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A configuration of a test magnetic field in Hayward spacetime is obtained by solving
Maxwell’s equation with the Hayward metric as the background. The magnetic field lines show a dipole
looplike configuration in the regular Hayward interior, and tends to an asymptotically uniform structure
away from the cylindrical axis. The motion of charged particles is then studied in this spacetime. The
parameters and stability of circular orbits on the equatorial plane are studied. Aspects of nonequatorial
motion are also studied.
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I. INTRODUCTION

The presence of curvature singularities is a typically
undesirable property of a particular spacetime, though they
seem to be an unavoidable feature of black holes. However,
there are proposed solutions [1–3] which describe black
holes or gravitating bodies which are regular. That is, they
do not carry curvature singularities. (See Ref. [4] for a
review about regular black holes.)
In this paper, we are specifically interested in the one

derived by Hayward [5]. Hayward’s solution is a static and
spherically symmetric spacetime which describes either a
black hole or a horizonless gravitating object, depending on
the parameters of the solution. The solution is nonvacuum
and requires a particular form for the stress tensor, though
an explicit model can be provided by a nonlinear electro-
dynamics source [6–10]. The vicinity around the origin of
this spacetime is well-approximated by the de Sitter metric,
and is completely regular at r ¼ 0. Far away from the
origin, the geometry tends to the asymptotically flat,
Schwarzschild-like geometry.
Various aspects of the Hayward solution has been studied

and extended over the years [11–15]. Of particular relevance
to this paper is the study of particle motion in this spacetime.
Null and timelike geodesic motion in the Hayward space-
time has been worked out in Refs. [16–19]. The Hayward
spacetime has been generalized to the rotating case in
[20,21]. The motion of particles and light in these rotating
counterparts have also been studied in Refs. [22–24].
If we were to consider the Hayward spacetime as a

possible astrophysical object, it would be reasonable to
include the presence of magnetic fields to the solution,
since magnetic fields are expected to influence the physics

around black holes [25–33]. Beyond astrophysical phe-
nomena, magnetic fields also play important roles in
other theoretical contexts. As such the inclusion of
(electro-)magnetic fields in various spacetimes has been
studied [34–37].
It was argued in Refs. [26,28] that magnetic fields

generated in astrophysical phenomena do not appreciably
deform the spacetime curvature, and that it suffices to
consider test magnetic fields. As such, one of the aims of
this paper is to immerse the Hayward spacetime in a test
magnetic field. Interestingly, we found that the magnetic
field lines near the de Sitter-like core has the loop structure
characteristic of an isolated magnetic dipole. In the
Schwarzschild-like region the magnetic field tends to the
uniform configuration which agrees with Wald’s solution
for test magnetic field around the pure Schwarzschild
black hole.
The second main aim of this paper is to study the motion

of charged particles in this spacetime. In the
Schwarzschild-like region where the magnetic field is
approximately uniform, the behavior is largely similar to
the pure Schwarzschild case studied in [28,32]. In particu-
lar, there are also “curly” orbits caused by the combination
of the magnetic Lorentz forces and the radial gravitational
forces which causes the azimuthal angular velocity to
change signs at various points. More interesting types of
trajectories can be found for the horizonless Hayward
spacetime, where the de Sitter-like core is accessible.
For instance, there are two potential wells on the z-axis
where particles can be trapped. Because of the loop
structure of the magnetic field lines in this region, the
particle trajectory exhibits “bounce” and “drift” motion
similar to particles around planetary magnetic fields.
The rest of this paper is organized as follows. In Sec. II,

we solve Maxwell’s equation under the Hayward metric to
obtain the test magnetic field. The equations of motion for a
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charged particle in this spacetime is derived in Sec. III. In
Sec. IV, we consider trajectories confined to the equator,
and nonequatorial motion will be considered in Sec. V.
Conclusions and closing remarks will be given in Sec. VI.
We will be working in geometric units where c ¼ G ¼ 1,
where c is the speed of light and G is Newton’s constant.
Our convention for Lorentzian signature is ð−;þ;þ;þÞ.

II. TEST MAGNETIC FIELD IN THE HAYWARD
SPACETIME

We begin with a brief review of the Hayward solution
[5]. Its spacetime metric is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dθ2 þ r2 sin2 θdϕ2; ð2:1aÞ

fðrÞ ¼ 1 −
2mr2

r3 þ 2ml2
; ð2:1bÞ

where m is the mass parameter and l the Hayward
parameter of the spacetime. The notable feature of this
solution is the absence of a curvature singularity at the
origin r → 0 for l ≠ 0. This spacetime is a solution to the
Einstien equation Rμν − 1

2
Rgμν ¼ 8πTμν, where the energy

density ρ ¼ −Tt
t, radial pressure p ¼ Tr

r and tangential
pressures p⊥ ¼ Tθ

θ ¼ Tϕ
ϕ are given by

ρ ¼ −p ¼ 3m2l2

πðr3 þ 2ml2Þ2 ; p⊥ ¼ 3m2l2ðr3 −ml2Þ
πðr3 þ 2ml2Þ3 :

ð2:2Þ

Horizons are characterized by the roots of f. For values of l
satisfying l

m < 4

3
ffiffi
3

p ≃ 0.7698, f has two distinct positive

roots r� with the notation assigned to the order r− < rþ.
We refer to this case as the Hayward black hole with rþ
being the outer horizon and r− the inner horizon. The
asymptotically flat exterior static domain is r > rþ. There
is another static domain interior to the inner horizon with
0 < r < r−. If l

m > 4

3
ffiffi
3

p , f has no real positive roots and the

spacetime is static all throughout 0 < r < ∞, and we refer
to this case as the horizonless Hayward spacetime. The
critical case l

m ¼ 4

3
ffiffi
3

p is the where f has a degenerate

horizon.
In the study of test magnetic fields in the Hayward

spacetime, it will be convenient to define a characteristic
radius

rc ¼ ð4ml2Þ1=3: ð2:3Þ

The significance of rc is that f0ðrÞ < 0 for r < rc and
f0ðrÞ > 0 for r > rc. Roughly speaking, it can be seen that
the metric is approximately described by de Sitter space
for r ≪ rc (and is regular at r ¼ 0), while the metric

tends to the asymptotically flat Schwarzschild-like geom-
etry for r ≫ rc.
We now turn to the task of immersing the spacetime in a

test magnetic field. To do this we solve the Maxwell
equation ∇λFλν ¼ 4πJν, where F ¼ dA is the exterior
derivative of the gauge potential A and Jν is the electro-
magnetic current four-vector. The strength of F is assumed
to be sufficiently small such that it does not backreact into
the spactime curvature.
If we had a vacuum solution of Einstein’s equation, a

quick way to include a test magnetic field is to observe that
Maxwell’s equation expressed in terms of A is equivalent to
Killing’s equation under a certain gauge [38] so that any
Killing vector of the spacetime can be the gauge potential
for the test magnetic field. Unfortunately, this trick is not
available for nonvacuum spacetimes, as in our present
situation. Therefore we simply solve Maxwell’s equation
directly. Test magnetic fields for spacetimes with cosmo-
logical constant [34,35] and in nonvacuum black holes in
modified gravity [39] have previously been obtained
this way.
To this end, we consider the following ansatz for the

gauge potential:

A ¼ Ψðr; θÞdϕ; ð2:4Þ

where the function Ψðr; θÞ does not depend on ϕ and t.
Under this ansatz, along with Jμ ¼ ð0; 0; 0; JϕÞ, the
Maxwell equation becomes

r2∂rðf∂rΨÞ þ sin θ∂θ

�
1

sin θ
∂θΨ

�
¼ 4πr4 sin2 θJϕ: ð2:5Þ

In the homogeneous case (Jϕ ¼ 0), we solve (2.5) by
applying a separation of variables:

Ψðr; θÞ ¼ −r2χðrÞ sin θ dΘðθÞ
dθ

;

where χðrÞ and ΘðθÞ are functions of r and θ, respectively.
Then we find that there exists a separation constant
nðnþ 1Þ which splits Eq. (2.5) into two ordinary differ-
ential equations:

d
dr

�
f
d
dr

ðr2χÞ
�

¼ nðnþ 1Þχ; ð2:6aÞ

1

sin θ
d
dθ

�
sin θ

dΘ
dθ

�
¼ −nðnþ 1ÞΘ: ð2:6bÞ

Note that Eq. (2.6b) is simply Legendre’s equation.
Therefore the solution is simply
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ΘðθÞ ¼ Pnðcos θÞ; ð2:7Þ

where PnðxÞ is the nth Legendre polynomial.
In the present paper, we are mainly interested in general-

izing the weakly magnetized Schwarzschild solution to the
Hayward case. Therefore we consider specifically n ¼ 1,
which is the dipole case. Then Eq. (2.6a) is solved by

χðrÞ ¼ C1

�
1 −

4ml2

r3

�
þ C2

�
1 −

4ml2

r3

�

×
Z

dr

r4fðrÞð1 − 4ml2

r3 Þ2 ;

where C1 and C2 are the integration constants. For
convenience in our subsequent calculations, we reparame-
trize our integration constants as C1 ¼ B

2
þ CK and

C2 ¼ C, and the homogeneous solution above is written as

χðrÞ ¼ B
2
UðrÞ þ CUðrÞðK þ VðrÞÞ; ð2:8Þ

where

UðrÞ ¼ 1 −
4ml2

r3
; VðrÞ ¼

Z
dr

r4fðrÞUðrÞ2 : ð2:9Þ

As the aim of this paper to extend the magnetized
Schwarzschild solution to the case of Hayward spacetimes,
we are seeking a magnetic field that is asymptotically
uniform as r → ∞. As such one would set C ¼ 0.
However, for the Hayward spacetime where the origin
r ¼ 0 is accessible, the invariant F2 ¼ FμνFμν has the
behavior

F2 ≃
8B2m2l4ð1þ 4 cos2 θÞ

r6
þ…;

so for this solution, the electromagnetic field strength
diverges at the origin. Furthermore, if F2 becomes
unboundedly large, then the magnetic field will be strong
enough to curve the spacetime and can no longer be
considered a test field.
To resolve this singularity, we consider the presence of a

current loop lying on the equatorial plane θ ¼ π
2
with

coordinate r ¼ a. The following is an application of the
methods of Ref. [40], adapted to the Hayward spacetime.
We take the current four-vector to be Jμ ¼ ð0; 0; 0; JϕÞ,
where

Jϕ ¼ IfðrÞ1=2
r2

δðr − aÞδðcos θÞ; ð2:10Þ

and the delta functions are normalized such that
R
δðr −

aÞdr ¼ 1 and
R
sin θδðcos θÞdθ ¼ 1. The constant I is the

current passing through the r − θ plane. To see this, we take
ξ ¼ ðr sin θÞ−1∂ϕ to be the unit vector along ϕ. The spatial
current passing through the plane orthogonal to ξ is

Z
Jϕξϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
gθθgrr

p
drdθ¼

Z
Jϕr2 sinθf−1=2drdθ¼ I: ð2:11Þ

For r ≠ a and θ ≠ π
2
, the current is not present

and the homogeneous solution (2.8) remains valid. With
this current loop, we take our solution to be
Ψ ¼ r2χðrÞ sin2 θ, but with χ now

χðrÞ ¼
�
χ1ðrÞ; r > a;

χ2ðrÞ; 0 < r < a;
ð2:12Þ

where χ1ðrÞ ¼ B
2
UðrÞ and χ2ðrÞ ¼ CUðrÞðK þ VðrÞÞ. The

two pieces of the function are to be matched appropriately
for the current source Jϕ. To achieve this, the solution is
required to be continuous at r ¼ a, and that Maxwell’s
equation Eq. (2.5) is to be satisfied at all regions.
Continuity at r ¼ a requires

lim
r→aþ

χ1ðrÞ ¼ lim
r→a−

χ2ðrÞ: ð2:13Þ

Turning to Maxwell’s equation, we see that Eq. (2.5) with
Jϕ given by (2.10) reduces to

sin θ

�
d
dr

�
f
d
dr

ðr2χÞ
�
− 2χ

�
¼ 4πI sin θδðcos θÞfðrÞ1=2δðr − aÞ: ð2:14Þ

We integrate both sides of this equation over all θ, followed
by an integration over a − ϵ ≤ r ≤ aþ ϵ. In the limit
ϵ → 0, we have

d
dr

ðr2χ1ðrÞÞ
����
r¼a

−
d
dr

ðr2χ2ðrÞÞ
����
r¼a

¼2πIfðaÞ−1=2: ð2:15Þ

The desired regular solution is obtained as follows: For F2

to be regular as r → 0, we take K ¼ −Vð0Þ. This choice
removes the divergent term at the origin, giving

F2∼
C2ð1þcos2θÞ

18m2l4
þC2ð7þ6cos2θÞ

90m2l6
r2þOðr4Þ; ð2:16Þ

which has a finite limit as r → 0. Subsequently, Eqs. (2.13)
and (2.15) fixes C and I in terms of B. In this way, we have
a regular solution for any small a, as long as it is nonzero.
As an explicit numerical example, for a Hayward spacetime
with parameters m ¼ 1 and l ¼ 0.8 with loop radius
a ¼ 0.5, we have K ¼ −33.718, C ¼ 57.293B, and
I ¼ 2.9066B. (Up to five significant figures.)
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This introduction of a current loop marks a difference
from the weakly magnetized Schwarzschild case, where
solving Maxwell’s equation results in a homogeneous
magnetic field with no current sources considered in the
domain of the solution. The magnetic field in the
Schwarzschild case can be assumed to be sourced by
currents outside the domain of consideration (large r),
possibly created by charged flow of accretion disks. In the
Hayward case, just solving the vacuum equation and
assuming the source to be unspecified outside may only
explain the near-uniform magnetic field at r > rc similar to
the Schwarzschild case. At r < rc, the magnetic field lines
start to take a dipolelike loop structure whose field strength
is singular at the origin. Just as in multipole solutions of
nonrelativistic magneticstatics, this indicates that there
should exist a current source Jμ to support this structure
of the magnetic field. We take the physical interpretation of
Jμ being an idealized model for the “accretion disk”
sourcing the magnetic field. If a is taken to be small up
to the infinitesimal limit, this may serve as a simple toy
model used to regularize the singularity in place of,
perhaps, a more complete quantum field theory treatment
of the electromagnetic field.
For the remainder of this paper, we shall assume r > a

for all regions of interest. Hence we have

A ¼ r2χ1ðrÞ sin2 θdϕ

¼ B
2

�
1 −

4ml2

r3

�
r2 sin2 θdϕ; r > a; ð2:17Þ

as desired. The nonzero components of the Maxwell tensor
are

Frϕ ¼ −Fϕr ¼ ðχ1r2Þ0 sin2 θ;
Fθϕ ¼ −Fϕθ ¼ 2χ1r2 sin θ cos θ; ð2:18Þ

where primes denote derivatives with respect to r. In the
case l ¼ 0, the solution reduces to the test magnetic field
around the Schwarzschild black hole which was obtained
by Wald in [38].
To compute the explicit form of the magnetic field, let

ξμ ¼ 1ffiffi
f

p δμt be the unit timelike Killing vector of the

spacetime. The covariant components of the magnetic field
are given by

Bμ ¼ −
1

2
ϵμνρσξ

νFρσ; ð2:19Þ

where ϵμνρσ is the antisymmetric Levi–Civita form with

ϵtrθϕ ¼ þ ffiffiffiffiffiffiffiffiffiffiffiffiffij det gjp ¼ r2 sin θ. The vector field representing

the magnetic field is B⃗ ¼ Bμ
∂μ. Explicitly,

B⃗ ¼ f1=2
�
2χ1 cos θe⃗r −

ðχ1r2Þ0
r2

sin θe⃗θ

�
; ð2:20Þ

where we have used the notation e⃗r ¼ ∂r and e⃗θ ¼ ∂θ for
the basis vectors.
To visualize the magnetic field lines, we transform to

cylindrical coordinates by ρ ¼ r sin θ and z ¼ r cos θ. In
these coordinates, the magnetic field is

B⃗¼f1=2½−χ01rsinθcosθe⃗ρþð2χþχ01rsin
2θÞe⃗z�: ð2:21Þ

The presence of χ which is nonconstant for l ≠ 0 makes
the magnetic field nonuniform and has nontrivial ρ and z
components. Nevertheless, as r → ∞, the magnetic field
asymptotically approaches a uniform configuration point-
ing along the z-direction. Only when l ¼ 0, the whole
magnetic field is uniform along z throughout the spacetime,
recovering the weakly magnetized Schwarzschild solu-
tion [38].
The plots of the magnetic field are given in Fig. 1. We

take a to be small such that the vectors depicted correspond
to the exterior r > a solution given by Eq. (2.21). The
empty regions correspond to the nonstatic region with
f < 0, for which B⃗ is undefined. Hence the plot for l ¼ 0
in Fig. 1(a) has an empty disk of radius 2m corresponding
to the region interior to the Schwarzschild black hole.
Outside the horizon, we see the magnetic field pointing
uniformly in the z-direction, in accordance to the pure
Schwarzschild configuration [38]. The magnetic field for
the Hayward black hole is shown in Fig. 1(b), plotted for
the case m ¼ 1 and l ¼ 0.6. The region exterior to the
outer horizon shows some deviation from being perfectly
uniform along the z-axis, and the static region inside the
inner horizon shows looped magnetic field lines, reminis-
cent to the magnetic field lines emanating from an isolated
point dipole at the origin.
Figures 1(c) and 1(d) show the horizonless spacetime for

l ¼ 1 and l ¼ 2, respectively. In these cases, we see the
loop configuration of the magnetic field lines transitioning
continuously to a z-uniform configuration as the distance
from the origin is increased. As the Hayward parameter
l is increased, the dipolelike configuration takes up a
larger space.
The transition between dipole loops to the uniform

parallel field lines can be understood through the character-
istic radius rc defined in Eq. (2.3). In particular, rc is
also a root of χðrÞ. This root gives two regimes for the
potential:

χðrÞ ∼
(
− 1

2
B0

4ml2

r3 ; a < r ≪ rc;
1
2
B0; r ≫ rc:

If the spacetime is the Hayward black hole, the character-
istic radius always lies inside the nonextremal black hole
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horizon. Otherwise, r ¼ rc ¼ ð4ml2Þ1=3 is precisely on the
extremal horizon itself. This can be seen1 by checking

fðrcÞ ¼ 1 −
42=3

3

�
m
l

�
2=3

: ð2:22Þ

For the black hole case, we have m2

l2 ≥
27
16
, or ðmlÞ2=3 ≥ 3

41=3
.

Therefore, we have

fðrcÞ ≤ 0 if
m2

l2
≥
27

16
: ð2:23Þ

In other words, the magnetic field at the exterior of the
Hayward black hole is always the uniform field regime. As
we approach the horizon, B⃗ deviates away from being
perfectly parallel. As can be seen in the example of
Fig. 1(b). The dipole loop field lines are strictly in the
inner core.
If m2

l2 <
27
16
, no horizons are present. Therefore the entire

spacetime is static and hence we see the interior dipole loop
field lines at r < rc continuously deform into the uniform
parallel lines at r > rc, as can be seen in Figs. 1(c) and 1(d).
Note that at the characteristic radius r ¼ rc, the magnetic
field is precisely zero on the z-axis. In fact, we will show in

FIG. 1. Plots of vector field B⃗ on the Hayward spacetime, for m ¼ 1 in cylindrical coordinates of fixed azimuth ϕ. The empty regions
are where f < 0 and the magnetic field is undefined. In Figs. 1(c) and 1(d), the solid blue diamonds indicate points where B⃗ ¼ 0. Here,
the current loop radius a is taken to be very small compared to the scales of the figure, and the vectors depicted correspond to the χ1
solution. (a) l ¼ 0 (Schwarzchild). (b) l ¼ 0.6 (c) l ¼ 1 (d) l ¼ 2.

1Alternatively, we can also see this by noting that rc is a local
minimum of fðrÞ in the domain r > 0, and must lie between the
two roots of fðrÞ.
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Sec. V charged particles can exist in stable equilibrium on
these two points.

III. EQUATIONS OF MOTION FOR A CHARGED
PARTICLE THE MAGNETIZED HAYWARD

SPACETIME

The motion of a timelike particle carrying charge per
mass e is described by a parametrized curve

xμðτÞ ¼ ðtðτÞ; rðτÞ; θðτÞ;ϕðτÞÞ;

where τ is the proper time of the particle. We will assume
that the charged particle does not interact directly with the
matter sources of the Hayward spacetime (2.2) apart
from the gravity due to the Hayward geometry. The
charged particle will have the usual Lorentz interaction
with the test magnetic field derived in the previous section.
Therefore the motion is governed by the Lagrangian
L ¼ 1

2
gμν _xμ _xν þ eAμ _xμ, where overdots denote derivatives

with respect to τ. For a weakly magnetized Hayward
spacetime, the Lagrangian is explicitly

L ¼ 1

2

�
−f_t2 þ _r2

f
þ r2 _θ2 þ r2 sin2 θ _ϕ2

�
þ eχ1r2 sin2 θ _ϕ;

ð3:1Þ

The conserved quantities are energy E and angular
momentum L such that

_t ¼ E
f
; _ϕ ¼ L

r2sin2θ
− eχ1: ð3:2Þ

The equations of motion in the r- and θ-directions can be
derived from the Euler–Lagrange equation, giving

̈r ¼ f0

2f
_r2 þ rf _θ2 −

f0E2

2f
þ f

�
L2

r3 sin2 θ
− e2χ21r sin

2 θ

�
þ feχ01ðL − eχ1r2 sin2 θÞ; ð3:3Þ

θ̈ ¼ −
2

r
_r _θþL2 cos θ

r4 sin3 θ
− e2χ21 sin θ cos θ: ð3:4Þ

As before, primes denote derivatives with respect to r. The
timelike character of the particle gives a first integral
equation gμν _xμ _xν ¼ ϵ, where ϵ is a negative constant.

Eliminating _t and _ϕ in favor of E and L, this leads to

_r2

f
þ r2 _θ2 −

E2

f
þ r2 sin2 θ

�
L

r2 sin2 θ
− eχ1

�
2

¼ ϵ: ð3:5Þ

We assume the proper time parameter is appropriately
rescaled such that ϵ ¼ −1. Upon rearranging, Eq. (3.5) can
be expressed in effective potential form,

_r2 þ r2f _θ2 ¼ E − U; ð3:6Þ

where E ¼ E2 and the effective potential is given by

Uðr; θÞ ¼ f

�
r2sin2θ

�
L

r2sin2θ
− eχ1

�
2

þ 1

�
: ð3:7Þ

From Eq. (3.6), we see that the particles must be confined to
move in a domain where E − U ≥ 0.
Since e and B0=2 always appear together as products, it

will be convenient to define β ¼ 1
2
eB0. Therefore the

motion of our charged particle will be parametrized by
β, E and L. The spacetime geometry itself is parametrized
by the mass parameter m and Hayward parameter l, as
usual. The equations of motion are generally nonseparable,
except for equatorial orbits. Therefore an analytical study
of these equations are possible only in specific cases and
perturbations thereof. For a general situation, a trajectory is
obtained by solving Eqs. (3.3) and (3.4) numerically using
the fourth-order Runge–Kutta algorithm implemented in C.
The first integral (3.5) is used as a consistency check
throughout the numerical solution.

IV. EQUATORIAL MOTION

It can be shown that θ ¼ π
2
¼ constant is a solution to the

θ-equation (3.4). Therefore in such a case the motion is
confined to the equatorial plane. The effective potential is
now a function of r only, and its structure can be easily
studied in one dimensional graphs of r against U. In the
following we will also study its circular orbits as well as the
curly behavior of the trajectories.

A. Effective potential

By numerical exploration, we find that for particles
around the Hayward black hole l

m < 4

3
ffiffi
3

p , the effective
potential tend to have one local minima and one local
maxima. The potential terminates at the horizon r ¼ rþ
with U ¼ 0. For β ≠ 0 we have limr→∞ U ¼ ∞. All
charged particles cannot escape to infinity. Effective
potentials around the Hayward black hole are plotted in
the middle column of Fig. 2, particularly l ¼ 0.6. In each
of these plots, we see that as L is adjusted, the local
minimum and maximum coalesce into a point U 00 ¼ 0,
giving the innermost stable circular orbit (ISCO).
For spacetimes with l

m > 4

3
ffiffi
3

p we have no event horizon.
As in the black hole case, we have limr→∞ U ¼ ∞.
Additionally, we now also have limr→0 U ¼ ∞ for
L ≠ 0, indicating an infinite potential barrier preventing
particles of nonzero angular momentum from reaching the
origin. For certain ranges of L, the effective potentials tend
to have a double-well structure, such as the ones shown in
the middle pane of the bottom row of Fig. 2. This means
that we have two disconnected domains of bound orbits for
the same set of parameters, as well as having three circular
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orbits; two stable and one unstable. As L is adjusted, two of
the maxima may coalesce and subsequently vanish, leaving
behind one minima. Since U goes to infinity both for r → 0
and r → ∞, there is always at least one local minima of the
potential.

B. Curly orbits

A characteristic influence of a magnetic field on a
charged particle is the tendency of the trajectory to “curl
up.” More precisely, from Eq. (3.2) for _ϕ, we see that _ϕ
changes sign when L

r2 ¼ eχ, or, at the roots of

βr3 − Lr − 4ml2β ¼ 0: ð4:1Þ

Assuming for the moment that there exist one positive root,
which we denote by r�. This radial coordinate indicates the
point where the angular motion changes direction. (That is,

_ϕ changes sign.) We denote by U� ¼ Ujr¼r� the value of the
effective potential at this radius. The possible orbits may
have different appearances depending on the particle’s
energy relative to U�, and is completely analogous to the
kinds of orbits already discussed in other magnetized
spacetimes, such as [28,32,41]. Let us now discuss these
orbits in the present context of the magnetized Hayward
spacetimes.
In the following, we shall demonstrate the appearance of

such orbits using a concrete example for m ¼ 1, l ¼ 0.8,
and β ¼ 0.1. Its corresponding effective potential is plotted
in Fig. 3(a). If the particle has energy such that E ¼ U�, the
turning point of r coincides with the turning point of ϕ. In
this situation the trajectory forms sharp cusps, such as in
Fig. 3(b). If the particle has energy E > U�, then the particle
crosses r� at various occasions throughout its motion,
meaning that the direction of _ϕ changes. This leads to

FIG. 2. Plots of r vs U for m ¼ 1. The top, middle, and bottom rows correspond to l ¼ 0, 0.6, and 0.8, respectively. The left, middle,
and right columns correspond to β ¼ 0, 0.05, and 0.1, respectively.
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the shape of the curled trajectories, where an example is
shown in Fig. 3(c). On the other hand, if E < U�, the point
r ¼ r� is not accessible by the particle, and _ϕ does not
change sign throughout its motion. An example of this is
shown in Fig. 3(d).

C. Circular orbits

Circular orbits are found from the condition

U ¼ E; U 0 ¼ 0: ð4:2Þ

the second equation of (4.2) can be solved for L to give the
corresponding angular momenta for the circular orbits. For
circular orbits of radius r ¼ r0, this gives two sets of
solutions,

L� ¼ 1

ðr60 − 3mr50 þ 4ml2r30 þ 4m2l4Þr0
× ½−mβðr80 þ 6l2r60 þ 24ml4r30 − 20ml2r50

þ 24m2l6 − 8m2l4r20Þ �
ffiffiffiffi
Δ

p
�; ð4:3Þ

where

Δ ¼ ðr30 þ 2ml2 − 2mr20Þ2ðr30 þ 2ml2Þ4β2
−mr60ð4ml2 − r30Þð4ml2r30 þ 4m2l4 þ r60 − 3mr50Þ:

ð4:4Þ

The corresponding energy E ¼ ffiffiffi
E

p
is obtained from the

first equation of (4.2)

FIG. 3. Examples of orbits of a particle with charge parameter β ¼ 0.1 and angular momentum L ¼ 3.7 in a Hayward spacetime of
m ¼ 1 and l ¼ 0.8. For these parameters, _ϕ ¼ 0 at r� ≃ 6.117, and Uðr�Þ ¼ U� ≃ 0.6749. The effective potential is shown in Fig. 3(a).
Orbits with E ¼ U� has sharp cusps, as shown in Fig. 3(b). An example of an curly orbit where E > U� is shown in Fig. 3(c), with
E ¼ 0.7. Figure 3(d) shows a regular orbit with E ¼ 0.66 < U�, where _ϕ never reaches zero.
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E� ¼ 1

r20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr30 þ 2ml2 − 2mr20Þ½r20ðr20 þ L2

�Þ þ 2L�βð4ml2 − r30Þrþ ð4ml2 − r30Þ2β2�
ðr30 þ 2ml2Þ

s
: ð4:5Þ

For each set of circular orbits ðL�; E�Þ, the stability of
the circular orbits can be determined by checking the sign
of U 00. For Hayward black holes, there exist an innermost
stable circular orbit (ISCO) whose radius we denote by
rISCO�. For r < rISCO� we see that U 00 < 0 where the orbits
are unstable. Conversely, for larger radii r > rISCO the
circular orbits are stable with U 00 > 0.
In the magnetized Schwarzschild case, it was found that

the presence of Lorentz interaction between the particle and
the magnetic field allows the ISCO to have a smaller radius
than that of the pure Schwarzschild case of r ¼ 6m [28].
This fact is potentially significant as it may have observa-
tional consequences for astrophysical black holes [42].
These are reproduced in the solid curves of Fig. 4 where
l ¼ 0. Furthermore, for the same β, the inclusion of the
Hayward parameter l > 0 further reduces the radii of the
ISCOs, as shown in the dashed and dotted curves of Fig. 4.
The various kinds of equatorial orbits can be summarized

in an ðL;EÞ-parameter space, such as in Fig. 5. In that
figure, the blue curves are the values of L and E
corresponding to circular orbits. This is essentially obtained
by plotting Eqs. (4.3) and (4.5) as a parametric curve in r0.
The red curve are the parameters corresponding to orbits
with cusps. Therefore if these orbits are bound, those with
energies above this curve are curly orbits, and those below
it are orbits without curls.
We notice that circular orbits for ðLþ; EþÞ consists of

two branches connecting at a sharp cusp. In the example
shown in Fig. 5, this is the solid blue curve. The lower
branch corresponds to the stable circular orbits of radii
rISCOþ < r0 < ∞. After passing through the cusp, we are at

the upper branch corresponding to the unstable circular
orbits for rISCOþ < r0 < rΔ, where rΔ is the root of the
function Δ defined in Eq. (4.4). For radii r0 < rΔ, Lþ
becomes complex-valued and hence no circular orbits exist.
The other set of circular orbits are ðL−; E−Þ consists of

two disconnected components, shown as the blue dotted
curves in Fig. 5. The connected component on the left
consists of two branches meeting at a cusp. The lower
branch corresponds to stable circular orbits of radii
rISCO− < r0 < ∞, where the cusp is the ISCO. The
upper branch is the unstable circular orbits of radii
rISCO− < r0 < r∞, where r∞ is the value of r0 where L−
diverges. (That is, where the denominator in Eq. (4.3)
goes to zero.) The other component of the unstable circular
orbit is r∞ < r0 < rΔ on the right, where L− is positive. It
joins the Lþ unstable circular orbit at r0 ¼ rΔ, for
which Lþ ¼ L−.
For the horizonless Hayward spacetimes of l > 4

3
ffiffi
3

p m,
the structure of the parameter space is slightly more
complicated. This is mainly due to the fact that double
potential wells are possible here. Hence there might be up
to three points for which U ¼ U 0 ¼ 0 corresponding to
three circular orbits for a fixed L. Two of them are stable
and one unstable. In this case there are no ISCOs here, But
rather two distinct points for which U ¼ U 0 ¼ U 00 ¼ 0,
which we denote by

rOCCO�; and rICCO�; ð4:6Þ

where “OCCO” and “ICCO” is what we shall call outer
critical circular orbit and inner critical circular orbit,

FIG. 4. Plots of ISCO radii vs β around a Hayward black hole for the two branches of angular momenta L ¼ L� given by Eq. (4.3).
(a) ISCOs with L ¼ Lþ (b) ISCOs with L ¼ L−.
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respectively. As such we have the association
rOCCO� > rICCO�. These correspond to the points when
two circular orbits coalesce.
Let us first explore the parameter space by taking the

examplem ¼ 1, l ¼ 1, and β ¼ 0.01, depicted in Fig. 6(a).
The solid blue curve are circular orbits of L ¼ Lþ and

E ¼ Eþ. The curve coming in from positive infinite L and
ending at the first cusp correspond to the stable circular
orbits of rOCCOþ < r0 < ∞. The endpoint of this branch is
r0 ¼ rOCCOþ where we encounter the first cusp of Lþ.
Then, the branch located between two cusps is the unstable
circular orbit of radii rICCOþ < r0 < rOCCOþ, after which
we have the third branch corresponding to stable circular
orbits of rICCOþ < r0 < 0. The end of this branch is simply
a particle of zero angular momentum sitting at the origin.
The other set of circular orbits with L ¼ L− and E ¼ Eþ

are the dotted blue curve on the left side of Fig. 6(a). The
structure is similar to that of ðLþ; EþÞ. Namely the lower
branch between L → ∞ and the lower cusp is the stable
circular orbit of radii rOCCO− < r0 < ∞. The branch
between the two cusps are the unstable circular orbits of
radii rICCO− < r0 < rOCCO−, and finally the branch
between the second cusp extending to ðL;EÞ ¼ ð0; 0Þ is
the stable inner circular orbits of 0 < r0 < rICCO−.
Figures 6(b)–6(d) shows the parameter space structure as

β is increased. Notably we see that as the particle’s charge
increases, the swallowtail structure of the ðLþ; EþÞ curve
shrinks and disappears, resulting in a smooth curve of

FIG. 6. Parameter space for a particle in a spacetime with m ¼ 1, l ¼ 1. (a) β ¼ 0.01 (b) β ¼ 0.05 (c) β ¼ 0.1 (d) β ¼ 0.15.

FIG. 5. Parameter space for a charged particle with charged
parameter β ¼ 0.1 around a Hayward black hole of m ¼ 1,
l ¼ 0.3.
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stable circular orbits. This “phase transition” indicates that
the unstable circular orbit disappears.

D. Perturbations of circular orbits

In the previous subsection, we have found circular orbits
where the radius and polar angles are r ¼ r0 and θ ¼ π

2
,

respectively. Now we consider small perturbations about
these orbits. Specifically, starting with particles of energy
and angular momenta E� and L� as given by Eqs. (4.5) and
(4.3) respectively, we perturb its position slightly away
from ðr; θÞ ¼ ðr0; π2Þ by writing

rðτÞ ¼ r0 þ λr1ðτÞ; θðτÞ ¼ π

2
þ λθ1ðτÞ; ð4:7Þ

where λ is a small perturbation parameter such that terms of
orderOðλ2Þ will be neglected. Substitution of Eq. (4.7) into
Eqs. (3.3) and (3.4) gives, up to first order in λ,

̈r1 ¼ −ω2
r�r1; θ̈1 ¼ −ω2

θ�θ1; ð4:8Þ

where

ω2
r� ¼ 1

ðr30 þ 2ml2Þð4r30ml2 þ 4m2l4 − 3r50 þ r60Þ2r60
½−2r60mð8l4m3r20 − 24l4m2r30 þ 8m3l6 þ r90 − r80m

− 12l2r60mþ 20l2r05m2ÞE2
� þ r20ð12m2l4 − 4l2r20m

2 þ 12r03ml2 − 8r50mþ 3r60Þðr30 þ 2ml2 − 2mr20Þ2L2
�

þ 24βl2mr0ð8m2l4 − 4l2r20m
2 þ 8r30ml2 − 5r50mþ 2r60Þðr30 þ 2ml2 − 2mr20Þ2L�

þ β2ð640m4l8 − 384l6m4r02 þ 608l6m3r03 − 384l4m3r05 þ 132l4m2r60

þ 12r80m
2l2 − 4ml2r90 þ r120 Þðr30 þ 2ml2 − 2mr20Þ2�; ð4:9Þ

ω2
θ� ¼ L2

�r
2
0 − β2ðr30 − 4ml2Þ2

r60
: ð4:10Þ

In essence, the calculation of ω2
r� reproduces the stability

analysis from studying U 00 in the equatorial plane of the
previous subsection. In particular, if ω2

r� is positive, the
particle oscillates radially about r0, indicating a stable orbit.
Conversely if ω2

r� is negative, r1ðτÞ increases exponentially
away from r0, showing that the original circular orbit is
unstable.
Turning to the equation for ϕ, substitution of Eq. (4.7)

into _ϕ in Eq. (3.2) gives, to linear order in λ,

_ϕ ¼ Ωϕ − ηr1λ;

Ωϕ ¼ L�r0 þ βð4ml2 − r30Þ
r30

; η ¼ 2

r40
ðLr0 þ 6βml2Þ:

ð4:11Þ
HereΩϕ would be the angular velocity in the ϕ direction for
the unperturbed circular motion.
Suppose we perturb about stable2 circular orbits, a

particular solution takes the form

rðτÞ ¼ r0 þ a cosðωr�τÞ þOða2Þ; ð4:12aÞ

θðτÞ ¼ π

2
þ b cosðωθ�τÞ þOðb2Þ; ð4:12bÞ

ϕðτÞ ¼ ϕ0 þ Ωϕτ −
ηa
ωr�

sinðωr�τÞ þOða2Þ; ð4:12cÞ

where a and b are of the order λ, and ϕ0 is an arbitrary
choice for the initial condition of ϕðτÞ. With this solution
let us investigate some cases that reveal the physics
behind the forces experienced by the charged particle.
Most of the behavior are already present in the magnetized
Schwarzschild case that were studied in [32,42]. The
introduction of the Hayward parameter l changes the
quantitative values of the orbital parameters.
Cycloidal motion. The curly orbits discussed in Sec. IV

B can be quantified in more detail in the case of perturbed
circular orbit. More specifically Eqs. (4.12a) and (4.12c)
approximately describe the parametric equations for a
trochoid [42]. The value of

ζ ¼ ηa
Ωϕ

; ð4:13Þ

determines the specific type of trochoid. In particular, the
case ζ < 1 describes a curtate cycloid, and is a case of
E < U� where _ϕ does not change sign throughout the
motion, as described in Sec. IV B. If ζ ¼ 1, we have the
common cycloidwhich is a particular case of the orbits with
cusps E ¼ U�. If ζ > 1, we have the prolate cycloid, which
is an instance of the curly orbits of E > U� described in
Sec. IV B. Examples of these orbits are shown in Fig. 7, for
particles of β ¼ 0.6 perturbed around a circular orbit of
r0 ¼ 9 in a spacetime with m ¼ 1 and l ¼ 1.
Cyclotron drift. When m ¼ 0, the situation reduces to a

uniform magnetic field in flat spacetime. In this case we2Such that ωr� and ωθ� are real.
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find that Ωϕ ¼ 0 and if we further suppose b ¼ 0, then the
solution (4.12) describes a circular motion of radius a
centred at r ¼ r0, ϕ ¼ ϕ0 with cyclotron/Larmor frequency
[32,42]

ωr� ¼ ωL ¼ 2β: ð4:14Þ

When m ≠ 0, the first term Ωϕτ in Eq. (4.12c) contributes
to a linearly increasing azimuthal angle to the harmonic
oscillation of the second term. This gives an interpretation
of a drifting of cyclotron motion due to gravity. An example

of this is depicted in Fig. 8, for the case β ¼ 0.5, r0 ¼ 9,
a ¼ 0.1, l ¼ 1.

V. NONEQUATORIAL MOTION

As mentioned in Sec. II, the behavior of the test magnetic
field fall under two regimes, namely r < rc and r > rc. For
the Hayward black hole case, the magnetic field exterior to
the horizon consists of mostly uniform field lines along the
z-axis, and therefore its off-equator motion of charged
particles typically resemble that of the weakly magnetized
Schwarzschild case. On the other hand, for the horizonless
Hayward spacetime, it is possible for charged particles to
access the region r < rc where the magnetic field resem-
bles the loops of an isolated dipole. As such most of our
examples will be in this more interesting situation.

A. Bounce and drift motion

Because the magnetic field lines take the dipole loop
form for r < rc, we might expect the trajectories of charged
particles near the core of the horizonless Hayward space-
time to be somewhat analogous to charged particles in
planetary magnetic fields. The motion of classical charged
particles around planetary magnetic field dipoles have been
studied in Refs. [43–46]. In particular, the motion of a
charged particles around a dipole consists of a so-called
bounce motion and drift motion.
As the dipole structure is responsible for this bounce and

drift behavior, this should occur for particles in the regime
r≲ ð4ml2Þ1=3. For nonequatorial motion of a particle with
a charge β, energy E, and angular momentum L, we can
check its domain of existence by ensuring the right-hand
side of Eq. (3.6), namely E − U, is positive. We copy over
the expression for U to this page for the convenience of the
reader:

FIG. 8. Orbits for β ¼ 0.5, r0 ¼ 9, a ¼ 0.1. The solid circle
indicates cyclotron motion in flat spacetime m ¼ 0, centered at
r0 ¼ 9, and ϕ0 ¼ 0. The dotted curve shows the drifting of the
cyclotron circles for the case m ¼ 1, l ¼ 1.

FIG. 7. Perturbed circular orbits about r0 ¼ 0.9 of particles
with charge parameter β ¼ 0.6 in a Hayward spacetime ofm ¼ 1,
l ¼ 1. The dotted blue line indicates the radius r ¼ r�, the point
where _ϕ ¼ 0. For these parameters r� ¼ 9.0108. Numerical
values reported here are shown up to 5 significant figures.
(a) a ¼ r� − r0 − 0.005, ζ ¼ 0.5387 < 1 (curtate cycloid). (b)
a ¼ r� − r0, ζ ¼ 1.0018 ≈ 1 (common cycloid) (c) a ¼ r�−
r0 þ 0.01, ζ ¼ 1.9280 > 1 (prolate cycloid).
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U ¼ f

�
r2sin2θ

�
L

r2sin2θ
− eχ

�
2

þ 1

�
:

Recall that χ becomes negative in the dipole regime
r < ð4ml2Þ1=3. Therefore, due to the term ð L

r2 sin2 θ − eχÞ2,
the effective potential becomes repulsive if L is positive.
This is alleviated for negative L, though eventually a

potential barrier is still inevitable due to the 1=r2 factor.
In any case, we see that orbits with L < 0 can exist closer to
the origin where the magnetic field more resembles the
dipole. Furthermore, we also note that U becomes large as θ
approaches the north and south poles. This gives potential
barriers for θ to oscillate between, giving the bounce
motion.

FIG. 9. Orbits for the magnetized horizonless Hayward spacetime with m ¼ 1, l ¼ 5. The particles have energy E ¼ 0.87, charge
parameter β ¼ 0.5, and are initiated at θ ¼ π

2
, r ¼ rinit, _r ¼ 0, with the initial _θ determined from Eq. (3.5). The left panels are the two-

dimensional projections of the space (see main text), with the shaded regions are domains where E − U < 0, which is inaccessible to the
particle. The little red arrows indicate the direction of the magnetic field B⃗ at each point. The blue curve is the trajectory of the particle in
the projected coordinates. The right panel shows the same trajectory in the usual three-dimensional Cartesian coordinates. (a) l ¼ 1, and
rinit ¼ 4.9. (b) l ¼ −2, and rinit ¼ 4.4.
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The drift motion can be understood as the extension of
the cyclotron drift discussed in Sec. IV D off the equatorial
plane. The physics of the drift is similar: The charged
particles tend to execute circular motion around magnetic
field lines. Here the polar component of the motion carries
the cyclotron circle off the equator. At the same time, the
radial gravitational and Lorentz forces causes the drift of
the cyclotron circle in the ϕ-direction.
Turning to numerical solutions to demonstrate the above

qualitative reasoning, let us now consider an example
in a spacetime of m ¼ 1, l ¼ 5 with a particle of energy
E ¼ 0.87with charge parameter β ¼ 0.5 is shown in Fig. 9.

Angular momenta of two opposite signs are considered;
specifically L ¼ 2 in Fig. 9(a) and L ¼ −2 in Fig. 9(b). In
the left panel of each figure is a depiction of the space
where the azimuthal direction is projected out. More
precisely, it is the map

ðr; θ;ϕÞ ↦ ðr; θÞ; ð5:1Þ

followed by a transformation to cylindrical coordinates with

ρ ¼ r sin θ; z ¼ r cos θ: ð5:2Þ

FIG. 10. Orbits for the magnetized horizonless Hayward spacetime with m ¼ 1, l ¼ 5. The particles with E ¼ 0.95, L ¼ 4, and
β ¼ 0.6. In Fig. 10(a) the particle starts from rest at a point off the equator, and in Fig. 10(b) the particle starts on the equator with an
initial nonzero _θ.
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(Note that we have already used these coordinates when
plotting B⃗ in Sec. II.) The shaded domain correspond to
E − U < 0, which is inaccessible to the particle. The
particles can only access the white domains where
E − U ≥ 0, where the inequality is saturated at the boundary
of the domain. The little red arrows on the left panels show
the magnetic vector field B⃗. The blue curve is the trajectory
of the particle in these projected coordinates. As expected, it
is entirely confined within the accessible (white) domain.
The red curve on the right panels are simply the trajectory in
the usual three-dimensional Cartesian-type coordinates:

X¼ rsinθcosϕ; Y¼ rsinθsinϕ; Z¼ rcosθ: ð5:3Þ

While the equation E − U ≥ 0 depicts the regions acces-
sible to the particle, it may turn out that the particle spends
most of its proper time in a subset of this domain,
depending on its initial conditions. To illustrate this point,
consider Fig. 10 which shows two orbits of particles with
the same β, L, and E in the same spacetime. Only the initial
conditions are different. In Fig. 10(a), the particle starts
from rest (_r ¼ _θ ¼ 0) at a position slightly north of the
equator. (Specifically θ ¼ π

2
− 0.05.) We see that the tra-

jectory mostly in the northern hemisphere. On the other
hand, in Fig. 10(b) the particle starts at the equator with a
nonzero polar velocity (_θ ≠ 0, whose specific value must
obey Eq. (3.5) for a given r ¼ 4.9 and θ ¼ π

2
). We see that

the resulting motion is mostly symmetric about the equator.

B. Polar orbits

We now turn to the case L ¼ 0. Here, there are no more
terms of the form 1= sin θ and therefore the particles are
able to reach the polar axis at θ ¼ 0; π. On the axis itself,
the θ equation (3.4) on the axis becomes

1

r2
d
dτ

ðr2 _θÞ ¼ −e2χ2 sin θ cos θ: ð5:4Þ

We observe that a constant θ ¼ 0 or π remains a solution.
This describes particles of zero angular momentum moving
radially along the north or south polar axis.
Along the axis, the effective potential simplifies to

Uðr; 0Þ ¼ Uð0; πÞ ¼ fðrÞ; ð5:5Þ

in particular it becomes independent of β. This is expected
because on the axis itself, B⃗ points parallel to the axis. So
particles moving radially will not experience a Lorentz
interaction. Its motion is purely due to the gravitational
influence of the Hayward spacetime and would occur
for geodesics of neutral particles and/or charged particles
with the magnetic field turned off. Indeed, in the
horizonless case, the potential has a stable minimum at
r ¼ rc ¼ ð4ml2Þ1=3, where

U 0ðrc; 0Þ ¼ U 0ðrc; πÞ ¼
2

3l2
: ð5:6Þ

Along the polar axis, we have

lim
r→∞

Uðr; 0Þ ¼ lim
r→∞

Uðr; πÞ ¼ 1; ð5:7Þ

so particles can escape to infinity along the axis. At the
origin, we also have Uð0; 0Þ ¼ Uð0; πÞ ¼ 1. Therefore
unbound particles from infinity along, say, the north pole
passes over the potential well and continues passing
through the origin, continuing over the southern well
and continues to infinity.
Particles with energies E ¼ Uðrc; 0Þ or E ¼ Uðrc; πÞ

experience two stable minimum potential at r ¼ rc, one
for each θ ¼ 0 and θ ¼ π, respectively. Increasing the
energy slightly higher than Uðrc; 0Þ or Uðrc; πÞ leads to a
finite potential well that bounds the particle there. If a
particle starts along the axis with _θ ¼ 0, it oscillates about
rc in a straight line along the axis. Otherwise, giving it a
slight polar velocity (_θ ≠ 0), it will then follow a more
complicated curved trajectory around the potential well.

FIG. 11. Polar orbits for the magnetized horizonless Hayward spacetime with m ¼ 1, l ¼ 5. The particles have energy E ¼ 0.8443,
and zero angular momentum, L ¼ 0. The particle has charge parameter β ¼ 0.7, and is initiated at θ ¼ 0, r ¼ 4.6, _r ¼ 0, with the initial
_θ determined from Eq. (3.5).
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For certain ranges of energy, the particle is trapped in a well
that is in one hemisphere containing rc, never crossing the
equator. An example of this is shown in Fig. 11, where
the motion is plotted for a particle of β ¼ 0.7 and energy
E ¼ 0.8443 in a spacetime of m ¼ 1 and l ¼ 5.
If we increase the energy further, the potential wells in

the north and south grows and connects with each other via
a narrow path across the equator. With the right initial
conditions, a charged particle may, for instance, start near
rc at the north, and gets bounced around in the northern
potential well. Eventually it may happen to be bounced into
the narrow path southwards toward the equator and spends
some time in the southern well. This can proceed back and
forth. An example of this is shown in Fig. 12, for β ¼ 0.5,
E ¼ 0.85 in a spacetime m ¼ 1 and l ¼ 5.

VI. CONCLUSION

In this work, we have immersed a Hayward spacetime in
an external magnetic field. This was achieved by solving
Maxwell’s equations with the Hayward geometry as a fixed
background. A crucial requirement of this solution is that
the magnetic field strengths are test fields—they are
sufficiently weak so that fields do not backreact to the
spacetime curvature, and that the geometry continues to be
described by the Hayward metric.
The structure of the magnetic field depends on the

characteristic radius rc ¼ ð4ml2Þ1=3. At r≳ rc, the mag-
netic field tends to be homogeneous and parallel to the
z-axis, in agreement to the weakly magnetized
Schwarzschild solution. For r≲ rc, the magnetic field lines
have a dipole-loop structure. There are two points where the
field is zero, which is at r ¼ rc on the north and south z-axis.

The equations of motion for a charged particle was
derived using the Lagrangian formalism. For magnetized
Hayward black holes, particles behave mostly similar to the
magnetized Schwarzschild case, with the Hayward param-
eter l modifying the details of the orbital parameters. In
particular, there are two sets of circular orbits with energy
and angular momentum are given by E� and L�, respec-
tively. The presence of l decreases the size of the ISCOs
(innermost stable circular orbits). For the horizonless
Hayward case, there exists a second potential well near
the origin. Therefore, within each set of circular orbit (the
“þ” or “−” set), there are generically three branches of
circular orbits, two of which are stable. We have identified
two radii rOCCO� and rICCO�, where circular orbits of
radii rICCO� < r < rOCCO� are unstable. The two stable
branches are circular orbits of radii r < rICCO� and
r > rOCCO�.
Due to the looped field lines of r < rc, charged particles

in this region behave differently from that of the mag-
netized Schwarzschild case. For certain choices of param-
eters, the charged particles move in helical motion around
a field line, bouncing between two fixed polar angles.
This bounce motion additionally has a drift in the
azimuthal direction. So the motion can be seen as
analogous to that of charged particles around planetary
magnetic fields.
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FIG. 12. Polar orbits for the magnetized horizonless Hayward spacetime with m ¼ 1, l ¼ 5. The particles have energy E ¼ 0.85, and
zero angular momentum, L ¼ 0. The particle has charge parameter β ¼ 0.5, and is initiated at θ ¼ 0, r ¼ 4, _r ¼ 0, with the initial _θ
determined from Eq. (3.5).
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