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Recently, a novel emergent phase can occur from thermodynamic consideration of the asymptotically
flat Reissner-Nordström black hole (RN-AF) using Rényi statistics. We present an analysis of the
thermodynamical and mechanical stabilities of the RN-AF in both the Gibbs-Boltzmann (GB) and the
alternative Rényi statistics when charge q and electrostatic potential ϕ are treated as pressure and volume,
respectively. Interestingly, the emergent phase of the RN-AF can be both thermodynamically and
mechanically stable in some range of parameters in the framework of Rényi thermodynamics. With the
construction of the Maxwell equal area law in q − ϕ plane, the coexistence line between the near-extremal
black hole phase and the emergent phase can be found in some values of charge which can be associated as
the vapor pressure at which the liquid and gas phases coexist. In the aspect of thermodynamic geometry, the
microscopic interaction between the black hole microstructures can be repulsive in the Rényi description.
This implies that a novel correlation between the microstates of a self-gravitating system could be emerged
via the nonextensive nature of long-range interaction systems. Finally, we also investigate the critical
phenomena of the RN-AF in Rényi statistics compared to that of the van der Waals (vdW) fluid and find
that the critical exponents of the relevant physical quantities of both systems are identical. This implies that
both systems are in the same universality class of the phase transition.

DOI: 10.1103/PhysRevD.105.124049

I. INTRODUCTION AND MOTIVATIONS

According to the Gibbs-Boltzmann (GB) statistical
approach, Bekenstein argued that the entropy of a black
hole is proportional to its horizon area [1]. Later on, by
taking into account the quantum fluctuation around the
black hole’s horizon, Hawking had shown that black holes
emit thermal radiation at the Hawking temperature [2].
Moreover, both quantities, namely, the Bekenstein-
Hawking entropy SBH and Hawking temperature TH are
related through the first law of black hole thermodynamics
[3]. However, black holes are fascinating compact objects
where the spacetime surrounded them is severely curved in

such a way that an observer, being outside their event
horizons, cannot observe anything inside the black hole
event horizons. Therefore, the statistical origin of the black
hole entropy is hidden from the rest of the universe, which
leads to some important open questions on counting black
hole microstates and calculating its corresponding entropy
from the first principle [4–11].
One of the most peculiarities about black holes is that

their entropy obeys the area law and thus it is seemingly
nonextensive [12,13]. Consequently, when two black holes
of entropies SA and SB merge adiabatically, the resulting
entropy of the black hole system SAB can be expressed in a
nonadditive form [14]. To investigate the effects from
nonextensivity, it has been proposed that SAB can be
written in the form of the Abe’s generalized nonadditive
composition rule [15]

HðSABÞ ¼ HðSAÞ þHðSBÞ þ λHðSAÞHðSBÞ; ð1Þ
where HðSÞ is a differentiable function of S and λ is a
nonextensivity parameter. From statistical mechanics, one

*ekapong.hir@kmutt.ac.th

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 124049 (2022)

2470-0010=2022=105(12)=124049(22) 124049-1 Published by the American Physical Society

https://orcid.org/0000-0002-6132-1380
https://orcid.org/0000-0002-3928-7569
https://orcid.org/0000-0002-7783-3313
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.124049&domain=pdf&date_stamp=2022-06-21
https://doi.org/10.1103/PhysRevD.105.124049
https://doi.org/10.1103/PhysRevD.105.124049
https://doi.org/10.1103/PhysRevD.105.124049
https://doi.org/10.1103/PhysRevD.105.124049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


can derive the thermodynamic quantities of macroscopic
system from the microscopic description via the standard
statistical methods. In the GB approach, it is usually
assumed that the interaction between the microstructures
of the system is much smaller than the size of the system. In
this way, the GB entropy formula might not be appropriate
for strong-gravitating systems because the long-range
interaction cannot be ignored. This is a microscopic
description to the origin of nonextensive nature for black
hole thermodynamical systems.
However, there is an obscure notion of thermal equilib-

rium and empirical temperature in thermodynamics of
nonextensive entropy HðSÞ with nonadditive composition
rule (1). Fortunately, this problem can be solved by trans-
forming HðSÞ into another entropic functional form [16]

LðSÞ ¼ 1

λ
ln ½1þ λHðSÞ�; ð2Þ

which makes the composition rule (1) turning out to be
additive

LðSABÞ ¼ LðSAÞ þ LðSBÞ: ð3Þ

In the simplest case, we identify the differentiable function
HðSÞ to be the Tsallis entropyHðSÞ ¼ ST [17]. In this case,
the logarithmic functional form of entropy in Eq. (2) is
indeed the well-known Rényi entropy [18]

LðSTÞ ¼
1

λ
lnð1þ λSTÞ≡ SR: ð4Þ

Since the Rényi entropy is additive despite the presence of
nonextensive nature, this tends to a well-defined thermal
equilibrium state for nonextensive systems and then the
empirical temperature function can be uniquely determined
from the standard relation

1

TR
¼ ∂SR

∂E
; ð5Þ

where TR is the corresponding so-called Rényi temperature
and E is the energy of the system.
Interestingly, by considering SBH as ST [12], one can

obtain the Rényi entropy associated to a black hole.
The results show that the black holes can be thermody-
namically stable with its surrounding environment in some
range of parameter space in the cases of asymptotically flat
spacetime [19–24] and asymptotically dS spacetime [25–
27]. In addition, the stability of a black string is also
investigated using the Rényi statistics. [28]. Recently, as
suggested in Refs. [22,23], the nonextensivity parameter λ
can be identified as a thermodynamic pressure P ¼ 3λ

32
and

its conjugate variable as the thermodynamic volume
V ¼ 4

3
πr3h, where rh is the horizon radius. This framework

is called the Rényi extended phase space approach. In this

formalism, it was first indicated that, in a canonical
ensemble, the Reissner-Nordström black hole in asymp-
totically flat spacetime (RN-AF) allows a first-order phase
transition which is reminiscent of the vdW liquid-gas phase
transition and a Hawking-Page phase transition of charged
AdS black holes [29–35] (for review, see [36–38] and
references therein).
In a conventional thermodynamic system, the well-

known Maxwell equal area law or Maxwell construction
is a qualitative explanation for the first-order phase tran-
sition between two different locally stable phases without
passing the unstable phase. The vdW fluid undergone in the
isothermal compression or expansion is an example of the
Maxwell equal area law. On the P − V plane, it has been
found that there possibly exist three phases along each
isothermal curve. Two of them are the liquid and gas phases
with positive compressibility. Another one is the phase with
negative compressibility. Hence, the phase transition of the
fluid via the isothermal compression or expansion should
pass the mechanically unstable phase. The argument states
that the fluid will evolve under the first-order phase
transition with a certain pressure instead of passing
through the unstable phase. From the fact that the
Gibbs free energy does not change [39], the certain
pressure is evaluated in the way that the upper and lower
areas between the isothermal curve and the line of
constant pressure are the same. Interestingly, this equal
area law is held in the charged black holes (see, e.g., [40–
42]). In our case, the aforementioned equal area law
should be obtained by considering the isothermal curve on
the q − ϕ plane. It will be seen that the charged black hole
with Rényi description undergoes the transition between
two stable black hole phases in a similar way to what
occurs in the vdW fluid.
One may argue that the correction due to nonextensive

effect should be also seen in the microscopic structure of
black hole systems. In the phase transition, the thermody-
namic systems are undergoing some reorganization proc-
esses of its microscopic structure. As mentioned above, the
charged black hole cannot be only a thermal object, but it
also interestingly undergoes a phase transition as the vdW
liquid-gas system does. Therefore, it is believed that a black
hole should have microscopic degrees of freedom even if its
constituents are still unknown. Specifically, a fluid ana-
logue can be allowed in a particular type of black hole
solution such that the constituents can be called black hole
molecules [43]. There is a proposal on possible ways to
study the microstructure or the interaction between black
hole molecules by using the geometrical approach of the
thermodynamic phase space. The thermodynamic geom-
etry method has been developed by Weinhold [44] and
Ruppeiner [45]. It is an interesting approach to investigate
some microscopic aspects of thermodynamic system from
their macroscopic quantities. Ruppeiner [45] proposed that
an entropy plays a role of the thermodynamic potential
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rather than the internal energy [44], and then derived a
Riemannian thermodynamic line element, which has physi-
cal meaning as the distance between two neighboring
thermal fluctuating states. The scalar curvature R corre-
sponding to the Ruppeiner metric can be computed in the
same way as the Ricci scalar in the general relativity. By
applying this formalism to various thermodynamic systems
[46–51], it has been argued that the sign of R can be used to
identify the type of interaction between the microstructure
of a system. The positiveness and negativeness in R are,
respectively, related to the repulsive and attractive inter-
actions, whereas R ¼ 0 corresponds to the systems with no
interaction between its constituents, for a review see [52]
and the references therein.
There is a connection between the microscopic fluc-

tuation of matters and macroscopic response function, such
as the heat capacity and compressibility. At the second-
order phase transition, these response functions go to
infinity which means the correlated fluctuation being over
large distance. Typically, such correlation occurs over a
characteristic distance ξ, called the correlation length.
Ruppeiner has shown that R is proportional to the corre-
lation volume of the system as [45]

R ∼ ξd; ð6Þ

where d is the physical dimension of the system. This is a
further evidence about the connection between R and
microscopic correlation of the system. According to the
connections between R and some microscopic aspects, the
thermodynamic geometry approach might be suitable for
probing some information about microstructure of a black
hole. The interesting studies on thermodynamic geometry
of various black holes in different theories of gravity can be
seen in Refs. [43,53–64].
In the present work, we study further in a critical

phenomena and microscopic origin of the Rényi entropy
associated to the black hole. The rest of this paper is
organized as follows. In Sec. II, we introduce an analogy
ðq;ϕÞ ↔ ðP; VÞ between RN-AF and vdW liquid-gas
system from the first law of thermodynamics. In this
way, we shall revisit thermal stability criteria based on
the signs of the associated response functions such as the
heat capacity and compressibility. In Sec. III, the thermal
phase structure of RN-AF and its stability are studied
within the Rényi statistics. In Sec. IV, we present two
different expressions of the Maxwell equal area law in the
q − ϕ plane when the systems are near and far away from
the critical point. At this point, the coexistence region and
phase diagram are also studied. In Sec. V, we first briefly
review the thermodynamic geometry of RN-AF with the
GB statistics. The phase structure and types of interaction
between microstructure of black hole within Rényi statis-
tics are then studied in the thermodynamic geometry
framework. In Sec. VI, we investigate the thermal behavior

of the RN-AF via the Rényi statistics near the critical point.
All critical exponents have been calculated. We summarize
and discuss our results in Sec. VII.

II. THERMODYNAMICS OF
REISSNER-NORDSTRÖM BLACK HOLES

FROM THE GIBBS-BOLTZMANN STATISTICS

In the asymptotically flat spacetime, the Reisser-
Nordström solution to the Einstein field equation with
the U(1) electric charge can be written in the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ;

fðrÞ ¼ 1 −
2M
r

þ q2

r2
: ð7Þ

By solving the horizon equation, fðrÞ ¼ 0, there exist the
inner and outer horizon with the radii r− and rþ, following
the relation

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − q2

q
: ð8Þ

The black hole is extremal when the inner and outer
horizons are identical at M ¼ q. For M < q, the black
hole cannot exist because the event horizons in Eq. (8) are
complex numbers, and, hence, the cosmic censorship
hypothesis will be violated [65]. The mass and electric
charge can be, respectively, expressed in terms of the
horizon radii as follows:

M ¼ rþ þ r−
2

; ð9Þ

q ¼ ffiffiffiffiffiffiffiffiffiffi
rþr−

p
: ð10Þ

In the standard approach, the Bekenstein-Hawking entropy
of the black hole is obtained from the area law [1]

SBH ¼ A
4
¼ πr2þ: ð11Þ

whereA is the surface area of the outer horizon radius. The
first law of black hole thermodynamics reads [3]

dM ¼ THdSBH þ ϕdq; ð12Þ

which implies that the Hawking temperature TH and
electrostatic potential ϕ on the outer event horizon are,
respectively, given by

TH ¼
�

∂M
∂SBH

�
q
¼ rþ − r−

4πr2þ
; ð13Þ
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ϕ ¼
�
∂M
∂q

�
SBH

¼ q
rþ

: ð14Þ

Note that Eq. (13) manifests the fact that the Hawking
temperature is vanishing at the extremal limit, where the
outer and inner horizon radii are degenerate.
By considering the first and second derivatives

of the temperature TH ¼ THðrþ; qÞ with respect to rþ,
this temperature has a maximum value given by Tmax ¼
ð6 ffiffiffi

3
p

πqÞ−1 at the outer horizon radius being equal to

r0 ¼
ffiffiffi
3

p
q: ð15Þ

Therefore, the profile of this temperature can be divided
into two different behaviors which are increasing and
decreasing function in rþ for rþ <r0 and rþ > r0, respec-
tively. This is shown in the left panel in Fig. 1. As discussed
previously, a black hole horizon exists when rþ ≥ q. Using
Eq. (14), this implies that the electric potential is in the
range 0 < ϕ ≤ 1, where its upper limit corresponds to the
extremal black hole.
The heat capacity for fixed charge is computed as

Cq ¼ TH

�
∂SBH
∂TH

�
q
¼ 2πr2þðrþ − r−Þ

3r− − rþ
: ð16Þ

As a result, there are two possible black hole configura-
tions, namely, the small black hole branch with positive
heat capacity, and the large black hole branch with negative
heat capacity in which we will henceforth denote as the
pBH, and nBH, respectively. One also calls that the pBH
(nBH) is locally stable (unstable). The nBH-pBH phase
transition occurs when the outer event horizon equals
rþ ¼ r0. At the radius r0, the temperature reaches its
maximum and the heat capacity diverges. The profiles of
the temperature and heat capacity for the nonzero charged
black hole with respect to the outer horizon are illustrated in

Fig. 1. In this figure, the red (green) curves represent the
quantities for pBH (nBH) branch. Since the entropy is
indeed a monotonic function of rþ as obviously seen in
Eq. (11), the sign of the heat capacity can be obtained from
that of the slope of temperature profile graph (the left panel
of Fig. 1). Note that eliminating r− in Eqs. (13) and (16) by
using Eq. (10) allows us to express the outer horizon in the
scale of q, i.e., rþ=q, as seen in Fig. 1. This can be done due
to the fact that the phase structure of this system is not
changed for different values of nonzero charge q. However,
it is very important to emphasize that the scaling by q is not
appropriate for black hole thermodynamics from the Rényi
statistics because the phase structure depends on q in that
circumstance, as will be discussed in the next section.
It has been observed that the charge q and electrostatic

potential ϕ of the charged black holes can be identified as
the pressure P and volume V of the vdW fluid, respectively
[29–31]. From the first law of black hole thermodynamics,
we have

dM ¼ THdSBH þ ϕdq

¼ THdSBH − qdϕþ dðqϕÞ; ð17Þ

then we can write

dðM − qϕÞ ¼ THdSBH − qdϕ: ð18Þ

By comparing this relation to the conventional first law,
dU ¼ TdS − PdV, with identifying qdϕ as PdV, one can
define the appropriate internal energy of the RN-AF as

U ¼ M − qϕ; ð19Þ

where the contribution of the electric potential energy to the
mass of black hole is excluded [55]. In this analogy, the
black hole mass M is indeed a function of SBH and q,

FIG. 1. The dimensionless Hawking temperature THq (left) and heat capacity Cq=q2 (right) of the RN-AF via the GB statistics with
respect to the dimensionless outer horizon radius rþ=q.
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M ¼ MðSBH; qÞ. Therefore, the mass should be interpreted
as the enthalpy rather than the internal energy.
In order to investigate the phase structure of the

thermodynamic system, one needs to consider the Gibbs
free energy which is defined as G ¼ U − TSþ PV. As
mentioned previously, the internal energy of the black hole
should be taken in the form as expressed in Eq. (19). The
charge and its conjugate variable, i.e., the electrostatic
potential are then interpreted as a pressure and volume,
respectively. We, therefore, define an appropriate Gibbs
free energy for RN-AF in the following form

G¼U−THSBHþqϕ¼M−THSBH ¼ 1

4
ðrþþ3r−Þ: ð20Þ

The infinitesimal change of G ¼ GðTH; qÞ can be
expressed as follows:

dG ¼ dM − THdSBH − SBHdTH

¼ ðTHdSBH þ ϕdqÞ − THdSBH − SBHdTH

¼ −SBHdTH þ ϕdq; ð21Þ

where we have used (17) for dM, this yields�
∂G
∂TH

�
q
¼ −SBH;

�
∂G
∂q

�
TH

¼ ϕ: ð22Þ

It is seen that the Gibbs free energy is always positive for
both pBH and nBH branches, and reaches its minimum
value Gmin ¼

ffiffiffi
3

p
q=2 at the same point where the nBH-pBH

phase transition occurs (rþ ¼ r0). The profile of the free
energy is illustrated in Fig. 2. Note that, for the black hole
with a certain value of free energy G, there are two possible
black hole phases which are small and large ones. The
small (large) branch is locally stable (unstable). As seen in a
right panel in Fig. 2, the nBH-pBH phase transition occurs

at the cusp where the second derivative of G proportional to

the heat capacity as ð∂2G
∂T2

H
Þq ¼ − Cq

TH
is discontinuous. Hence,

the nBH-pBH transition is actually the second-order type of
phase transition.
Moreover, it is possible to construct a constraint

surface Fðq;ϕ; THÞ ¼ 0 similar to the equation of state
FðP;V; TÞ ¼ 0 in the conventional thermodynamics.
Using Eqs. (10) and (14), the Hawking temperature in
Eq. (13) can be expressed in terms of ϕ and q in the form

TH ¼ ð1 − ϕ2Þϕ
4πq

: ð23Þ

From the above expression, we can write

q ¼ ð1 − ϕ2Þϕ
4πTH

; ð24Þ

which is indeed the equation of state of this system. The
isothermal curves on the q − ϕ plane are plotted in the left
panel in Fig. 3. The heat capacity can be expressed as

Cq ¼ −
2πq2

ϕ2

� ð1 − ϕ2Þ
ð1 − 3ϕ2Þ

�
: ð25Þ

Note that the sign change of Cq as well as its divergence
occur at the value

ϕ0 ¼
1ffiffiffi
3

p ; ð26Þ

which actually corresponds to r0. Each isothermal curve is,
therefore, divided into the branches of pBH (ϕ > 1=

ffiffiffi
3

p
)

and nBH (ϕ < 1=
ffiffiffi
3

p
).

Furthermore, the thermodynamical properties of RN-AF
as discussed above will make sense if a black hole can be in

FIG. 2. The profile of the dimensionless Gibbs free energy G=q of the RN-AF via GB statistics with respect to the dimensionless outer
horizon radius rþ=q (left) and the Hawking temperature TH=q (right).
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locally thermal equilibrium against microscopic fluctua-
tions. The conditions for local stability are studied in terms
of both the heat capacity Cq and compressibility κTH

as

Cq > 0; κTH
> 0: ð27Þ

According to the Le Chatelier principle which states that if
a extensive variable fluctuate from its equilibrium value, its
conjugate intensive variable will change in such a way that
extensive variable is restored to its equilibrium [66–68]. In
this way, a thermal fluctuation will increase (decrease) the
entropy so that the increasing (decreasing) temperature
resists the heat flowing between the system and its
environment, resulting to the reach into equilibrium.
Therefore, the entropy monotonically increases with tem-
perature. This means that the heat capacity is posi-
tive, Cq > 0.
Let us consider another local stability. In the conven-

tional fluid system, the work done on (by) a system
decreases (increases) its volume. After that the pressure
should increase (decrease) in order to enforce the system to
restore its equilibrium state. This behavior also leads us to
define the isothermal compressibility, κT ¼ − 1

V ð∂V∂PÞT . The
minus sign is introduced in order to identify the mechan-
ically stable (unstable) system as a system with positive
(negative) compressibility.
We have mentioned that q and ϕ of the charged black

holes play the similar roles to pressure P and volume V of
the vdW fluid, respectively, in the aspect of phase structure.
This might be interpreted that the mechanical stability in
conventional system is actually the mechanical stability for
charged black holes. Hence, the isothermal compressibility
for RN-AF can be defined as

κTH
¼ −

1

ϕ

�
∂ϕ

∂q

�
TH

¼ −q
� ð1 − ϕ2Þ
ð1 − 3ϕ2Þ

�
: ð28Þ

Obviously, the vanishing and divergent points of κTH
and

Cq are the same [see the terms in the square brackets in
Eqs. (25) and (28) ]. The signs of Cq and κTH

are also
identical for any value of ϕ. Therefore, the black
hole with positive (negative) heat capacity has positive
(negative) compressibility. In other words, the pBH (nBH)
is both thermally and mechanically stable (unstable). The
profiles of Cq and κTH

are illustrated in the right panel in
Fig. 3. In addition, the discontinuous point of the
compressibility κTH

[i.e., ϕ ¼ 1=
ffiffiffi
3

p
] is indeed the

place where the second-order phase transition
occurs in the isothermal process, since the second deriva-
tive of the free energy G is proportional to κTH

as

follows: ð∂2G
∂q2ÞTH

¼ −κTH
ϕ.

It has been found that there does not exist a critical
phenomenon in the RN-AF using the GB statistics. It is
because there is no solution for q, ϕ and TH satisfying the

criticality condition, ð∂q
∂ϕÞTH

¼ ð∂2q
∂ϕ2ÞTH

¼ 0. In the next

section, the nonextensivity in the black hole entropy is
introduced via the Rényi statistics. The critical phenomena
and other interesting behaviors as well as the difference
between the black holes with the GB and Rényi statistics
will be studied.

III. THE EMERGENT PHASE AND
SWALLOWTAIL BEHAVIOR OF RN-AF

IN RÉNYI STATISTICS

For an alternative Rényi statistics, the Rényi entropy
SR of the black holes can be expressed in terms of the

FIG. 3. Left: The isothermal curves on the q − ϕ plane with different temperatures. Right: the profiles of the heat capacityCq=q2 (solid
lines) and the compressibility κTH

q (dashed lines) with respect to the electrostatic potential ϕ, where the green (red) lines are the
quantities for nBH (pBH) branch.
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Bekenstein-Hawking entropy SBH described by the Tsallis
entropy as discussed in Refs [20–27],

SR ¼ 1

λ
lnð1þ λSBHÞ; ð29Þ

where λ is the nonextensivity parameter. It is also found that
the above entropic function obeys the additive composition
rule so that the zeroth law is compatible [16]. As mentioned
in Refs. [22,23], this approach has an energy (length) scale
defined via the nonextensivity parameter λ by

Lλ ¼
1ffiffiffiffiffi
πλ

p : ð30Þ

The first law of black hole Rényi thermodynamics is
given by

dM ¼ TRdSR þ ϕdq: ð31Þ

Note that the mass parameter still plays the same role of the
enthalpy. Only the heat term for Rényi statistics TRdSR is
modified from that for GB statistics. The Rényi temperature
TR and electrostatic potential ϕ corresponding to the Rényi
entropy, respectively, are

TR ¼
�
∂M
∂SR

�
q
¼
�
rþ − r−
4πr2þ

��
1þ r2þ

L2
λ

�
; ð32Þ

ϕ ¼
�
∂M
∂q

�
SR

¼ q
rþ

: ð33Þ

The heat capacity and the Gibbs free energy are, respec-
tively, computed as

CR ¼ TR

�
∂SR
∂TR

�
q
¼ 2πr2þðrþ − r−Þ

3r− − rþ þ r2þ
L2
λ
ðrþ þ r−Þ

; ð34Þ

GR ¼ M − TRSR

¼ rþ þ r−
2

−
ðrþ − r−Þðr2þ þ L2

λÞ
4r2þ

ln

�
1þ r2þ

L2
λ

�
: ð35Þ

One can check that, in the limit Lλ → ∞ (or λ → 0), TR; CR
and GR are reduced to TH; Cq and G for the GB statistics
case, respectively.
As mentioned previously, the RN-AF via Rényi statistics

has a critical behavior. In other words, there exist the
nontrivial solutions for q and ϕ of the conditions determin-
ing the critical point,

�
∂q
∂ϕ

�
TR

¼
�
∂
2q

∂ϕ2

�
TR

¼ 0: ð36Þ

Using Eqs. (10) (32) and (33), the Rényi temperature is
written as

TR ¼
ð1 − ϕ2Þðϕþ q2

ϕL2
λ
Þ

4πq
: ð37Þ

From the above equation of state, the conditions (36) can be
solved for the charge, potential and temperature at critical
point which are, respectively, obtained in the following:

q2c ¼ L2
λð7 − 4

ffiffiffi
3

p
Þ; ð38Þ

ϕ2
c ¼

2 −
ffiffiffi
3

pffiffiffi
3

p ; ð39Þ

Tc ¼ TRjq¼qc;ϕ¼ϕc
¼ 2

3πLλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3

p
− 3

q
: ð40Þ

To investigate the phase structure of RN-AF via Rényi
statistics, our analysis can be simplified by rescaling the
parameters in the system as follows:

q→ q̄¼ q
Lλ

; ϕ→ ϕ̄¼ϕ; r� → r̄� ¼ r�
Lλ

: ð41Þ

The Rényi temperature, heat capacity, compressibility, and
Gibbs free energy can be rescaled as

TR → T̄R ¼ 2πLλTR; CR → C̄R ¼ 1

L2
λ

CR;

κTR
→ κ̄TR

¼ LλκTR
; GR → ḠR ¼ 1

Lλ
GR; ð42Þ

respectively. Note that, for the Rényi case, we do not
consider the dimensionless quantities by treating the charge
q as a scaling parameter, as done in the GB case, since the
system now has a fundamental length scale Lλ due to the
existence of the nonextensivity. Therefore it is more
appropriate to measure the thermodynamic quantities with
respect to this length scale Lλ instead of q. The quantities at
the critical point now become

q̄c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 − 4

ffiffiffi
3

pq
≈ 0.268; ð43Þ

ϕ̄c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ffiffiffi
3

pffiffiffi
3

p
s

≈ 0.393; ð44Þ

T̄c ¼
4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
3

p
− 3

q
≈ 0.908: ð45Þ

Let us consider the local stability in the aspect of the heat
capacity first. The behaviors of the rescaled temperature
and heat capacity are illustrated in Fig. 4. In these plots, we
present the quantities with three different values of q̄ which
are q̄ ¼ 0.2 < q̄c (the magenta curves), q̄ ¼ q̄c (the gray
curves), and q̄ ¼ 0.4 > q̄c (the orange curves). By
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considering its first and second derivatives with respect to
r̄þ, it is seen that, for q̄ < q̄c, there exist two local extrema
in T̄R, where there is no finite maximum in this case,
corresponding to the divergence of C̄R occurring at
r̄þ ¼ 1ffiffi

2
p ð1 − q̄2 ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 14q̄2 þ q̄4
p

Þ1=2 ≡ r̄1;2. The tem-

perature reaches the local maximum and local minimum
at r̄1 and r̄2, respectively. The three possible configurations
exist due to the appearance of the nonextensivity. Two of
them are the phases with positive heat capacity denoted as
pBH1 (for the small black hole branch, r̄e < r̄þ < r̄1) and
pBH2 (for the large black hole branch, r̄þ > r̄2). Another
phase is the intermediate black hole branch, r̄1 < r̄þ < r̄2
with negative heat capacity denoted as nBH. Moreover,
there are two second-order phase transitions which are the
nBH-pBH1, and nBH-pBH2 transitions occurring at r̄1 and
r̄2, respectively. Interestingly, the pBH2 phase does not
appear in the standard GB statistics. Therefore, it could be
an emergent phase within the Rényi statistics. One has seen
that the nBH phase, which has negative slope in T̄R or
negative value in C̄R, disappears when q̄ ≥ q̄c, since the
radii r̄1 and r̄2 are identical when q̄ ¼ q̄c and then
undefined when q̄ > q̄c. In other words, the pBH1 and
pBH2 phases are degenerate for q̄ > q̄c. Hence, the phase
structure is clearly dependent on the values of q̄. This result
is a key difference between the properties of the RN-AF
described by the GB and Rényi statistics.
For the global stability, the Gibbs free energy profiles

with different q̄ are illustrated in Fig. 5. Due to the
appearance of the emergent pBH2 phase, there exists
another cusp corresponding to r̄2 for the case q̄ < q̄c.
The upper right panel in Fig. 5 is actually shown the
swallowtail behavior which is obviously different from the
black hole via GB statistics. Moreover, the first-order phase
transition from pBH1 to pBH2 interestingly occurs for the
Rényi case with q̄ ≤ q̄c. This transition is actually called

the Hawking-Page phase transition (the temperature at this
transition is, then, called the Hawking-Page temperature
T̄HP) for the charged case. On the other hand, the uncharged
black hole, i.e., the Schwarzschild black hole, also has the
Hawking-Page transition which is the transition from the
thermal radiation phase with zero free energy to the pBH
phase as shown in the upper left panel in Fig. 5. It is noted
that, for 0 < q̄ ≤ q̄c, T̄HP decreases as the charge increas-
ing. In addition, the Hawking-Page temperature is maxi-
mized and minimized for the black hole with q̄ ¼ 0 and
q̄ ¼ q̄c, respectively, as shown in Fig. 6.
We now move to analyze the mechanical stability by

comparing to the thermal one. The rescaled heat capacity in
Eq. (42) can be expressed in terms of q̄ and ϕ̄ as

C̄R ¼ 2πq̄2
� ð1 − ϕ̄2Þ
q̄2ð1þ ϕ̄2Þ − ϕ̄2ð1 − 3ϕ̄2Þ

�
: ð46Þ

It is seen that the sign of this heat capacity depends directly
on the sign of the denominator because its numerator is
always positive for the whole range 0 < ϕ̄ < 1. For fixing
q̄, the denominator vanishes (C̄R → ∞) at

ϕ̄� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

6
ð1 − q̄2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 14q̄2 þ q̄4

q
Þ

r
: ð47Þ

Straightforwardly, when q̄¼ q̄c ¼ 2−
ffiffiffi
3

p
, we found that

the two solutions (47) are degenerate, ϕ̄þ¼ϕ̄−¼ϕ̄c ≈
0.393. For the large charge case q̄ > q̄c, therefore, the
range of negative value of the denominator in Eq. (46)
disappears, and hence C̄R is always positive. For the small
charge case q̄ < q̄c, there are three branches of charge
black hole which are 0 < ϕ̄ < ϕ̄− (positive C̄R), ϕ̄− < ϕ̄ <
ϕ̄þ (negative C̄R), and ϕ̄þ < ϕ̄ < 1 (positive C̄R). This
behavior is equivalent to the phase structure as illustrated in

FIG. 4. The rescaled Rényi temperature T̄R (left) and heat capacity C̄R (right) of the RN-AF via Rényi statistics with respect to the
rescaled outer horizon radius r̄þ for various values of the rescaled charge q̄. The radii r̄1 and r̄2 in these plots are the values only for the
case q̄ ¼ 0.2.
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the right panel in Fig. 4. We also conclude that, for q̄ < q̄c,
the regions 0 < ϕ̄ < ϕ̄−, ϕ̄− < ϕ̄ < ϕ̄þ and ϕ̄þ < ϕ̄ < 1
are the regions for the phases of pBH2, nBH and pBH1,
respectively.
Using the rescaled version of Eq. (37), one can compute

the rescaled compressibility for the RN-AF in the Rényi
case as follows:

κ̄TR
¼ −

Lλ

ϕ

�
∂ϕ

∂q

�
TR

¼ ðϕ̄2 − q̄2Þ
q̄

� ð1 − ϕ̄2Þ
q̄2ð1þ ϕ̄2Þ − ϕ̄2ð1 − 3ϕ̄2Þ

�
: ð48Þ

The compressibility diverges at the same place as the heat
capacity does, since they have the same denominators, i.e.,
q̄2ð1þ ϕ̄2Þ − ϕ̄2ð1 − 3ϕ̄2Þ. For fixing charge, the behavior
of the above compressibility is then analyzed as three
different cases which are q̄ < q̄c, q̄ ¼ q̄c and q̄ > q̄c as
illustrated in the left, middle and right panels in Fig. 7,
respectively. The general features of the compressibility can
be listed as follows: (i) by comparing Eqs. (46) and (48), it
is noticed that the sign of the compressibility is opposite to
that of the heat capacity when ϕ̄ < q̄, and (ii) the com-
pressibility vanishes when ϕ̄ ¼ q̄. For the small charge q̄ <
q̄c case, it is found that, by using the Taylor series
expansion around q̄ ¼ 0, the potential ϕ̄− in Eq. (47) is
approximated as

ϕ̄− ≈ q̄þ 2q̄3 þ 12q̄5 þOðq̄6Þ: ð49Þ

This yields that q̄ is always less than ϕ̄−. Hence, κ̄TR
of

pBH1 ðϕ̄þ < ϕ̄ < 1Þ and nBH ðϕ̄− < ϕ̄ < ϕ̄þÞ phases
FIG. 6. The profile of the Hawking-Page temperature T̄HP with
respect to the charge q̄.

FIG. 5. The profiles of the free energy ḠR with respect to the temperature T̄R for various fixed values of charge q̄. Note that each of
these with fixed value of charge corresponds to an isobaric process.
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have the same sign as CR. In other words, the pBH1 and
nBH phases have the positive and negative compressibility,
respectively. It is very important to note that the emergent
pBH2 phase is locally stable for both C̄R > 0 and κ̄TR

> 0

within the range q̄ > ϕ̄ > ϕ̄− as shown in the left panel in
Fig. 7. For the other two cases q̄ ≥ q̄c, the black hole is
mechanically stable and unstable when ϕ̄ > q̄ and ϕ̄ < q̄,
respectively, as shown in the middle and right panel
in Fig. 7.
We have investigated the thermodynamical properties of

the black hole with the effect of nonextensivity. The
important differences between the system described by
the GB and Rényi statistics are pointed out. Especially, the
black hole can be thermodynamically stable using the
Rényi statistics, while it is not possible using the GB
statistics. As will be discussed in the next section, it is
possible to construct the Maxwell equal area law for the
charged black holes similar to vdW fluid.

IV. MAXWELL EQUAL AREA LAW

In this section, we are interested in finding the Maxwell
equal area law on the q̄ − ϕ̄ plane (similar to the P − V
plane for the vdW fluid). By solving the rescaled version of
Eq. (37) for q̄, an equation of state q̄ ¼ q̄ðϕ̄; T̄RÞ is obtained
in the form

q̄ ¼ ϕ̄T̄R

1 − ϕ̄2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

T̄R

�
2

s �
: ð50Þ

Let us define these two branches of q̄ as follows:

q̄1 ¼
ϕ̄T̄R

1 − ϕ̄2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

T̄R

�
2

s �
; ð51Þ

q̄2 ¼
ϕ̄T̄R

1 − ϕ̄2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

T̄R

�
2

s �
: ð52Þ

As discussed in Ref. [42], we have split this consideration
into two cases, i.e., the cases of near and far from the
critical point, where the charge satisfying the Maxwell
equal area law is denoted as q̄�. In the near critical point
case ðT̄R ≳ T̄cÞ, the line of charge q̄� intersects the
isothermal curve of only the q̄2 branch as shown in the
left panel of Fig. 8. On the other hand, the line of charge q̄�
intersects the curve of both q̄1 branch (dashed curve) and q̄2
branch (solid curve) for the far from critical point case
ðT̄R ≫ T̄cÞ as illustrated in the right panel of Fig. 8. It is
found that the slope of the q̄1 branch for the case of far from
the critical point is positive corresponding to the negative
compressibility. Hence, this first-order phase transition is
the transition between the mechanically unstable phase and
the stable phase. This feature is actually called the novel
equal area law [42].

A. Near the critical point

To satisfy the Maxwell equal area law, the line of
constant charge q̄� intersects the isothermal curve of
q̄2ðϕÞ branch at ϕ̄1, ϕ̄2 and ϕ̄3 as shown in the left panel
in Fig. 8. For this case, the condition for finding q̄� is
expressed as

q̄�ðϕ̄3 − ϕ̄1Þ ¼
Z

ϕ̄3

ϕ̄1

q̄2dϕ̄: ð53Þ

As a result, one obtains

FIG. 7. The profiles of the heat capacity C̄R (solid lines) and the compressibility κ̄TR
(dashed lines) with respect to the electrostatic

potential ϕ̄ for various values of q̄. For the left and middle panels, the blue, green and red lines are the quantities for pBH2, nBH and
pBH1, respectively. Note that the values of ϕ̄� is for the case q̄ ¼ 0.2. For the right panel, the quantities are shown only for the
pBH phase.
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q̄� ¼ T̄R

2ðϕ̄3 − ϕ̄1Þ

2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

T̄R

�
2

s

− ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

T̄R

�
2

s �375
ϕ̄3

ϕ̄1

: ð54Þ

In other conditions in which the line of charge q̄� also
intersects the isothermal curve of the q̄2 branch at ϕ̄1 and ϕ̄3

that is q̄2ðϕ̄1Þ ¼ q̄2ðϕ̄3Þ ¼ q̄�, we obtain

q̄� ¼ ϕ̄1T̄R

1 − ϕ̄2
1

2
641 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

1

T̄R

�
2

s 3
75; ð55Þ

q̄� ¼ ϕ̄3T̄R

1 − ϕ̄2
3

"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

3

T̄R

�
2

s #
: ð56Þ

It is obvious that there are three unknown variables with
three equations. We consider [Eq. (55)] ¼ [Eq. (56)] to
eliminate ϕ̄1, and then, determine ϕ̄3 from 2[Eq. (54)] ¼
[Eq. (55)] þ [Eq. (56)]. Unfortunately, it is complicated to
solve ϕ̄3 analytically, since we have to deal with the terms
of logarithmic function. Instead, we used the numerical

calculation for each value of T̄R. The results for the case of
near the critical point are shown in Table I

B. Far from the critical point

It is found that the minimum value of ϕ̄ (denoted as ϕ̄0)
is actually the value that the branches in Eqs. (51) and (52)
merge together. Therefore, it is given by

ϕ̄0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T̄R

p
: ð57Þ

Obviously, the temperature T̄R cannot be greater than one
for the isothermal process. Therefore, the Maxwell con-
struction of RN-AF on the q̄ − ϕ̄ plane with the Rényi
model will make sense in the region T̄R ≤ 1. Note that the
bound in temperature does not hold for the system evolving
in other types of process. As seen in the right panel in
Fig. 8, the area satisfying the Maxwell equal area law for
this case can be expressed as

q̄�ðϕ̄3 − ϕ̄1Þ ¼ −
Z

ϕ̄1

ϕ̄0

q̄1dϕ̄þ
Z

ϕ̄3

ϕ̄0

q2dϕ̄; ð58Þ

where ϕ̄1 is the value of ϕ̄ at which the line of q̄� intersects
the curve of q̄1ðϕ̄Þ branch, and ϕ̄2 and ϕ̄3 are the values of ϕ̄
at which the line of q̄� intersect the curve of q̄2ðϕ̄Þ branch.
Eventually, one obtains

q̄� ¼ T̄R

2ðϕ̄3− ϕ̄1Þ
�
2 ln

�
1− ϕ̄2

1

T̄R

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
1− ϕ̄2

1

T̄R

�
2

s

− ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
1− ϕ̄2

1

T̄R

�
2

s �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
1− ϕ̄2

3

T̄R

�
2

s
− ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
�
1− ϕ̄2

3

T̄R

�
2

s ��
:

ð59Þ

FIG. 8. Equal area law in the q̄ − ϕ̄ plane where the isothermal curves of q̄1 and q̄2 branches are represented as the dashed and solid
curves, respectively. The blue, green, and red lines denote the pBH2, nBH, and pBH1 phases, respectively. Left: the case of near the
critical point with fixed T̄R ¼ 0.91. Right: the case of far from the critical point with fixed T̄R ¼ 0.97.

TABLE I. The values of q̄�, ϕ̄1, and ϕ̄3 at various values of T̄R
for the case of near critical point.

T̄R q̄� ϕ̄1 ϕ̄3

0.91 0.266606 0.357255 0.430539
0.92 0.258548 0.300521 0.494178
0.93 0.250493 0.268988 0.532580
0.94 0.242440 0.245060 0.563344
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The conditions from the line of q̄� actually intersecting the
isothermal curves of the q̄1 and q̄2 branches at ϕ̄1 and ϕ̄3,
are, respectively written as

q̄� ¼ ϕ̄1T̄R

1 − ϕ̄2
1

2
641þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

1

T̄R

�
2

s 3
75; ð60Þ

q̄� ¼ ϕ̄3T̄R

1 − ϕ̄2
3

2
641 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
1 − ϕ̄2

3

T̄R

�
2

s 3
75: ð61Þ

Similar to the previous case, one can numerically determine
the values of ϕ̄1, ϕ̄3, and q̄� by using Eqs. (59)–(61).
Eventually, the results are expressed in Table. II.
Plotting in the q̄� − ϕ̄ plane, the points of ðϕ̄1; q̄�Þ and

ðϕ̄3; q̄�Þ can be obtained from Tables I and II, where the line
connecting between them can form a Maxwell curve as
shown in the left panel in Fig. 9. The lowest points are
associated with the upper bound in temperature T̄R ¼ 1. At
the critical point, the charge q̄� approaches to the critical
charge q̄c while the potentials ϕ̄1 and ϕ̄3 merges together at
the critical potential ϕ̄c. It is also found that the charge q̄�

increases as the temperature decreases, and eventually ends
at the critical values as shown in the right panel in Fig. 9.
As mentioned that the first-order phase transition is not

necessarily the transition locally stable phases for the
charged black holes. In other words, the pBH2 phase with
q̄� and ϕ̄1 at the transition point has negative compress-
ibility if the temperature is not small enough. By numerical
analysis, we have investigated the upper bound in temper-
ature in which the first-order phase transition is the
transition between mechanically stable pBH2 phase and
pBH1 phase. As a result, this maximum temperature is
numerically evaluated as

T̄R ≈ 0.942: ð62Þ

As seen in the Fig. 10, the value ϕ̄1 is indeed the point that
the branches q̄1 and q̄2 merges, i.e., the point ϕ̄0. Moreover,
the figure also illustrates that the pBH1 and pBH2 phases
with the charge q̄� have the same Gibbs free energy (see
right end point of the middle orange dotted line). The upper
and lower orange dotted lines show that the local extrema
on the q̄ − ϕ̄ plane correspond to the cusp in q̄ − ḠR plane
in which the second-order phase transitions occur.
We show the phase structure of RN-AF with Rényi

statistics on the q̄ − ϕ̄ plane analogous to that of the vdW
fluid on the P − V plane in Fig. 11. The red, green, and blue
curves are the isothermal curves for T̄R < T̄c, T̄R ¼ T̄c, and
T̄R > T̄c, respectively. The dashed black curve and dashed
gray curve are the Maxwell curve or coexistence curve and
the spinodal curve, respectively. Each point along the
spinodal curve has infinite heat capacity or the point where
the second-order phase transition between nBH and pBH1
(or pBH2) occurs. The blue and white regions stand for the
pure pBH2 and pBH1phases, respectively. The left and right
red regions are the regions for the metastable phases called
the superheated pBH2 and supercooled pBH1, respectively.

FIG. 9. Left: the behavior of q̄� with respect to ϕ̄1 (as a red line) and ϕ̄3 (as a blue line) also called the Maxwell curve. Right: the Rényi
temperature profile with respect to q�.

TABLE II. The values of q̄�, ϕ̄1, and ϕ̄3 at various values of T̄R
in the case of far from the critical point.

T̄R q̄� ϕ̄1 ϕ̄3

0.95 0.234390 0.225272 0.589933
0.96 0.226342 0.208192 0.613779
0.97 0.218297 0.193062 0.635641
0.98 0.210254 0.179423 0.655978
0.99 0.202214 0.166972 0.675095
1.00 0.194176 0.155495 0.693204
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In the yellow region, the phase is mixed between pBH1 and
pBH2. It is seen that the black hole can be in all phases when
T̄R > T̄c. This feature is similar to the vdW fluid with the
temperature being less than its critical value.
The interesting properties in the aspect of the thermo-

dynamical stability of the charged black holes are dis-
cussed. The first-order phase transition between pBH1 and
pBH2 obeying the Maxwell equal area law has been
investigated. The phase structure for this black hole is
also shown. In the next section, the thermodynamical
implication of the black hole is discussed via the
Ruppeiner geometry of the thermodynamical phase space.

V. BLACK HOLE PHASE STRUCTURE FROM
RUPPEINER GEOMETRY

The thermodynamic geometry provides some under-
standings about the microscopic behavior from the macro-
scopic quantities of thermodynamical systems. Therefore,
this approach is suitable for investigating the microscopic
aspects of black holes because their complete information
are hidden from an observer outside its event horizon. In the
context of the Ruppeiner geometry, a line element Δl2
between two neighboring fluctuation states can be written
in the form [46]

FIG. 10. The isothermal curves on the q̄ − ϕ̄ and q̄ − ḠR diagrams with T̄R ≈ 0.942.

FIG. 11. The phase structure of the RN-AF with Rényi statistics on the q̄ − ϕ̄ plane is shown here, where the temperature of isotherm
lines increases from top to bottom.
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Δl2 ¼ 1

kB
gijΔxiΔxj; ð63Þ

gij ¼ −
∂
2SðxÞ
∂xi∂xj

; ð64Þ

where SðxiÞ is the entropy function of the phase space
coordinates xi chosen to be the thermodynamic variables,
the metric tensor gij is defined as the Ruppeiner metric, and
kB is the Boltzmann constant. In general relativity, it is well
known that the gravitational interaction is encoded in the
form of the curvature of spacetime. In a similar way, the
scalar curvature of the Ruppeiner metric, as shown in
Eq. (64) could encode the microscopic interactions of a
thermal system. It has been convinced that the sign of the
scalar curvature R indicates the interaction between two
microstructures of the system, namely, R < 0 and R > 0

represent attractive and repulsive interaction, respectively,
while R ¼ 0 represents the case of interaction-free [52].
Moreover, the divergence of the scalar curvature occurs at
the second-order phase transition.
As suggested in Refs. [22,23] that the microstates of a

strongly self-gravitating system could be correlated in
nonextensive description, this nontrivial correlation may
be encoded in the nonextensivity parameter λ. In this
section, we are interested in comparing between the
interactions among microstates of the RN-AF with λ > 0
and those with λ ¼ 0 through considering the values of
scalar curvature R in some thermodynamical phase spaces.

A. RN-AF in GB statistics

First, we review the thermodynamic geometry of RN-AF
in the standard GB statistics studied in [55,57]. Then we
proceed to consider the effects of nonextensivity parameter
on the scalar curvature and phase transition of RN-AF
subsequently. The Ruppeiner metric for the RN-AF can be
defined as the second derivative of the Bekenstein-
Hawking entropy in Eq. (11) with respect to the phase
space coordinates xi ¼ ðu;ϕÞ as

gij ¼ −
∂
2

∂xi∂xj
SBHðxÞ: ð65Þ

The internal energy u has been defined in Eq. (19), which
can be written in the form

u ¼ rþ
2
ð1 − ϕ2Þ: ð66Þ

Here, the coordinates u and ϕ are assumed to be indepen-
dent of each other. Note that these phase space coordinates
are chosen to correspond with S ¼ Sðu;ϕÞ [see Eq. (18) ].
Using Eq. (66), the entropy formula (11) can be written in
term of the coordinates xi as in the following:

SBHðu;ϕÞ ¼
4πu2

ð1 − ϕ2Þ2 : ð67Þ

As a result, the metric tensor in u − ϕ phase space is
obtained as follows:

gijðu;ϕÞ ¼ −
�
∂u∂uSBH ∂ϕ∂uSBH
∂u∂ϕSBH ∂ϕ∂ϕSBH

�

¼ −
8π

ð1 − ϕ2Þ2
 

1 4uϕ
1−ϕ2

4uϕ
1−ϕ2

2u2ð1þ5ϕ2Þ
ð1−ϕ2Þ2

!
: ð68Þ

Under the general coordinate transformation, xi → x0i, the
metric gij transform as

g0ij ¼
∂xm

∂x0i
∂xn

∂x0j
gmn; ð69Þ

which is just the metric tensor in the Riemannian geometry.
Using Eqs. (14) and (66), the metric tensor in the phase
space coordinates x0i ¼ ðrþ; r−Þ can be written in the form

gijðrþ;r−Þ¼−
π

ðrþ−r−Þ
�
2rþ−5r− rþ

rþ r2þ=r−

�
: ð70Þ

Eventually, the Ricci curvature scalar R is in the form

R ¼ −
rþ − r−

πrþð3r− − rþÞ2
: ð71Þ

By comparing to the expression of heat capacity Cq in
Eq. (16), it is interestingly found that both Ricci scalar R
and heat capacity Cq vanish, and diverge at the same
positions which are rþ ¼ r−, and rþ ¼ r0, respectively.
This implies that the thermodynamic geometry approach
can indicate an occurrence of the second-order phase
transition through the divergence of R. In the left panel
in Fig. 12, the region of negative value of R for the RN-AF
via the GB statistics, the regular one with the condition
M2 > q2, in a parameter space of rþ and q is shown in
yellow, whereas the gray upper-left region corresponds to
the non-existence of charged black hole due toM2 < q2. It
is interesting to note that the red line in the panel is the line
of which R → −∞ corresponding to jCqj → ∞, represent-
ing the dividing line between the nBH and pBH phases.
The Ricci scalar profile versus the outer event horizon rþ
and temperature TH are plotted in Fig. 13, whose the left
panel shows that the nBH-pBH transition occurs at the
point r0, given by Eq. (15), at which R approaches
negatively infinite. Moreover, the right panel shows that
R also turns out to be negatively infinite at Tmax, which
corresponds to r0. Obviously, the Ricci scalar vanishes at
both extremal and very large black hole limits. Note that, at
the same temperature, the Ricci scalar of pBH phase has
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more negative value than the nBH phase as shown in the
right panel of Fig. 13.
According to Eq. (71), R is always negative implying

that the interactions between microscopic constituents of
the RN-AF with the GB thermodynamics is attractive and
becomes vanished at the extremal black holes. Hence, the
extremal limit could be regarded as an analogue of the limit
to an ideal gas. To illustrate this, let us discuss the
competing roles between the mass M and the charge q
terms in a charged black hole’s horizon function fðrÞ in
Eq. (7). Even though we are working in the framework of
general relativity, M and q could be thought in some sense
to be responsible to an attractive gravitational interaction
and the repulsive electrostatic interaction, respectively.
Comparing these two parameters in the geometric unit,
the condition M2 > q2 may imply that the attractive
gravitational force is stronger than the repulsive electric
force for this charged black hole system. In the extremal

black hole (M2 ¼ q2), the gravitational and electrostatic
interactions are balanced. In this way, the interactions
between the constituents of the black hole may be always
attractive due to the gravitational force domination, but
the interactions becomes absent in the extremal case.
Since the solution does not contain a naked singularity
obeying the cosmic censorship conjecture [69], the repul-
sive electrostatic force cannot be stronger than the attractive
gravitational force. Therefore, the Ricci scalar curvature of
the RN-AF in the GB statistics is less than or equal to zero
as shown in Fig. 13.

B. RN-AF in Rényi statistics

In Sec. III, we found that the thermodynamics of RN-AF
with the Rényi statistics has different thermal phase
structure compared to the one with the GB statistics,
namely, the emergent pBH2 phase has occurred in this

FIG. 13. The dimensionless Ricci scalar Rq2 with respect to the dimensionless outer horizon radius rþ=q (left) and Hawking
temperature THq (right).

FIG. 12. The region plots for the signs of the Ricci scalar of the Ruppeiner geometry of black hole Rwithin the GB statistics (left) and
the Rényi statistics (right) are shown, where the regions of negative and positive values of R are in yellow and blue, respectively. Note
that the black hole solution does not exist in the gray region. The red lines are the lines corresponding to R → −∞, and the point C
represents the critical point.
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case. It is interesting to investigate some aspects of the
connections between phase structure and interaction among
microscopic constituents of black hole in the Rényi case via
the thermodynamic geometry framework. In a similar way
as working with the GB statistics, we start by writing the
Rényi entropy in terms of u and ϕ as follows:

SR ¼ πL2
λ ln

�
1þ 4u2

L2
λð1 − ϕ2Þ2

�
: ð72Þ

With the approach in a similar way as Eq. (65), the metric
tensor in u − ϕ phase space can be computed as

gijðu;ϕÞ ¼
−8π

ð1 − ϕ2Þ3½1 − 4u2

L2
λð1−ϕ2Þ2�2

0
BB@

1 − ϕ2 þ 4u2

L2
λð1−ϕ2Þ 4uϕ

4uϕ 2u2

1−ϕ2

�
1þ 5ϕ2 þ 4u2ð1þϕ2Þ

L2
λð1−ϕ2Þ2

�
1
CCA: ð73Þ

In rþ − r− phase space, it becomes

gijðrþ; r−Þ ¼ −
πrþ

ðrþ − r−Þð1þ r2þ
L2
λ
Þ

0
BBB@

½2rþ−5r−−
r2þ
L2
λ

ð2rþþr−Þ�

rþð1þ
r2þ
L2
λ

Þ
1

1 rþ=r−

1
CCCA: ð74Þ

The Ricci scalar corresponding to the Rényi entropy is given by

RR ¼ −
ðrþ − r−Þ

πrþ½3r− − rþ þ r2þ
L2
λ
ðrþ þ r−Þ�2

�
1 −

2rþ
L2
λ

ð2r− − rþÞ −
r3þ
L4
λ

ðrþ þ 2r−Þ
�
: ð75Þ

By rescaling the parameters as introduced in (41), the
curvature scalar in Eq. (75) is transformed as RR → R̄R ¼
πL2

λRR, and hence we obtain

R̄R ¼ −
ðq̄2 − r̄2þÞ½r̄4þ − 2r̄2þð1 − q̄2Þ þ 4q̄2 − 1�

½3q̄2 − r̄2þ þ r̄2þðq̄2 þ r̄2þÞ�2
: ð76Þ

Using Eq. (76) to illustrate the phase structure in ðr̄þ; q̄Þ
plane as shown in the right panel in Fig. 12, even though
the black hole solutions are allowed due to the condition
M2 > q2 in a similar fashion as in the GB thermodynamics,

the charged black holes can exist not only with R̄R < 0

(yellow region) but also with R̄R > 0 (blue region) in the
alternative Reńyi thermodynamics. The emergence of the
additional blue region in the right panel in Fig. 12 leads us
to wonder what is the nature of the critical phase transitions
between these several phases, which include the new
emergent black hole phase with R̄R > 0. To explore some
relations between critical phase transition and interactions
among black hole molecules, we will investigate R̄R as a
function of r̄þ and T̄R. In Fig. 14, we plot R̄R versus r̄þ for
q̄ < q̄c, q̄ ¼ q̄c and q̄ > q̄c, respectively. For small charge

FIG. 14. The Ricci scalar R̄R versus the outer horizon radius r̄þ of the RN-AF from the Rényi statistics for fixed charges q̄ < q̄c (left),
q̄ ¼ q̄c (middle) and q̄ > q̄c (right), respectively.
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q̄ < q̄c, the R̄R curve can be separated into the curves for
three branches of black holes, namely, pBH1 (red curve),
nBH (green curve) and pBH2 (blue curve) as shown in the
left panel in Fig. 14. Note that R̄R → −∞ at the horizon
radius of the size r̄1 and r̄2 corresponds to jC̄Rj → ∞. The
negativity of the Ricci scalar R̄R for both pBH1 and
nBH phases implies attractive interactions between black
hole microstructures, in common with the consideration
using the GB statistics. Interestingly, R̄R of the emergent
pBH2 phase has negative and positive values when r̄2 <
r̄þ < r̄z and r̄þ > r̄z, respectively. This means that the
interactions between microstructures of the black hole turn
out to be repulsive when the horizon size is sufficiently
larger than the nonextensivity length scale, namely
r̄2þ ≥ r̄2z ¼ 1 − q̄2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̄4 − 6q̄2 þ 2

p
. At the critical point

(q̄ ¼ q̄c), horizon radius of the sizes r̄1 and r̄2 are
degenerate with the value of r̄0, such that the nBH phase
disappears. As previously discussed, apart from its sign, the
value of jR̄Rj could be associated with the strength of
interactions or correlations among black hole constituents.
In other words, the larger the value of jR̄Rj is, the stronger
the interactions between black hole molecules are. As well
known that the correlation length ξ of the system diverges
near the critical point, the infinity of jR̄Rj at this point as
shown in the middle panel in Fig. 14 is therefore not so
weird. For q̄ > q̄c, there exists only a single phase with
positive heat capacity where R̄R is negative and positive in
the ranges q̄ < r̄þ < r̄z and r̄þ > r̄z, respectively (the right
panel in Fig. 14).
The phase structure can be explored by considering R̄R

as a function of T̄R which corresponds to the plot of Gibbs
free energy in Fig. 5. For small charge q̄ < q̄c, there are
three branches of charged black hole which are pBH1, nBH
and pBH2 phases represented by red, green and blue
curves, respectively, as shown in the left panel in
Fig. 15. At the extremal limit corresponding to T̄R ¼ 0,
we have found that R̄R ¼ 0 in the same way as in the RN-
AF with GB statistics. However, it is different from the case
of the Reissner-Nordström black hole in asymptotically
anti–de Sitter (RN-AdS) with GB statistics where the Ricci

scalar negatively diverges at the extremal black hole [55].
Since the heat capacity and the Ricci scalar diverge at the
same value of horizon radius, i.e., r̄1 and r̄2, the nBH-pBH1
and nBH-pBH2 phase transitions occur at the temperatures
denoted by T̄2 and T̄1ð< T̄2Þ, respectively. One can split
the temperature into three ranges. As shown in the left panel
in the figure, the pBH1 phase exists at low temperature
(T̄R < T̄1) as well as at a certain temperature in the range
T̄1 < T̄R < T̄2, in which the nBH and pBH2 phases
simultaneously also appear corresponding to the swallow-
tail behavior in the free energy diagram in the upper left
panel in Fig. 5. It is also seen that there exists the crossing
between the Ricci scalar for the pBH1 (red) and pBH2
(blue) phases. The temperature of this crossing point is not
the Hawking-Page temperature THP (see the orange dashed
line). Unfortunately, the Ricci scalar for the Ruppeiner
geometry does not contain the information of the first-order
phase transition. When the temperature increases to
T̄R > T̄2, the pBH1 and nBH phases disappear, while
pBH2 phase persists for this range of high temperature.
This feature can be also found in the upper left panel in
Fig. 5. Moreover, the pBH1 and nBH phases have R̄R < 0
at any temperature. Therefore, the interactions between two
black hole microstructures are attractive. For pBH2 phase,
we find that R̄R < 0when T̄1 < T̄R < T̄z. Interestingly, at a
sufficiently high temperature T̄R > T̄z, the pBH2 phase
begins to has R̄R > 0 and hence the interactions between
two black hole microstructures become repulsive as found
in the RN-AdS with the GB statistics [59,70].
Moreover, the temperatures T̄1 and T̄2 get closer as the

electric charge q̄ð< qcÞ increases. The temperatures then
merge together at T1 ¼ T̄2 ¼ T̄z when the charge reaches
its critical value. This merger corresponds to the absence of
the nBH phase. At the critical point q̄ ¼ q̄c, the crossing of
R̄R for pBH1 and pBH2 phases disappears resulting that R̄R
negatively diverges as shown in the middle panel in Fig. 15.
For q̄ > q̄c, there is only a single pBH phase of black hole
represented as the brown curve in the right panel in Fig. 15.
Obviously, the divergence in R̄R becomes absent for a large
amount of charge.

FIG. 15. The Ricci scalar R̄R versus the Rényi temperature T̄R of the RN-AF with the Rényi statistics for fixed charges q̄ < q̄c (left),
q̄ ¼ q̄c (middle) and q̄ > q̄c (right), respectively.
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It is very important to note that the pBH2 phase
emerging within the framework of the alternative Rényi
statistics allows R̄R to be positive value, which is in the
same way as the large black hole phase of the RN-AdS
from the GB statistics. This implies that the interactions
between black hole molecules are repulsive.

VI. CRITICAL BEHAVIOR OF THE
RN-AF IN RÉNYI STATISTICS

It has been found that thermodynamic behaviors of
matter near a critical point of phase transition in different
systems tend to have the property of universality.
Remarkably, this behavior does not depend on the types
of particles and of interactions between them. The scaling
behavior of physical quantities in the vicinity of critical
phase transition can be described by a set of critical
exponents. For example, the scaling behavior of a vdW
fluid can be written as

P − Pc ∼ ðV − VcÞδ; ð77Þ

Vg − Vl ∼ ðT − TcÞβ; ð78Þ

CV ∼ ðT − TcÞ−α; ð79Þ

κT ∼ ðT − TcÞ−γ; ð80Þ

where the critical exponents are δ ¼ 3, β ¼ 1=2, α ¼ 0, and
γ ¼ 1. Vg and Vl are the volumes for the gas and liquid
phases of the vdW fluid. For different systems which are
governed by the same set of critical exponents, we can say
that they are in the same universality class. Interestingly, it
has been found that the critical exponents of RN-AdS in the
canonical ensemble are identical with the vdW fluid, and
hence these systems are in the same universality class of
phase transition [55–57]. As discussed in Sec. III, the phase
transition of the RN-AF with nonextensive description and
the vdW liquid-gas system are very similar. There are the
swallowtail behaviors of free energy as shown in Fig. 5.
There also exists the finite coexistence line which termi-
nates at the critical point as indicated in Fig. 6 and the
transitions between two phases, i.e., pBH1-pBH2 transition
for the RN-AF with Rényi statistics and liquid-gas tran-
sition for the vdW fluid, across the coexistence line are the
first-order type of phase transition. Notice that, in both
cases, these first-order phase transitions disappear when the
systems approach to the critical point at T ¼ Tc. Moreover,
by considering the Maxwell construction in Sec. IV, we
have found that the pBH1 and pBH2 phases coexist on the
isothermal curve at the charge q̄� as shown in Fig. 8. In
other words, this value of charge can render the vapor
pressure analogue, where the pBH1-pBH2 coexistence can
be associated with the dynamic equilibrium between the
liquid and gas phases at constant temperature on the P − V
plane in the vdW fluid.

In this section, we are interested in categorizing the
phase transition of the RN-AF in Rényi description by
considering the scaling behavior of physical quantities. We
identify the quantities q and ϕ of the RN-AF as P and V of
the vdW fluid, respectively. Considering the system near
the critical point, Eq. (52) as an equation of state can be
written in the form of power series expansion in terms of a
set of the variables τ and ω as

q̄¼ amnτ
mωn

¼ a00þa10τþa01ωþa11τωþa20τ2

þa02ω2þa21τ2ωþa12τω2þa30τ3þa03ω3þ�� � ;
ð81Þ

where amn is the coefficient of the expansion, and the
variables τ and ω are defined by

τ ¼ T̄R

T̄c
− 1; ω ¼ ϕ̄

ϕ̄c
− 1: ð82Þ

The power series in Eq. (81) can be numerically
obtained by

q̄ ¼ q̄c − 0.732τ þ 1.732τωþ 3.732τ2 − 24.12τ2ω

− 5.598τω2 − 27.856τ3 − 0.366ω3 þ � � � ; ð83Þ

where a00 ¼ q̄c ¼ 0.268 and a01 ¼ a02 ¼ 0. First, we
consider the change of q̄ with ϕ̄ being near the critical
point when the temperature T̄R is set to be T̄c, hence we
have τ ¼ 0. Interestingly, Eq. (83) can be written in the
form of scaling law as

q̄ − q̄c ∼ ðϕ̄ − ϕ̄cÞ3: ð84Þ

Comparing this with Eq. (77), the critical exponent δ can be
read off as

δ ¼ 3: ð85Þ

In Sec. IV, we have shown the first-order pBH1-pBH2
phase transition at q̄�, which can be associated with a jump
between ϕ̄3 and ϕ̄1. To investigate this behavior near the
critical point of the second-order phase transition, we need
to consider the Gibbs free energy. The change of the Gibbs
free energy can be written as

dḠR ¼ −S̄RdT̄R þ ϕ̄dq̄: ð86Þ

Since the pBH1 and pBH2 coexist, this implies
that their Gibbs free energies are identical, namely, we
haveΔḠR ¼ ḠpBH1 − ḠpBH2 ¼ 0. Therefore, the values of ϕ̄
on either side of the coexistence curve at fixed temperature
can be found from the two following conditions
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ΔḠR ¼
Z

ϕ̄3

ϕ̄1

ϕ̄dq̄ ¼ 0; ð87Þ

and

q̄� ¼ q̄ðϕ̄1Þ ¼ q̄ðϕ̄3Þ: ð88Þ

Differentiating Eq. (81) with respect to ω, one obtains

dq̄ ¼ ða11τ þ a21τ2 þ 2a12τωþ 3a03ω2Þdω: ð89Þ

Note that we have kept the dimensionless perturbation
variables τ and ω in the above formula up to the
third order expansion. Let us define ϕ̄1¼ ϕ̄cð1−ω1Þ and
ϕ̄3 ¼ ϕ̄cð1þ ω3Þ. Using Eqs. (82) and (89), the conditions
(87) and (88) can be, respectively, expressed in terms of the
expansion coefficients as follows:

a11τðω3þω1Þþa21τ2ðω3þω1Þ

þ1

2
ða11þ2a12Þτðω2

3−ω2
1Þþa03ðω3

3þω3
1Þ¼ 0; ð90Þ

a11τðω3 þ ω1Þ þ a21τ2ðω3 þ ω1Þ þ a12τðω2
3 − ω2

1Þ
þ a03ðω3

3 þ ω3
1Þ ¼ 0: ð91Þ

When ω1 ¼ ω3 ¼ ω, these two conditions have a nontrivial
solution which is given by

ω2 ¼ −
1

a03
ða11τ þ a21τ2Þ ≈ −

a11
a03

τ ¼ 4.732τ: ð92Þ

Recalling Eq. (82), Eq. (92) can be written in the form of a
scaling law relating ϕ̄ with T̄R near the critical point as

ϕ̄ − ϕ̄c ∼ ðT̄R − T̄cÞ12; ð93Þ

where, comparing Eq. (78), we can read off the critical
exponent

β ¼ 1

2
: ð94Þ

The behavior of heat capacity at constant ϕ̄ near the
critical point can be described by the exponent α. Since Cϕ

does not display a singularity behavior at the critical point,
the critical exponent therefore vanishes, i.e., α ¼ 0. Finally,
we will calculate the critical exponent γ of the compress-
ibility at constant temperature,

κ̄TR
¼ −

1

ϕ̄

�
∂ϕ̄

∂q̄

�
T̄R

: ð95Þ

By using Eq. (81), one can compute

�
∂q̄
∂ω

�
τ

¼ a11τ þ a21τ2 þ 2a12τωþ 3a03ω2: ð96Þ

As the system approaches the critical point, we can use
Eqs. (95) and (96) to find that

κ̄TR
∼ ðT̄R − T̄cÞ−1; ð97Þ

which gives us the critical exponent

γ ¼ 1: ð98Þ

Interestingly, our studies have demonstrated that the critical
exponents of the RN-AF system from the Rényi statistics
are identical to those of the vdW fluid and of the RN-AdS
from the GB statistics. Manifestly, these are in the same
universality class.

VII. CONCLUSION AND DISCUSSION

In the present work, we have studied the thermodynam-
ical properties of the charged black hole in asymptotically
flat spacetime using the nonextensive Rényi statistics.
Considering the phase space in which the electric charge
and electrostatic potential are treated as the thermodynam-
ical pressure and volume, respectively, we find that there
exist the emergent pBH2 phase and the critical behavior of
the phase transition. These novel features due to the
nonextensive nature of the Rényi entropy do not appear
in the case of the GB statistics. Moreover, the swallowtail
behavior appears in the free energy diagrams. This behavior
is reminiscent of the phase transition in the vdW fluid. The
local stability of the black hole can also be determined by
the positiveness of compressibility, in addition to that of
heat capacity [see Eq. (27) ]. Interestingly, the black hole in
the emergent pBH2 phase is locally stable when the
conditions of both thermal and mechanical stabilities in
the range q̄ < ϕ̄ < ϕ̄− are satisfied, where ϕ̄− has been
defined in Eq. (47). On the other hand, the nBH and pBH1
are always locally unstable and locally stable, respectively,
as discussed in Sec. III. For global stability, the sufficiently
large black hole in pBH2 phase is thermodynamically
preferred than those in other phases, since its Gibbs
free energy is relatively lower. Remarkably, there is the
Hawking-Page phase transition by jumping from the pBH1
to pBH2 phases caused by the presence of nonextensivity
(see Fig. 5). The Hawking-Page temperature decreases as
charge increases and then terminates at its critical value
(see Fig. 6).
For the isothermal process, the RN-AF from the Rényi

statistics is possible to undergo the first-order phase
transition by jumping between the pBH1 and pBH2 phases
instead of passing the locally unstable nBH phase via the
second-order phase transitions along the isotherm. This
jump can be described by the Maxwell construction similar
to those of the vdW fluid and the RN-AdS with the GB
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statistics. In other words, we can find the certain charge q̄�
at which the Gibbs free energies (corresponding to the areas
between the isotherms and the horizontal line q̄ ¼ q̄� in the
q̄ − ϕ̄ plane) of the pBH1 and pBH2 phases are equal for
T̄R > T̄c. To study the Maxwell construction, we split our
consideration into two cases which are near the critical
point (T̄R ≳ T̄c) and far away from the critical point
(T̄R ≫ T̄c). For the former (latter) case, the aforementioned
phase transition is the transition between the pBH1 phase
and mechanically stable (unstable) pBH2 phase. As dis-
cussed in Sec. IV, the pBH2 phases in the q̄2ðϕ̄Þ branch are
mechanically stable while those in the q̄1ðϕ̄Þ branch are
mechanically unstable, respectively. Interestingly, a cusp of
isotherm at the origin q̄ ¼ ϕ̄ ¼ 0 appears when T̄R ≥ 1.
Note that this has been found in a similar way as in the
RN-AdS case [30,42]. From the analysis with the Maxwell
construction in this work, the first-order phase transition
seems to occur at very small q̄ and ϕ̄ with arbitrarily large
T̄R. Nevertheless, this tends to be inconsistent with the
result from the approach of comparing free energy, in
which the phase transition between pBH1 and pBH2
phases in the RN-AF with small q̄ and ϕ̄ from Rényi
statistics can occur only at the temperature below THP of the
Schwarzschild black hole as seen in Fig. 6. To address this
ambiguity, we consider the merging point between q̄1ðϕ̄Þ
and q̄2ðϕ̄Þ branches. We have interestingly found that the
temperature is constrained as T̄R ≤ 1 [see Eq. (57) ]. In
other words, the isotherms with T̄R > 1 are undefined. It is
also noted that the black hole with T̄R ¼ 1 corresponds to
the Schwarzschild black hole (q̄ ¼ ϕ̄ ¼ 0). The maximum
temperature of occurrence the phase transition between
mechanically stable pBH1 and pBH2 phases has been
evaluated in Eq. (62). The isotherms at this temperature are
also illustrated in Fig. 10. From this figure, it can be seen
that the first-order phase transition in q̄ − ϕ̄ plane is directly
related the swallowtail behavior in the free energy diagram.
The phase structure of the black hole similar to those of the
vdW fluid and of the RN-AdS from the GB statistics can be
obtained as shown in Fig. 11.
Some aspects of black hole phase structure can be seen

further through the approach of thermodynamic geometry.
On the one hand, the second-order phase transition in black
hole system can be demonstrated through the divergence of
the Ricci scalar curvature in the Ruppeiner geometry, which
corresponds to the divergence of heat capacity. On the other
hand, there is no information of the first-order phase
transition in the Ricci scalar. These results hold for the
black hole thermodynamics from both the GB statistics and
the Rényi one. However, a different result from these two
framework can be seen in the sign of the Ricci scalar
curvature which may imply the types of the interaction of
the black hole microstructures, namely, either attractive or
repulsive. It has been found that the interaction can be
repulsive in some range of pBH2 phase in the Rényi

statistics, whereas it would be only attractive in the
GB case.
We then further interpret that, apart from the charge, the

nonextensivity of the black hole could be another contri-
bution which lead to a repulsive interaction between the
constituents in microscopic structure of black hole.
Remarkably, the occurrence of repulsive interactions other
than the electric forces between charges of black hole has
confirmed our previous suggestion that some nontrivial
correlations between the microstates of a self-gravitating
system could be emerged via the nonextensive nature of
long-range interaction systems [22,23]. Interestingly, the
correlations could be manifested themselves as the non-
extensive nature in black hole thermodynamics, and vice
versa. Recently, some peculiar phenomena arising from the
nonextensivity nature of correlated systems have been
studied in gravitational physics [71–78]. See also [79]
for a good review of q statistics, together with its related
thermodynamic aspects and its applications in a wide range
of physics.
Although, the phase structures of the RN-AdS and the

RN-AF with Rényi statistics in the fixed charge ensemble
are very similar, their microscopic aspects are quite differ-
ent. By considering the thermodynamic geometry, our
study indicates that the value of the scalar curvature near
the extremal limit of the RN-AdS negatively diverges while
that of the RN-AF with Rényi statistics vanishes. This
implies that the interaction among the microstructures of
the RN-AdS is highly attractive while the RN-AF with
Rényi description has no interaction between their micro-
scopic constituents. However, we have also investigated the
behavior of the RN-AF in the vicinity of the critical point of
the second-order phase transition in the Rényi model. The
results show that the critical exponents, i.e., δ, β, α and γ,
are identical with those in the vdW fluid and the RN-AdS
from the GB statistics. Therefore, these three systems could
be said to be in the same universality class. This is a further
evidence that the behaviors of many different physical
systems near the critical point are independent of the type
of microscopic constituents and interaction between them.
One of the most intriguing discoveries is the connection

between geometry and thermodynamics of black holes, i.e.,
the surface gravity and the surface area at event horizon are
related to the Hawking temperature and the Bekenstein-
Hawking entropy, respectively. These relations seem to be
spoiled in the Rényi description, and one may argue that the
black hole thermodynamics with this approach is not
relevant, as discussed in [80]. However, the violation of
the entropy area law can occur in many quantum systems
with the strong correlation or mutual information between
microscopic degrees of freedom [81–84]. Moreover, a
loophole in black hole thermodynamics from the conven-
tional approach can be seen from that the Hawking
temperature has to be derived based on the GB statistics
[2,85], while its entropy implies the existence of
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nonextensive nature. Hence, the entropic nature of
a black hole can be debatable and a study on black hole
thermodynamics from an alternative statistics with the
presence of nonextensive nature cannot be said to make no
sense. Based on one- or multi-parameter deformation
statistics including the Rényi one, various publications
study the systems of bosonic and fermionic fields [86–89].
This might be a suggestion to derive the Hawking
radiation of a black hole using an appropriate quantum
field description.
In our work, the interaction between black hole mole-

cules can be identified using the thermodynamic geometry
approach. It is important to argue what these black hole
constituents are. One of possibilities is to interpret black
hole molecules as spacetime quanta in the loop quantum

gravity [90–92]. This could potentially pave the way for
further investigations on a fundamental unit of microscopic
structure for arbitrary black hole system.
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[18] A. Rényi, Acta Math. Acad. Sci. Hung. 10, 193 (1959).
[19] T. S. Biró and V. G. Czinner, Phys. Lett. B 726, 861 (2013).
[20] V. G. Czinner and H. Iguchi, Phys. Lett. B 752, 306 (2016).
[21] V. G. Czinner and H. Iguchi, Eur. Phys. J. C 77, 892 (2017).
[22] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, Phys. Rev.

D 102, 064014 (2020).
[23] C. Promsiri, E. Hirunsirisawat, and W. Liewrian, Phys. Rev.

D 104, 064004 (2021).
[24] A. Alonso-Serrano, M. P. Dabrowski, and H. Gohar, Phys.

Rev. D 103, 026021 (2021).
[25] L. Tannukij, P. Wongjun, E. Hirunsirisawat, T. Deesuwan,

and C. Promsiri, Eur. Phys. J. Plus 135, 500 (2020).
[26] R. Nakarachinda, E. Hirunsirisawat, L. Tannukij, and P.

Wongjun, Phys. Rev. D 104, 064003 (2021).

[27] D. Samart and P. Channuie, arXiv:2012.14828.
[28] P. Sriling, R. Nakarachinda, and P. Wongjun, arXiv:2112

.13120 [Phys. Rev. D (to be published)].
[29] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers,

Phys. Rev. D 60, 064018 (1999).
[30] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers,

Phys. Rev. D 60, 104026 (1999).
[31] C. S. Peca and J. P. S. Lemos, Phys. Rev. D 59, 124007

(1999).
[32] P. Burikham and C. Promsiri, Adv. High Energy Phys. 2016,

5864672 (2016).
[33] D. Kubiznak and R. B. Mann, J. High Energy Phys. 07

(2012) 033.
[34] S. Gunasekaran, R. B. Mann, and D. Kubiznak, J. High

Energy Phys. 11 (2012) 110.
[35] B. R. Majhi and S. Samanta, Phys. Lett. B 773, 203 (2017).
[36] D. Kubiznak, R. B. Mann, and M. Teo, Classical Quantum

Gravity 34, 063001 (2017).
[37] N. Altamirano, D. Kubiznak, R. B. Mann, and Z.

Sherkatghanad, Galaxies 2, 89 (2014).
[38] R. B. Mann, Black Holes: Thermodynamics, Information,

and Firewalls (Springer International Publishing, Cham,
2015), pp. 1–95.

[39] C. David, Chem. Educ. Mater. 93, 1 (2016), https://
opencommons.uconn.edu/chem_educ/93/.

[40] E. Spallucci andA. Smailagic, Phys. Lett. B 723, 436 (2013).
[41] Y.-B. Ma, R. Zhao, and S. Cao, Eur. Phys. J. C 76, 669

(2016).
[42] R. Zhou and S.-W. Wei, Phys. Lett. B 792, 406 (2019).
[43] S.-W. Wei and Y.-X. Liu, Phys. Rev. Lett. 115, 111302

(2015); 116, 169903(E) (2016).
[44] F. Weinhold, J. Chem. Phys. 63, 2479 (1975).
[45] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995).
[46] G. Ruppeiner, Phys. Rev. A 20, 1608 (1979).
[47] D. Brody and N. Rivier, Phys. Rev. E 51, 1006 (1995).
[48] D. C. Brody and D.W. Hook, J. Phys. A Math. Gen. 42,

023001 (2009).

EMERGENT PHASE, THERMODYNAMIC GEOMETRY, AND … PHYS. REV. D 105, 124049 (2022)

124049-21

https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/0550-3213(96)00225-8
https://doi.org/10.1016/0550-3213(96)00225-8
https://doi.org/10.1103/PhysRevLett.77.2368
https://doi.org/10.1103/PhysRevLett.77.2368
https://doi.org/10.1103/PhysRevLett.97.141601
https://doi.org/10.1103/PhysRevLett.97.141601
https://doi.org/10.1103/PhysRevLett.88.091301
https://doi.org/10.1007/JHEP12(2012)094
https://doi.org/10.1007/JHEP12(2012)094
https://doi.org/10.1007/JHEP10(2021)219
https://doi.org/10.1007/JHEP10(2021)219
https://doi.org/10.1007/JHEP11(2021)001
https://doi.org/10.1140/epjc/s10052-013-2487-6
https://doi.org/10.3390/e22010017
https://doi.org/10.1098/rspa.1977.0047
https://doi.org/10.1103/PhysRevE.63.061105
https://doi.org/10.1103/PhysRevE.83.061147
https://doi.org/10.1007/BF01016429
https://doi.org/10.1007/BF02063299
https://doi.org/10.1016/j.physletb.2013.09.032
https://doi.org/10.1016/j.physletb.2015.11.061
https://doi.org/10.1140/epjc/s10052-017-5453-x
https://doi.org/10.1103/PhysRevD.102.064014
https://doi.org/10.1103/PhysRevD.102.064014
https://doi.org/10.1103/PhysRevD.104.064004
https://doi.org/10.1103/PhysRevD.104.064004
https://doi.org/10.1103/PhysRevD.103.026021
https://doi.org/10.1103/PhysRevD.103.026021
https://doi.org/10.1140/epjp/s13360-020-00517-2
https://doi.org/10.1103/PhysRevD.104.064003
https://arXiv.org/abs/2012.14828
https://arXiv.org/abs/2112.13120
https://arXiv.org/abs/2112.13120
https://doi.org/10.1103/PhysRevD.60.064018
https://doi.org/10.1103/PhysRevD.60.104026
https://doi.org/10.1103/PhysRevD.59.124007
https://doi.org/10.1103/PhysRevD.59.124007
https://doi.org/10.1155/2016/5864672
https://doi.org/10.1155/2016/5864672
https://doi.org/10.1007/JHEP07(2012)033
https://doi.org/10.1007/JHEP07(2012)033
https://doi.org/10.1007/JHEP11(2012)110
https://doi.org/10.1007/JHEP11(2012)110
https://doi.org/10.1016/j.physletb.2017.08.038
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.1088/1361-6382/aa5c69
https://doi.org/10.3390/galaxies2010089
https://opencommons.uconn.edu/chem_educ/93/
https://opencommons.uconn.edu/chem_educ/93/
https://opencommons.uconn.edu/chem_educ/93/
https://opencommons.uconn.edu/chem_educ/93/
https://doi.org/10.1016/j.physletb.2013.05.038
https://doi.org/10.1140/epjc/s10052-016-4532-8
https://doi.org/10.1140/epjc/s10052-016-4532-8
https://doi.org/10.1016/j.physletb.2019.04.010
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.115.111302
https://doi.org/10.1103/PhysRevLett.116.169903
https://doi.org/10.1063/1.431689
https://doi.org/10.1103/RevModPhys.67.605
https://doi.org/10.1103/PhysRevA.20.1608
https://doi.org/10.1103/PhysRevE.51.1006
https://doi.org/10.1088/1751-8113/42/2/023001
https://doi.org/10.1088/1751-8113/42/2/023001


[49] G. Ruppeiner, Phys. Rev. A 24, 488 (1981).
[50] H. Janyszek and R. Mrugala, Phys. Rev. A 39, 6515 (1989).
[51] H. Oshima, T. Obata, and H. Hara, J. Phys. A 32, 6373

(1999).
[52] G. Ruppeiner, Am. J. Phys. 78, 1170 (2010).
[53] J. E. Aman, I. Bengtsson, and N. Pidokrajt, Gen. Relativ.

Gravit. 35, 1733 (2003).
[54] J. E. Aman and N. Pidokrajt, Phys. Rev. D 73, 024017

(2006).
[55] J.-Y. Shen, R.-G. Cai, B. Wang, and R.-K. Su, Int. J. Mod.

Phys. A 22, 11 (2007).
[56] C. Niu, Y. Tian, and X.-N. Wu, Phys. Rev. D 85, 024017

(2012).
[57] P. Wang, H. Wu, and H. Yang, Eur. Phys. J. C 80, 216

(2020).
[58] S.-W. Wei and Y.-X. Liu, Phys. Rev. D 87, 044014

(2013).
[59] S.-W. Wei, Y.-X. Liu, and R. B. Mann, Phys. Rev. D 100,

124033 (2019).
[60] S.-W. Wei and Y.-X. Liu, arXiv:2107.14523.
[61] P. K. Yerra and C. Bhamidipati, Int. J. Mod. Phys. A 35,

2050120 (2020).
[62] B. Wu, C. Wang, Z.-M. Xu, and W.-L. Yang, Eur. Phys. J. C

81, 626 (2021).
[63] A. Ghosh and C. Bhamidipati, Phys. Rev. D 101, 046005

(2020).
[64] P. K. Yerra and C. Bhamidipati, Phys. Rev. D 104, 104049

(2021).
[65] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969).
[66] L. D. Landau and E. M. Lifshitz, Statistical Physics Part 1

(Course of Theoretical Physics, Volume 5) (Elsevier Sci-
ence, New York, 1980).

[67] H. B. Callen, Thermodynamics and an Introduction to
Thermostatistics (Wiley, New York, 1985).

[68] R. F. Sekerka, Thermal Physics: Thermodynamics and
Statistical Mechanics for Scientists and Engineers (Elsevier,
Amsterdam, 2015), pp. 1–589.

[69] R. Penrose, Gen. Relativ. Gravit. 34, 1141 (2002).

[70] S.-W. Wei, Y.-X. Liu, and R. B. Mann, Phys. Rev. Lett. 123,
071103 (2019).

[71] N. Komatsu, Eur. Phys. J. C 77, 229 (2017).
[72] H. Moradpour, A. Bonilla, E. M. C. Abreu, and J. A. Neto,

Phys. Rev. D 96, 123504 (2017).
[73] H. Moradpour, S. A. Moosavi, I. P. Lobo, J. P. M. Graça, A.

Jawad, and I. G. Salako, Eur. Phys. J. C 78, 829 (2018).
[74] M. Tavayef, A. Sheykhi, K. Bamba, and H. Moradpour,

Phys. Lett. B 781, 195 (2018).
[75] D. Jiulin, Europhys. Lett. 67, 893 (2004).
[76] J.-l. Du, New Astron. 12, 60 (2006).
[77] J. C. Carvalho, R. Silva, J. do Nascimento, J. D., and J. R.

DeMedeiros, Europhys. Lett. 84, 59001 (2008).
[78] K. Ourabah, Phys. Rev. D 102, 043017 (2020).
[79] C. Tsallis, Introduction to Nonextensive Statistical Mechan-

ics: Approaching a Complex World (Springer, New York,
2009).

[80] S. Nojiri, S. D. Odintsov, and V. Faraoni, Phys. Rev. D 104,
084030 (2021).

[81] M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006).
[82] M.M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac,

Phys. Rev. Lett. 100, 070502 (2008).
[83] G. Vitagliano, A. Riera, and J. I. Latorre, New J. Phys. 12,

113049 (2010).
[84] H.-H. Lai, K. Yang, and N. E. Bonesteel, Phys. Rev. Lett.

111, 210402 (2013).
[85] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
[86] A. Lavagno and P. Narayana Swamy, Phys. Rev. E 61, 1218

(2000).
[87] A. Lavagno and P. Narayana Swamy, Phys. Rev. E 65,

036101 (2002).
[88] A. Lavagno and P. Narayana Swamy, Found. Phys. 40, 814

(2010).
[89] E. Dil, Int. J. Mod. Phys. A 32, 1750080 (2017).
[90] R. K. Kaul and P. Majumdar, Phys. Lett. B 439, 267 (1998).
[91] A. Ashtekar, J. C. Baez, and K. Krasnov, Adv. Theor. Math.

Phys. 4, 1 (2000).
[92] A. Majhi, Phys. Lett. B 775, 32 (2017).

PROMSIRI, HIRUNSIRISAWAT, and NAKARACHINDA PHYS. REV. D 105, 124049 (2022)

124049-22

https://doi.org/10.1103/PhysRevA.24.488
https://doi.org/10.1103/PhysRevA.39.6515
https://doi.org/10.1088/0305-4470/32/36/302
https://doi.org/10.1088/0305-4470/32/36/302
https://doi.org/10.1119/1.3459936
https://doi.org/10.1023/A:1026058111582
https://doi.org/10.1023/A:1026058111582
https://doi.org/10.1103/PhysRevD.73.024017
https://doi.org/10.1103/PhysRevD.73.024017
https://doi.org/10.1142/S0217751X07034064
https://doi.org/10.1142/S0217751X07034064
https://doi.org/10.1103/PhysRevD.85.024017
https://doi.org/10.1103/PhysRevD.85.024017
https://doi.org/10.1140/epjc/s10052-020-7776-2
https://doi.org/10.1140/epjc/s10052-020-7776-2
https://doi.org/10.1103/PhysRevD.87.044014
https://doi.org/10.1103/PhysRevD.87.044014
https://doi.org/10.1103/PhysRevD.100.124033
https://doi.org/10.1103/PhysRevD.100.124033
https://arXiv.org/abs/2107.14523
https://doi.org/10.1142/S0217751X20501201
https://doi.org/10.1142/S0217751X20501201
https://doi.org/10.1140/epjc/s10052-021-09407-y
https://doi.org/10.1140/epjc/s10052-021-09407-y
https://doi.org/10.1103/PhysRevD.101.046005
https://doi.org/10.1103/PhysRevD.101.046005
https://doi.org/10.1103/PhysRevD.104.104049
https://doi.org/10.1103/PhysRevD.104.104049
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1023/A:1016578408204
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1103/PhysRevLett.123.071103
https://doi.org/10.1140/epjc/s10052-017-4800-2
https://doi.org/10.1103/PhysRevD.96.123504
https://doi.org/10.1140/epjc/s10052-018-6309-8
https://doi.org/10.1016/j.physletb.2018.04.001
https://doi.org/10.1209/epl/i2004-10145-2
https://doi.org/10.1016/j.newast.2006.06.004
https://doi.org/10.1209/0295-5075/84/59001
https://doi.org/10.1103/PhysRevD.102.043017
https://doi.org/10.1103/PhysRevD.104.084030
https://doi.org/10.1103/PhysRevD.104.084030
https://doi.org/10.1103/PhysRevLett.96.010404
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1103/PhysRevLett.111.210402
https://doi.org/10.1103/PhysRevLett.111.210402
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevE.61.1218
https://doi.org/10.1103/PhysRevE.61.1218
https://doi.org/10.1103/PhysRevE.65.036101
https://doi.org/10.1103/PhysRevE.65.036101
https://doi.org/10.1007/s10701-009-9363-0
https://doi.org/10.1007/s10701-009-9363-0
https://doi.org/10.1142/S0217751X17500804
https://doi.org/10.1016/S0370-2693(98)01030-2
https://doi.org/10.4310/ATMP.2000.v4.n1.a1
https://doi.org/10.4310/ATMP.2000.v4.n1.a1
https://doi.org/10.1016/j.physletb.2017.10.043

