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We numerically explore the structure of quasinormal (QN) frequencies of the five-dimensional small and
large Kerr-anti–de Sitter (Kerr-AdS5) black hole with equal and unequal rotations. Our investigation also
covers low and high Hawking temperatures. We then study the stability of the Kerr-AdS5 black hole and the
structure of highly damped QN modes, which would reflect the thermodynamic property of the Kerr-AdS5
black hole. We find that the highly damped complex QN frequencies of a nearly maximally spinning Kerr-
AdS5 black hole have the periodic separation of the surface gravity at the horizon in the imaginary part
while the real part converges to the superradiant frequency, which may be relevant to the pole structure of
the thermal Green’s function in the corresponding conformal field theory on the Kerr-AdS5 boundary.
Finally, we discuss a relation between the QN modes of the Kerr-AdS5 black hole and the Hod’s conjecture
on the horizon area quantization along with the analysis of the horizon topology of the Kerr-AdS5 black
hole. We show that in general, an ultraspinning Kerr-AdS5 black hole, whose spin parameter is
infinitesimally close to the AdS curvature radius, has its noncompact horizon, and based on the Hod’s
conjecture, we argue that the horizon area may be continuous, that is, the unit area of the horizon vanishes
in the ultraspinning regime.

DOI: 10.1103/PhysRevD.105.124044

I. INTRODUCTION

Higher-dimensional gravity is important in the holo-
graphic principle [1–4], the braneworld scenario [5–9], and
the landscape [10] of the string theory. In these contexts,
black holes in higher dimensions play pivotal roles, e.g.,
thermality of the conformal field theory (CFT) on the anti–
de Sitter (AdS) boundary [11,12], the source of dark
radiation in braneworld models [13–15], and so on.
Another interesting aspect of higher-dimensional black
holes is that there is no corresponding theorem to a
uniqueness theorem, which states that the stationary and
asymptotically flat black hole is described by the Kerr
solution in four-dimensional spacetime. In higher-dimen-
sional spacetime, many black objects can exist, and their
stability is an open problem. The analysis of quasinormal
(QN) modes of black holes is a good probe to see its
stability. The positivity of the imaginary part of complex
QN frequencies leads to the exponential growth of the
perturbation of black holes. The structure of QN modes is
also relevant to the context of the holography as the QN

modes of black holes in AdS space are conjectured to be
dual with the poles of Green’s function of the CFT on the
AdS boundary (see Ref. [16] for the simplest case of the
duality in the BTZ black hole). The structure of QN modes
of black holes could shed light on the quantum nature of
black hole horizons as well. According to the Hod’s
conjecture [17], the real part of highly damped QN
frequencies determines the unit area of a horizon. It would
be an interesting question if the concept of the horizon area
quantization can be extended to higher-dimensional gravity
for which there are rich structures such as black holes,
black rings, black strings, and so on.
In this work, we consider the QN frequencies of a scalar

field in the Kerr-AdS5 spacetime [18,19] to understand the
stability, thermality, and area quantization of the black hole
horizon. The scalar perturbations of the Kerr-AdS5 black
hole are governed by the Klein-Gordon equation that
reduces to the Heun’s differential equation by performing
the coordinate transformations and the redefinition of the
perturbation variables [20]. Therefore, the solution of the
equation is represented by the Heun function.
The analysis of AdS5 spacetime with a black hole and/or

compactified extradimensional space has been done mainly
for holographic applications [21–25]. Analytical and
numerical studies of the QN modes of the Kerr-AdS5
spacetime have been recently done in Refs. [26–30] by
performing the expansion of the τ-function for the Painlevé
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transcendents. In special cases, e.g., nearly equal spins,
small spins, near extremal, or small mass regimes, the
expansion of the τ-function converges fast and makes the
computation of QN frequencies tractable. On the other
hand, in our computation, we use the solution of the
Teukolsky equations represented by the Heun functions,
which makes the computation of the QN modes substan-
tially fast, and allows us to investigate broader parameter
regions of the Kerr-AdS5 spacetime. Our investigation
covers not only small black holes that in general lead to
instability but also large black holes that are stable against
linear perturbations. Also, our computation can be applied
to search for not only the fundamental QN mode but also
other overtones, including highly damped modes. Our
computation with those advantages allows us to make a
“global map” of the locations of QN modes of Kerr-AdS5

spacetime, which would be useful to understand the
stability of the background spacetime and even the Kerr-
AdS=CFT correspondence [31].
In the next section, we provide a review of the scalar

perturbation of the Kerr-AdS5 black hole. In Sec. III, we
study the QN modes of the Kerr-AdS5 black hole with
equal spins in the small and large mass regimes. In Sec. IV,
we investigate the QN modes for the unequal spins in the
small and large mass regimes. In Sec. V, we discuss some
implications to the area quantization of the Kerr-AdS5
black hole by applying the Hod’s conjecture to our results.
Also, we analyze the topology of the horizon of the Kerr-
AdS5 black hole in the ultraspinning limit for which its spin
parameter is infinitesimally close to the AdS curvature
radius l. Finally, we summarize our results and conclusions
in Sec. VI.

II. FORMALISM

The Kerr-AdS5 spacetime has the following metric

ds2 ¼ −
Δr

ρ2

�
dt −

a1sin2θ
1 − a21

dϕ −
a2cos2θ
1 − a22

dψ

�
2

þ Δθsin2θ
ρ2

�
a1dt −

r2 þ a21
1 − a21

dϕ

�
2

þ 1þ r2

r2ρ2

�
a1a2dt −

a2ðr2 þ a21Þsin2θ
1 − a21

dϕ −
a1ðr2 þ a22Þcos2θ

1 − a22
dψ

�
2

þ Δθcos2θ
ρ2

�
a2dt −

r2 þ a22
1 − a22

dψ

�
2

þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2; ð1Þ

where M is the mass parameter, the AdS curvature radius is set to l ¼ 1, a1 and a2 are the spin parameters for the two
rotations of the Kerr-AdS5 black hole, and

Δr ≡ 1

r2
ðr2 þ a21Þðr2 þ a22Þð1þ r2Þ − 2M; ð2Þ

Δθ ≡ 1 − a21 cos
2 θ − a22 sin

2 θ; ð3Þ

ρ2 ≡ r2 þ a21 cos
2 θ þ a22 sin

2 θ: ð4Þ

Based on the thermodynamic description of the Kerr-AdS5 spacetime, the Arnowitt-Deser-Misner (ADM) mass and angular
momentum are given by [32–34]

M≡ πMð2Ξ1 þ 2Ξ2 − Ξ1Ξ2Þ
4Ξ2

1Ξ2
2

; J ϕ ≡ πMa1
2Ξ2

1Ξ2

; J ψ ≡ πMa2
2Ξ1Ξ2

2

; ð5Þ

where Ξi ≡ 1 − a2i (i ¼ 1, 2). The spin parameters are restricted to ai ≤ 1, for which all the physical quantities in (5) are
well-defined. We here compute the QN modes of the Kerr-AdS5 black hole and investigate the instability of a scalar field
Φðt; r; θ;ϕ;ψÞ with mass μ. Let us start with the Klein-Gordon equation

½□ − μ2�Φ ¼ 0; ð6Þ

and decomposing Ψ as Ψ ¼ e−iωtþim1ϕþim2ψΘðθÞΠðrÞ, one has the radial and angular equations:

KOGA, OSHITA, and UEDA PHYS. REV. D 105, 124044 (2022)

124044-2



1

r
d
dr

�
rΔr

dΠðrÞ
dr

�
−
�
λþ μ2r2 þ 1

r2
ða1a2ω − a2ð1 − a21Þm1 − a1ð1 − a22Þm2Þ2

�
ΠðrÞ

þ ðr2 þ a21Þ2ðr2 þ a22Þ2
r4Δr

�
ω −

m1a1ð1 − a21Þ
r2 þ a21

−
m2a2ð1 − a22Þ

r2 þ a22

�
2

ΠðrÞ ¼ 0; ð7Þ

1

sinθ cosθ
d
dθ

�
sinθ cosθΔθ

dΘðθÞ
dθ

�
−
�
−λþω2 þ ð1− a21Þm2

1

sin2θ
þ ð1− a22Þm2

2

cos2θ

−
ð1− a21Þð1− a22Þ

Δθ
ðωþm1a1 þm2a2Þ2 þ μ2ða21cos2θþ a22sin

2θÞ
�
ΘðθÞ ¼ 0; ð8Þ

where λ is the separation constant to be determined so that ΘðθÞ is regular at θ ¼ 0 and θ ¼ π=2 [20]. Performing the
following transformations:

r → z≡ r2 − r2−
r2 − r20

; ð9Þ

ΠðrÞ → RðzÞ≡ zθ−=2ðz − z0Þθþ=2ðz − 1Þ−Δ=2ΠðzÞ; z0 ≡ r2þ − r2−
r2þ − r20

; ð10Þ

sin2 θ → u≡ sin2 θ
sin2 θ − χ0

; with χ0 ≡ 1 − a21
a22 − a21

; ð11Þ

ΘðθÞ → SðuÞ≡ u−m1=2ðu − 1Þ−Δ=2ðu − u0Þ−m2=2ΘðuÞ; ð12Þ

with r− and rþ being the inner and outer horizon radii, respectively, r0 being the imaginary root of Δr, Δ≡ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ μ2

p
,

and u0 ≡ ða22 − a21Þ=ða22 − 1Þ, the radial and angular equations reduce to the Heun’s differential equations:

d2R
dz2

þ
�
1 − θ−

z
þ −1þ Δ

z − 1
þ 1 − θþ

z − z0

�
dR
dz

þ
�

κ1κ2
zðz − 1Þ −

K
zðz − 1Þðz − z0Þ

�
R ¼ 0; ð13Þ

d2S
du2

þ
�
1þm1

u
þ −1þ Δ

u − 1
þ 1þm2

u − u0

�
dS
du

þ
�

q1q2
uðu − 1Þ −

Q
uðu − 1Þðu − u0Þ

�
S ¼ 0; ð14Þ

where

θi ≡ i
2π

ω −m1Ωi;1 −m2Ωi;2

Ti
; ð15Þ

Ti ≡ r2iΔ0
rðriÞ

4πðr2i þ a21Þðr2i þ a22Þ
; Ωi;1 ≡ a1Ξ1

r2i þ a21
; Ωi;2 ≡ a2Ξ2

r2i þ a22
; ð16Þ

κ1 ≡ −
1

2
ðθ− þ θþ − Δ − θ0Þ; κ2 ≡ −

1

2
ðθ− þ θþ − Δþ θ0Þ; ð17Þ

q1 ≡ 1

2
ðm1 þm2 þ Δ − ζÞ; q2 ≡ 1

2
ðm1 þm2 þ Δþ ζÞ; ð18Þ

ζ ≡ ωþ a1m1 þ a2m2; ð19Þ

K ≡ −
1

4

�
λþ μ2r2− − ω2

r2þ − r20
þ ðz0 − 1Þ½ðθþ þ θ− − 1Þ2 − θ20 − 1� þ z0½2ðθþ − 1Þð1 − ΔÞ þ ð2 − ΔÞ2 − 2�

�
; ð20Þ
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Q≡ −
1

4

�
ω2 þ a21μ

2 − λ

a22 − 1
þ u0½ðm2 þ Δ − 1Þ2 −m2

2 − 1� þ ðu0 − 1Þ½ðm1 þm2 þ 1Þ2 − ζ2 − 1�
�
: ð21Þ

The general solution of the Heun’s differential equation, (13), is

R ¼ c0Rinðω; zÞ þ d0Routðω; zÞ

≡ c0Hl
�

z0
z0 − 1

;
−K

z0 − 1
; κ1; κ2; 1 − θþ;Δ − 1;

z0 − z
z0 − 1

�

þ d0

�
z0 − z
z0 − 1

�
θþ
Hl

�
z0

z0 − 1
;
θþ½z0ðΔ − θ−Þ − 1þ θ−�

z0 − 1
−

K
z0 − 1

; κ1 þ θþ; κ2 þ θþ; 1þ θþ;Δ − 1;
z0 − z
z0 − 1

�
; ð22Þ

for z ∼ z0ðr ∼ rþÞ, and

R ¼ c1RAdSðω; zÞ þ d1RDivðω; zÞ
≡ c1Hlð1 − z0; κ1κ2 − K̃; κ1; κ2;Δ − 1; 1 − θ−; 1 − zÞ
þ d1ð1 − zÞ2−ΔHlð1 − z0; ½ð1 − z0Þð1 − θ−Þ þ 1 − θþ�ð2 − ΔÞ þ κ1κ2 − K̃;

κ1 þ 2 − Δ; κ2 þ 2 − Δ; 3 − Δ; 1 − θ−; 1 − zÞ; ð23Þ

for z ∼ 1ðr ∼∞Þ. Here ci and di (i ¼ 0, 1) are arbitrary constants and we define K̃ ≡ K þ κ1κ2z0. For the angular
equation (14), its general solution is

S ¼ c̃0Hlðu0; Q̃; q1; q2; 1þm1;Δ − 1; uÞ þ d̃0zm1Hlðu0; Q̃ −m1½u0ðΔ − 1Þ þm2 þ 1�;
q1 −m1; q2 −m1; 1 −m1;Δ − 1; uÞ ð24Þ

around u ∼ 0 (θ ∼ 0), and

S ¼ c̃1Hl
�

u0
u0 − 1

;
−Q

u0 − 1
; q1; q2; 1þm2;Δ − 1;

u0 − u
u0 − 1

�

þ d̃1

�
u0 − u
u0 − 1

�
−m2

Hl
�

u0
u0 − 1

;
−Q −m2½u0ðΔþm1Þ − ð1þm1Þ�

u0 − 1
;

q1 −m2; q2 −m2; 1 −m2;Δ − 1;
u0 − u
u0 − 1

�
ð25Þ

around u ∼ u0 (θ ∼ π=2), where c̃i and d̃i (i ¼ 0, 1) are arbitrary constants and Q̃≡Qþ q1q2u0. To ensure the ingoing
and Dirichlet boundary conditions at r ¼ rþ and r ¼ ∞, respectively, one has to impose the following boundary condition
for ΠðzÞ

ΠðzÞ ∼
� ðz − z0Þ−θþ=2 for z → z0ðr → rþÞ;
ðz − 1ÞΔ=2 for z → 1ðr → ∞Þ; ð26Þ

and for ΘðuÞ, the regular condition at u ¼ 0 (θ ¼ 0) and u ¼ u0 (θ ¼ π=2) is

ΘðuÞ ∼
�
ujm1j=2 for u → 0;

ðu − u0Þjm2j=2 for u → u0:
ð27Þ

To satisfy the boundary condition (26), RðzÞ should take the following form at the boundaries

R ∼ Rinðω; zÞ for z ∼ z0; ð28Þ

R ∼ RAdSðω; zÞ for z ∼ 1: ð29Þ
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For u ∼ 0, on the other hand, SðuÞ takes the following form

S ¼ S0 ≡
�
Hlðu0; Q̃; q1; q2; 1þm1;Δ − 1; uÞ for m1 ≥ 0;

z−m1Hlðu0;−m1½u0ðΔ − 1Þ þ 1þm2� þ Q̃; q1 −m1; q2 −m1; 1 −m1;Δ − 1; uÞ for m1 ≤ 0;
ð30Þ

and for u ∼ u0, SðuÞ is

S ¼ Su0 ≡
8<
:

Hl
	

u0
u0−1

; q1q2u0−Q̃u0−1
;q1; q2; 1þm2;Δ− 1; u0−uu0−1



for m2 ≥ 0	

u0−u
u0−1



−m2Hl

	
u0

u0−1
; −m2½u0ðm1þΔÞ−1−m1�

u0−1
þ q1q2u0−Q̃

u0−1
;q1 −m2; q2 −m2; 1−m2;Δ− 1; u0−uu0−1



for m2 ≤ 0:

ð31Þ

In the following sections, we use theWolfram Mathematica
to search for the eigenvalues λlm1m2n and QN frequencies
ωlm1m2n for which the boundary conditions (28)–(31) are
satisfied. Note that a function HeunG½ā; q̄; ᾱ; β̄; γ̄; δ̄; x� in
Mathematica is not defined for a nonpositive integer of
γ̄ as the power expansion of the Heun function is singular in
such a case. Therefore, RDiv in (23) cannot be defined
in Mathematica when Δ ¼ n� with n� ∈ f4; 5; 6;…g.
Nevertheless, this does not affect our numerical computation
to findQN frequencies because our computation searches for
the zeros of theWronskian ofRin andRAdS, both ofwhich are
well defined even for Δ ¼ n�. More details of our compu-
tation including its accuracy are discussed in Appendix.

III. STABILITY ANALYSIS FOR EQUAL
SPINS (a1 = a2)

In this section, we numerically investigate the QN
frequencies for a Kerr-AdS5 black hole with a1 ¼ a2 ≡ a.
For equal spins, the angular equation reduces to the hyper-
geometric differential equation, and one can obtain the
analytic expression of the eigenvalue λ [20]

λ ¼ ð1 − a2Þ½lðlþ 2Þ − 2ωaðm1 þm2Þ − a2ðm1 þm2Þ2�
þ a2ω2 þ a2ΔðΔ − 4Þ; ð32Þ

where l ¼ 0; 1; 2;… is the angular mode. We can obtain
QN frequencies by solving the radial equation (13) with
λ ¼ λðωÞ given in (32) and by searching for ω ¼ ωlm1m2n

at which the obtained solution satisfies the boundary
condition (26).

A. Small black holes M ≪ 1

For small black holes, QN frequencies are localized
near the real axis of the complex frequency plane,
jReðωlm1m2nÞj ≫ jImðωlm1m2nÞj, due to trapped modes in
the AdS boundary. Also, the superradiant instability is
caused by the resonance between the ergoregion and AdS
boundary. The stability of the black hole can be read from
the sign of the imaginary part of QN frequencies, and
Imðωlm1m2nÞ > 0 means that the background spacetime is
unstable against linear perturbations. For small Kerr-AdS5
black holes, the unstable QN modes satisfy the following
condition

Reðωlm1m2nÞ < m1Ωþ;1 þm2Ωþ;2 ≡Ω: ð33Þ

Here it is natural to ask which overtone leads to the most
significant instability when multiple overtones satisfy the
above condition. To see this, we first investigate QN modes
for l ¼ 1, 2, 3 in Fig. 1, and it is found that l ¼ 1mode leads
to the most significant instability. We then study the spin-
dependence of QN modes with ðl; m1; m2Þ ¼ ð1; 1; 0Þ, and
the result is shown in Fig. 2. It is shown that rapid rotations
destabilize the Kerr-AdS5 black holes, and the peak of
Imðωlm1m2nÞ is slightly below the superradiant frequency
of Ω. We also confirm that our result shown in Fig. 2 is
consistent with the condition of the superradiant instabil-
ity (33) as Reðωlm1m2nÞ<136.422 and Reðωlm1m2nÞ <
11.795 for a ¼ 10−3 and a ¼ 10−4, respectively.1 In the
following, we will omit the subscript þ from Ωþ;i. Besides
the QN modes localized near the real axis of ω, highly

FIG. 1. Each point represents a QN frequency, ωlm1m2n, and
unstable overtones, labeled by n, are plotted for each harmonic
mode ðl; m1; m2Þ. We set a1 ¼ a2 ¼ 4 × 10−4, M ¼ 10−5 and
μ ¼ 10−2.

1Note that fixing the spin and mass parameters, ai and M, is
equivalent to fixing the ADM mass and angular momenta shown
in (5). Also, the angular momenta, JϕðM;aiÞ and Jψ ðM; aiÞ, are
monotonically increasing functions with respect to ai when
ai ≤ 1.
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FIG. 2. Plot of QN frequencies for various spin parameters. In the left and right panels, the imaginary part is shown in log and linear
scale, respectively. Each marker indicates the complex value of each QN frequency. We set M ¼ 10−5 and μ ¼ 10−2, and the spin
parameters are in the range of 10−4 ≤ að¼ a1 ¼ a2Þ ≤ 10−3. The angular modes are fixed as ðl; m1; m2Þ ¼ ð1; 1; 0Þ that is equivalent
to (1,0,1).

FIG. 3. Plots of the coefficient jD1ðωÞj defined in (34). The parameters are set to a ¼ �0.07, M ¼ 0.01, and ðl; m1; m2Þ ¼ ð2; 1; 1Þ.
The type-II modes are numbered by non-negative integers, n, in ascending order of the damping rates.
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damped QNmodes are localized near the line of ReðωÞ ¼ Ω
in the complex frequency plane, as is shown in Fig. 3. The
coefficient D1ðωÞ, defined as

RBHðω; zÞ ¼ C1ðωÞRAdSðω; zÞ þD1ðωÞRDivðω; zÞ; ð34Þ

is plotted in Fig. 3, and it vanishes at ω ¼ ωlm1m2n.
Hereinafter, we call QN modes localized near the real axis
ofω and those localized near the superradiant frequency type
I and type II, respectively. The type-Imodes are caused by the
resonance between the AdS barrier and the angular momen-
tumbarrier. On the other hand, type-IImodesmay be relevant
to the thermality of the Kerr-AdS5 black hole as their
separation in frequency space is nearly equal to the surface
gravity ofKerr-AdS5 blackhole2πTH, and the real part of the
type-II modes can be interpreted as the chemical potential.
Figure 4 shows the trajectories of the type-I and type-II
modes with respect to the change of the Hawking temper-
ature. One can see that the lower theHawking temperature of
the Kerr-AdS5 black hole is, the stronger the localization of
type-II modes at the superradiant frequency is (see Fig. 5).
Also, the separation of the imaginary part of QN frequencies,
defined as ΔImðωlm1m2nÞ≡ Imðωlm1m2n − ωlm1m2ðnþ1ÞÞ,
approaches 2πTH in the zero-temperature limit. It looks like

the behaviors of highly damped QNmodes are insensitive to
μ at least for 0.01 ≤ μ ≤ 10.
In the next subsection, we will see the massive case,

M≳ 1, for which the lowest Hawking temperature is
nonzero and finite due to the upper bound on the two
spins (ai ≤ 1 with i ¼ 1, 2). We will show the structure of
the type-II modes in the complex frequency plane for the
lowest Hawking temperature.

B. Large black holes M≳ 1

Massive Kerr-AdS5 black holes (M≳ 1) are stable
against linear perturbations, which is equivalent to
Imðωlm1m2nÞ < 0 for all modes, since the cavity between
the angular momentum barrier of the black hole and the
AdS boundary to cause the resonant instability does not
exist for massive black holes. The trajectories of QN
modes for M ¼ 5 is shown in Fig. 6. Note that type-I
modes (dashed lines) correspond to the QN modes that
localize near the real axis of ω in the small mass regime
(cf. Sec. III A). In that case, the type-I modes are caused by
the resonance in the AdS boundary, and thus, the type-I
modes periodically appear near the real axis of ω, which is
similar to the normal modes of a vibrating string. In the
massive case, on the other hand, type-I modes are highly
suppressed especially for a → 1, while type-II modes

FIG. 4. Trajectories of QN frequencies for M ¼ 0.01, ðl; m1; m2Þ ¼ ð2; 1; 1Þ, and μ ¼ 0.01. The solid and dashed lines indicate the
type-I and type-II QN modes, respectively. The spin parameter a runs from a ¼ 10−4 (brown triangles) to a ≃ 0.999996amax (blue dots)
in (b) and (c). The spin parameter runs up to a ¼ 0.99999amax (blue dots) in (d). The maximum spin parameter is amax ¼
0.070536282… and the red squares in (d) indicate the QN frequencies at a ¼ 0.07. The arrows indicate the direction in which the spin
parameter, a, increases.
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localize at ReðωÞ ¼ Ω (see Fig. 6). Note that in the limit
of a → 1, the superradiant frequency also vanishes
Ω ∝ ð1 − a2Þ → 0. We also find that the type-II modes
appear from the region of ReðωÞ > Ω for a > 0 and they do
from the region of ReðωÞ < Ω for the counterrotations
(a < 0), as is shown in Fig. 7, where the absolute value of
jD1ðωÞj is shown in the log-scale.

We confirm that the separation ΔImðωlm1m2nÞ
approaches 2πTH for a → 1 as is shown in Fig. 8. It looks
like the separation converges to 2πTH for highly damped
modes (higher overtone number n) though it is dispersive,
and its convergence is weaker when the mass of the scalar
field, μ, is massive. This implies that the convergence of
ΔImðωlm1m2nÞ to 2πTH for n ≫ 1 is delayed or that the
thermality of the Kerr-AdS5 black hole would be disturbed
by the mass of surrounding fields. Figure 9 shows that
nevertheless the real part of type-II modes strongly con-
verges to the superradiant frequencyΩ in the ultra-spinning
limit for both small and large μ. As a final remark of this
section, we have numerically computed the type-II QN
frequencies up to finite overtone numbers. There is still a
possibility that even high-temperature Kerr-AdS5 black
holes have the thermal structure of their QN modes at
n → ∞, i.e., the real part and the separation of the
imaginary part of the type-II modes match Ω and 2πTH,
respectively, in the highly damped limit.

IV. STABILITY ANALYSIS FOR UNEQUAL
SPINS (a1 > a2)

In this section, we numerically investigate the configu-
ration of QN modes in the complex frequency plane for
Kerr-AdS5 black holes with unequal-spin parameters
a1 > a2. In this case, the symmetry of spacetime reduces

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6

nn=0
nnn=1
nn=2
nn=3
nn=4
nn=5
nn=6

FIG. 5. The real part and the separation in the imaginary part of QN frequencies are shown with respect to ðamax − aÞ=amax in the
upper left and upper right panels, respectively. We change the opacity of each line to distinguish the case of μ ¼ 0.01 (transparent lines)
and μ ¼ 10 (opaque lines). The other parameters are set to M ¼ 0.01 and ðl; m1; m2Þ ¼ ð2; 1; 1Þ. In the left panel, the black solid line
indicates the superradiant frequency, Ω, that depends on a, and the black dashed line shows the value of Ω at the extremal case
(a ¼ amax). The blue dashed line in the right panel is 2πTHðaÞ. As a reference, the region of 10−3.3 ≤ ðamax − aÞ=amax ≤ 10−3.26 is
zoomed in and displayed in the lower panels.

FIG. 6. Trajectories of QN frequencies for M ¼ 5 and
ðl; m1; m2Þ ¼ ð2; 1; 1Þ. The spin parameter a runs from a ¼
0.01 to a ¼ 0.99. The dashed and solid lines indicate the type-I
and type-II QN modes, respectively. The arrows indicate the
direction in which the spin parameter, a, increases.
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to Uð1Þ × Uð1Þ while it is enhanced to Uð2Þ for a1 ¼ a2.
We investigate how the reduction of the symmetry affects
the superradiant instability in Sec. IVA and study the
structure of highly damped QN modes for unequal spins in
Sec. IV B.

A. Small black holes M ≪ 1

To see which harmonic mode is the most significant to
destabilize the system, we numerically compute the QN
frequencies for various values of the spin ratio, a2=a1. We
then numerically confirm that the most dominant instability
is caused by the mode of ðl; m1; m2Þ ¼ ð1; 1; 0Þ for a1 > a2
as is shown in Fig. 10. Therefore, we consider the
instability of (1,1,0) only and investigate how the reduction
of the symmetry of spacetime affects the instability.2 We
compute the QN frequencies by fixing the ADM mass, the
mass of the scalar field, and the superradiant frequency in
Fig. 11. As a result, we find that the instability is more

significant when the spin ratio a2=a1 is smaller. Our result
implies that the symmetry reduction of the Kerr-AdS5 black
hole leads to the enhancement of the superradiant insta-
bility when M, μ, and Ω1 are fixed.
We found that the structure of type-II modes exhibits the

thermodynamic nature of the Kerr-AdS5 black hole in the
low-temperature or ultraspinning limits with a1 ¼ a2 (see
Sec. III A and III B). We here investigate if the thermal
interpretation of the type-II modes holds even for unequal
spins (a1 ≠ a2). The left panel in Fig. 12 shows that the real
part of type-II modes approaches the superradiant fre-
quency for lower TH, which is similar to the case of small
Kerr-AdS5 black holes with equal spins (see Fig. 5). From
the right panel in Fig. 12, one can also see that ΔImðω211nÞ
matches 2πTH in the low-temperature limit. From those
results, we confirm that the thermodynamic nature of the
Kerr-AdS5 black hole we observed for the equal spin case
still holds even for unequal spins.

B. Large black holes M≳ 1

We here investigate the type-II QN frequencies of a large
black hole M≳ 1 with unequal spins. The Kerr-AdS5

FIG. 7. 3D plots of the coefficient jD1ðωÞj in the complex frequency plane. The zeros of D1 correspond to the complex QN
frequencies, ω ¼ ωlm1m2n, and the pink and black arrows indicate the type-I and type-II modes, respectively. Here we set
ðl; m1; m2Þ ¼ ð2; 1; 1Þ, M ¼ 5, and μ ¼ 0.01. The spins are set to a ¼ 0.4 (left) and a ¼ −0.4 (right).

FIG. 8. Plots of ΔImðω211nÞ for μ ¼ 10 (left) and μ ¼ 0.01 (right). The black line indicates 2πTHðaÞ, and black dashed line indicates
2πTHða → 1Þ. The other parameters are set to M ¼ 10 and ðl; m1; m2Þ ¼ ð2; 1; 1Þ.

2The opposite hierarchy between a1 and a2 ða2=a1 > 1Þ
results in the suppression of the instability of (1,1,0), and then
the instability caused by (1,0,1) mode becomes dominant.
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FIG. 9. Plots of Reðω211nÞ for μ ¼ 10 (upper left) and μ ¼ 0.01 (upper right). The other parameters are set to M ¼ 10 and
ðl; m1; m2Þ ¼ ð2; 1; 1Þ. We change the opacity of each line to distinguish the case of μ ¼ 0.01 (transparent lines) and μ ¼ 10 (opaque
lines). The region of 1.0 × 10−3 ≤ 1 − a ≤ 1.1 × 10−3 is zoomed in and displayed in the lower panel for comparison.

FIG. 10. QN frequencies of l ¼ 1, 2, 3 modes for various ratio of spin parameters (a2=a1 ¼ 0.1, 0.5, 0.9, and 1). We set the
background metric as M ¼ 10−5, μ ¼ 10−2, and a1 ¼ 10−3.
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spacetime is stable forM≳ 1 in the case of unequal spins,
a1 > a2, as well. In Fig. 13, the QN frequencies are shown
up to the 4th overtone. We can see that each QN frequency
has a bent path when the Hawking temperature changes
while the other quantities are fixed (left panel in Fig. 13).
As a Kerr-AdS5 black hole becomes massive, the back-
ground spacetime is getting stabilized, which can be seen
in the right panel of Fig. 13 and is similar to the equal
spin case.
We have numerically shown that the damping rates of the

type-II QN modes of a small Kerr-AdS5 black hole with
unequal spins also have the periodicity of 2πTH. We here
numerically check that the intriguing thermodynamic
property of highly damped modes holds even for Kerr-
AdS5 black holes with large mass and unequal spins. We
show the separation ΔImðωlm1m2nÞ as a function of 1 − a1
in Fig. 14. For highly damped modes, the separation

FIG. 13. Trajectories of QN frequencies in the complex frequency plane. In the left panel, we setM ¼ 1 and the Hawking temperature
changes from the lower value of TH ¼ 0.01 to the maximum temperature while fixing the spin ratio a2=a1. The red open circles indicate
the QN frequencies for which TH takes the maximum value. In the right panel, the Hawking temperature is fixed at TH ¼ 0.01 and the
ADM mass changes from M ¼ 0.01 (black open circles) to M ¼ 1. The arrows indicate the direction in which the ADM mass
increases. The harmonic mode is set to ðl; m1; m2Þ ¼ ð2; 1; 1Þ.

FIG. 12. The real part and the separation of the imaginary part of QN frequencies are shown with respect to ðamax − a1Þ=amax in the
left and right panels, respectively. We set a2=a1 ¼ 0.9, M ¼ 0.01, and μ ¼ 0.01. In the left panel, the black solid line indicates the
superradiant frequency,Ω, that depends on a1, and the black dashed line shows the value ofΩ at the extremal case (a1 ¼ amax). The blue
dashed line in the right panel shows 2πTHða1Þ.

FIG. 11. Plot of QN frequencies for various values of the spin
ratio. Each marker indicates the complex value of each QN
frequency. We set M ¼ 10−5, μ ¼ 10−2, and superradiant fre-
quency Ω ¼ 116, and the spin ratio is set to a2=a1 ¼ 1, 0.9, 0.5,
and 0.1. The angular modes are fixed as ðl; m1; m2Þ ¼ ð1; 1; 0Þ.
The black dashed line indicates the superradiant frequency.
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FIG. 14. The separation of the imaginary part of the type-II QN frequencies is shown as a function of 1 − a1 in the ultraspinning limit.
The harmonic mode is set to ðl; m1; m2Þ ¼ ð2; 1; 1Þ and M ¼ 10. The black solid lines show the values of 2πTHða1Þ.

FIG. 15. Real part of the QN frequencies in the ultraspinning limit. The spin ratio is fixed as a2=a1 ¼ 0.1, 0.5, 0.8, and 1, the mass
parameter is M ¼ 10, and the harmonic mode is ðl; m1; m2Þ ¼ ð2; 1; 1Þ. The QN frequencies are shown up to the 4th overtone. For the
equal spins, the real part of QN frequencies approaches zero as Ω → 0 in the ultraspinning limit. For unequal spin case, Reðω211nÞ
saturates at Ω > 0. The black lines indicate the value of Ω.
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approaches 2πTH in the ultraspinning limit.3 Also,
Figure 15 shows the real part of the type-II QN frequencies
for up to the 4th overtone, and one can see that Reðωlm1m2nÞ
approaches ReðωÞ ¼ Ω as a1 → 1. In the next section, we
discuss an implication we can obtain by combining our
result and the Hod’s conjecture on the black hole area
quantization [17].

V. AREA QUANTIZATION OF THE Kerr-AdS5
BLACK HOLE

In the previous section, we found that the real part of the
highly damped QN frequencies approaches the superra-
diant frequency. The strong localization at ReðωÞ ¼ Ω can
be seen in the low-temperature or ultraspinning limits.
According to the Hod’s conjecture [17], the asymptotic
value of the real part of QN frequencies of massless fields
determines the smallest size of a quantized horizon area,
ΔA, and the horizon area is given by A ¼ NmaxΔA. The
integer Nmax is the total number of the unit area on the
horizon. Although our computation has been performed
mainly for4 μ ¼ 0.01, we confirm that the values of QN
frequencies are well converged to the values for μ ¼ 0, at
least in the range of μ ≤ 0.01 (see Fig. 16). Hence we
assume that the scalar field with μ ¼ 0.01 is effectively
massless in our situation. In this section, we discuss the
relation between the QN modes and the horizon area
quantization for the Kerr-AdS5 black holes.
Let us briefly review the Hod’s conjecture and its

physical interpretation. Hod proposed that the overtone
number n may be interpreted as a quantum number
characterizing the energy levels of a black hole as an
analogy of a hydrogen atom, as in the Bohr’s corresponding
principle. Based on this idea, the discretized values of the
real part of QN frequencies might be associated with the
energy of quanta which the black hole can emit or absorb.
From this point of view, the mass of a Schwarzschild black
hole may be quantized as

ΔM ¼ lim
n→∞

Reðωlm1m2nÞ; ð35Þ

which leads to the horizon area quantization as
ΔA=4G ¼ ΔM=TH. At least, for the Schwarzschild [35]
and Kerr [36,37] black holes, the asymptotic value of the
real part of QN frequencies is independent of the angular

index l and is universal. The quantization of the Kerr-AdS5
black hole mass may also lead to the horizon area
quantization.5 The first law of black hole thermodynamics
in the Kerr-AdS5 spacetime is [32]

ΔM ¼ TH
ΔA
4G

þ
X2
i¼1

ΩiΔJi: ð36Þ

Assuming (35), ΔJi ¼ mi, and

lim
n→∞

Reðωlm1m2nÞ → Ω ¼
X
i

miΩi; ð37Þ

the first law reduces to

TH
ΔA
4G

¼ 0: ð38Þ

It means that when TH ≠ 0, the horizon is no longer
quantized and becomes a continuum, at least based on the
Hod’s conjecture. Note that our numerical results just imply
that the real part of QN frequencies for the first several
overtones approaches Ω, in the low-temperature limit.
Therefore, the strong convergence of Reðωlm1m2nÞ to Ω
for n → ∞ is still nontrivial from our investigation. Also, for
small black holesM ≪ 1, the lowest Hawking temperature
is zero, and so it is nontrivial if ΔA ¼ 0 at TH ¼ 0. On the
other hand, for large black holes, the temperature is nonzero
and finite even at the ultraspinning limit, and therefore, the
assumption of (37) leads to ΔA ¼ 0 for M≳ 1.
We can show that in the ultraspinning limit, the horizon

area of the Kerr-AdS5 black hole becomes singular. To
demonstrate this, let us perform the following coordinate
transformations in the metric (1):

FIG. 16. Real part of QN frequencies of ðl; m1; m2Þ ¼ ð1; 1; 0Þ
and n ¼ 0 and 4. The mass of the scalar field is set to μ ¼ 0.01,
10−7, and 0. The parameters are set to M ¼ 10 and a1 ¼ a2.

3Note that in the ultraspinning limit (a1 → 1), the Heun’s
differential equation in (14) becomes confluent as u0 → 1 in the
limit. It results in an irregular singular point and the connection
problem between irregular and regular singular points is more
complicated. Our computation does work at least up to a1 ¼
1 − 10−5 as demonstrated in Figs. 14 and 15.

4We set μ ¼ 0.01 since the calculation of a scattering coef-
ficient D1ðωÞ in (34), whose plots are shown in Figs. 3 and 7,
involves the estimation of RDiv that is not defined inMathematica
when Δ ¼ 4 (i.e., μ ¼ 0).

5However, the Hod’s conjecture may be subtle for the Kerr
spacetime if the asymptotic value of the real part of QN
frequencies is mΩ for a Kerr black hole with (a > 0). The naive
application of the Hod’s conjecture to that case leads to ΔA ¼ 0.
See Refs. [36,37] for more details.
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ϕ →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a21

q
ϕ; ψ →

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a22

q
ψ : ð39Þ

Considering the geometry of constant ðt; rÞ surface in the
near-horizon limit (r → rþ), the line element for the
ultraspinning limit reduces to

ds2 ¼ lim
a→1

r2þ þ 1

1− a2

�
dθ2 þ ðr2þ þ 1Þ

r2þ
ðsin2θdϕþ cos2θdψÞ2

�
;

ð40Þ

where we take a1 ¼ a2 ¼ a. This shows that in the limit,
the horizon area diverges in the coordinates. On the other
hand, when we take the limit of a1 → 1 while keeping
a2 < 1, the topology of the horizon becomes noncompact.
As a simple example, let us look into the case of a1 → 1
and a2 ¼ 0. In that case, the metric reduces to

ds2 ¼ ðr2þ þ 1Þ2
ρ2

sin4 θdϕ2 þ r4þ
ρ2

sin2 θ cos2 θdψ2

þ r2þðr2þ þ 1Þ
ρ2

cos4 θdψ2 þ ρ2

sin2 θ
dθ2; ð41Þ

where we performed the following transformations for the
original metric

ϕ → ð1 − a21Þϕ;ψ → ð1 − a22Þψ : ð42Þ

The metric in (41) appears to be ill-defined at θ ¼ 0.
However, by performing a further transformation of

ξ ¼ 1 − cos θ; ð43Þ

the metric near the pole of θ ¼ 0 is

ds2 ≃ ðr2þ þ 1Þ
�
4ξ2dϕ2 þ dξ2

4ξ2

�
þ r2þdψ2; ð44Þ

which has the submanifold of H2 on ϕ − ξ surface, and we
find that the constant ðt; rÞ surface is noncompact in the
ultraspinning limit. One can easily find that for a1 → 1 and
a2 ≠ 0, the ϕ − ξ surface near r ¼ rþ and θ ¼ 0 is also
noncompact as its metric is

ds2 ≃ ðr2þ þ 1Þ
�
4ξ2

r2þ þ a22
r2þ

dϕ2 þ 1

1 − a22

dξ2

4ξ2

�
: ð45Þ

Indeed, a similar noncompact horizon appears even in the
Kerr-AdS4 black hole [38–40].
In summary, we have applied the Hod’s proposal to our

result that the real part of scalar QN frequencies approaches
the superradiant frequency in the low-temperature or ultra-
spinning limits. Then we have concluded that it leads to a
continuous horizon area, i.e., unquantized horizon area,

when naively applying the Hod’s conjecture to Kerr-AdS5
black holes. Also, in the special cases involving the
ultra-spinning regime, the total horizon area diverges, or
the topology of the Kerr-AdS5 black hole horizon is
noncompact.

VI. DISCUSSION AND CONCLUSION

In this paper, we have numerically investigated the
structure of scalar quasinormal (QN) frequencies of the
five-dimensional Kerr anti–de Sitter (Kerr-AdS5) black
hole. Our numerical investigation covers a broad range
of parameter regions for the Kerr-AdS5 black hole.
In Sec. III A, we have studied the instability of small

Kerr-AdS5 black holes with equal spins. We have con-
firmed that the strong instability is caused by l ¼ 1, and the
most unstable QN mode has its frequency close to the
superradiant frequency defined by Ω≡m1Ωþ;1 þm2Ωþ;2.
This is the case even for unequal spins, as shown in
Sec. IVA. We have also investigated if the superradiant
instability is amplified when the Kerr-AdS5 black hole has
a hierarchy between the two spins, i.e., a2=a1 < 1. As we
have checked that the most unstable harmonics is
ðl; m1; m2Þ ¼ ð1; 1; 0Þ for a2 < a1 (Fig. 10), we computed
the unstable QN frequencies of (1,1,0) mode for different
spin ratios while fixing the angular velocity Ω1 which is
equivalent to the superradiant frequency for (1,1,0) mode.
Then, we have found that the stronger the hierarchy of the
two spins is, the more enhanced the instability is (Fig. 11).
We conclude that the superradiant instability of the Kerr-
AdS5 black holes is enhanced when the symmetry of the
spacetime is reduced. The QN modes that could induce
the instability of small Kerr-AdS5 black holes localize near
the real axis in the complex frequency plane. We call those
modes type-I modes. On the other hand, we have inves-
tigated highly damped QN modes (type-II modes), which
differ from the type-I modes and might be relevant to the
thermodynamic nature of the Kerr-AdS5 black hole as the
separation of their imaginary part is ∼2πTH. We confirmed
that the separation matches 2πTH in high accuracy in the
low-temperature limit.
In Secs. III B and IV B, we have investigated the scalar

QN modes for large Kerr-AdS5 black holes with equal and
unequal spins, respectively. As spin parameters approach
the AdS curvature radius, that is the ultraspinning limit
(ai → 1), type-I modes are suppressed and type-II modes
are excited along ReðωÞ ¼ Ω. The type-II modes with
higher damping rates have the periodic separation in their
imaginary parts, and the separation for the first several
tones matches the surface gravity of the horizon when
ai → 1 and μ ≪ 1 (see Fig. 8). The thermal nature holds
even for large Kerr-AdS5 black holes with unequal spins
(Figs. 14 and 15). It would be interesting to study how this
property can be relevant to the pole structure of the thermal
Green’s function in the corresponding conformal field
theory (CFT) on the AdS boundary.

KOGA, OSHITA, and UEDA PHYS. REV. D 105, 124044 (2022)

124044-14



Based on the Hod’s conjecture regarding the horizon area
quantization [17], the asymptotic value of Reðωlm1m2nÞ plays
an important role in determining the one-bit size of a black
hole area ΔA as THΔA=4G ¼ limn→∞ Reðωlm1m2nÞ −Ω.
Therefore, as we discussed in Sec. V, the convergence
of the real part of type-II QN frequencies to Ω for large n
implies that the horizon area is no longer quantized but is
continuous when naively applying the Hod’s conjecture to
the Kerr-AdS5 black holes. From our numerical result, the
convergence is likely at least for the low-temperature and
ultraspinning regimes. We leave the further study of highly
damped QNmodes in an analytical way for future work. We
also analyzed the horizon topology of the Kerr-AdS5 black
hole and found that in general, an ultraspinning Kerr-AdS5
black hole has its noncompact horizon.
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APPENDIX: ACCURACY OF OUR
NUMERICAL COMPUTATION

In this Appendix, we demonstrate the convergence of a
QN frequency numerically obtained in our Mathematica

notebook. To obtain QN frequencies, we search for the
zeros of the following Wronskians in the complex-fre-
quency and complex-λ spaces simultaneously6:

W½S0; Su0 �jðω;λÞ¼ðωlm1m2n
;λlm1m2n

Þ

¼ W½Rin; RAdS�jðω;λÞ¼ðωlm1m2n
;λlm1m2n

Þ ¼ 0; ðA1Þ

where the Wronskian, W½fðxÞ; gðxÞ�, is defined as
W½f; g�≡ fg0 − f0g. We numerically search for the zeros
of the two Wronskians by using a Mathematica’s function
FindRoot. One can increase the accuracy by specifying
the value of WorkingPrecision more than or compa-
rable to 40. The optimal value of WorkingPrecision
depends on the background parameters and overtone
number we want. In Table I, we show the Wronskians
for low, medium, and high accuracies of ðωlm1m2n; λlm1m2nÞ.
It can be seen that the Wronskians approach zero as the
accuracy is getting higher. Although Table I shows the QN
frequency and eigenvalue with up to 15 digits due to the
limitation of space, we obtain those values with higher
accuracy (more than or comparable to 40 digits) by
choosing a larger value of WorkingPrecision as an
option in FindRoot.
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