, we take the limit & = 0, since
most binaries of relevance to ground based detectors will
have negligible eccentricity. We then calculate the rate of
change of the orbital energy, which is related to the energy
flux through the balance law

dE, orb
dt

=—=(P), (117)

and where E_; is given by Eq. (16). Since we only desire
the leading PN order correction, it suffices to work at
relative Newtonian order, meaning we only need to con-
sider the contributions Ey and Eg,,q when using Eq. (16).

We must begin by evaluating Eq. (114). The time
derivative can be performed by acting on Eq. (116) directly.
The one important feature of said procedure is that every
time an instance of the acceleration a’ = i’ appears, we
must insert the equations of motion in Eq. (9). Since we are
working to relative Newtonian order, it suffices to only
consider the Newtonian and mass quadrupole terms in the
relative acceleration equation. Doing so, we end up with

17 = fg + 5('1"” ), where

I —/4M[6rx xj—%v(x/)} (118)
r

8(1") = 2p2f ) + Flend”]. (119)
where f{m is given by Eq. (12). The energy flux can now
be directly computed using Egs. (23)-(28). When taking
the orbit average necessary for the balance law, we must
also take into account the corrections to the orbital period
and dV/dt, both of which are detailed in Sec. III C.

On the other hand, the orbital energy is given in
Eq. (113). When taking a time derivative of this expression,
one has to remember that now i is being promoted to a
function of time. The orbital energy also depends on u¢,
and one would need to insert the osculating equations
du“/dt everywhere these terms appear. However, we are
only working to relative Newtonian order, so these will
introduce higher PN order effects that we may neglect.
Thus, we are left with only terms depending on dit/dt in
Eq. (117). Solving, we obtain

di 32 v _
dr 5M9{ 8M3 \[ZQ[‘UZQ@} (120

where the coefficients U, are given in Appendix B. We now
have the necessary equation to solve for the evolution of the
binary under radiation reaction.

In general, radiation reaction introduces a new timescale
to the problem, in addition to the orbital timescale encoded
in V and the precession timescale encoded in w,. To
consistently solve the problem, one has to, once again,
solve the relevant equations in a multiple scale analysis,
now with three timescales. As we detailed back in Sec. II C,
the leading order behavior is obtained by averaging over the
relevant oscillatory scales. In the process of deriving
Eq. (120), we already performed the average over the
oscillatory orbital timescale. Observe that the coefficients
U, only depend on y, through oscillatory functions of
[1,Q, w]. Thus, the precession effects in Eq. (120) are
actually oscillatory effects, and it suffices to perform a
precession average, i.e.,

1

<f>y/2 — 5

2
dyr,.
2 ), fwa)dyr,

(121)
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We will thus obtain double averaged equations that con-
stitute the leading order behavior under radiation reaction.
The precession average of Eq. (120) is found by simply
making the replacement U, — (U,),,. In general, the
averages do not admit closed form expressions for arbitrary
€1,. Given the astrophysical considerations discussed in
Sec. III A, we compute these in an expansion €; < 1 > €,
which provides us the mapping

ZQQ<0a>W - Qozefegupq(ZO’wO’al’aZ) (122)

rq

where the coefficients only depend on constants of the
precession dynamics and are listed in Appendix B. For
brevity, we will drop the explicit sum over [p, g| and apply
the Einstein summation convention in future expressions.

In order to compute the Fourier domain gravitational
waveform through the SPA, we require three phases,
namely [#(it), ¢p(@t), w,(it)]. The first of these is found by
inverting (dit/dt),,,, specifically

dii -1
t(ﬁ):tc+/dﬁ<<—u> >
dt w2
SM Qoil4 T
- - Tebed 123
T 2500 [ Ve \ﬂelezuf"f] (123)

where 7. is the time of coalescence. Similarly, the orbital
phase is d¢p/dt = @t /M, and thus

0@ =g+ w7 [anw ()"

1 5Q017{4 /4
=P [1 "M \/567632”1"1] (124)

where ¢, is the phase of coalescence.

The evolution of the precession phase (i) requires
more careful consideration. The time evolution of yr, is
given in Eq. (60). Unlike the functions [¢(it), ¢(i1)] where
we could average over y,, we cannot do so here and must
consider the full evolution equations dy,/dii, which is
obtained by dividing Eq. (60) by Eq. (120). However, since
the evolution of y, is already of linear order in the mass
quadrupole moments and of absolute 2PN order, it suffices
for our purposes to truncate this expression to leading PN
order, obtaining

%:3\/§Q0\/1—€%

dii 32 MZi?

(125)

cos1,

where 1 is a function of y, through Eq. (89). We solve this
perturbatively in €; < 1, while keeping ¢, arbitrary, just as
wedidin Sec. IIT A 4. Writing y, (it) = o (it) + €1y (it) +
O(e?), we obtain to leading order

dyr o _ 3V5m Qo1 — €

1/2
7 R [a, + bcos(2y,)]'/=.

(126)

This expression can be directly integrated by moving all
terms dependent on y, to the left-hand side and integrating.
The resulting integral on the left-hand side produces the
elliptic integral of the first kind ElF[y,|2b/(b + a,)).
Despite the dependence on specialized functions, the result-
ing equality can be solved to obtain y, o(it) by utilizing the
fact that the Jacobi amplitude function am(x|n) is the inverse
of the elliptic integral of the first kind, specifically
am[EllF(x|n)|n] = x. Rearranging, we obtain

2b 2b
i) = ElF( yw.|— | =W, (&1 127
wsol) =am BIF (vl 20 ) (@2 | (120
where a, is given in Eq. (71), and
3vV5 V1 —é3
W, (1) = 7 Qo 2 cos 1. (128)

32 M?vii

This expression is exact in the limit ¢; - 0, and for
€, € [0, 1). Note that ¥, ~ ii~!, and is thus a —0.5PN effect,
unlike the orbital phase in Eq. (124) which scales as it~ and
enters at —2.5PN order.

The correction to the precession phase y, (i) due to
axial modes require a more in depth calculation. Similar to
the results in Sec. III A 4, there does not appear to be a
closed form solution to this for arbitrary ¢,, and we instead
solve them in the limit ¢, < 1. To leading order,

dy,y  3V5mQpsing [sin[A +y, —Wy(it)] —sin A
di 16 M 2u? ‘

(129)

where ¥, = lim,,_,y'¥,. This can be directly integrated to
obtain

Yo (I'Z) = sin A tan lOlP()(ﬁ>

—tan 7y cos[A + y. — Wy (@t)] + O(ey).  (130)
The calculation can be extended to include the O(e})
corrections to y, (i) in a straightforward way. We do not
calculate them here for brevity, as well as the fact that these
terms will scale as €€5 in the precession phase, and can
thus be treated as higher order.

In Fig. 3, we compare the analytic approximation
of t(it), ¢(it), w,(it) derived in this section to numerical
evolutions of the precessions equations in Egs. (36)
coupled to Egs. (120) to include radiation reaction. For
these numerical evolutions, we fixed €, = 10~ and varied
€, = [1073,1072,107!]. In doing so, we found that the
dephasing between the two solutions, which encodes the
error in the analytic expressions, depends on €, only mildly.
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ts) [M] + constant
¢(3) [rad] + constant

— =107
2 b — £=1072
— £ =103

y, [rad] + constant

183 (tnum — tan)| [rad]
[®num = Gan| [rad]

1074

105 |

an| [rad]

106

W2, num = W2,

1077

10-8

L L L L
0.10 0.15 0.20 0.25 0.30

FIG. 3. Top panel: comparison of the numerical evolution (solid lines) of the time variable ) (i) = #(it)/ 10° (left), orbital phase
¢3)(it) = ¢(it)/10° (middle), and precession phase w (it) to the analytic PN expressions (dashed lines) in Egs. (123), (124), (126), and
(130), respectively. The dashed lines correspond to different values of the polar modulus €5, specifically 1073 (cyan), 1072 (red), and
10~ (black). The remaining parameters are held fixed at ¢, = 107, a, =0, @y = 7/2, v = 1/4, and Q, = M>. Bottom panel:
dephasing in radians between the numerical evolution and analytic expressions. The dephasing in y, (bottom right) does not vary
significantly for the values of €, considered and it is mainly due to the PN truncation and the precession-average procedure.

For #(i1) and ¢(it), the dephasing becomes of order one
radian for the largest value of €,. The dephasing for these
quantities can be improved by carrying the ¢; < 1> ¢,
expansion to higher order. On the other hand, the dephasing
in y, (it) does not vary significantly for varying ¢,, since it
can be solved for exactly in the case of polar configurations.

B. Gravitational waveform

Let us now consider the gravitational waveform of a
binary with arbitrary mass quadrupole coefficients. For
simplicity, we will seek to develop the corrections to the
TaylorF2 waveforms for quasi-circular binaries due to
generic mass quadrupoles. To derive this, it suffices to
consider the quadrupole approximation, where the metric
perturbation is given by

2

hij = ap, L

(131)
where D; is the luminosity distance to the source.
The orbital quadrupole moment must be handled in the
manner described above Eq. (118) when working in the
osculating formalism. The observable waveform is found
by projecting h;; into the transverse trace-less (TT) gauge.
In order to do this, we define the line of sight vector
NP = [sin Oy cos ¢y, sin Oy cos py, cos O], where Oy, is the
angle between the Z-axis of the body frame and N’, and ¢
is the angle that the projection of N’ makes in the X Y-plane
with the X-axis. We consider these angles to be constant in
the observer’s frame. The projection into the TT gauge can

be performed via Eq. (11.44) in [2], which gives us the
following plus and cross polarizations for the waveform,

h=h, —ih,
M,

o D ZA’”v” (l’ Q)ein¢—2 Y2m (91\” ¢N)
L mn

(132)
where _,Y,, (0, ¢) are spin weight —2 spherical harmonics,
m is an integer such that |m| <2 and n = +2. The
amplitude functions A,, , are listed in Appendix C.

Since the binary is precessing, the amplitudes A,,,
depend on time through [, Q]. In order to calculate the
Fourier domain waveform, we make use of the SPA
and SUA [48] to obtain the precession corrections. The
phase of the Fourier integral is of the standard form
Wr = 2xft(it) + n(it), and the stationary point is given
by it, = ii(t,) = (=2zMf/n)'/3. Note that this only con-
tributes to the Fourier transform for positive frequencies
for n =—-2. The SUA corrections are found through

T, =1/y/n¢(i,). After applying both the SPA and
SUA corrections, the resulting waveform is

B 5 M5/6
h(f) =4/~
(f) 96 7[2/3DL

f_7/6ei%zv4m (f)2Y 2 (O D)
(133)

where the Fourier phase is
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¥p = 2nft 2. -5

3 500 |«
1- —ePely M )43 ’
+128y(an)5/3{ 4M3y\/;€'€2 pq(ZM[) }

(134)

and the Fourier amplitudes are

kmax

Ap(f) = Y Ay, ol (i) + A2l (0]},
k=0
(135)

which are dependent on frequency through the SUA
corrected i1y, specifically

i’lk = ljl(l‘* + an)

= (zMf)'3 + 4k\/;y;(ﬂMf)7/6

Q =
X [l + e \/;efegupq(ﬂMf)‘w]. (136)

In the above, the coefficients a; ; satisfy the linear system
of equations

kmax k2p
a -
k-kmax (2p) ! ’

137
2Ppl £~ (137)
for p €0,..., ky. The value of k., is usually chosen
based on the desired level of faithfulness when compared to
numerical waveforms, as well as computational efficiency
[48]. This completes the Fourier domain waveform for
generic mass quadrupole effects.

To showcase these waveforms, we plot the amplitude
functions A,,(f) in Fig. 4 for different values of the
modulus parameters ¢,,, specifically €,, = 0 (black lines)
which corresponds to the spheroidal configuration,
€, = 1073 (red dashed lines), and e, = 107! = 100¢,.
The amplitude functions are normalized such that
Ay (fiow) = 1, where (zMf)o,,)'/3 = 0.1. For the spheroi-
dal case, the inclination angle : becomes a constant, and
thus A, also becomes constant with frequency. The
amplitudes functions are generally modulated due to the
precession of the orbital angular momentum, which defines
the axis along which the GW amplitude is largest.

Finally, in Fig. 5 we plot the total phase difference
between a spheroidal configuration and two configurations
with €,, = 1073 (top panel) and e, = 10~' = 100¢, (bot-
tom panel). The total phase of the waveform is found by

%mz%m+mﬁymﬂ (138)

0.8

0.7 F
— £1=6=0

0.6k ---- £1=g,=10"3

L L L L L
0.002 0.004 0.006 0.008 0.010
Mf

FIG. 4. Comparison of the waveform amplitudes .4,, from
Eq. (135) for the spheroidal case (black), e; = e, = 1073 (red,
dashed), and ¢, = 1073, €, = 107" (blue, dot-dashed). The
amplitudes are all normalized such that A,, = 1 at the lowest
frequency plotted.

The different lines in each panel correspond to different
values of a;, while @, = 0 for all cases.

As a simplistic but useful rule of thumb, an effect
introducing a phase difference of 0.1 or greater is likely
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FIG. 5. Top panel: total GW phase difference between an
oblate/prolate configuration and one with ¢, = ¢, = 1073, The
polar phase a, =0, while the different lines correspond to
different values of a;, namely 0 (black), z/4 (red, dashed),
7/2 (blue, dot-dashed), and 7 (cyan, crossed). Bottom panel: the
same as the top panel but with ¢, = 107 and €, = 107,

to substantially impact a matched-filter search, leading to a
significant loss of detected events if the matched-filter
search is done with waveforms that do not include these
corrections [62]. Or, in other words, generally a phase
difference of 0.1 would in principle be observable by the
LIGO and Virgo detectors at signal-to-noise ratio 10.
Therefore, for all the cases shown in Fig. 5, the deviations
from spheroidness could be detectable, although we stress
that this naive estimates must be validated with a detailed
parameter estimation study, also taking into account pos-
sible parameter correlations and systematic errors.

V. DISCUSSION AND OUTLOOK

We have here developed the first analytic waveforms to
model general mass quadrupole moment effects of compact
objects. The waveforms are parametrized by the quadrupole
parameter Q, corresponding to the oblate/prolate configu-
ration, and the modulus ¢,, and phase a,, parameters that
describe deviations from spheroidness. The latter of these
are generic enough for us to consider constraining non-
axisymmetric configurations of compact objects. Besides
considering nonaxisymmetric bodies, the tools developed
here can also be used to compute the leading-order
correction for current quadrupole moments. This was
partially addressed in Ref. [18] but only for the axisym-
metric case and the main results were obtained in the EMRI
limit. It should be stressed though that the generic mass
quadrupole corrections considered here also break the

equatorial symmetry and affect the waveform at a lower
PN order relative to the axisymmetric S, corrections
considered in [18]. They should therefore be the lead-
ing-order signatures for generic objects without equatorial
symmetry. Another natural extension of our work is to
include the effect of the objects’ angular momenta, which
can give rise to a variety of phenomena (e.g., spin
precession and coupling to the quadrupole moment).

A crucial aspect that we did not address in this paper is
the extent with which GW detectors will be able to
constrain or detect nonaxisymmetric mass quadrupole
moments. Based on a dephasing argument, we estimate
that even small deviations from spheroidness might be
measurable with current generation ground-based detec-
tors. However, such an argument does not take into account
the correlations among the physical parameters of the
binary, or the possibility of degeneracies that would limit
our ability to stringently constrain the additional quadru-
pole parameters. One degeneracy that can already be seen
in the analysis carried out here is the fact that the wave-
forms depend on the components of the effective quadru-
pole moment tensor defined below Eq. (8), and not on the
individual quadrupole moments of the objects. This is not
surprising given that a similar situation happens when
considering the leading PN spin and tidal corrections to the
waveform [63]. In our specific case the situation is even
worse, since the quadrupole tensor enters at the leading PN
order through the combination €}e3lU ,, in Eq. (134), so
individual quadrupole components are degenerated. For
example, based solely on the 2PN inspiral corrections, a
(admittedly fine-tuned) model in which different compo-
nents of the quadrupole moments conspire to give a
negligible deviation from the standard Kerr case cannot
be excluded. Higher-order PN corrections in the phase and
amplitude can break this degeneracy.

A rough estimate of the constraints on generic quad-
rupolar deformations can come from measured upper
bounds on the parametrized corrections, d¢,, to the 2PN
coefficients. For the neutron-star binary GW170817 such
constraints read |5¢),| < 3.5 at 90% confidence level [64].
For BH binaries, the latest bound obtained by combining all
GWTC-3 events reads |5¢,| < 0.1 [65] (assuming the same
type of deviations for all sources). These measurements
could roughly translate into an upper bound on the
combination €}e3lf,, (of both binary components) in
Eq. (134). However, such bounds were derived without
taking into account the amplitude -corrections [see
Eq. (135)] and the amplitude modulation [see Eq. (138)]
found in this work, so a detailed analysis should be
performed to obtain faithful constraints. At any rate, the
order of magnitude of these constraints makes such
parameter estimation a promising future avenue.

Another open question is how do the new parameters,
specifically [e,,,a,], map to the properties of compact
objects. For BHs, €,, = 0, but in general this need not be

124050-17



LOUTREL, BRITO, MASELLI, and PANI

PHYS. REV. D 105, 124050 (2022)

true. In general, these parameters will be equation of state
dependent. Having specific theoretical predictions of these
values for various astrophysical and exotic compact objects
would allow one to map from generic constraints on the
modulus and phase parameters to the physical set of
parameters that characterizes the equation of state and
structure of the bodies.

The calculations that we have carried out here are the
first step toward more general investigations of the structure
of compact objects, and we plan to investigate the above
topics in future work.
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APPENDIX A: HIGHER PN EFFECTS

To complete the discussion in Sec. II A, we here provide
some relevant PN quantities. We do not formally use these
in the analysis presented in this paper. The 1PN and 2PN
order corrections to the point particle Lagrangian in
Eq. (5) are

1-3v
8

M M
E]pN: U4+? (3"‘1/)’[)2"‘1/7'”2—* s (Al)
r r

1 M
= — (1 =Ty + 136208 + o [(7 = 120 — 92)0?
Lopn 16( Tv+ 13v7)v +8r[(7 v—90%)v
M?
+ (4 = 10v)viv? + 3% + 22 (4 =2v+12)0?
r
3

3u(1 2] 4+ —,
+ 3u( +v)r]+4r3

(A2)

The PN corrections to the conserved orbital energy are

E 5 1 M

ifN =117+ 131/2)v6+§(21 —231/—271/2)71}4
1 M 3 M

+ZU(1 - 151/)7112}'"2 —gu(l —31/)7;"4

1 M\ ?
—|—§(14—551/—|—41/2) (—) v?

r
1 n (M 2,2 1 M\3
+§(4+691/+121/ )<r> I —4(2+15V)(r) s
(A4)
Eso = %eijkiinjvk, (A5)
r

1 iQi i QJ i Qi

Ess = 3[3(” S1)(n/S)) — S84 (A6)

Finally, the corrections to the conserved orbital angular
momentum are

1 M
LIPN :§U2(1—3U)+(3+1/)7,

(A7)

3 M
Lypy = (1 =Tv + 13y2)§y4 + (7 =100 — 91/2)2_1]2
,

1 M 1 M\ 2
—51/(24—51/)—?2 +Z(14 —411/—!—41/2)(—) ,

r r
(A8)

Li, = % [76’/k€kpqn1n1’(25q + X49)
- %eijkekpqvaqu] . (A9)

APPENDIX B: PN QUADRUPOLE
COEFFICIENTS

We here provide the coefficients of leading PN order
corrections to various orbital quantities derived in Sec. III C
and radiation reaction effects in Sec. IV A due to generic mass
quadrupole moments. With Q¢ = [Q,, O, 01, 0%, 0!}, the
coefficients in Egs. (109)—(110) are
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Eo = 6422 +6(3 + e}) cos(21) — (5 + 6ey + €) cos[2(1 — )] + 10cos(2Q) + 12¢, cos(2w) + 2¢Z cos(2w)
—5c08[2(1 + ®)] — 6y cos2(1 + )] — €§ cos[2(1 + w)], (B1)

~ 2

&= 8\/;sinz{(5 + 6¢q + €3) cos Qsin(2w) + cos1[—3(3 + €3) + (5 + 6¢( + €3) cos(2w)] sin Q}, (B2)
~ 2
&= 2\/; sini{4 cos1[=3(3 + €3) + (5 + 6ey + €3) cos(2w)] cos Q — 4(5 + 6¢ + €3) sin(2w) sinQ},  (B3)

&= \/ia (=2 ¢c0s(2Q){2(1 + €() (5 + €9)[3 + cos(21)] cos(2w) + 12(3 + €3)sin’1}

+ 16(1 + €¢)(5 + ¢g) costsin(2w) sin(2Q2)), (B4)

&= 2\/%{4(1 + €9) (5 + eg) cos1cos(2Q) sin(2w) + [(1 4 €) (5 + €o) (3 + cos(21)) cos(2w) + 6(3 + €f)sine] sin(2Q) },
(B5)

Po = (3 + €0)?[1 4+ 3cos(21)] 4+ 2(1 + ey) (5 + eg) cos(2w)sin’z, (B6)
P, = 4\/% sint{ (1 + ¢g)(5 + ep) cos Qsin(2w) + cos1[-3(3 + €3) + (1 + ¢y)(5 + o) cos(2w)] sinQ},  (B7)

P, = \/gsin {4 cost[—3(3+ €3) + (1 + €() (5 + ep) cos(2m)| cos Q — 4(1 + €() (5 + ¢) sin(2w) sinQ},  (BY)

= 1

Ps W
+16(1 + €0)(5 + ¢g) cosisin(2w) sin(2w) }, (B9)

{=2¢08(2Q)[2(1 + €0)(5 + €y)(3 + cos(21)) cos(2w) + 12(3 + €3 )sin*(]

Py = \/2{4(1 + €0)(5 + ) cos1cos(2Q) sin(2w) + [(1 + €9)(5 + ) (3 + cos(21)) cos(2w) + 6(3 + €3)sin’] sin(2Q) }.

(B10)

The coefficients of the modified Kepler’s third law in  Q, = 2/6{—4 cos 1 cos(2Q) sin(2w)
Eq. (112) are [(3 + cos(20)) cos(2w) — 36sin2] sin(2Q)}. (B15)
~ _ .
Qo = 123 +9 cos(2r) - cos(2w) sin” 1], (B11) Lastly, the coefficients for the orbital energy in Eq. (113)

- are
Q, = —4V6{2 cos Qsinsin(2w)

+[18 + cos(2w)] sin(2:) sinQ},  (B12) E, = 18 cos(2w) sin’1, (B16)

Q, = 4\/8{36 cos1cos Qsinz— [36 + cos(2w)] cos Qsin(21) E, = 6V/6[cos(2w) sin(2:) + 2 cot Qsinzsin(2w)] sin L,

+2sinzsin(2w) sinQ} (B13) (B17)
Qy = V6{cos(2Q)[2(3 + cos(21)] cos(2w) — 72 sin (] E, = 12V/6sin 1[cos 1 cos(2w) cos Q — 2 cos  sin @ sin Q]
—8cossin(2w) sin(2Q) }, (B14) (B18)
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E5y = 3v6{—[(3 + cos(21)) cos(2m) cos(2Q)]

+4 cosisin(2w) sin(2Q) }, (B19)
E4 = 3v/6{4 cos1cos(2Q) sin(2w)
+[3 4 cos(21)] cos(2w) sin(2Q)}.  (B20)

The corrections to the evolution of the orbital frequency
due to radiation reaction in Eq. (120) are

Uy = —13 =39 cos(2t) + 98 cos(2w) sin®z,  (B21)
- 2 L
U = 2\/;{98 cos Qsinsin(2w)
+ [39 + 49 cos(2w)] sin(2:) sin Q}, (B22)
- 2 .
U, = 2\/;{ [39 4 49 cos(2w)] cos Qsin(21)
— 98 sinsin(2w) sin Q}, (B23)

U; = \/%{COS(2Q) [—49(3 + cos(21)) cos(2w) + 78 sin? (]

+196 cos 1 sin(2w) sin(2Q) }, (B24)

. 2
Us= \/;{ 196¢cosicos(2Q)sin(2w)

+[49(3 +cos(21)]cos(2w) —78sin?7]sin(2Q) }.  (B25)
|

To obtain the coefficients U, in Eq. (122), one has to
compute the averages of the U, coefficients listed above in
a small €, , expansion. The U, are coupled to the quadru-

pole coefficients Q,, and so each U, must be expanded to
different orders. For brevity, we only list the ¢/, up to

linear order in the expansion. This means that U, must be
computed to O(e,e,) with remainders of order
O(e2, €3, €1¢,), while all other U, must be computed to
O(€Y,€9). The reason for this is that these are coupled to
Qﬁ" which are already linear in ¢, i.e., Qf{l ~ €,00.
Writing U, = Uf)o) +e f]él) + ezfjéz) +O(e2,€3,¢1¢,), the
end results are

Uy = —13 — 39 cos(21g)

196 V1q . (7CN .,
+ e cos (2 —2w0> sm< > >sm 1 (B26)

. 3 - ) -
Uo= <Ué”>l,,2+\@[cosalwow+sma1<uz>w] (827)

U = (O, + ﬁ[ws@%m + sin(2a,){0),,
(B28)

where { = [3 + 5 cos(2i)] seci, and

(@ ! < i [’”:] {8 sin(21) [(g +2)sin <”2§ —A- 2a)0> + (¢ —2)sin (’;C +A- 2w0>}

v =z \E-atn |2

+ [7 4 4 cos(2ig) + 5 cos(4iy)] secigtan i [(C +2)sin (%C -A- 2w0> — (¢ =2)sin (%C +A- 2(00)] }

+ 4 sin A[39x¢ sin{21y} — 49{7 + 5 cos(21y) } sin 1p{7{ cos(n{ — 2wy) — sin(n{ — 2w,) — sin(Zwo)}tan210]> ,

- (2) B 1
A ()

(B29)

{16¢sin?1y[—-397¢ (% — 16) + 784 sin(n¢ — 2w,) + 784 sin(2wy )]

+ 98 secy[nl (L% = 16)(23 + 36.cos(2ty) + 5 cos(41y)] cos(mg — 2wy)

—2[~184 + 3¢% + 8(&* — 36) cos(21y) + 5(¢2 — 8) cos(41y)][sin(#¢ — 2w) + sin(2wy)]tan?1y },

(B30)

(O1)y, = —% \@sin (%) {(C +2)[2siny + sin(21g)] sin (az — 2wy + ”75)

— (¢ —2)[2sin1y — sin(21y)] sin (0’2 + 20 = %V> }

(B31)
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(O2)y, = =4 \/' ( ) { (¢ +2)[2sing + sin(2)] cos <a2 — 2wy + 2‘:>

(¢ = 2)[2sintg — sin(24)] cos (a2 2wy — %é) } (B32)

(U3),, = _(C39—216) \/Esm <”2§> [(( + 4)cos* <l§) cos (2(12 — 2w, + ”;)
+ (¢ — 4)sin* (20) cos <2a2 + 2w — %)] (B33)

(U),, = - % \@ sin (’f) { £ + 4)cos* <’§°> <2a2 — 2w + ”j)
+ (¢ - 4)sin® (’;) sin <2a2 + 2w — ”75)] (B34)

APPENDIX C: WAVEFORM AMPLITUDES

We here provide the waveform amplitudes A, (1, Q)

from Eq. (132).
/6
AO.:|:2 =2 ?ﬂsinz i, (Cl)

A n=—(A_ ) = 81‘\/75?6"‘Q sinzsin®(1/2),  (C2)

A ,=—(A_ ) = —161ﬁe 2 gin(1/2) cos?(1/2),
(C3)
Ao = (A o)t = =8,/ sin*(1/2),  (C4)

A+2’_2 = (A_2’+2>T = -8 _219 COos (1/2) (CS)
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