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Self-gravitating bodies can have an arbitrarily complex shape, which implies a much richer multipolar
structure than that of a black hole in general relativity. With this motivation, we study the corrections to the
dynamics of a binary system due to generic, nonaxisymmetric mass quadrupole moments to leading post-
Newtonian (PN) order. Utilizing the method of osculating orbits and a multiple scale analysis, we find
analytic solutions to the precession and orbital dynamics of a (generically eccentric) binary in terms of the
dimensionless modulus parameters ϵm, corresponding to axial m ¼ 1 and polar m ¼ 2 corrections from
oblateness/prolateness. The solutions to the precession dynamics are exact for 0 ≤ ϵ2 < 1, and perturbative
in ϵ1 ≪ 1. We further compute the leading order corrections to the gravitational wave amplitude and phase
for a quasicircular binary due to mass quadrupole effects. Making use of the stationary phase
approximation and shifted uniform asymptotics (SUA), the corrections to the phase enter at relative
2PN order, while the amplitude modulations enter at −0.5PN order with a SUA amplitude correction at
3.25PN order, relative 2PN order to the leading order SUA correction. By investigating the dephasing due
to generic quadrupole moments, we find that a phase difference ≳0.1 radians is achievable for ϵm ≳ 10−3,
which suggests that constraints with current and future ground-based gravitational wave detectors are
possible. Our results can be implemented in parameter estimation studies to constrain generic multipolar
deformations of the Kerr geometry and of neutron stars.
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I. INTRODUCTION

Themultipolar expansionprovides a powerful tool,widely
used in classical field theories, to characterize the distribution
of nonsymmetric distributions of charges [1] and matter [2].
In general relativity (GR) two classes of multipole moments
can be defined (which are order-l tensors): the mass
moments Qlm and the current moments Slm (henceforth
jmj ≤ l is the azimuthal number of the multipolar decom-
position andwe use units inwhichG ¼ 1). Currentmoments
do not have a Newtonian analogue since they are associated
with the gravitational field produced by velocity fields.
Vacuum, stationary black hole (BH) solutions in GR are

also asymmetric and uniquely described by the Kerr metric
[3–5]. The multipole moments of a Kerr BH satisfy closed
form, elegant relations

Ql ¼ MðiaÞlNl l ¼ 2; 4…

Sl ¼ iMðiaÞlNl l ¼ 1; 3…; ð1Þ

where Nl is a normalization factor [6], Ql ≡Ql0 and
Sl ≡ Sl0, with M ≡Q0, and S1 ≡ aM being the BH’s
mass and spin. Thus, the multipole moments of Eqs. (1) are

entirely determined in terms of the BH’s mass and spin, as
dictated by the no-hair theorems [3,7] (see also [5,8–11]).
All other moments, namely the odd (even) l-components
for the mass (current) multipoles, as well as the m ≠ 0
terms, vanish, as a consequence of axisymmetry and of
equatorial symmetry.
On the other hand, the fact that all multipoles with l ≥ 2

are proportional to (powers of) the spin—as well as their
specific spin dependence—is a peculiarity of theKerrmetric
(although not necessarily unique toKerr [12]). Finally, when
nonspinning, any isolated BH must be spherically symmet-
ric and described by the Schwarzschild spacetime.
The remarkable simplicity of BHs represents an excep-

tion though, not shared by other self-gravitating bodies in
the Universe. For example, since no-hair theorems do not
generically apply in the presence of matter, there is no
compelling reason preventing a star from being arbitrarily
deformed away from spherical symmetry, even when
nonspinning. The Earth itself has a complex shape, differ-
ent from an ellipsoid [13].
While self-gravitating perfect fluids in a static configura-

tion do not support deviations from spherical symmetry [14],
this might not be the case for elastic materials [15].
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Furthermore, it was recently shown that exotic compact
objects can break the symmetries of a Kerr BH and have a
much richer structure [16,17]. In particular, smoking gun
evidences for the “non-Kerrness” of a compact object would
begivenby the presence ofmoments that break the equatorial
symmetry (e.g., the current quadrupole S2 or the mass
octopole Q3 [18]), and/or the axisymmetry (e.g., a generic
mass quadrupole tensor Q2m with three independent com-
ponents,m ¼ 0, 1, 2), as in the case ofmultipolar boson stars
[19] and of fuzzball microstate geometries [20–24].
Checking whether such symmetry properties hold for an

astrophysical dark object provides an opportunity to perform
multiple null-hypothesis tests of the Kerr metric. The
independent measurement of three multipole moments such
as the mass, spin, and (axisymmetric) mass quadrupole Q2,
would, for example, serve as a genuine strong-gravity test of
the uniqueness of the Kerr family [17,25–32]. In this context
it is intriguing that current gravitational-wave (GW) obser-
vations (especially the recent GW190814 [33] and
GW190521 [34,35]) do not exclude the existence of exotic
compact objects other than BHs and neutron stars. Likewise,
current constraints on the spin and multipolar structure of
supermassive objects coming from the Event Horizon
Telescope are weak [36], and do not exclude deviations
from the Kerr spacetime.
The multipolar structure of a compact object leaves a

footprint within the GW signal emitted during the coa-
lescence of a binary system, by modifying at different
orders the post-Newtonian (PN) expansion used to model
the waveform during the inspiral (see [37] for a review).
Until recently, PN corrections coming from the multipole
moments had only been computed for axial and equatorial
symmetry, i.e., focusing on corrections proportional to Q2,
S3 and Q4 [25,26,38,39]. Such calculations have been
recently extended to include leading order corrections with
broken equatorial symmetry (while preserving axisymme-
try), proportional to S2 andQ3, mostly focusing on extreme
mass-ratio inspirals (EMRIs) [18].
Overall, the dominant contribution of the multipolar

structure is encoded in the (typically spin-induced) mass
quadrupole moment, which enters the inspiral GW phase at
relative 2PN order [38]. For comparable-mass binaries, this
correction is expected to be measured with percent accu-
racy by third-generation ground based detectors and by
LISA [40–44]. The PN results also provide an order of
magnitude estimate for “kludge”waveforms, used to model
the long inspiral phase of an EMRI [45]. In this case it has
been shown that LISA may constrain the mass quadrupole
moment of the massive central object with an accuracy of
one part in 104 [45,46].
The aim of this paper is to extend current PN computations

to binary configurations in which the compact objects show
generic deformations, with no prior assumption on their
underling symmetry. We focus in particular on the leading-
order corrections of the mass quadrupole tensorQ2m, which

enter the equations ofmotion to leading order at relative 2PN
order. When moving into an effective one-body frame, the
perturbation due tomass quadrupole effects only depends on
an effective mass quadrupole moment, constituting a degen-
eracy between the individual moments of the compact
objects.
We solve for the dynamics of the binary at relative

Newtonian order, specifically we consider a reduced
problem where the binary is simply described by
Newtonian (or the leading PN order) dynamics, and is
perturbed by the 2PN order mass quadrupole effects. We
use the method of osculating orbits and multiple scale
analysis to solve for the leading order corrections to the
dynamics of the binary. In general, the secular dynamics of
the perturbation induce precession of the orbital angular
momentum. Indeed, we find that alignment between the
orbital angular momentum and the Z-axis of the body can
only be achieved when Q2;�1 ¼ 0. Defining the modulus
ϵm and phase αm parameters as in Eqs. (59) and (76), we
find that the secular precession equations can be solved
exactly for ϵ1 ¼ 0 and 0 ≤ ϵ2 < 1. Such solutions can be
extended by working perturbatively in ϵ1 ≪ 1.
We extend the solutions to the conservative dynamics of

the binary to include radiation reaction effects through the
balance laws, accounting for all of the corrections due to
mass quadrupole effects. Restricting to the limit of quasi-
circular binaries, we compute the corrections to the
TaylorF2 waveform phase using the stationary phase
approximation (SPA) [47]. Further, we include the correc-
tions due to orbital precession using shifted uniform
asymptotics (SUA), which was originally developed for
spin precessing binaries in [48]. The corrections to the SPA
Fourier phase enter at relative 2PN order. The amplitude
modulations are controlled by the precession phase ψ2,
which enters at absolute -0.5PN order. Meanwhile, the
corrections to the SUA amplitude enters at relative 3.25PN
order, which is 2PN order beyond the Newtonian order
SUA corrections. A simplistic estimate of the dephasing of
the waveform phase suggests that small modulus values of
ϵm ∼ 10−3 might be detectable with current generation
interferometers, although a detailed parameter estimation
study is left for future work.
The remainder of the paper is organized as follows. In

Sec. II, we provide an overview of the formalism we use,
and some basic details of the mathematical methods needed
to solve the equations of motion. In Sec. III, we solve for
the conservative dynamics of the binary, specifically the
secular precession effects and the leading order orbital
corrections. The solutions are broken down into the oblate/
prolate (often referred to as “spheroidal” for short) case
with ϵm ¼ 0 in Sec. III A 1, the polar case with ϵ1 ¼ 0 and
0 ≤ ϵ2 < 1 in Sec. III A 2, and the axial case with ϵ2 ¼ 0
and ϵ1 ≪ 1 in Sec. III A 3. We provide the general
extension of the exact polar solution to include small ϵ1
in Sec. III A 4. In Sec. IVA, we obtain the leading order
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corrections to radiation reaction effects. Finally, in
Sec. IV B, we compute the SUA TaylorF2 waveform for
quasicircular binaries with generic mass quadrupole effects,
with the main results being the GW Fourier phase given in
Eq. (134), and the GW amplitudes given in Eq. (135).
Throughout this work, we use units where G ¼ 1.

II. FORMALISM

A. Notation and conventions

We follow the same notation as in Ref. [49], briefly
summarized here. We denote the speed of light in vacuum
by c throughout the paper. Latin indices i, j, k, etc. run over
three-dimensional spatial coordinates and are contracted
with the Euclidean flat metric δij. Since there is no
distinction between upper and lower spatial indices, we
will use only the upper ones throughout the paper. The
totally antisymmetric Levi-Civita symbol is denoted by ϵijk.
Following the STF notation [50], we use capital letters in
the middle of the alphabet L, K, etc. as shorthand for multi-
indices a1…al, b1…bk, etc. Round (), square [], and
angular hi brackets in the indices indicate symmetrization,
antisymmetrization and trace-free symmetrization, respec-
tively. For instance,

Thabi ¼ TðabÞ −
1

3
δabTcc ¼ 1

2
ðTab þ TbaÞ − 1

3
δabTcc: ð2Þ

We call symmetric trace-free (STF) those tensors Ti1…il that
are symmetric on all indices and whose contraction of any
two indices vanishes

Tði1…ilÞ ¼ Ti1…il ;

Ti1…ikik…il ¼ 0;

Thi1…ili ¼ Ti1…il : ð3Þ

The contraction of a STF tensor TL with a generic tensor
UL is TLUL ¼ TLUhLi. For a generic vector ui we define
uij…k ≡ uiuj…uk and u2 ≡ uii. Derivatives with respect to
the coordinate time t are expressed by overdots.
For a generic body A, the mass and current STF multi-

pole tensors are denoted by QL
A and SLA, respectively.

Restricted to a two-body system, A ¼ 1, 2, we define
the mass ratios ηA ¼ MA=M, where M ¼ M1 þM2 is the
total mass and MA is the mass monopole; MA ¼ QA in the
Newtonian limit. The symmetric mass ratio is ν ¼ η1η2 and
the reduced mass is μ ¼ νM. We define the dimensionless
spin parameters χA ¼ cSA=ðηAMÞ2, where SA ¼ ffiffiffiffiffiffiffiffiffiffi

SiAS
i
A

p
is

the absolute value of the current dipole moment. The body
position, velocity and acceleration vectors are denoted by
ziA, v

i
A ¼ _ziA and aiA ¼ z̈iA, respectively. We define the two-

body relative position, velocity and acceleration vectors by
zi ¼ zi2 − zi1, v

i ¼ vi2 − vi1 and ai ¼ ai2 − ai1, respectively.
We also define the relative unit vector ni ¼ zi=r, where

r ¼ ffiffiffiffiffiffiffi
zizi

p
is the orbital distance. Using these definitions the

radial velocity is given by _r ¼ vini. Finally, for a binary
system in circular orbit we define the PN expansion
parameter ũ ¼ ð2πFMÞ1=3=c, where F is the orbital fre-
quency. Note that ũ ¼ vþOðc−4Þ.

B. Main equations

The post-Newtonian Lagrangian describing the two-
body interaction, up to the relevant multipole moments,
can be written as

L ¼ Lpp þ Lspin þ Lquad: ð4Þ

Here, Lpp describes the PN interaction between two point
particles of mass m1 and m2, which up to 2PN order is
given in relative coordinates

Lpp ¼ LN þ c−2L1PN þ c−4L2PN þOðc−6Þ; ð5Þ

with

LN ¼ 1

2
μv2 þ μM

r
ð6Þ

and the higher PN order terms given in Appendix A. The
term Lspin contains the contributions from current dipoles,
specifically the spin angular momenta of each body, and is
given to second order in spins by [51]

Lspin ¼
1

2
η1η2ϵ

ijkviajΣk þ 2M
r2

η1η2ϵ
ijkvinjðSk þ ΣkÞ

−
3

r3
Si1S

j
2n

hiji; ð7Þ

where Si ¼ Si1 þ Si2 and Σi ¼ ðη2=η1ÞSi1 þ ðη1=η2ÞSi2, with
Si1;2 the spin angular momenta of each body. Finally,
the mass quadrupole contribution reads, to leading PN
order [49],

Lquad ¼
3M
2r3

Qij
effn

hiji þOðc−2Þ; ð8Þ

where Qij
eff ¼ η2Q

ij
1 − η1Q

ij
2 , with Qij

1;2 the mass quadru-
pole moments of each body. In the following we shall
ignore the tidal deformability of the bodies, which corre-
sponds to the part of the Lagrangian describing the internal
dynamics.
In the case of a binary system, the dynamics in the

center-of-mass (COM) frame is described by the orbital
separation zi ¼ zi2 − zi1. From the variation of the above
Lagrangian with respect to the worldline coordinates zi1;2
we can derive the equations of motion of the binary:

ai ¼ z̈i ¼ z̈i2 − z̈i1 ¼ aipp þ aispin þ aiquad: ð9Þ
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The mass and spin contributions are

aipp ¼ −
M
r2

ni þ ai1PN þ ai2PN þOðc−5=2Þ; ð10Þ

aispin ¼
1

r3
f6ni½ϵjkpnkvpðSj þ ΣjÞ�

− ϵijk½vjð4Sk þ 3ΣkÞ þ 3_rnjð2Sk þ ΣkÞ�g

þ 15

μr4
Sj1S

k
2n

hijki þOðc−5=2Þ; ð11Þ

whereas the mass quadrupole contribution is

aiquad ¼ −
15Qhjki

eff

2νr4
nhijki þOðc−6Þ: ð12Þ

The orbital equations of motion must be supplemented
by a suitable set of equations describing the dynamics of
the spin angular momenta of each body. There are twoways
of achieving this, through the fluid description of PN
sources [2] or through effective field theory [52]. Both
methods give the same result, namely

dSi1
dt

¼ ϵijk½ΩjSk1 þ T jk
QM�; ð13Þ

where Si1 is the spin of one of the bodies, Ωj contains the
spin-orbit and spin-spin couplings

Ωj ¼ c−3=2Ωj
SO þ c−4Ωj

SS þOðc−5=2Þ; ð14Þ

and T jk
QM is the torque generated by the monopole-

quadrupole interaction

T jk
QM ¼ 3η2M

r3
Qhjai

1 nhkai: ð15Þ

The spin precession equation for the other body can be
found by taking (1 ↔ 2) in Eq. (13).
The coupled system of orbital equations of motion and

spin precession equations possess constants of motion. The
first is associated with the fact that the Lagrangian in
Eq. (4) is explicitly time independent, and thus has a
conserved Hamiltonian H ¼ pivi þ siai − L, where pi ¼
∂L=∂vi and si ¼ ∂L=∂ai. This leads to the conserved
orbital energy of the binary

Eorb ¼ EN þ Equad þ c−2E1PN þ c−3=2ESO

þ c−4½E2PN þ ESS� þOðc−5=2Þ; ð16Þ

where

EN ¼ 1

2
μv2 −

μM
r

; ð17Þ

Equad ¼ −
3M
2r3

Qij
effn

hiji; ð18Þ

and the remaining PN terms are given in Appendix A. In
addition, one can define the conserved total angular
momentum Ji ¼ ϵijkðripk þ viskÞ þ Si. The first of these
terms constitutes the orbital angular momentum, which is

Li ¼ μϵijkrjvk½1þ c−2L1PN þ c−4L2PN�
þ c−3=2Li

SO þOðc−5=2Þ: ð19Þ

The first term in the above is the Newtonian orbital angular
momentum, while the remaining PN and spin-orbit terms
are given in Appendix A. Note that the direction L̂i ¼ Li=L
is not conserved and obeys the precession equation

dL̂i

dt
¼ L−1 dS

i

dt
; ð20Þ

where L ¼
ffiffiffiffiffiffiffiffiffi
LiLi

p
. The set of equations has now been

completed.
Before continuing, is it worth pointing out an additional

property of the orbital and spin angular momenta in the case
of generic quadrupole effects. In the absence of radiation
reaction, the magnitude of these angular momenta, specifi-
cally L given in Eq. (19) and SA ¼ ffiffiffiffiffiffiffiffiffiffi

SiAS
i
A

p
, are not

conserved when considering generic quadrupole correc-
tions. This may seem rather confusing when comparing to
the well studied scenario of spin precessing BHs, where the
quadrupole moment scales as Qij

A ∝ SiAS
j
A. It is well known

from the PN spin precession equations that SA is conserved
in this case [52]. However, a quick contraction of Eq. (13)
with Si1 reveals that the spin magnitude is only conserved
when ϵijkQhjainhkai⊥Si, which need not be true for an
arbitrary quadrupole moment. A similar result can be found
for the conservation ofL. While this may seem problematic,
it is important to remember that the conserved quantity is
actually J ¼

ffiffiffiffiffiffiffiffi
JiJi

p
, which will change only when we

include radiation reaction.

C. Osculating orbits

Consider the problem of solving for the orbital motion
which is described by Eq. (9). To simplify the calculation,
consider the case of Newtonian orbits acted upon by a
perturbing force generated from the higher PN terms, spin,
and mass quadrupole effects, given by the 1PN and 2PN
terms in Eqs. (10) and (11)–(12), respectively. In such a
case, the action of the perturbing force can be understood
using the method of osculating orbits [2]. For unperturbed
Newtonian orbits, the equations governing any bound
orbit are

r⃗ ¼ rKn̂; ð21Þ
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v⃗ ¼ _rKn̂þ r _ϕK λ̂; ð22Þ

where we recall that r is the relative radial distance, v is
the relative velocity, ϕ is the orbital phase, and ½n̂; λ̂� are the
basis vectors that parametrize the orbital plane. The
Keplerian expressions for the radial separation and veloc-
ities are

rK ¼ p
1þ e cos V

; ð23Þ

_rK ¼ e

�
M
p

�
1=2

sin V; ð24Þ

_ϕK ¼
�
M
p3

�
1=2

ð1þ e cos VÞ2; ð25Þ

where e is the Newtonian orbital eccentricity, p is the
semilatus rectum, and V ¼ ϕ − ω is the true anomaly, with
ω the longitude of pericenter. In the absence of a perturbing
force, the motion of the binary is planar. However, this is
not necessarily true in the perturbed case, and we need to
generalize the prescription of the orbit further. Defining a
new frame spanned by the vectors ½êX; êY; êZ�, the orbit can
be arranged into an arbitrary orientation with respect to this
new frame through the use of Euler angles, as illustrated in
Fig. 1. A sufficient parametrization is [2]

n̂ ¼ ½cos Ω cos ϕ − cos ι sin Ω sin ϕ; sin Ω cos ϕ

þ cos ι cos Ω sin ϕ; sin ι sin ϕ�; ð26Þ

λ̂ ¼ ½− cos Ω sin ϕ − cos ι sin Ω cos ϕ;− sin Ω sin ϕ

þ cos ι cos Ω cos ϕ; sin ι cos ϕ�; ð27Þ

L̂ ¼ ½sin ι sin Ω;− sin ι cos Ω; cos ι�; ð28Þ

where ι is the inclination angle andΩ is the longitude of the
ascending node. The Keplerian orbit is now parametrized
by five conserved quantities μa ¼ ½p; e; ι;ω;Ω�.
The method of osculating orbits posits that, under the

action of any perturbing force, the parameters μa are no
longer constant, but vary in time according to the per-
turbing force. The trajectory of the binary is parametrized
by r⃗ ¼ r⃗ðt; μaÞ and v⃗ ¼ v⃗ðt; μaÞ, while the equations of
motion are

d
dt

r⃗ðt; μaÞ ¼ v⃗ðt; μaÞ; ð29Þ

d
dt

v⃗ðt; μaÞ ¼ f⃗N þ f⃗pert; ð30Þ

with f⃗pert the perturbing force. The method of osculating
orbits promotes the conserved parameters to functions of
the time variable, specifically μa → μaðtÞ, and thus

d
dt

¼ ∂
∂tþ

dμa

dt
∂
∂μa : ð31Þ

The first term above generates the usual conserved
Keplerian orbits, while the remaining equations are

dμa

dt
∂r⃗
∂μa ¼ 0; ð32Þ

dμa

dt
∂v⃗
∂μa ¼ f⃗pertðμaÞ: ð33Þ

Specifying the perturbing force as f⃗pert ¼ Rn̂þ Sλ̂þWL̂,
the osculating equations for μa are [2]

dp
dt

¼ 2

�
p3

M

�
1=2 S

1þ e cosV
; ð34Þ

de
dt

¼
�
p
M

�
1=2

�
sinVRþ2cosVþeð1þ cos2VÞ

1þecosV
S
�
; ð35Þ

dι
dt

¼
�
p
M

�
1=2 cosðV þ ωÞ

1þ e cosV
W; ð36Þ

dΩ
dt

¼
�
p
M

�
1=2 sinðV þ ωÞ

1þ e cosV
W
sin ι

; ð37Þ

FIG. 1. Graphical sketch of the orbital motion (blue solid line)
as viewed in the fundamental reference frame. Here ι is the
inclination angle, Ω is the longitude of the ascending node, ω is
the longitude of pericenter and V is the true anomaly.
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dω
dt

¼ 1

e

�
p
M

�
1=2

�
− cosVRþ 2þ e cosV

1þ e cosV
sinVS

− e cot ι
sinðV þ ωÞ
1þ e cosV

W
�
: ð38Þ

Note that there are only five parameters μa, but
Eqs. (32)–(33) are six equations in total. The five equations
for μa are supplemented by an additional equation for the true
anomaly V in order to complete this system of equations.
Such equation is given by _V ¼ _ϕK − ð _ωþ _Ω cos ιÞ, which
uses the above equations for ω and Ω. The action of the
perturbing force on the orbit is now fully specified.
When studying the evolution of the osculating equations,

it is important to realize that they depend on at least two
timescales, the orbital timescale encoded through the
dependence on V and a secular timescale, which is
determined by the perturbing force. In order to obtain
PN accurate solutions, we must then solve the osculating
equations using multiple scale analysis [2] (in this case, two
timescale analysis). Because the equations are parametrized
in terms of V rather than t, it is convenient to recast them as
dμa=dV ¼ ðdμa=dtÞ=ðdV=dtÞ and PN expand to the rel-
evant order. The two scales of the problem then become V
which is the shorter scale, and Ṽ ≔ ϵV the longer scale,
where fipert ¼ OðϵÞ with ϵ an order keeping parameter. The
derivative operator then becomes,

d
dV

¼ ∂
∂V þ ϵ

∂
∂Ṽ ; ð39Þ

and our ansatz for the solution is

μa ¼ μa0ðṼÞ þ ϵμa1ðV; ṼÞ þOðϵ2Þ: ð40Þ

The leading order term above μa0 is only dependent on the
long secular scale Ṽ, since the μa are conserved for
unperturbed Keplerian orbits.
The strategy to solve the osculating equations is to

combine Eqs. (39) and (40) with Eqs. (34)–(38), and
expand to the relevant order in ϵ. The leading order
equation is

dμa0
dṼ

þ ∂μa1
∂V ¼ F aðV; μa0Þ; ð41Þ

whereF a are given by the right-hand side of Eqs. (34)–(38).
This equation can be solved by realizing that the dependence
on the shorter scaleV is purely oscillatory.Upon averaging in
the following fashion,

hfi ¼ 1

2π

Z
2π

0

fðVÞdV; ð42Þ

Eq. (41) reduces to

dμa0
dṼ

¼ hF aiðμa0Þ; ð43Þ

which uniquely determines μa0 . Finally, to obtain μa1 , we
combine Eq. (43) with Eq. (41) and integrate with respect to
V, specifically

μa1ðV;ṼÞ¼μa1;secðṼÞþ
Z

dV ½F aðV;μa0Þ−hF aiðμa0Þ�: ð44Þ

This determines μa1 up to a purely secular term μa1;secðṼÞ,
which is determined by next order equations in ϵ. For the
purposes of the present calculation, it suffices to stop the
analysis here.

III. GENERIC MASS QUADRUPOLE EFFECTS

The perturbing force we desire to investigate is given in
Eq. (12), which is dependent on the effective quadrupole
tensor Qij

eff. In order to calculate the necessary components
of the perturbing force for the osculating equations, we
need to specify the components of this STF tensor. To do
so, we assume the quadrupole moment is held fixed with
respect to the (XYZ)-frame, which we now refer to as the
body frame. For convenience, this frame is also chosen
such that the direction of the total angular momentum Ji is
aligned with the Z-directions eiZ. In this frame, the STF
tensor can be readily decomposed into spherical harmonics,
specifically

Qhiji
eff ¼ W2

X2
m¼−2

Yhiji
2m Qm; ð45Þ

where Qm are the spherical harmonic coefficients of the

mass quadrupole, YhLi
lm are defined as

YhLi
lm ¼ 1

Wl

Z
dS2NhLiY†

lmðθ;ϕÞ; ð46Þ

with Ni ¼ ½sin θ cosϕ; sin θ sinϕ; cos θ�, Ylmðθ;ϕÞ the
spherical harmonic functions, Wl ¼ 4πl!=ð2lþ 1Þ!!, and
the integral is performed over the 2-sphere. Note that in
general, the Qm’s are complex (except when m ¼ 0) while
the components ofQhiji are real. It is thus simpler to specify
the components of Qhiji in terms of the real and imaginary
parts of the Qm’s, specifically

Qþ1 ¼ QR
þ1 þ iQI

þ1; ð47Þ

Qþ2 ¼ QR
þ2 þ iQI

þ2: ð48Þ

The decomposition for the negative m terms follows from
Q−m ¼ ð−1ÞmQ†

m, while Q0 is real valued. With this, the
osculating equations for the mass quadrupole correction
become
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�
dι
dt

�
¼
�
6π

5

�
1=2 ð1−e2Þ3=2

νM1=2p7=2fcosιð−QR
þ1cosΩþQI

þ1sinΩÞ

þsinι½QR
þ2sinð2ΩÞþQI

þ2cosð2ΩÞ�g; ð49Þ

�
dΩ
dt

�
¼
�
π

5

�
1=2 ð1−e2Þ3=2

νM1=2p7=2 fcos ι½3Q0þ
ffiffiffi
6

p
QR

þ2 cosð2ΩÞ

−
ffiffiffi
6

p
QI

þ2 sinð2ΩÞ�
þ

ffiffiffi
6

p
cosð2ιÞcsc ιðQR

þ1 sinΩþQI
þ1 cosΩÞg; ð50Þ

�
dω
dt

�
¼1

4

�
π

5

�
1=2 ð1−e2Þ3=2

νM1=2p7=2f−3Q0½3þ5cosð2ιÞ�

þ2
ffiffiffi
6

p
½3−5cosð2ιÞ�cot ιðQR

þ1 sinΩþQI
þ1cosΩÞ

þ
ffiffiffi
6

p
½1−5cosð2ιÞ�ðQR

þ2cosð2ΩÞ−QI
þ2 sinð2ΩÞÞg;

ð51Þ

while ½e; p� do not change on the secular timescale to
leading order and are determined by Eq. (44).
The above osculating equations are actually equivalent to

Eq. (20), describing the precession of the orbital angular
momentum Li around the total angular momentum Ji. In
order for the direction of Ji to be conserved, one also has to
consider the precession of the spins, which after orbit
averaging Eq. (13) become

�
dSi1
dt

�
¼ −

3η2M
2p3

ð1 − e2Þ3=2ϵijkQhjai
1 L̂hkai; ð52Þ

�
dSi2
dt

�
¼ −

3η1M
2p3

ð1 − e2Þ3=2ϵijkQhjai
2 L̂hkai: ð53Þ

For the present calculations, we will neglect the spin-orbit
and spin-spin effects when considering the precession
induced by quadrupole effects. The reason for this is that
the PN precession equations up to the relevant PN order
have only recently been solved analytically in the case
when Qij corresponds to the spin-induced quadrupole
moment [53–56]. The case for generic Qij has not been
solved. For simplicity, we shall consider only nonspinning
binaries and hence neglect the relativistic spin-orbit and
spin-spin couplings. In such a scenario, the problem
reduces down to first solving Eqs. (49)–(51), and then
solving the above spin precession equations for Si1;2. In the
following sections we consider the generic problem of
solving the osculating equations.
As a special application of the system of equations given

by Eqs. (49)–(51) and Eqs. (52)–(53), we consider the case
where L̂i and Si1;2 are aligned with the Z-direction of the
body frame in Sec. III B.

A. Precessing solutions

Consider the problem of solving Eqs. (49)–(51). In
general, there does not appear to be a closed-form analytic
solution to this system for generic non-zero quadrupole
coefficients ½Q0; Q

R;I
þ1 ; Q

R;I
þ2 � and ι ≠ 0. However, there are

some special configurations which allow for closed-form
solutions. The three cases are as follows:

(i) Spheroidal: Q�1 ¼ 0 ¼ Q�2 with Q0 nonvanishing
(ii) Polar: Q�1 ¼ 0 with ½Q0; Q�2� nonvanishing
(iii) Axial: Q�2 ¼ 0 with ½Q0; Q�1� nonvanishing

Below, we detail each of these cases.

1. Spheroidal case

The spheroidal case considers the scenario where the
compact object has an oblate/prolate spheroidal shape, and
thus the only nonvanishing quadrupole coefficients is the
m ¼ 0 term. A common astrophysical scenario that would
create such an effect is a quadrupole moment induced by
rotation. For the calculation at hand, we leave Q0 as a
generic constant. However, in the case of spin-induced
quadrupole moment, Q0 ¼ CQχ

2M3 þOðχ4Þ with χ the
dimensionless spin parameter, M the mass of the compact
object, and a proportionality factor CQ which is dependent
on the equation of state. In the Kerr BH case, CQ ¼ −1 and
higher-order spin corrections in Q0 vanish identically.
In this scenario, the secular equations simplify to

�
dι
dt

�
¼ 0; ð54Þ

�
dΩ
dt

�
¼ 3

�
π

5

�
1=2 ð1 − e2Þ3=2

νM1=2p7=2 Q0 cos ι; ð55Þ

�
dω
dt

�
¼ −

3

4

�
π

5

�
1=2 ð1 − e2Þ3=2

νM1=2p7=2 Q0½3þ 5 cosð2ιÞ�: ð56Þ

As can be seen from Eq. (54), the inclination angle
becomes constant, and thus, there is no nutation. The only
effect on the binary is the precession of the orbital
plane, encoded through ½Ω;ω�. Taking ι ¼ ι0 ¼ const.,
and defining

dψ0

dt
¼ 3

�
π

5

�
1=2Q0ð1 − e2Þ3=2

νM1=2p7=2 cos ι0; ð57Þ

Eqs. (55)–(56) can be directly integrated to obtain

Ω ¼ ψ0; ω ¼ −
1

4
sec ι0½3þ 5 cosð2ι0Þ�ψ0: ð58Þ

Note that here we wrote the solutions in terms of the
dependent variable ψ0 instead of time. The reason for this is
that the right hand side of Eq. (57) is function of the orbital
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velocity through ½p; e� and will thus change on the radiation
reaction timescale. We expand on this more in Sec. IVA.

2. Polar case

The polar case is named due to the fact that the
nonvanishing quadrupole coefficients ½Q0; Q�2� corre-
spond to spherical harmonics modes that are even under
spatial reflection, i.e., polar modes. In this scenario, it is
convenient to define the dimensionless parameters r2 ¼
QR

þ2=Q0 and i2 ¼ QI
þ2=Q0. Further, we define the polar

modulus ϵ2 and polar argument α2 such that

ϵ2 ¼
�
2

3
ðr22 þ i22Þ

�
1=2

; α2 ¼
1

2
tan−1ði2=r2Þ: ð59Þ

Finally, we define ψ2 such that

dψ2

dt
¼ 3

�
π

5

�
1=2Q0ð1 − e2Þ3=2

νM1=2p7=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

q
cos ι: ð60Þ

Unlike the spheroidal case, the inclination angle is no
longer constant and the primary effect of the m ¼ �2
modes is to induce nutation of the orbital angular momen-
tum. As a result, the above definition for ψ2 no longer
varies on solely the radiation reaction timescale, but also on
the precession timescale through ι. Also, note the presence
of ϵ2 in Eq. (60), as opposed to Eq. (57) since ϵ2 ¼ 0 in the
spheroidal case.
The starting point for solving the secular equations in

this case is to divide Eq. (50) by Eq. (60). Defining
V ¼ Ωþ α2, we arrive at

dV
dψ2

¼ 1þ ϵ2 cosð2VÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p : ð61Þ

The solution to this equation depends on the value of ϵ2,
which depends on the specific scenario under consider-
ation. For astrophysical objects, the induction of a quadru-
pole moment on the body is largely expected to be a result
of spin angular momentum creating anm ¼ 0 contribution.
However, such objects are also likely not perfectly sphe-
roidal, but may have small deviations on their surface (e.g.,
mountains on a neutron star) which could contribute to
jmj > 0 modes [15]. Such contributions are expected to be
small, and we could thus assume that ϵ2 ≪ 1.
Another example of how to generate an jmj > 0mode on

a compact object is through dynamical tides. A sufficiently
rapid change in the electric tidal moment Gij ¼ ∂ijU, with
U the Newtonian potential, can excite f-modes on the
surface of any compact object, e.g., [57]. In the case of a
spin-aligned binary, this will generate f-modes with m ¼ 0
and m ¼ �2. In this case, the amplitude of the f-modes are
2PN order, i.e., they scale like Oðv4Þ with v the orbital
velocity. Thus, these effects are potentially subdominant

compared to an intrinsic spheroidness, and we may once
again assume ϵ2 ≪ 1.
Finally, a further example are deformed BHs in modified

gravity, where uniqueness and no-hair theorems might
not hold.1

To be as general as possible while still working in the
realm of astrophysical plausibility, we take 0 ≤ ϵ2 < 1 for
the remainder of this calculation. Under this assumption,
the solution to Eq. (61) is

V ¼ tan−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ2
1 − ϵ2

s
tanψ2

�
: ð62Þ

Such an expression should be familiar to anyone who has
studied Keplerian orbits, since it takes the same form as the
mapping between the true anomaly V and the eccentric
anomaly u for eccentric binaries, specifically

V
2
¼ tan−1

� ffiffiffiffiffiffiffiffiffiffiffi
1þ e
1 − e

r
tan

�
u
2

��
: ð63Þ

These expressions have known issueswith branch cutswhen
½ψ2; u=2� ¼ nπ=2 with n an integer. However, it has been
shown [60] through trigonometric identities that an equiv-
alent expression that removes the branch cuts and properly
tracks the secular behavior of V with increasing u is

V ¼ uþ 2tan−1
�

βe sin u
1 − βe cos u

�
; ð64Þ

where

βe ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
: ð65Þ

Thus, an equivalent expression for Vðψ2Þ can be found by
taking V → 2V and u → 2ψ2, specifically

V ¼ ψ2 þ tan−1
�

β2 sinð2ψ2Þ
1 − β2 cosð2ψ2Þ

�
; ð66Þ

where β2 ¼ βeðe → ϵ2Þ.
Moving on to the inclination angle, we proceed by

dividing Eq. (49) by Eq. (60), and then divide by Eq. (61),
to obtain

dι
dV

¼ ϵ2ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p �
tan ι sinð2VÞ

1þ ϵ2 cosð2VÞ
�
: ð67Þ

1Although such deformed solutions exist (e.g., [58,59]) they
arise from modified field equations that also affect the binary
dynamics in other ways (e.g., by extra dissipative terms). Since
we assume GR, our approach can describe this situation only if
beyond-GR effects to the dynamics (e.g., modified fluxes) are
negligible compared to the multipolar deformations.
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Such an equation can be directly integrated to obtain

sin ι
sin ι0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ2
1þ ϵ2 cosð2VÞ

s
; ð68Þ

where ι0 is the initial value of the inclination angle, i.e.,
ι0 ¼ ιðV ¼ 0Þ. Using Eq. (62), this can be rewritten in
terms of ψ2 as the dependent variable, specifically

sin ι
sin ι0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ2 cosð2ψ2Þ

1þ ϵ2

s
: ð69Þ

Note that in the limit ι0 → 0, the orbital angular momentum
vector becomes aligned with the Z-axis of the body frame
and ι becomes a constant. Thus, in the limit of alignment,
there is no nutation.
Finally, moving on to the longitude of pericenter, we

obtain an equation for dω=dψ2 by dividing Eq. (51) by
Eq. (60). After some manipulation, this equation takes the
form

dω
dψ2

¼ −
c1 þ c2 cosð2ψ2Þ

½1 − ϵ2 cosð2ψ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a− − b cosð2ψ2Þ

p ; ð70Þ

where

a� ¼ 1� ϵ2 − sin2 ι0; ð71Þ

b ¼ −ϵ2 sin2 ι0; ð72Þ

c1 ¼ 3 − ϵ2ð5þ 4ϵ2Þ þ 5ð1þ ϵ2Þ cosð2ι0Þ; ð73Þ

c2 ¼ ϵ2ð1þ 5ϵ2Þ − 5ϵ2ð1þ ϵ2Þ cosð2ι0Þ: ð74Þ

Naturally, this equation can be directly integrated to obtain

ω − ω0 ¼
sec ι0

4
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p �
c2
ϵ2

EllF

�
ψ2

				 2b
b − a−

�

− 4ð1þ ϵ2ÞEllΠ
�

2ϵ2
1 − ϵ2

;ψ2

				 2b
b − a−

��
; ð75Þ

where ω0 is the initial value, EllF and EllΠ are the elliptic
integrals of the first and third kind, respectively. Note that
this equation is divergent in the limit ι0 → π=2, since ω
becomes ill-defined in this limit.
We leave the calculation of the solution to Eq. (60) to the

discussion in Sec. IVA.

3. Axial case

The axial case is defined as the situation when Q�2 are
zero, while the Q�1 coefficients are nonzero, which
correspond to spherical harmonic modes that are odd under
parity. Much of the setup for this case is the same as the

polar case. We define the dimensionless parameters r1 ¼
QR

þ1=Q0 and i1 ¼ QI
þ1=Q0, from which we can define the

axial modulus and axial argument,

ϵ1 ¼
�
2

3
ðr21 þ i21Þ

�
1=2

; α1 ¼ tan−1ði1=r1Þ: ð76Þ

We also modify the definition of ψ2 to obtain ψ1,
specifically

dψ1

dt
¼ 3

�
π

5

�
1=2Q0ð1 − e2Þ3=2

νM1=2p7=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ21

q
cos ι: ð77Þ

Lastly, we define V ¼ Ωþ α1. With these new variables,
the relevant equations become

dι
dψ1

¼ −
ϵ1 cosVffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ21

p ; ð78Þ

dV
dψ1

¼ 1þ 2ϵ1 cotð2ιÞ sinVffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ21

p ; ð79Þ

dω
dψ1

¼−5cos ιþ sec ιþ ϵ1½3−5cotð2ιÞ�csc ιsinV
2

ffiffiffiffiffiffiffiffiffiffiffi
1− ϵ21

p : ð80Þ

Unlike the polar case, the evolution of V is not decoupled
from the evolution of ι. It makes sense then to divide
Eq. (78) by Eq. (79) to obtain dι=dV. Further, we make the
change of variables γ ¼ cot ι, which gives

dγ
dV

¼ γð1þ γ2Þϵ1 cosV
γ − ð1 − γ2Þϵ1 sinV

: ð81Þ

This equation has a known exact solution, specifically

γ ¼ ð1þ γ20Þϵ1 sinV þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ20 þ ð1þ γ20Þ2ϵ21sin2V

q
; ð82Þ

where γ0 ¼ cot ι0 with ι0 ¼ ιðV ¼ 0Þ.
With the solution for ι in hand, one can insert this

into Eqs. (79)–(80) and try to solve for ½V;ω�.
Unfortunately, there does not appear to be a closed form
solution to these for arbitrary value of ϵ1, even if we enforce
the condition ϵ1 < 1. We instead solve the equations
perturbatively in ϵ1 ≪ 1, which is the case of most
relevance to astrophysical scenarios. A straightforward
calculation gives

Vðψ1Þ ¼ ψ1 þ
X∞
n¼1

ϵn1VðnÞðψ1Þ; ð83Þ

ωðψ1Þ − ω0 ¼
1 − 4γ20

2γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ20

p ψ1 þ
X∞
n¼1

ϵn1ωðnÞðψ1Þ; ð84Þ
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with ω0 and integration constant, and the first few functions
in each sum given below,

Vð1Þ ¼ −
2

γ0
ð1 − γ20Þsin2ðψ1=2Þ; ð85Þ

Vð2Þ ¼
5

2
ψ1 −

ð1 − γ20Þ
γ20

sinψ1 −
ð1þ γ40Þ
2γ20

sinð2ψ1Þ; ð86Þ

ωð1Þ ¼
ð1 − 2γ20 þ 2γ40Þ
2γ20

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ20

p cosψ1; ð87Þ

ωð2Þ ¼ −
ð1− 6γ20þ 28γ40Þ
8γ30

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ20

p ψ1þ
ð1− 3γ20 − 4γ40þ 2γ60Þ

2γ30
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ20

p sinψ1

−
ð3− 8γ20 − 4γ40 − 8γ60Þ

16γ30
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ20

p sinð2ψ1Þ: ð88Þ

Note that the above solutions properly reduce to Eq. (58) in
the limit ϵ1 → 0.

4. Toward a general solution

Having considered the scenarios where analytic solu-
tions are possible, some of which are in closed form, we
may now work toward constructing general solutions to
Eqs. (49)–(51). We showed in Sec. III A 2 that the case with
ϵ1 ¼ 0 and ϵ2 ≠ 0 admits closed form solutions. We choose
to study the construction of a general solution by starting
with the closed form solutions of Sec. III A 2 and consider
the axial effects as a perturbation. The ansatz for the general
solution will be

sin ι ¼ sin ½ι2ðψ2Þ� þ
X∞
n¼1

ϵn1IðnÞðψ2Þ; ð89Þ

Ω − α2 ¼ V2ðψ2Þ þ
X∞
n¼1

ϵn1VðnÞðψ2Þ; ð90Þ

ω − ω0 ¼ ω2ðψ2Þ þ
X∞
n¼1

ϵn1WðnÞðψ2Þ; ð91Þ

where ½Ω0;ω0� are integration constants, and sin ι2, V2, and
ω2 are given as functions of ψ2 in Eqs. (69), (66), and (75),
respectively. To obtain the relevant equations for
Λa
ðnÞ ¼ ½IðnÞ; VðnÞ;WðnÞ�, we insert the above ansatz into

Eq. (49)–(51), and expand about ϵ1 ≪ 1.
To order Oðϵ01Þ, the osculating equations are automati-

cally satisfied. To higher order, we obtain equations of the
schematic form

dΛa
ðnÞ

dψ2

¼ Fa
ðnÞ½ψ2;Λb

ð1Þðψ2Þ;…;Λb
ðn−1Þðψ2Þ; ϵ2�: ð92Þ

In practice, we have failed to find closed form solutions to
these equations for arbitrary ϵ2, and have instead sought to
solve them in the limit ϵ2 ≪ 1. The solutions take the
general form of a power series, specifically

Λa
ðnÞ ¼

X∞
k¼0

ϵk2Λa
ðn;kÞðψ2Þ: ð93Þ

DefiningΔ ¼ α1 − α2, the solutions up to orderOðϵ1ϵ2Þ are

Ið1;0Þ ¼ −2 cos ι0 cos
�
Δþ ψ2

2

�
sin

�
ψ2

2

�
; ð94Þ

Ið1;1Þ ¼
1

6
sec ι0 sin

�
ψ2

2

�
f6 cosψ2 sinΔ− cosð2ι0Þ½−6 sinΔþ 9 sinðΔ− ψ2Þ þ 5 sinðΔþψ2Þ þ 10 sinðΔþ 2ψ2Þ�g; ð95Þ

Vð1;0Þ ¼ −2 cotð2ι0Þ½cosΔ − cosðΔþ ψ2Þ�; ð96Þ

Vð1;1Þ ¼
1

48
f4½9þ 10 cosð2ι0Þ þ 5 cosð4ι0Þ� csc ι0sec3ι0 sinΔsin3ψ2 þ cosΔ sec ι0½−48 cosð2ι0 cosð2ψ2Þ csc ι0

þ 3ð−7þ 10 cos½2ι0� þ 5 cos½4ι0�Þ cosψ2 csc ι0sec2ι0 þ ð9þ 10 cos½2ι0� þ 5 cos½4ι0�Þ cosð3ψ2Þ csc ι0sec2ι0
þ ð2þ cos½2ι0�Þ sec ι0 tan ι0�g; ð97Þ

Wð1;0Þ ¼
1

8
sec ι0 tan ι0



2ψ2 sinΔ½7þ 5 cosð2ι0Þ� − csc2ι0½7þ 4 cosð2ι0Þ þ 5 cosð4ι0Þ� sin

�
Δþ ψ2

2

�
sin

�
ψ2

2

��
; ð98Þ
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Wð1;1Þ ¼
1

576
csc ι0sec4ι0fcosΔ½−2ð11−323cos½2ι0�þ65cos½4ι0�þ55cos½6ι0�Þ

þ36ð2þ cos½2ι0�Þð3−16cos½2ι0�þ5cos½4ι0�Þcosψ2þ9ð12þ35cos½2ι0�þ12cos½4ι0�þ5cos½6ι0�Þcosð2ψ2Þ
− ð14þ7cos½2ι0�þ50cos½4ι0�þ25cos½6ι0�Þcosð3ψ2Þ�þ sinΔ½9ð−2−37cos½2ι0�þ2cos½4ι0�þ5cos½6ι0�Þsinψ2

þ6sin2ι0ðψ2½131þ188cosf2ι0gþ65cosf4ι0g�þ3½3þ cosf2ι0g�½−1þ5cosf2ι0g�sin½2ψ2�Þ
þð14þ7cos½2ι0�þ50cos½4ι0�þ25cos½6ι0�Þsinð4ψ2Þ�g: ð99Þ

We stop the expansion here since the solutions for Λa
ðn;kÞ

become increasingly complicated. The above discussion
and results present a schematic of the calculation, and one
can easily extend these results to higher order in ϵ1;2 if
desired.
To provide an estimate of the accuracy of the above

solutions, we compare these analytic results to numerical
evolutions of Eqs. (49)–(51). In order to perform the
numerical integration of the equations, we convert them
to equations of the form dμa=dψ2, and recast them in terms
of ϵ1;2 and α1;2 instead of the Qm coefficients. We set
ϵ2 ¼ 0.9, α2 ¼ 0, α1 ¼ π=2, and study the behavior of
the solutions for different values of ϵ1, specifically
ϵ1 ¼ ½10−7; 10−5; 10−3�. The results of this comparison
are shown in Fig. 2. The top panels show the plots of
both the numeric (solid lines) and analytic (dashed lines)
for (from left to right) ι, Ω, and ω. The bottom panels
display the relative difference between the two solutions,
showing the error introduced in each phase. As ϵ1 decreases
by each order of magnitude, so does the error by a
comparable amount. Note that this has to be the case since
the analytic solutions are exact in the limit ϵ1 → 0.

B. Nonprecessing solutions

Alignment between the Z-axis of the body frame and L̂,
specifically ι ¼ 0 and hdι=dti ¼ 0, is only possible
when Q�1 ¼ 0. When this occurs, the orbital basis of
Eqs. (26)–(28) reduces down to

n̂ ¼ ½cosðϕþ ΩÞ; sinðϕþ ΩÞ; 0�; ð100Þ

λ̂ ¼ ½− sinðϕþ ΩÞ; cosðϕþ ΩÞ; 0�; ð101Þ

L̂ ¼ ½0; 0; 1�; ð102Þ

and thus the effect of the mass quadrupole contributions is
to modulate the orbital phase ϕ by Ω.
The solutions in this limit can be considered as a special

class of the polar solutions. Defining ½ψ2; ϵ2; α2� as in
Eqs. (59) and (60), it follows that V ¼ Ωþ α2 still obeys
Eq. (66). The longitude of pericenter reduces to

FIG. 2. Top panel: comparison of the numerical evolution of ι (left), Ω (middle), and ω (right) from Eqs. (49)–(51) (solid lines) to the
analytic solutions (dashed lines) given in Sec. III A 4 for ϵ2 ¼ 0.9, α2 ¼ 0, α1 ¼ π=2. Each color represents a different value of ϵ1,
specifically 10−3 (black/upper), 10−5 (red/middle), and 10−7 (cyan/lower). All of the calculations are performed with ι0 ¼ π=50. Each
case is offset by a constant value from the others so that they do no overlap. Bottom panels: relative difference between the numeric and
analytic solutions.
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ω − ω0 ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p �
ψ2 þ ð1þ ϵ2ÞΠ

�
2ϵ2

1 − ϵ2
;ψ2j0

��
:

ð103Þ

A straightforward calculation shows that the direction of
pericenter advances at the constant rate

lim
ι→0

�
dω
dψ2

þ cos ι
dΩ
dψ2

�
¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p : ð104Þ

The motion in the aligned limit is now fully specified.

C. Oscillatory effects and orbital motion

As mentioned at the beginning of this section,
hde=dti ¼ 0 ¼ hdp=dti, and thus the leading order correc-
tion to ½e; p� comes from the oscillatory effects of Eq. (44). In
order to complete our solution to the dynamics of the binary
to leading order in the mass quadrupole moment (or alter-
natively, complete to 2PNorder),wemust also consider these
oscillatory effects in ½e; p�. We do not need to consider these
corrections to the angles ½ι;Ω;ω�, since these terms do not
enter relevant orbital quantities until relative 2PN order, and
thus their oscillatory effects will be further suppressed to
relative 4PN order. Following Eq. (44), the solutions for
½e; p� are schematically

eðVÞ ¼ e0 þ
1

p2
0

X
k¼0

½Cek cosðkVÞ þ Se
k sinðkVÞ� þOðp−4

0 Þ;

ð105Þ
pðVÞ
p0

¼ 1þ 1

p2
0

X
k

½Cpk cosðkVÞ þ Sp
k sinðkVÞ þOðp−4

0 Þ�;

ð106Þ
where ½e0; p0� are determined by initial conditions.Wedonot
provide the specific ½Ck;Sk� coefficients in this work, since
they are rather long and unenlightening. However, they can
be readily computed from Eqs. (34)–(35).
Naively, one might expect that e0 would correspond to the

actual (in a geometric sense) eccentricity of the orbit, and
likewise for the semilatus rectum p0. However, this is not in
general true. Indeed, one can easily check that e0 ¼ 0 does
not correspond to circular orbits, since lime0→0eðVÞ ≠ 0.We,
thus, have to redefine these parameters such that they make
physical sense. To do this, we follow [61], and define the new
eccentricity and semilatus rectum as

ẽ ¼
ffiffiffiffiffiffi
Ωp

p
−

ffiffiffiffiffiffi
Ωa

pffiffiffiffiffiffi
Ωp

p þ ffiffiffiffiffiffi
Ωa

p ; ð107Þ

p̃ ¼ M

�
2ffiffiffiffiffiffiffiffiffiffiffi

MΩp
p þ ffiffiffiffiffiffiffiffiffiffi

MΩa
p

�
4=3

; ð108Þ

where ½Ωp;Ωa� ¼ ½maxdV=dt;mindV=dt�. The resulting
expressions are

ẽ ¼ e0 þ
ffiffiffi
π

5

r
1

8νMp2
0

X
a

QaẼaðι;Ω;ωÞ þOðp−4
0 Þ; ð109Þ

p̃ ¼ p0

�
1þ

ffiffiffi
π

5

r
1

3νMp2
0

X
a

QaP̃aðι;Ω;ωÞ þOðp−4
0 Þ

�
;

ð110Þ

where Qa ¼ ½Q0; Q
R;I
1 ; QR;I

2 �, and the coefficients ½Ẽa; P̃a�
are given inAppendixB. This allows us to now properly take
the circular limit ẽ → 0, since that is the limit of most
relevance to ground based GW detectors. For the remainder
of the calculation, we work in this limit.
In the next section, we will calculate the leading order

effects due to radiation reaction on the binary, but in order
to complete that, we need two more quantities from the
orbital dynamics, namely the modifications to Kepler’s
third law and the on-shell orbital energy. The former of
these allows us to relate the orbital velocity to the orbital
frequency. To do so, we begin by calculating the correc-
tions to the orbital period, which is computed by

Torb ¼
Z

2π

0

�
dV
dt

�
−1
dV: ð111Þ

The orbital frequency is then F ¼ 1=Torb. With the orbital
velocity v ¼ p̃ _ϕ in the limit ẽ ¼ 0, we obtain

v¼ ũ

�
1þ ũ4

72νM3

ffiffiffi
π

5

r X
a

QaΩ̃aðι;Ω;ωÞþOðũ8Þ
�
; ð112Þ

where ũ ¼ ð2πMFÞ1=3 and the coefficients Ω̃a are given in
Appendix B.
Lastly, we need the on-shell orbital energy in order to

utilize the balance law for radiation reaction. The starting
point is Eq. (16), including only the Newtonian and
quadrupole terms. To evaluate this on shell, one has to
insert Eqs. (23)–(25) into this to write Eorb in terms of the
osculating quantities μa. This expression is still dependent
on the orbital timescale through V. To address this, we then
have to combine this expression with Eqs. (105)–(106) and
truncate at the relevant PN order. The final result, which is
independent of V, is

Eorb ¼−
1

2
μũ2

�
1þ ũ4

36νM3

ffiffiffi
π

5

r X
a

QaẼaðι;Ω;ωÞþOðũ8Þ
�

ð113Þ

where we have made use of Eqs. (109)–(110), and taken
the limit ẽ → 0. The coefficients Ẽa are also given in
Appendix B.

LOUTREL, BRITO, MASELLI, and PANI PHYS. REV. D 105, 124050 (2022)

124050-12



It is worth noting that all of the orbital quantities derived
in this section vary on the precessing timescale through
½ι;Ω;ω�. We discuss in detail how to handle this behavior in
the next section.

IV. GW EMISSION

The solutions of the previous section constitute the
solutions to the conservative dynamics of the binary in
the presence of generic mass quadrupole effects. In this
section, we will consider the effects of dissipation on such
systems through the emission of GWs.

A. Radiation reaction

We wish to compute the leading PN order corrections to
the inspiral of compact binaries due to generic quadrupole
effects. In order to do so, it suffices to consider the leading
PN order effects in radiation reaction, which are governed
by the quadrupole approximation. The energy P and
angular momentum J i fluxes due to GWs therein are
governed by

P ¼ 1

5c5
⃛Ihiji ⃛Ihiji; ð114Þ

J i ¼ 2

5c5
ϵijkÏhjqi ⃛Ihkqi; ð115Þ

with Iij the orbital quadrupole moment of the binary. The
quadrupole deformation of the body does not explicitly
contribute to these equations since we are assuming that the
Qm’s are static. However, they do contribute implicitly
through the definition of Iij, specifically

Iij ¼ μxixj þOðc−2Þ; ð116Þ

where r is given by Eq. (23) and ni is given by Eq. (26).
Due to the osculating nature of the orbit, when taking the
time derivatives of Iij, we must act on the elements ½ι;ω;Ω�
in addition to the orbital phase ϕ. For each time derivative
acting on the former, we are required to insert the osculat-
ing equations in Eqs. (36)–(38), and then accurately PN
truncate them.
In the present calculation, we take the limit ẽ ¼ 0, since

most binaries of relevance to ground based detectors will
have negligible eccentricity. We then calculate the rate of
change of the orbital energy, which is related to the energy
flux through the balance law

dEorb

dt
¼ −hPi; ð117Þ

and where Eorb is given by Eq. (16). Since we only desire
the leading PN order correction, it suffices to work at
relative Newtonian order, meaning we only need to con-
sider the contributions EN and Equad when using Eq. (16).

We must begin by evaluating Eq. (114). The time
derivative can be performed by acting on Eq. (116) directly.
The one important feature of said procedure is that every
time an instance of the acceleration ai ¼ ẍi appears, we
must insert the equations of motion in Eq. (9). Since we are
working to relative Newtonian order, it suffices to only
consider the Newtonian and mass quadrupole terms in the
relative acceleration equation. Doing so, we end up with
⃛Iij ¼ ⃛Iij0 þ δð ⃛IijÞ, where

⃛Iij0 ¼ μM

�
6_r
r4

xixj −
8

r3
vðixjÞ

�
; ð118Þ

δð ⃛IijÞ ¼ 2μ½2fðipertvjÞ þ _fðipertxjÞ�; ð119Þ

where fipert is given by Eq. (12). The energy flux can now
be directly computed using Eqs. (23)–(28). When taking
the orbit average necessary for the balance law, we must
also take into account the corrections to the orbital period
and dV=dt, both of which are detailed in Sec. III C.
On the other hand, the orbital energy is given in

Eq. (113). When taking a time derivative of this expression,
one has to remember that now ũ is being promoted to a
function of time. The orbital energy also depends on μa,
and one would need to insert the osculating equations
dμa=dt everywhere these terms appear. However, we are
only working to relative Newtonian order, so these will
introduce higher PN order effects that we may neglect.
Thus, we are left with only terms depending on dũ=dt in
Eq. (117). Solving, we obtain

dũ
dt

¼ 32

5

ν

M
ũ9
�
1þ ũ4

8M3ν

ffiffiffi
π

5

r X
a

QaŨaðι;Ω;ωÞ
�

ð120Þ

where the coefficients Ũa are given in Appendix B.We now
have the necessary equation to solve for the evolution of the
binary under radiation reaction.
In general, radiation reaction introduces a new timescale

to the problem, in addition to the orbital timescale encoded
in V and the precession timescale encoded in ψ2. To
consistently solve the problem, one has to, once again,
solve the relevant equations in a multiple scale analysis,
now with three timescales. As we detailed back in Sec. II C,
the leading order behavior is obtained by averaging over the
relevant oscillatory scales. In the process of deriving
Eq. (120), we already performed the average over the
oscillatory orbital timescale. Observe that the coefficients
Ũa only depend on ψ2 through oscillatory functions of
½ι;Ω;ω�. Thus, the precession effects in Eq. (120) are
actually oscillatory effects, and it suffices to perform a
precession average, i.e.,

hfiψ2
¼ 1

2π

Z
2π

0

fðψ2Þdψ2: ð121Þ
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We will thus obtain double averaged equations that con-
stitute the leading order behavior under radiation reaction.
The precession average of Eq. (120) is found by simply
making the replacement Ua → hUaiψ2

. In general, the
averages do not admit closed form expressions for arbitrary
ϵ1;2. Given the astrophysical considerations discussed in
Sec. III A, we compute these in an expansion ϵ1 ≪ 1 ≫ ϵ2,
which provides us the mapping

X
a

QahŨaiψ2
→ Q0

X
pq

ϵp1ϵ
q
2Upqðι0;ω0; α1; α2Þ ð122Þ

where the coefficients only depend on constants of the
precession dynamics and are listed in Appendix B. For
brevity, we will drop the explicit sum over ½p; q� and apply
the Einstein summation convention in future expressions.
In order to compute the Fourier domain gravitational

waveform through the SPA, we require three phases,
namely ½tðũÞ;ϕðũÞ;ψ2ðũÞ�. The first of these is found by
inverting hdũ=dtiψ2

, specifically

tðũÞ ¼ tc þ
Z

dũ

��
dũ
dt

�
ψ2

�
−1

¼ tc −
5M

256νũ8

�
1 −

Q0ũ4

4M3ν

ffiffiffi
π

5

r
ϵp1 ϵ

q
2Upq

�
ð123Þ

where tc is the time of coalescence. Similarly, the orbital
phase is dϕ=dt ¼ ũ3=M, and thus

ϕðũÞ ¼ ϕc þM−1
Z

dũ ũ3
�
hdũ
dt
iψ2

�
−1

¼ ϕc −
1

32νũ5

�
1 −

5Q0ũ4

8M3ν

ffiffiffi
π

5

r
ϵp1 ϵ

q
2Upq

�
ð124Þ

where ϕc is the phase of coalescence.
The evolution of the precession phase ψ2ðũÞ requires

more careful consideration. The time evolution of ψ2 is
given in Eq. (60). Unlike the functions ½tðũÞ;ϕðũÞ� where
we could average over ψ2, we cannot do so here and must
consider the full evolution equations dψ2=dũ, which is
obtained by dividing Eq. (60) by Eq. (120). However, since
the evolution of ψ2 is already of linear order in the mass
quadrupole moments and of absolute 2PN order, it suffices
for our purposes to truncate this expression to leading PN
order, obtaining

dψ2

dũ
¼ 3

ffiffiffiffiffiffi
5π

p

32

Q0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p
M2νũ2

cos ι; ð125Þ

where ι is a function of ψ2 through Eq. (89). We solve this
perturbatively in ϵ1 ≪ 1, while keeping ϵ2 arbitrary, just as
wedid in Sec. III A 4.Writingψ2ðũÞ¼ψ2;0ðũÞþϵ1ψ2;1ðũÞþ
Oðϵ21Þ, we obtain to leading order

dψ2;0

dũ
¼ 3

ffiffiffiffiffiffi
5π

p

32

Q0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
M2νũ2

½aþ þ b cosð2ψ2Þ�1=2: ð126Þ

This expression can be directly integrated by moving all
terms dependent on ψ2 to the left-hand side and integrating.
The resulting integral on the left-hand side produces the
elliptic integral of the first kind EllF½ψ2j2b=ðbþ aþÞ�.
Despite the dependence on specialized functions, the result-
ing equality can be solved to obtain ψ2;0ðũÞ by utilizing the
fact that the Jacobi amplitude function amðxjnÞ is the inverse
of the elliptic integral of the first kind, specifically
am½EllFðxjnÞjn� ¼ x. Rearranging, we obtain

ψ2;0ðũÞ¼ am

�
EllF

�
ψcj

2b
bþaþ

�
−Ψ2ðũÞ

				 2b
bþaþ

�
ð127Þ

where aþ is given in Eq. (71), and

Ψ2ðũÞ ¼
3

ffiffiffiffiffiffi
5π

p

32

Q0

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ22

p
M2νũ

cos ι0: ð128Þ

This expression is exact in the limit ϵ1 → 0, and for
ϵ2 ∈ ½0; 1Þ. Note thatΨ2 ∼ ũ−1, and is thus a −0.5PN effect,
unlike the orbital phase in Eq. (124) which scales as ũ−5 and
enters at −2.5PN order.
The correction to the precession phase ψ2;1ðũÞ due to

axial modes require a more in depth calculation. Similar to
the results in Sec. III A 4, there does not appear to be a
closed form solution to this for arbitrary ϵ2, and we instead
solve them in the limit ϵ2 ≪ 1. To leading order,

dψ2;1

dũ
¼ 3

ffiffiffiffiffiffi
5π

p

16

Q0 sin ι0
M3ν



sin ½Δþ ψc − Ψ0ðũÞ� − sinΔ

2u2

�
:

ð129Þ

where Ψ0 ¼ limϵ2→0Ψ2. This can be directly integrated to
obtain

ψ2;1ðũÞ ¼ sinΔ tan ι0Ψ0ðũÞ
− tan ι0 cos½Δþ ψc − Ψ0ðũÞ� þOðϵ2Þ: ð130Þ

The calculation can be extended to include the Oðϵn2Þ
corrections to ψ2;1ðũÞ in a straightforward way. We do not
calculate them here for brevity, as well as the fact that these
terms will scale as ϵ1ϵ

n
2 in the precession phase, and can

thus be treated as higher order.
In Fig. 3, we compare the analytic approximation

of tðũÞ, ϕðũÞ, ψ2ðũÞ derived in this section to numerical
evolutions of the precessions equations in Eqs. (36)
coupled to Eqs. (120) to include radiation reaction. For
these numerical evolutions, we fixed ϵ1 ¼ 10−3 and varied
ϵ2 ¼ ½10−3; 10−2; 10−1�. In doing so, we found that the
dephasing between the two solutions, which encodes the
error in the analytic expressions, depends on ϵ1 only mildly.
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For tðũÞ and ϕðũÞ, the dephasing becomes of order one
radian for the largest value of ϵ2. The dephasing for these
quantities can be improved by carrying the ϵ1 ≪ 1 ≫ ϵ2
expansion to higher order. On the other hand, the dephasing
in ψ2ðũÞ does not vary significantly for varying ϵ2, since it
can be solved for exactly in the case of polar configurations.

B. Gravitational waveform

Let us now consider the gravitational waveform of a
binary with arbitrary mass quadrupole coefficients. For
simplicity, we will seek to develop the corrections to the
TaylorF2 waveforms for quasi-circular binaries due to
generic mass quadrupoles. To derive this, it suffices to
consider the quadrupole approximation, where the metric
perturbation is given by

hij ¼
2

c4DL
Ïhiji; ð131Þ

where DL is the luminosity distance to the source.
The orbital quadrupole moment must be handled in the
manner described above Eq. (118) when working in the
osculating formalism. The observable waveform is found
by projecting hij into the transverse trace-less (TT) gauge.
In order to do this, we define the line of sight vector
Ni ¼ ½sin θN cosϕN; sin θN cosϕN; cos θN �, where θN is the
angle between the Z-axis of the body frame and Ni, and ϕN

is the angle that the projection of Ni makes in the XY-plane
with the X-axis. We consider these angles to be constant in
the observer’s frame. The projection into the TT gauge can

be performed via Eq. (11.44) in [2], which gives us the
following plus and cross polarizations for the waveform,

h ¼ hþ − ih×

¼ νM
DL

ũ2
X
mn

Am;nðι;ΩÞeinϕ−2Y2mðθN;ϕNÞ ð132Þ

where −2Ylmðθ;ϕÞ are spin weight −2 spherical harmonics,
m is an integer such that jmj ≤ 2 and n ¼ �2. The
amplitude functions Am;n are listed in Appendix C.
Since the binary is precessing, the amplitudes Amn

depend on time through ½ι;Ω�. In order to calculate the
Fourier domain waveform, we make use of the SPA
and SUA [48] to obtain the precession corrections. The
phase of the Fourier integral is of the standard form
ΨF ¼ 2πftðũÞ þ nϕðũÞ, and the stationary point is given
by ũ⋆ ¼ ũðt⋆Þ ¼ ð−2πMf=nÞ1=3. Note that this only con-
tributes to the Fourier transform for positive frequencies
for n ¼ −2. The SUA corrections are found through

Tn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nϕ̈ðũ⋆Þ

q
. After applying both the SPA and

SUA corrections, the resulting waveform is

h̃ðfÞ ¼
ffiffiffiffiffi
5

96

r
M5=6

π2=3DL
f−7=6eiΨ̃F

X
m

AmðfÞ−2Y2mðθN;ϕNÞ

ð133Þ

where the Fourier phase is

FIG. 3. Top panel: comparison of the numerical evolution (solid lines) of the time variable tð6ÞðũÞ ¼ tðũÞ=106 (left), orbital phase
ϕð3ÞðũÞ ¼ ϕðũÞ=103 (middle), and precession phase ψ2ðũÞ to the analytic PN expressions (dashed lines) in Eqs. (123), (124), (126), and
(130), respectively. The dashed lines correspond to different values of the polar modulus ϵ2, specifically 10−3 (cyan), 10−2 (red), and
10−1 (black). The remaining parameters are held fixed at ϵ1 ¼ 10−3, α2 ¼ 0, α1 ¼ π=2, ν ¼ 1=4, and Q0 ¼ M3. Bottom panel:
dephasing in radians between the numerical evolution and analytic expressions. The dephasing in ψ2 (bottom right) does not vary
significantly for the values of ϵ2 considered and it is mainly due to the PN truncation and the precession-average procedure.

INSPIRALING COMPACT OBJECTS WITH GENERIC … PHYS. REV. D 105, 124050 (2022)

124050-15



Ψ̃F ¼ 2πftc − 2ϕc −
π

4

þ 3

128νðπMfÞ5=3
�
1−

5Q0

4M3ν

ffiffiffi
π

5

r
ϵp1ϵ

q
2UpqðπMfÞ4=3

�
;

ð134Þ
and the Fourier amplitudes are

AmðfÞ ¼
Xkmax

k¼0

ak;kmax

2
fAm;−2½ψ2ðũkÞ� þ Am;−2½ψ2ðũ−kÞ�g;

ð135Þ

which are dependent on frequency through the SUA
corrected ũk, specifically

ũk ¼ ũðt⋆ þ kTnÞ

¼ ðπMfÞ1=3 þ 4k

ffiffiffiffiffi
ν

15

r
ðπMfÞ7=6

×

�
1þ Q0

16M3ν

ffiffiffi
π

5

r
ϵp1ϵ

q
2UpqðπMfÞ4=3

�
: ð136Þ

In the above, the coefficients ak;kmax
satisfy the linear system

of equations

ð−iÞp
2pp!

¼
Xkmax

k¼0

ak;kmax

k2p

ð2pÞ! ; ð137Þ

for p ∈ 0;…; kmax. The value of kmax is usually chosen
based on the desired level of faithfulness when compared to
numerical waveforms, as well as computational efficiency
[48]. This completes the Fourier domain waveform for
generic mass quadrupole effects.
To showcase these waveforms, we plot the amplitude

functions AmðfÞ in Fig. 4 for different values of the
modulus parameters ϵm, specifically ϵm ¼ 0 (black lines)
which corresponds to the spheroidal configuration,
ϵm ¼ 10−3 (red dashed lines), and ϵ2 ¼ 10−1 ¼ 100ϵ1.
The amplitude functions are normalized such that
AmðflowÞ ¼ 1, where ðπMflowÞ1=3 ¼ 0.1. For the spheroi-
dal case, the inclination angle ι becomes a constant, and
thus A0 also becomes constant with frequency. The
amplitudes functions are generally modulated due to the
precession of the orbital angular momentum, which defines
the axis along which the GW amplitude is largest.
Finally, in Fig. 5 we plot the total phase difference

between a spheroidal configuration and two configurations
with ϵm ¼ 10−3 (top panel) and ϵ2 ¼ 10−1 ¼ 100ϵ1 (bot-
tom panel). The total phase of the waveform is found by

Ψ̃TðfÞ ¼ Ψ̃FðfÞ þ arg

�X
m

AmðfÞ
�
: ð138Þ

The different lines in each panel correspond to different
values of α1, while α2 ¼ 0 for all cases.
As a simplistic but useful rule of thumb, an effect

introducing a phase difference of 0.1 or greater is likely

FIG. 4. Comparison of the waveform amplitudes Am from
Eq. (135) for the spheroidal case (black), ϵ1 ¼ ϵ2 ¼ 10−3 (red,
dashed), and ϵ1 ¼ 10−3, ϵ2 ¼ 10−1 (blue, dot-dashed). The
amplitudes are all normalized such that Am ¼ 1 at the lowest
frequency plotted.
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to substantially impact a matched-filter search, leading to a
significant loss of detected events if the matched-filter
search is done with waveforms that do not include these
corrections [62]. Or, in other words, generally a phase
difference of 0.1 would in principle be observable by the
LIGO and Virgo detectors at signal-to-noise ratio 10.
Therefore, for all the cases shown in Fig. 5, the deviations
from spheroidness could be detectable, although we stress
that this naive estimates must be validated with a detailed
parameter estimation study, also taking into account pos-
sible parameter correlations and systematic errors.

V. DISCUSSION AND OUTLOOK

We have here developed the first analytic waveforms to
model general mass quadrupole moment effects of compact
objects. The waveforms are parametrized by the quadrupole
parameter Q0 corresponding to the oblate/prolate configu-
ration, and the modulus ϵm and phase αm parameters that
describe deviations from spheroidness. The latter of these
are generic enough for us to consider constraining non-
axisymmetric configurations of compact objects. Besides
considering nonaxisymmetric bodies, the tools developed
here can also be used to compute the leading-order
correction for current quadrupole moments. This was
partially addressed in Ref. [18] but only for the axisym-
metric case and the main results were obtained in the EMRI
limit. It should be stressed though that the generic mass
quadrupole corrections considered here also break the

equatorial symmetry and affect the waveform at a lower
PN order relative to the axisymmetric S2 corrections
considered in [18]. They should therefore be the lead-
ing-order signatures for generic objects without equatorial
symmetry. Another natural extension of our work is to
include the effect of the objects’ angular momenta, which
can give rise to a variety of phenomena (e.g., spin
precession and coupling to the quadrupole moment).
A crucial aspect that we did not address in this paper is

the extent with which GW detectors will be able to
constrain or detect nonaxisymmetric mass quadrupole
moments. Based on a dephasing argument, we estimate
that even small deviations from spheroidness might be
measurable with current generation ground-based detec-
tors. However, such an argument does not take into account
the correlations among the physical parameters of the
binary, or the possibility of degeneracies that would limit
our ability to stringently constrain the additional quadru-
pole parameters. One degeneracy that can already be seen
in the analysis carried out here is the fact that the wave-
forms depend on the components of the effective quadru-
pole moment tensor defined below Eq. (8), and not on the
individual quadrupole moments of the objects. This is not
surprising given that a similar situation happens when
considering the leading PN spin and tidal corrections to the
waveform [63]. In our specific case the situation is even
worse, since the quadrupole tensor enters at the leading PN
order through the combination ϵp1ϵ

q
2Upq in Eq. (134), so

individual quadrupole components are degenerated. For
example, based solely on the 2PN inspiral corrections, a
(admittedly fine-tuned) model in which different compo-
nents of the quadrupole moments conspire to give a
negligible deviation from the standard Kerr case cannot
be excluded. Higher-order PN corrections in the phase and
amplitude can break this degeneracy.
A rough estimate of the constraints on generic quad-

rupolar deformations can come from measured upper
bounds on the parametrized corrections, δϕ2, to the 2PN
coefficients. For the neutron-star binary GW170817 such
constraints read jδϕ2j ≲ 3.5 at 90% confidence level [64].
For BH binaries, the latest bound obtained by combining all
GWTC-3 events reads jδϕ2j≲ 0.1 [65] (assuming the same
type of deviations for all sources). These measurements
could roughly translate into an upper bound on the
combination ϵp1 ϵ

q
2Upq (of both binary components) in

Eq. (134). However, such bounds were derived without
taking into account the amplitude corrections [see
Eq. (135)] and the amplitude modulation [see Eq. (138)]
found in this work, so a detailed analysis should be
performed to obtain faithful constraints. At any rate, the
order of magnitude of these constraints makes such
parameter estimation a promising future avenue.
Another open question is how do the new parameters,

specifically ½ϵm; αm�, map to the properties of compact
objects. For BHs, ϵm ¼ 0, but in general this need not be

FIG. 5. Top panel: total GW phase difference between an
oblate/prolate configuration and one with ϵ1 ¼ ϵ2 ¼ 10−3. The
polar phase α2 ¼ 0, while the different lines correspond to
different values of α1, namely 0 (black), π=4 (red, dashed),
π=2 (blue, dot-dashed), and π (cyan, crossed). Bottom panel: the
same as the top panel but with ϵ1 ¼ 10−3 and ϵ2 ¼ 10−1.
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true. In general, these parameters will be equation of state
dependent. Having specific theoretical predictions of these
values for various astrophysical and exotic compact objects
would allow one to map from generic constraints on the
modulus and phase parameters to the physical set of
parameters that characterizes the equation of state and
structure of the bodies.
The calculations that we have carried out here are the

first step toward more general investigations of the structure
of compact objects, and we plan to investigate the above
topics in future work.
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APPENDIX A: HIGHER PN EFFECTS

To complete the discussion in Sec. II A, we here provide
some relevant PN quantities. We do not formally use these
in the analysis presented in this paper. The 1PN and 2PN
order corrections to the point particle Lagrangian in
Eq. (5) are

L1PN ¼ 1 − 3ν

8
v4 þM

2r

�
ð3þ νÞv2 þ ν_r2 −

M
r

�
; ðA1Þ

L2PN ¼ 1

16
ð1 − 7νþ 13ν2Þv6 þM

8r
½ð7 − 12ν − 9ν2Þv4

þ ð4 − 10νÞν_r2v2 þ 3ν2 _r4� þM2

2r2
½ð4 − 2νþ ν2Þv2

þ 3νð1þ νÞ_r2� þM3

4r3
; ðA2Þ

The PN corrections to the conserved orbital energy are

E1PN

μ
¼ 3

8
ð1 − 3νÞv4 þ 1

2
ð3þ νÞv2M

r
þ 1

2
ν
M
r
_r2

þ 1

2

�
M
r

�
2

; ðA3Þ

E2PN

μ
¼ 5

16
ð1−7νþ13ν2Þv6þ1

8
ð21−23ν−27ν2ÞM

r
v4

þ1

4
νð1−15νÞM

r
v2 _r2−

3

8
νð1−3νÞM

r
_r4

þ1

8
ð14−55νþ4ν2Þ

�
M
r

�
2

v2

þ1

8
ð4þ69νþ12ν2Þ

�
M
r

�
2

_r2−
1

4
ð2þ15νÞ

�
M
r

�
3

;

ðA4Þ

ESO ¼ μ

r2
ϵijkΣinjvk; ðA5Þ

ESS ¼
1

r3
½3ðniSi1ÞðnjSj2Þ − Si1S

i
2�: ðA6Þ

Finally, the corrections to the conserved orbital angular
momentum are

L1PN ¼ 1

2
v2ð1 − 3νÞ þ ð3þ νÞM

r
; ðA7Þ

L2PN ¼ ð1 − 7νþ 13ν2Þ 3
8
v4 þ ð7 − 10ν − 9ν2ÞM

2r
v2

−
1

2
νð2þ 5νÞM

r
_r2 þ 1

4
ð14 − 41νþ 4ν2Þ

�
M
r

�
2

;

ðA8Þ

Li
SO ¼ μ

M

�
M
r
ϵijkϵkpqnjnpð2Sq þ ΣqÞ

−
1

2
ϵijkϵkpqvjvpΣq

�
: ðA9Þ

APPENDIX B: PN QUADRUPOLE
COEFFICIENTS

We here provide the coefficients of leading PN order
corrections to various orbital quantities derived in Sec. III C
and radiation reaction effects inSec. IVAdue to genericmass
quadrupole moments. WithQa ¼ ½Q0; QR

1 ; Q
I
1; Q

R
2 ; Q

I
2�, the

coefficients in Eqs. (109)–(110) are
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Ẽ0 ¼ 6þ 2e20 þ 6ð3þ e20Þ cosð2ιÞ − ð5þ 6e0 þ e20Þ cos½2ðι − ωÞ� þ 10 cosð2ΩÞ þ 12e0 cosð2ωÞ þ 2e20 cosð2ωÞ
− 5 cos½2ðιþ ωÞ� − 6e0 cos½2ðιþ ωÞ� − e20 cos½2ðιþ ωÞ�; ðB1Þ

Ẽ1 ¼ 8

ffiffiffi
2

3

r
sin ιfð5þ 6e0 þ e20Þ cosΩ sinð2ωÞ þ cos ι½−3ð3þ e20Þ þ ð5þ 6e0 þ e20Þ cosð2ωÞ� sinΩg; ðB2Þ

Ẽ2 ¼ 2

ffiffiffi
2

3

r
sin ιf4 cos ι½−3ð3þ e20Þ þ ð5þ 6e0 þ e20Þ cosð2ωÞ� cosΩ − 4ð5þ 6e0 þ e20Þ sinð2ωÞ sinΩg; ðB3Þ

Ẽ3 ¼
1ffiffiffi
6

p ð−2 cosð2ΩÞf2ð1þ e0Þð5þ e0Þ½3þ cosð2ιÞ� cosð2ωÞ þ 12ð3þ e20Þsin2ιg

þ 16ð1þ e0Þð5þ e0Þ cos ι sinð2ωÞ sinð2ΩÞÞ; ðB4Þ

Ẽ4 ¼ 2

ffiffiffi
2

3

r
f4ð1þ e0Þð5þ e0Þ cos ι cosð2ΩÞ sinð2ωÞ þ ½ð1þ e0Þð5þ e0Þð3þ cosð2ιÞÞ cosð2ωÞ þ 6ð3þ e20Þsin2ι� sinð2ΩÞg;

ðB5Þ

P̃0 ¼ ð3þ e0Þ2½1þ 3 cosð2ιÞ� þ 2ð1þ e0Þð5þ e0Þ cosð2ωÞsin2ι; ðB6Þ

P̃1 ¼ 4

ffiffiffi
2

3

r
sin ιfð1þ e0Þð5þ e0Þ cosΩ sinð2ωÞ þ cos ι½−3ð3þ e20Þ þ ð1þ e0Þð5þ e0Þ cosð2ωÞ� sinΩg; ðB7Þ

P̃2 ¼
ffiffiffi
2

3

r
sin ιf4 cos ι½−3ð3þ e20Þ þ ð1þ e0Þð5þ e0Þ cosð2ωÞ� cosΩ − 4ð1þ e0Þð5þ e0Þ sinð2ωÞ sinΩg; ðB8Þ

P̃3 ¼
1

2
ffiffiffi
6

p f−2 cosð2ΩÞ½2ð1þ e0Þð5þ e0Þð3þ cosð2ιÞÞ cosð2ωÞ þ 12ð3þ e20Þsin2ι�

þ 16ð1þ e0Þð5þ e0Þ cos ι sinð2ωÞ sinð2ωÞg; ðB9Þ

P̃4 ¼
ffiffiffi
2

3

r
f4ð1þ e0Þð5þ e0Þ cos ι cosð2ΩÞ sinð2ωÞ þ ½ð1þ e0Þð5þ e0Þð3þ cosð2ιÞÞ cosð2ωÞ þ 6ð3þ e20Þsin2ι� sinð2ΩÞg:

ðB10Þ

The coefficients of the modified Kepler’s third law in
Eq. (112) are

Ω̃0 ¼ 12½3þ 9 cosð2ιÞ − cosð2ωÞ sin2 ι�; ðB11Þ

Ω̃1 ¼ −4
ffiffiffi
6

p
f2 cosΩ sin ι sinð2ωÞ

þ½18þ cosð2ωÞ� sinð2ιÞ sinΩg; ðB12Þ

Ω̃2 ¼ 4
ffiffiffi
6

p
f36cos ιcosΩsin ι− ½36þ cosð2ωÞ�cosΩsinð2ιÞ

þ2sin ιsinð2ωÞsinΩg ðB13Þ

Ω̃3 ¼
ffiffiffi
6

p
fcosð2ΩÞ½2ð3þ cosð2ιÞ� cosð2ωÞ − 72 sin2 ι�

−8 cos ι sinð2ωÞ sinð2ΩÞg; ðB14Þ

Ω̃4 ¼ 2
ffiffiffi
6

p
f−4 cos ι cosð2ΩÞ sinð2ωÞ

−½ð3þ cosð2ιÞÞ cosð2ωÞ − 36sin2ι� sinð2ΩÞg: ðB15Þ

Lastly, the coefficients for the orbital energy in Eq. (113)
are

Ẽ0 ¼ 18 cosð2ωÞ sin2 ι; ðB16Þ

Ẽ1 ¼ 6
ffiffiffi
6

p
½cosð2ωÞ sinð2ιÞ þ 2 cotΩ sin ι sinð2ωÞ� sinΩ;

ðB17Þ

Ẽ2 ¼ 12
ffiffiffi
6

p
sin ι½cos ι cosð2ωÞ cosΩ − 2 cosω sinω sinΩ�;

ðB18Þ
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Ẽ3 ¼ 3
ffiffiffi
6

p
f−½ð3þ cosð2ιÞÞ cosð2ωÞ cosð2ΩÞ�

þ4 cos ι sinð2ωÞ sinð2ΩÞg; ðB19Þ

Ẽ4 ¼ 3
ffiffiffi
6

p
f4 cos ι cosð2ΩÞ sinð2ωÞ

þ½3þ cosð2ιÞ� cosð2ωÞ sinð2ΩÞg: ðB20Þ

The corrections to the evolution of the orbital frequency
due to radiation reaction in Eq. (120) are

Ũ0 ¼ −13 − 39 cosð2ιÞ þ 98 cosð2ωÞ sin2 ι; ðB21Þ

Ũ1 ¼ 2

ffiffiffi
2

3

r
f98 cosΩ sin ι sinð2ωÞ

þ ½39þ 49 cosð2ωÞ� sinð2ιÞ sinΩg; ðB22Þ

Ũ2 ¼ 2

ffiffiffi
2

3

r
f½39þ 49 cosð2ωÞ� cosΩ sinð2ιÞ

− 98 sin ι sinð2ωÞ sinΩg; ðB23Þ

Ũ3 ¼
ffiffiffi
2

3

r
fcosð2ΩÞ½−49ð3þ cosð2ιÞÞ cosð2ωÞ þ 78 sin2 ι�

þ196 cos ι sinð2ωÞ sinð2ΩÞg; ðB24Þ

Ũ4¼
ffiffiffi
2

3

r
f196cosιcosð2ΩÞsinð2ωÞ

þ½49ð3þcosð2ιÞ�cosð2ωÞ−78sin2 ι�sinð2ΩÞg: ðB25Þ

To obtain the coefficients Upq in Eq. (122), one has to
compute the averages of the Ũa coefficients listed above in
a small ϵ1;2 expansion. The Ũa are coupled to the quadru-
pole coefficients Qa, and so each Ũa must be expanded to
different orders. For brevity, we only list the Upq up to
linear order in the expansion. This means that Ũ0 must be
computed to Oðϵ1; ϵ2Þ with remainders of order
Oðϵ21; ϵ22; ϵ1ϵ2Þ, while all other Ũa must be computed to
Oðϵ01; ϵ02Þ. The reason for this is that these are coupled to
QR;I

m which are already linear in ϵm, i.e., QR;I
m ∼ ϵmQ0.

Writing Ũ0 ¼ Ũð0Þ
0 þ ϵ1Ũ

ð1Þ
0 þ ϵ2Ũ

ð2Þ
0 þOðϵ21; ϵ22; ϵ1ϵ2Þ, the

end results are

U00 ¼ −13 − 39 cosð2ι0Þ

þ 196

πζ
cos

�
πζ

2
− 2ω0

�
sin

�
πζ

2

�
sin2ι0 ðB26Þ

U10¼hŨð1Þ
0 iψ2

þ
ffiffiffi
3

2

r
½cosα1hŨ1iψ2

þ sinα1hŨ2iψ2
� ðB27Þ

U01 ¼ hŨð2Þ
0 iψ2

þ
ffiffiffi
3

2

r
½cosð2α2ÞhŨ3iψ2

þ sinð2α2ÞhŨ4iψ2
�

ðB28Þ

where ζ ¼ ½3þ 5 cosð2ι0Þ� sec ι0, and

hŨð1Þ
0 iψ2

¼ 1

2πζ2

�
49ζ

ζ2 − 4
sin

�
πζ

2

�

8 sinð2ι0Þ

�
ðζ þ 2Þ sin

�
πζ

2
− Δ − 2ω0

�
þ ðζ − 2Þ sin

�
πζ

2
þ Δ − 2ω0

��

þ ½7þ 4 cosð2ι0Þ þ 5 cosð4ι0Þ� sec ι0 tan ι0

�
ðζ þ 2Þ sin

�
πζ

2
− Δ − 2ω0

�
− ðζ − 2Þ sin

�
πζ

2
þ Δ − 2ω0

���

þ 4 sinΔ½39πζ sinf2ι0g − 49f7þ 5 cosð2ι0Þg sin ι0fπζ cosðπζ − 2ω0Þ − sinðπζ − 2ω0Þ − sinð2ω0Þgtan2ι0�
�
;

ðB29Þ

hŨð2Þ
0 iψ2

¼ 1

8πζðζ − 4Þðζ þ 4Þ f16ζsin
2ι0½−39πζðζ2 − 16Þ þ 784 sinðπζ − 2ω0Þ þ 784 sinð2ω0Þ�

þ 98 sec ι0½πζðζ2 − 16Þð23þ 36 cosð2ι0Þ þ 5 cosð4ι0Þ� cosðπζ − 2ω0Þ
− 2½−184þ 3ζ2 þ 8ðζ2 − 36Þ cosð2ι0Þ þ 5ðζ2 − 8Þ cosð4ι0Þ�½sinðπζ − 2ω0Þ þ sinð2ω0Þ�tan2ι0g; ðB30Þ

hŨ1iψ2
¼ −

98

πðζ2 − 4Þ

ffiffiffi
2

3

r
sin

�
πζ

2

�

ðζ þ 2Þ½2 sin ι0 þ sinð2ι0Þ� sin

�
α2 − 2ω0 þ

πζ

2

�

− ðζ − 2Þ½2 sin ι0 − sinð2ι0Þ� sin
�
α2 þ 2ω0 −

πζ

2

��
ðB31Þ
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hŨ2iψ2
¼ 98

πðζ2 − 4Þ

ffiffiffi
2

3

r
sin

�
πζ

2

�

ðζ þ 2Þ½2 sin ι0 þ sinð2ι0Þ� cos

�
α2 − 2ω0 þ

πζ

2

�

− ðζ − 2Þ½2 sin ι0 − sinð2ι0Þ� cos
�
α2 þ 2ω0 −

πζ

2

��
; ðB32Þ

hŨ3iψ2
¼ −

392

πðζ2 − 16Þ

ffiffiffi
2

3

r
sin

�
πζ

2

��
ðζ þ 4Þcos4

�
ι0
2

�
cos

�
2α2 − 2ω0 þ

πζ

2

�

þ ðζ − 4Þsin4
�
ι0
2

�
cos

�
2α2 þ 2ω0 −

πζ

2

��
; ðB33Þ

hŨ4iψ2
¼ −

392

πðζ2 − 16Þ

ffiffiffi
2

3

r
sin

�
πζ

2

��
ðζ þ 4Þcos4

�
ι0
2

�
sin

�
2α2 − 2ω0 þ

πζ

2

�

þ ðζ − 4Þsin4
�
ι0
2

�
sin

�
2α2 þ 2ω0 −

πζ

2

��
: ðB34Þ

APPENDIX C: WAVEFORM AMPLITUDES

We here provide the waveform amplitudes Aþ;×
m;n ðι;ΩÞ

from Eq. (132).

A0;�2 ¼ 2

ffiffiffiffiffiffi
6π

5

r
sin2 ι; ðC1Þ

Aþ1;þ2 ¼ −ðA−1;−2Þ† ¼ 8i

ffiffiffi
π

5

r
e−iΩ sin ι sin2ðι=2Þ; ðC2Þ

Aþ1;−2 ¼ −ðA−1;þ2Þ† ¼ −16i
ffiffiffi
π

5

r
e−iΩ sinðι=2Þ cos3ðι=2Þ;

ðC3Þ

Aþ2;þ2 ¼ ðA−2;−2Þ† ¼ −8
ffiffiffi
π

5

r
e−2iΩ sin4ðι=2Þ; ðC4Þ

Aþ2;−2 ¼ ðA−2;þ2Þ† ¼ −8
ffiffiffi
π

5

r
e−2iΩ cos4ðι=2Þ: ðC5Þ
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