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White dwarfs (WDs) and neutron stars (NSs) are among the most magnetized astrophysical objects in the
universe, with magnetic fields that can reach up to 109 G for WDs and up to 1015 G for NSs. The galaxy is
expected to be populated with approximately one hundred million of double WD and millions of NS-WD
binaries. Throughout the duration of the mission, the Laser Interferometer Space Antenna (LISA) will
observe gravitational waves (GWs) emitted simultaneously by more than ten thousand of such galactic
binaries. In this paper, we investigate the effect of the magnetic dipole-dipole interaction on the GW signal
emitted by magnetic galactic binaries. We derive the secular equations governing the orbital and rotational
motion of these objects. Then, we integrate these equations both numerically and analytically. We conclude
that the overall visible effect is an additional secular drift of the mean longitude. This drift is proportional to
the product of the magnetic moments and is inversely proportional to the 7=2 power of the semimajor axis.
Finally, we show that, at zeroth-order in eccentricity, the magnetic dipole-dipole interaction shifts the main
frequency of the gravitational strain measured by LISA.
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I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is the
ESA L3 mission that aims at observing gravitational waves
(GWs) from space [1,2]. The observatory consists of six
active laser links between three identical spacecraft in a
triangular formation separated by 2.5 million km. This
configuration will allow LISA to observe GWs in the
frequency band from below 10−4 Hz to above 10−1 Hz.
Within this range, the main source of GWs are the galactic
binaries (GBs). Around ten thousand of these systems
should be resolvable by LISA [3,4].
Galactic binaries are comprised primarily of white

dwarfs (WDs) but also neutron stars (NSs) and stellar-
origin black holes. In LISA’s bandwidth, the typical orbital
period for GBs of WDs and NSs ranges from minutes
to several hours. This corresponds to a semimajor axis
between 104 km to 106 km (for a total mass around
1.5 M⊙). Therefore, LISA will observe GWs emitted by
GBs during the inspiral phase, which is before the merger
which can be detected by ground-based GW detectors such
as LIGO [5], Virgo [6], KAGRA [7], and the future Einstein
Telescope [8].
The first (extragalactic) merger of a binary NS

(GW170817) was observed in 2017. It was detected

simultaneously using GWs by the LIGO and Virgo detec-
tors and across the electromagnetic (EM) spectrum using its
γ-ray, ultraviolet, optical, infrared, and radio band emis-
sions [9,10]. The detection of this event in both the GWand
EM sectors is the first direct confirmation of the existence
of double compact stars mergers. It allowed the determi-
nation of the physical properties of the two stars such as
their masses, radii, spins, and tidal deformability parameter
[11,12], and placed strong constrains on the fundamental
physics of gravity [13]. By probing the earlier inspiral
phase of the future galactic GW170817-type systems, LISA
will enable scientists to anticipate merger events and
perform efficient combined GWs and EM observations.
This will bring much information on the long term
evolution of GBs, their internal structure, and equation
of state [2].
The galaxy is expected to be populated with approx-

imately one hundred millions of WD-WD systems and
millions of NS-WD binaries [14]. These compact objects
can have intense magnetic fields that may reach up to 109 G
for WDs and up to 1015 G for NSs [15]. White dwarfs with
magnetic fields ranging from 106 G to 109 G should
represent around 20% of the total WD population [16–
18] while NSs with magnetic fields between 1014 G to
1015 G (i.e., the magnetars) should represent around 10%
of the total NS population [19]. The origin of these strong
magnetic fields in WDs and NSs is an active area of*adrien.bourgoin@obspm.fr
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research in astrophysics (see e.g., Bagnulo and Landstreet
[20]) with several scenarios having been proposed.
The first mechanism that would permit WDs and NSs to

develop intense magnetic fields is the “merging scenario.”
According to Tout et al. [19], highly magnetic WDs are
formed from the merger of cataclysmic variables (i.e.,
binary systems consisting of a WD and a mass transferring
companion). The main observational motivation justifying
the merging scenario is the fact that highly magnetic WDs
are generally isolated or in cataclysmic variable stars but
not in binary systems with a detached low-mass main
sequence companion. If highly magnetic WDs are formed
from the isolated evolution of a single star, then there should
be the same fraction of them observed individually and in
binary systems with a detached low-mass main sequence
companion, which is not in agreement with most observa-
tions. The merging scenario also explains the formation of
magnetars. To do so, it relies on the merger of a binary
system made of WDs [15,21]. The main observational
justification rests on the fact that magnetars are observed
individually and not in binary systems. Unfortunately, only
30 magnetars have been identified so far,1 and the statistics
are thus too poor to draw strong conclusions on the
reliability of the merging scenario. In addition, it was
recently pointed out by Landstreet and Bagnulo [23], that
magnetic WDs in binary system with a detached main
sequence companion may be rare but do exist.
The second mechanism commonly invoked to explain

the occurrence of strong magnetic fields is the “dynamo”
hypothesis [24–27]. This scenario predicts that the strong
magnetic field would result from a turbulent dynamo
amplification occurring primarily in the convection zone
of the progenitor, as well as in differentially rotating
nascent NSs. The dynamo hypothesis requires an extremely
rapidly rotating nascent NS. Unfortunately, the current
population of magnetars seems to favor slow rotators.1

The third possibility is the “fossil-field” scenario [28,29].
It has been argued by Ferrario and Wickramasinghe [15]
that the origin of strong magnetic fields could also come
from progenitors main-sequence stars. The mechanism at
work would imply conservation of the magnetic flux during
stellar evolution off the main sequence to the degenerate
phase (i.e., WD or NS). The candidates for WD progenitors
would be the Ap and Bp main-sequence stars with large
scale stable dipolar magnetic fields [30] while the progeni-
tors for magnetars would be the stars of spectral type O
with strong effective dipolar magnetic field [15,31]. This
scenario is an attractive possibility. It must however be
noted that highly magnetic WDs are mostly observed
individually and not paired in a detached system with a
nondegenerate star (cf. the “merging scenario”). This is a
serious challenge to the fossil-field hypothesis [17]. This

being said, numerical simulations by Braithwaite and
Spruit [32] favor the fossil-field scenario as a natural
explanation for the magnetism of nonconvective stars.
Indeed, the authors show that stable dipolar magnetic field
can develop from an arbitrary initial configuration and
persist over the lifetime of the stars through magneto-
hydrodynamic relaxation mechanism (see also Duez and
Mathis [33]). The equilibrium configuration consists of a
combination of an internal twisted toroidal field stabilizing
a poloidal field that emerges from the surface of the star as
an offset dipolar shape. Furthermore, Braithwaite [34]
showed, with magnetohydrodynamic simulations, that
the fossil-field scenario is also compatible with the emer-
gence of stable nonaxisymmetric field configurations, in
agreement with spectroscopic and spectropolarimetric
observations [17,35,36].
In spite of the fact that their observational implications

are quite different, neither one of these three scenarios can
be favored or dismissed, due to a lack of observations. By
increasing the number of observations made in the EM
sector, and by observing simultaneously more than ten
thousand galactic binary systems, LISA will most likely
bring new insights into the nature of the magnetic fields
within WDs and NSs. The impact of the magnetic effects
on the GW signal must therefore be investigated. Indeed,
the future data processing of the LISA mission will require
that all observable physical effects be modeled with
sufficient accuracy in order to better understand the physics
of these compact objects. In addition, because the GBs will
be the dominant source of GWs within the galaxy, they can
potentially hide signals produced by extra-galactic sources.
To avoid the contamination of the latter, removal of the
galactic foreground noise from GBs during data processing
must be as accurate as possible.
Preliminary studies, that aimed at modeling the GW

signal emitted by GBs, have focused on the monochromatic
approximation only [37,38]. This corresponds to the well-
known circular motion in the Newtonian picture of two
point-masses in gravitational interaction. However, it has
been shown that a number of physical effects, such as the
backreaction induced by gravitational radiation [14] or the
dynamical tides [39–48], can make GBs exhibit a continu-
ous frequency shift, which can potentially be detected over
the time-span of the LISA mission. The monochromatic
approximation for GBs is motivated by gravitational
radiation which is an efficient mechanism for orbit circu-
larization. However, of the ten thousand sources that LISA
will observe, it is expected that a non-negligible amount of
them might be in an eccentric orbit (see e.g., Tucker and
Will [49] and references therein), and hence, might exhibit
discrete frequency domain. In this context, the influence of
a wide variety of physical effects on GB’s eccentric orbits
must be investigated, and their impact on data processing
must be quantified in order to best prepare the future data
analysis pipeline of the LISA mission.

1See e.g., [22] McGill Online catalog at http://www.physics
.mcgill.ca/˜pulsar/magnetar/main.html.
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In this paper, we focus on the impact of the magnetic
dipole-dipole interaction on the GWs emitted by GBs, in
circular and in quasicircular orbits. We neglect the effect
of dynamical tides for the sake of simplicity. We approxi-
mate the magnetic field of the stars by their dipole
moments. This approximation is motivated by spectropo-
larimetric observations [17] and is also coherent with the
fossil-fields hypothesis as discussed by Braithwaite and
Spruit [32]. We consider both the orbital and the rotational
motion of the binary system. We assume a general
configuration where the magnetic moments can have
arbitrary orientations and we let the system evolve under
the action of the magnetic torques. In other words, we
suppose that the system has not reached an exact equi-
librium yet but can oscillate around its equilibrium
positions. The gravitational interaction is modeled in
the framework of general relativity (GR) up to the 2.5
post-Newtonian (PN) order (i.e., up to terms of the order
of c−5 with c being the speed of light in vacuum). The
spin-orbit and the spin-spin interactions are neglected for
the sake of simplicity.
The paper is organized as follows. In Sec. II, the

equations of motion including both the magnetic inter-
action and the GR contribution up to the 2.5PN order are
computed. The secular parts of the equations of motion are
derived in Sec. III. The secular equations are then solved
analytically and numerically in Sec. IV. We show that the
magnetic dipole-dipole interaction generates an additional
linear time variation on the evolution of the mean
longitude and the longitude of the pericenter. The
effect of the dipole-dipole interaction on the GW mode
polarizations is derived in Sec. V. At zeroth-order in
eccentricity, we show that magnetism generate a secular
variation of the mean longitude. At first-order in
eccentricity, magnetism can be observed through the
secular variations of both the mean longitude and the
longitude of the pericenter. Finally, we give our conclu-
sions in Sec. VI.

II. DYNAMICS OF COMPACT BINARIES

A. Notations and reference frames

In this paper, we consider two compact and well-
separated bodies that form a binary system. The system
consists of a first body (the primary) of mass m1, magnetic
moment μ1, position x1, and velocity v1, and a second body
(the secondary) of mass m2, magnetic moment μ2, position
x2, and velocity v2.
The motion is conveniently cast in the form of an

effective one-body problem by introducing the relative
position x≡ x2 − x1 and velocity v≡ v2 − v1 ¼ dx=dt.
We introduce, the orbital separation r ¼ jxj, the direction
of the secondary with respect to the primary n̂≡ x=r, and
the magnitude of the relative velocity v ¼ jvj. We also
introduce the following useful mass parameters

m≡m1 þm2; Δ≡m1 −m2

m
; η≡m1m2

m2
; ð1Þ

with m being the total mass, Δ the relative mass difference,
and η the symmetric mass ratio. The notations used
throughout this paper are summarized in Table II.
We now define the different reference frames that are

used hereafter. First, let ðêX; êY; êZÞ be a right-handed
vectorial basis which we refer to as the “source frame” and
is used to describe the motion of the source of the GW
signal. The origin of this frame is attached to the barycenter
of the binary system. The z-axis points in the direction of
the observer, assumed to be in the “far-away wave zone”
(see Poisson and Will [50]). Accordingly, the axes of the
source frame can be chosen nonrotating with respect to
distant stars such that the source frame is considered
inertial.
Let ðêx; êy; êzÞ be a right-handed vectorial basis defining

the “orbit frame”. The z-axis is orthogonal to the orbital
plane, the x-axis is pointing toward the closest approach of
the effective one-body orbit, and the y-axis completes the
basis. For Keplerian motion the orbit frame is nonrotating
with respect to distant stars since the direction of the closest
approach êx is a first integral of motion as dictated by the
conservation of the Runge-Lenz vector. For a non-
Keplerian motion, the orbit frame is not inertial anymore.
The orbit frame and its orientation within the source frame
are depicted in Fig. 1.
Finally, let us introduce ðn̂; û; êzÞ, a right-handed vec-

torial basis defining the “corotating frame”, that is to say
the frame that is corotating with the effective body. The
unit-vector û is introduced such that it completes the basis.
The transformation from the source frame to the corotating
frame involves the orbital angles that are depicted in Fig. 1,
namely ι, the inclination of the orbit on the ðêX; êYÞ-plane,

FIG. 1. Orientation of ðêx; êy; êzÞ, the orbit frame, in the source
frame, namely ðêX; êY ; êZÞ. The primary is shown at the center-
of-mass of the binary system in order to simplify the drawing.
This corresponds to the case where the mass of the secondary is
negligible with respect to primary’s.

IMPACT OF DIPOLAR MAGNETIC FIELDS ON … PHYS. REV. D 105, 124042 (2022)

124042-3



Ω, the longitude of the ascending node measured from êX,
ω, the argument of the pericenter measured from the
ascending node, and f, the true anomaly measured from
the closest approach.

B. Orbital motion with magnetism

We consider a binary system that is radiating GWs to
infinity according to GR (cf. Sec. V). In GR, the gravita-
tional radiation has its own degrees of freedom so it can carry
energy and angular momentum away from the source. In the
framework of the PNapproximation, the backreaction on the
orbit due to the radiation is described by terms at the 2.5PN
order. Therefore, in order to satisfy the energy and angular
momentum balance equations, we consider the orbital
dynamics up to 2.5PN order. The effective motion can be
summarized by the following equation:

d2x
dt2

þ aNn̂ ¼ aGR þ aM þOðc−6Þ; ð2Þ

where aN ¼ Gm=r2 is the magnitude of the Newtonian
acceleration with G the gravitational constant, and where
aGR contains the GR corrections up to terms proportional to
c−5 [51,52], namely

aGR ¼ −aNðAn̂þ BûÞ: ð3Þ

The dimensionless coefficientsA and B are given explicitly
in appendix A.
In Eq. (2), the acceleration aM represents the magnetic

dipole-dipole interaction. To determine this term, we work
in the magnetostatic approximation. In addition, we assume
that the magnetic fields are frozen into the stars as dictated
by the fossil-field hypothesis [32,53]. Accordingly, the
internal currents that generate the magnetic field of the
primary are not distorted significantly by the external field
of the secondary and vice-versa (see also King et al. [54]
for a similar hypothesis). This assumption is justified by the
fact that we focus on the inspiral phase where the bodies are
always well separated. As a first step and in agreement with
results from Braithwaite and Spruit [32], we consider that
the magnetic fields of both stars are dominated by their
dipole moments μ1 and μ2, although other configurations
might be stable as well [34]. Since internal currents are
assumed to be stationary, the magnitude of the magnetic
moments is taken to be constant during the motion and we
introduce the two following parameters μ1 ¼ jμ1j and
μ2 ¼ jμ2j. According to Pablo et al. [55], the magnitude
of a magnetic moment μ is given by

μ ¼ 2π

μ0
BR3; ð4Þ

where μ0 is the permeability of vacuum, R is the equatorial
radius of the star, and B ¼ jBj is the magnitude of the

magnetic field at the surface of the star. It is convenient to
define the unit-vectors ŝ1 and ŝ2 such that ŝ1 ≡ μ1=μ1
and ŝ2 ≡ μ2=μ2.
Given these assumptions, the secondary feels a dipolar

magnetic field B1 and experiences a magnetic force [54]
that is given by F12 ¼ ∇ðμ2 ·B1Þ or more explicitly,

F12 ¼ −
μ0
4π

μ1μ2
r4

½15ðn̂ · ŝ1Þðn̂ · ŝ2Þn̂
− 3ðn̂ · ŝ1Þŝ2 − 3ðn̂ · ŝ2Þŝ1 − 3ðŝ1 · ŝ2Þn̂�: ð5Þ

The expression of the force acting on the primary is found
by interchanging the subscripts “1” and “2” and changing
the sign of n̂ in the expression of F12. Then the magnetic
relative acceleration aM takes the form

aM ¼ −
�

1

ηm

�
F12: ð6Þ

Once the effective one-body motion in Eq. (2) is solved,
the individual positions can be retrieved from the PN
definition of the barycenter of the binary system (see
e.g., Blanchet [52] for a complete definition up to 3PN):

x1 ¼ −
m2

m
x − ηΔrðPn̂þQûÞ þOðc−6Þ; ð7aÞ

x2 ¼
m1

m
x − ηΔrðPn̂þQûÞ þOðc−6Þ; ð7bÞ

where the dimensionless coefficients P and Q are given
explicitly at the 2.5PN order in appendix A. Analogous
transformations can be derived for the individual velocities
by taking a time derivative of Eqs. (7) while keeping the
appropriate PN orders in the equation of motion.

C. Rotational motion with magnetism

The magnetic interaction impacts not only the orbital
evolution of the binary system but also the direction of the
magnetic moments μ1 and μ2. In order to follow their
evolution in space, we introduce spherical coordinates with
one polar angle and one azimuth angle per compact star.
The polar angles, also called obliquities, are labeled ϵ1 and
ϵ2, and the azimuth angles, also called precession angles,
are labeled β1 and β2. The angles are depicted in Fig. 2 for
the primary only. These definitions allow for a drastic
simplification of the equations of motion. However, the
precession angles are not defined for null obliquities, and
hence, the case where the magnetic moments are exactly
orthogonal to the orbital plane (i.e., ϵi ¼ 0 or π, with i ¼ 1
and 2) cannot be studied completely with these definitions.
Instead, for null obliquities, the regular Cartesian coordi-
nates must be preferred.
Pablo et al. [55] have shown that the lowest stable

energy is the horizontal aligned magnetic moment con-
figuration, namely ϵ1 ¼ ϵ2 ¼ π=2, or ϵ1 ¼ ϵ2 ¼ −π=2,
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with β1 ¼ β2 ¼ f. This configuration can be observed
when the obliquity of the field with respect to the rotation
axis is large. However, as pointed out by Shultz et al. [56]
the field and the rotation axis in each star are more likely to
be aligned, and the directions of the magnetic fields should
be parallel. In this configuration, the lowest-energy stable
magnetic configuration due to the magnetic dipole-dipole
interaction force is vertical anti-aligned magnetic fields,
namely ϵ1 ¼ 0 and ϵ2 ¼ π, or ϵ1 ¼ π and ϵ2 ¼ 0. Hereafter,
we suppose that the orientations of the magnetic moments
have not reached equilibrium yet, such that the directions ŝ1
and ŝ2 can evolve under the action of dipole-dipole
magnetic torques.
The direction ŝ1 of the magnetic moment μ1 can be

decomposed in the orbit frame as

ŝ1 ¼ êx sin ϵ1 cos β1 þ êy sin ϵ1 sin β1 þ êz cos ϵ1: ð8Þ

Differentiation with respect to time returns

ŝ1 ·
dŝ1
dt

¼ 0; ð9Þ

together with

sin ϵ1
dϵ1
dt

¼ −
dŝ1
dt

· êz; ð10aÞ

sin ϵ1
dβ1
dt

¼ cos β1
dŝ1
dt

· êy − sin β1
dŝ1
dt

· êx: ð10bÞ

Similar kinematic relationships can be derived for the
secondary. They are directly inferred after interchanging
subscripts “1” and “2” in the above equations.
Hereafter, in agreement with Shultz et al. [56], we

assume that the directions of the spins S1 and S2 are
aligned with the magnetic moments, that is to say S1=S1 ¼
ŝ1 and S2=S2 ¼ ŝ2 with S1 ≡ jS1j and S2 ≡ jS2j. Then, the
rotational equation of motion read as

dS1

dt
¼ Γ21;

dS2

dt
¼ Γ12; ð11Þ

where Γ21 (resp., Γ12) is the magnetic torque due to the
secondary (resp., primary) acting on the magnetic moment
of the primary (resp., secondary). The expression for the
former is given by Γ21 ¼ μ1 ×B2, namely

Γ21 ¼
μ0
4π

μ1μ2
r3

½3ðŝ1 × n̂Þðn̂ · ŝ2Þ − ŝ1 × ŝ2�: ð12Þ

The expression of Γ12 is found by interchanging the
subscripts “1” and “2” and changing the sign of n̂ in the
expression of Γ21. We see that Γ21 ≠ −Γ12, in general.
We can infer from the use of (9) and (12) that the

magnitude of the spin is conserved during the motion (in
accordance with the fact that we do not consider dissipation
at the level of the rotational motion),

dS1
dt

¼ Γ21 · ŝ1 ¼ 0: ð13Þ

The same is true for S2. Therefore, the equations for ŝ1 and
ŝ2 are given by the following expressions

dŝ1
dt

¼ Γ21

S1
;

dŝ2
dt

¼ Γ12

S2
: ð14Þ

Equations (2) and (14) represent the equations of motion
that must be solved simultaneously for describing the
dynamics of the binary system considering both GR effects
(up to the 2.5PN approximation) and the magnetic dipole-
dipole interaction.

III. SECULAR EQUATIONS OF MOTION

As discussed in Sec. I, in the context of LISA, GBs must
be modeled beyond Keplerian motion. This is because the
sensitivity of the instrument will potentially allow the
measurement of several effects. The method of osculating
elements offers a convenient framework to go beyond
Keplerian motion [50,57]. We use it here in order to
describe the secular evolution of the system.

A. Homogeneous solutions

The homogeneous solutions to the equation of motion
(2) correspond to the Keplerian motion [50,57,58]. In the
corotating frame it reads

FIG. 2. Orientation of the magnetic moments in the orbit frame
ðêx; êy; êzÞ. The obliquity ϵ1 and the precession angle β1 are
represented for the primary only. The obliquity is a tilt between
êz, the normal to the orbital plane, and ŝ1, the direction of the
magnetic moments. The precession angle is the angle between êx,
the direction of closest approach, and the projection of the
magnetic moments on the orbital plane.
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x ¼ rn̂; v ¼ vnn̂þ vuû; ð15Þ

with r ¼ pð1þ e cos fÞ−1 and

vn ¼
ffiffiffiffiffiffiffiffi
Gm
p

s
e sin f; vu ¼

ffiffiffiffiffiffiffiffi
Gm
p

s
ð1þ e cos fÞ: ð16Þ

We recall that p ¼ að1 − e2Þ is the semilatus rectum, a is
the semimajor axis, and e is the eccentricity. The solutions
are computed at a given instant of time using the Kepler
equation which relies on τ, the time of pericenter passage,
and the eccentric anomaly.
The solutions (15) can be further specified within

the source frame (cf. Fig. 1) thanks to the inclination ι, the
longitude of the ascending node Ω, and the argument of the
pericenter ω. Let us recall that ða; e; ι;Ω;ω; τÞ are constant
for Kepler motion and are the so-called elliptic elements.

B. Variation of arbitrary constants

The right-hand side of the equation of motion (2)
regroups the perturbing accelerations, namely the contri-
bution from GR together with the magnetic dipole-dipole
interaction. To handle them, we use the method of variation
of arbitrary constants which allows us to reshape Eq. (2) as
a set of six first-order differential equations for the elliptic
elements. These equations are called the Lagrange plan-
etary equations [50] or the Gauss perturbation equations
[57,58] depending whether the perturbation is expressed as
a gradient of a potential or not. The perturbation equations
involve the components N , U, and S which are the
projections of the perturbing accelerations on the unit-
vectors n̂, û, and êz, respectively. Thus, N is the radial
component, U is the cross-track component, and S is the
out-of-plane component.
The basic idea behind the method of variation of

arbitrary constants is to consider that the Keplerian sol-
utions (15) are still correct, even beyond Keplerian motion.
The apparent contradiction is evaded by allowing the
elliptic elements to change with time. This description of
motion will be particularly useful in Sec. V when deriving
the form of the GW mode polarizations while considering
the perturbing effects of both GR and the magnetic dipole-
dipole interaction.
The components of the perturbing acceleration due to

GR corrections are given by [cf. Eq. (3)]

N GR ≡ aGR · n̂ ¼ −aNA; ð17aÞ

UGR ≡ aGR · û ¼ −aNB; ð17bÞ

with SGR ≡ aGR · êz ¼ 0. For the magnetic dipole-dipole
interaction, the components of the perturbing acceleration
read as follows [cf. Eq. (6)]

NM ≡ aM · n̂ ¼ −
3μ0
4πr4

μ1μ2
ηm

½ŝ1 · ŝ2 − 3ðn̂ · ŝ1Þðn̂ · ŝ2Þ�;

ð18aÞ

UM ≡ aM · û ¼ −
3μ0
4πr4

μ1μ2
ηm

× ½ðn̂ · ŝ1Þðû · ŝ2Þ þ ðn̂ · ŝ2Þðû · ŝ1Þ�; ð18bÞ

SM ≡ aM · êz ¼ −
3μ0
4πr4

μ1μ2
ηm

× ½ðn̂ · ŝ1Þðêz · ŝ2Þ þ ðn̂ · ŝ2Þðêz · ŝ1Þ�: ð18cÞ

The 1PN perturbations to the Keplerian motion and the
magnetic acceleration are of the order of

jaGRj
aN

∝
v2

c2
∼
Gm
c2r

; ð19aÞ

jaMj
aN

∝
3μ0
4πr2

μ1μ2
Gm1m2

; ð19bÞ

respectively. Rough numerical estimates return

jaGRj
aN

≃ 2.2 × 10−4
�
104 km

r

��
m

1.5M⊙

�
; ð20aÞ

jaMj
aN

≃ 3.1 × 10−5
�

μ1
1033 A · m2

��
μ2

1033 A · m2

�

×

�
1.2 M⊙

m1

��
0.3 M⊙

m2

��
104 km

r

�
2

: ð20bÞ

These ratios show that, even for the most compact
system of GBs that LISA can observe (i.e., r ∼ 104 km
which corresponds to orbital frequency of the order of
10−1 Hz), the right-hand side of Eq. (2) can be treated
as a perturbation to the Newtonian acceleration. In other
words, we expect the changes in the orbital elements to
be small.
Therefore, a simplified description of the motion can be

achieved by inserting the constant zeroth-order values of
the Keplerian elements in the right-hand side of the
perturbation equations and by keeping first-order terms
in the components of the perturbing accelerations. In this
picture, it is convenient, for averaging purposes, to change
the independent variable from time to angles that vary
on short orbital timescales, such as the true anomaly.
The system of first-order osculating equations eventually
reads as

da
df

≃
2a3ð1 − e2Þ

Gm

�
N e sin f

ð1þ e cos fÞ2 þ
U

1þ e cos f

�
; ð21aÞ
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dz
df

≃ −
iz
e

p2

Gm

�
N eif

ð1þ e cos fÞ2 þ
2þ eðe−if þ cos fÞ

ð1þ e cos fÞ3 iUeif

þ iSðζ̄zeif − ζz̄e−ifÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζζ̄

p
ð1þ e cos fÞ3

�
; ð21bÞ

dζ
df

≃
p2

Gm
½ð2 − ζζ̄Þzeif − ζ2z̄e−if�S
4e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζζ̄

p
ð1þ e cos fÞ3

; ð21cÞ

dL
df

≃
ð1 − e2Þ3=2

ð1þ e cos fÞ2 −
1

e
p2

Gm

�
2e

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

ð1þ e cos fÞ3 N

þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
þ ð1 − e2Þ3=2
ð1þ e cos fÞ2

�

×

�
N cos f

ð1þ e cos fÞ2 −
2þ e cos f

ð1þ e cos fÞ3 U sin f

�

þ iSðζ̄zeif − ζz̄e−ifÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζζ̄

p
ð1þ e cos fÞ3

�
; ð21dÞ

with the additional expression:

dϖ
df

≃ −
1

e
p2

Gm

�
N cos f

ð1þ e cos fÞ2 −
2þ e cos f

ð1þ e cos fÞ3 U sin f

þ iSðζ̄zeif − ζz̄e−ifÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζζ̄

p
ð1þ e cos fÞ3

�
: ð22Þ

In these expressions, we introduce the following regular
parameters: ða; z; ζ; LÞ; see Poisson and Will [50] for
similar expressions in terms of the singular elements
ða; e; ι;Ω;ω; τÞ. The regular parameters are defined by

z ¼ eeiϖ; ð23aÞ

ζ ¼ sin

�
ι

2

�
eiΩ; ð23bÞ

L ¼ ϖ þM; ð23cÞ

with i≡ ffiffiffiffiffiffi
−1

p
. The expression forM, the mean anomaly, is

M ¼ nðt − τÞ with n the mean motion, which is given by
Kepler’s third law: n ¼ ðGm=a3Þ1=2. The expression forϖ,
the longitude of the pericenter, is given by

ϖ ¼ Ωþ ω: ð24Þ

The complex variables z and ζ represent the components
of the eccentricity vector and the inclination vector,
respectively.
In the first-order perturbation Eqs. (21), we do not useΩ,

ω, and τ, which are singular when either the inclination or
the eccentricity go to zero (see e.g., Eqs. (3.69) of Poisson
andWill [50] and Eq. (2.167) of Murray and Dermott [58]).
As a matter of fact, because the gravitational radiation

efficiently circularizes the orbit (see e.g., Tucker and Will
[49], and see the discussion in the next section), most of the
binary systems that LISA will observe are expected to be
found in quasicircular orbit within the frequency band from
10−4 Hz to 10−1 Hz. This is the reason why we consider
the set of nonsingular elements: ða; z; ζ; LÞ.
Let us emphasize that two additional equations, one for z̄

and the other one for ζ̄, are derived straightforwardly from
Eqs. (21b) and (21c), where z̄ and ζ̄ are the complex
conjugate of z and ζ, respectively. Accordingly, the
expression for ϖ in Eq. (22) is actually redundant since
it can be inferred from Eq. (21b) and its complex conjugate.
However, we provide it anyway for simplification pur-
poses, as discussed in the next section. For the same reason,
the eccentricity in Eqs. (21) must actually be seen as a
function of the complex variables z and z̄, namely e ¼ ffiffiffiffiffi

zz̄
p

.
Let us note that the first term on the right-hand side of

Eq. (21d) is a zeroth-order term, meaning that L is not
constant even for Kepler motion. This term corresponds to
the product nðdt=dfÞ expressed at zeroth-order in the
components of the perturbation. A new convenient param-
eter, λ, is thus introduced such that

dλ
df

¼ dL
df

−
ð1 − e2Þ3=2

ð1þ e cos fÞ2 : ð25Þ

Hereafter, we employ the following nonsingular orbital
elements: X ¼ ða; z; ζ; λÞ.

C. Secular motion

We can expect that the solutions of the first-order
perturbation equations will vary periodically, with a short
orbital timescale on one hand and a long secular timescale
on the other hand; this is a consequence of the smallness of
the perturbing accelerations with respect to the Newtonian
one. Accordingly, the two timescales can be treated as two
independent variables, and conveniently for us, only the
secular contribution can be kept from the perturbation
equations.
In order to derive the secular components of the motion,

the equations are averaged over the angle that varies on
short orbital timescale, namely the true anomaly. Thus, to
each nonsingular element X, we associate a secular time
derivative defined such as	

dX
dt



sec

¼ nðtÞ
2π

Z
2π

0

dX
df

df: ð26Þ

After inserting Eq. (25) into (26), we can infer the
expression for the secular evolution of the mean
longitude 	

dL
dt



sec

¼ nðtÞ þ
	
dλ
dt



sec
: ð27Þ
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From this equation, we deduce the following secular
relationship between the mean longitude and λ:

LðtÞ ¼ λðtÞ þ
Z

t

0

nðt0Þdt0: ð28Þ

It can be seen from this definition that λ coincides with the
mean longitude at the instant t ¼ 0.
After substituting for N , U, and S from Eqs. (17) into

Eqs. (21) and using (26), we derive the first-order secular
equations describing the non-null contributions from GR
(see also Lincoln and Will [51])	
da
dt



GR

¼−
64η

5

�
na

1−e2

��
Gm
c2p

�
5=2

�
1þ73

24
e2þ37

96
e4
�
;

ð29aÞ	
dλ
dt



GR

¼ 5n

�
Gm
c2p

��
2

�
1−

η

2

�ð1−
ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
Þ

e2
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p

−
η

10
ð1−8

ffiffiffiffiffiffiffiffiffiffiffiffi
1−e2

p
Þ−7

5
e2
�
1−

11η

14

��
; ð29bÞ

	
dz
dt



GR

¼ z
e

	
de
dt



GR

þ iz

	
dϖ
dt



GR

; ð29cÞ

where we use the two following relationships:	
de
dt



GR

¼ −
304η

15
ne

�
Gm
c2p

�
5=2

�
1þ 121

304
e2
�
;	

dϖ
dt



GR

¼ 3n

�
Gm
c2p

�
: ð30Þ

The orbital element ζ is the only element that is not
secularly impacted by GR. Equations (29) and hde=dti in
(30) describe the secular changes in a and e due to the loss
of orbital energy and angular momentum, respectively.
Indeed, as stated previously, the gravitational radiation
carries energy and angular momentum away from the
source, causing a decrease in the orbit’s semimajor axis
and eccentricity. These effects are described by the 2.5PN
order, namely the terms proportional to ∝ c−5. The equa-
tion for hdϖ=dti in (30) describes the secular change in the
longitude of the pericenter. It contains the well-known
pericenter advance which is described by the 1PN order,
namely the term proportional to ∝ c−2. Equation (29b)
describes the secular change in the mean longitude minus
the mean motion. It reduces to nηðGm=c2aÞ at zeroth-order
in the eccentricity, showing that the effect of GR does not
cancel out for circular orbits. The parameter λ is used to
compute the mean longitude L which is the parameter of
interest in the discussion of Sec. V.
Let us emphasize that terms of order c−4 are neglected in

Eqs. (29b) and in hdϖ=dti in (30). They are of two types.
There are 2PN corrections arising from terms proportional
to c−4 in the expressions of Eq. (17). There is also a second-
order perturbation due to the 1PN corrections, since the
terms neglected in the perturbation equations (21) are
quadratic in the components of the perturbing acceleration.
Both these terms are negligible relative to the 1PN con-
tribution, which represents the non-null dominant order.
After substituting for N , U, and S from Eqs. (18) into

Eqs. (21) while considering (26), we derive the first-order
secular equations describing the non-null contributions
from the dipole-dipole interaction

	
dζ
dt



M
¼ −

ν

4e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζζ̄

p f½ð2 − ζζ̄Þzeiβ1 − ζ2z̄e−iβ1 � sin ϵ1 cos ϵ2 þ ½ð2 − ζζ̄Þzeiβ2 − ζ2z̄e−iβ2 � cos ϵ1 sin ϵ2g; ð31aÞ

	
dλ
dt



M
¼

	
dϖ
dt



M
þ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
½2 cos ϵ1 cos ϵ2 − sin ϵ1 sin ϵ2 cosðβ1 − β2Þ�

þ 4νð1 − e2Þ ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− e2ð1 − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ�

e4
sin ϵ1 sin ϵ2 cosðβ1 þ β2Þ; ð31bÞ

	
dz
dt



M
¼ iz

	
dϖ
dt



M
; ð31cÞ

where the secular equation for the change in the longitude of the pericenter is given by	
dϖ
dt



M
¼ ν½2 cos ϵ1 cos ϵ2 − sin ϵ1 sin ϵ2 cosðβ1 − β2Þ�

þ iν

2e
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζζ̄

p ½ðζ̄zeiβ1 − ζz̄e−iβ1Þ sin ϵ1 cos ϵ2 þ ðζ̄zeiβ2 − ζz̄e−iβ2Þ cos ϵ1 sin ϵ2�: ð32Þ

In these expressions, we introduce ν, the magnetic orbital frequency, defined by
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ν ¼ 3μ0
8πG

μ1μ2
m1m2

n
p2

: ð33Þ

The magnetic dipole-dipole interaction does not secu-
larly affect the shape of the orbit (namely a and e) but only
its spatial orientation (namely ϖ and L, and also ι and Ω,
through ζ and its complex conjugate). We saw in Eqs. (29),
that the radiation-reaction terms do affect the shape of the
orbit through a secular variation of the semimajor axis and
eccentricity. The longitude of the pericenter and the mean
longitude are simultaneously affected by both GR and
magnetic perturbations.
In order to solve the secular Eqs. (31), we need solutions

for the orientation of the magnetic moments, namely ϵ1ðtÞ,
ϵ2ðtÞ, and β1ðtÞ, β2ðtÞ. After averaging Eqs. (14) over one
orbital period and making use of the kinematic relation-
ships in Eq. (10), we find

	
dϵ1
dt



M
¼ ν1 sin ϵ2 sinðβ1 − β2Þ; ð34aÞ

sin ϵ1

	
dβ1
dt



M
¼ 2ν1 sin ϵ1 cos ϵ2

þ ν1 cos ϵ1 sin ϵ2 cosðβ1 − β2Þ; ð34bÞ

where we have introduced ν1, the magnetic rotational
frequency of the primary, defined by

ν1 ¼
μ0
8π

μ1μ2
S1

1

a3ð1 − e2Þ3=2 : ð35Þ

There exist similar equations for the orientation of the
secondary,

	
dϵ2
dt



M
¼ −ν2 sin ϵ1 sinðβ1 − β2Þ; ð36aÞ

sin ϵ2

	
dβ2
dt



M
¼ 2ν2 cos ϵ1 sin ϵ2

þ ν2 sin ϵ1 cos ϵ2 cosðβ1 − β2Þ; ð36bÞ

with

ν2 ¼
μ0
8π

μ1μ2
S2

1

a3ð1 − e2Þ3=2 : ð37Þ

Equations (29), (31), (34), and (36) form a system of
coupled first-order differential equations. This system
describes the secular evolution of the orbital and the
rotational motion of a binary system under gravitational
and magnetic dipole-dipole interactions out of equilibrium.
These equations are solved in the next section.

IV. SOLUTIONS

In order to gain some insight into the motion, we would
like to solve the secular Eqs. (29), (31), (34) and (36)
analytically. In this way, we can derive scaling laws that can
then be used while searching for magnetic signatures within
the GW signal. The first-order analytic estimates that are
derived hereafter cannot always be employed. For this
reason, a numerical resolution of the secular equations of
motion is also needed. In addition, the numerical solution
can be used to verify the validity of the first-order analytic
solutions.

A. Numerical setup

As one can see from the expressions for ν, ν1, and ν2, the
effects of the dipole-dipole interaction on the motion
are proportional to the product of the magnetic moments
of the stars (see Eq. (4) for dimensional expression of the
amplitude of the magnetic moment). Considering that
magnetic fields can reach up to 109 G for the most
magnetized WDs and up to 1015 G for the most magnetized
NSs, numerical rough estimates are as follows

μWD ∼ 1033 A · m2

�
RWD

104 km

�
3
�

BWD

109 G

�
ð38Þ

for WDs, and

μNS ∼ 1030 A · m2

�
RNS

10 km

�
3
�

BNS

1015 G

�
ð39Þ

for NSs. Therefore, even though the magnetic fields of
highly magnetic NSs are several orders of magnitude
higher than for highly magnetic WDs, their magnetic
moments are smaller. Indeed, as seen from Eq. (4), the
magnetic moment evolves as the cubic power of the radius
whereas it is only linear in the magnitude of the magnetic
field (see also Wang et al. [59] and Mikóczi [60]).
Therefore, we expect the dipole-dipole magnetic interac-
tion to be the strongest for a binary of highly magnetic
WDs. This is the case we focus on in the upcoming
numerical applications.
We thus consider a double WD system where the mass of

the primary is m1 ¼ 1.2 M⊙ and the mass of the secondary
is m2 ¼ 0.3 M⊙ such that the total mass is m ¼ 1.5 M⊙.
Assuming that WDs are made of a cold Fermi gas in
hydrostatic equilibrium [61–63], we choose the radii
according to the mass-radius relationship, so that we
take R1 ¼ 6 × 103 km and R2 ¼ 15 × 103 km. We con-
sider a system with high magnetic fields, at the level
of B1 ¼ B2 ¼ 109 G.
We assume that the initial value of the semimajor axis is

given by a0 ¼ ð4GmÞ1=3Φ0
−2=3, where Φ0 is the LISA

main frequency for GBs (i.e.,Φ0 ¼ 2n0 for a circular orbit).
In order to probe the LISA frequency window, we consider
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three different cases where Φ0 ¼ 10−1 Hz, 10−2 Hz, and
10−3 Hz, which correspond to a semimajor axis at the level
of a0 ¼ 4.3 × 104 km, 2 × 105 km, and 9.2 × 105 km,
respectively. The initial conditions for the other orbital
elements and angles for the orientation of the magnetic
moments are reported in Tab. I, where D is the distance
between the source of the gravitational radiations and the
observer (see Sec. V).
We assume that both stars are spherically symmetric so

that the magnitude of the angular momentum of the primary
is given by

S1 ¼
4π

5

m1R2
1

P1

≃ 6.0 × 1040 kg · m2 · s−1

×

�
m1

1.2 M⊙

��
R1

6 × 103 km

�
2
�
1 h
P1

�
; ð40Þ

where P1 is the period of the proper rotation. Similarly, for
the secondary we have

S2 ¼
4π

5

m2R2
2

P2

≃ 9.4 × 1039 kg · m2 · s−1

×

�
m2

0.3 M⊙

��
R2

15 × 103 km

�
2
�
10 h
P2

�
; ð41Þ

where P2 is the period of the proper rotation.

B. Analytic estimates

The first-order solutions for the GR contribution to the
changes in the orbital elements, can be obtained by
substituting the constant zeroth-order values of the non-
singular elements X into the right-hand side of (29). The
solutions read as follows

aðtÞ ¼ a0 þ _aGRt; ð42aÞ

λðtÞ ¼ λ0 þ _λGRt; ð42bÞ

zðtÞ ¼ z0e_eGRt=e0ei _ϖGRt; ð42cÞ

where _aGR, _eGR, _ϖGR, and _λGR are shorthand notations
referring to the secular time derivatives in Eqs. (29) and
(30), where the orbital elements in the right-hand sides, are
replaced by their constant zeroth-order values.
The solutions (42) show that the rate of change of the

shape of the orbit (namely a and e), for typical inspiral of
GBs betweenΦ0 ¼ 10−1 Hz and 10−4 Hz, occurs on much
longer timescale than the previsted time duration of the
LISA mission (namely ∼4 yr). Indeed, tGW, the character-
istic time for the secular changes resulting from the
gravitational radiation, is of the order of

tGW ∼ c5ðGmÞ−5=3Φ0
−8=3: ð43Þ

For a binary with a total mass of m ¼ 1.5 M⊙, this
corresponds to tGW ∼ 500 × 109 yr when Φ0 ¼ 10−4 Hz
and to tGW ∼ 5 000 yr whenΦ0 ¼ 10−1 Hz. For both cases,
the characteristic time is much longer than the time duration
of the LISA mission. Therefore, the change in the mean
motion can safely be approximated by its first-order Taylor
expansion, namely

nðtÞ ≃ n0 −
3n0
2a0

_aGRt: ð44Þ

From this last relationship, and from Eq. (42c), we can infer
an approximate expression for the change in the eccen-
tricity during the time needed to go from Φ0 to Φ. The
expression read as follows

eðΦÞ ¼ e0 exp

"
− 19

6

�
1 − 173

304
e02 − 131

304
e04

�
�
1þ 73

24
e02 þ 37

96
e04

� ðΦ −Φ0Þ
Φ0

#
;

ð45Þ

with e0 ¼ eðΦ0Þ. As an application, let us consider the
following example. Let us assume an initial eccentricity at
e0 ¼ 0.7, and let us compute the final eccentricity when
Φ ¼ 10Φ0; we find: eðΦÞ ¼ 7 × 10−3. This shows that the
gravitational radiation is an efficient mechanism for orbit
circularization. Therefore, for old inspiral binary systems,
whose frequency has increased by one or several orders
of magnitude since formation, we expect to observe
mostly quasicircular orbits. This justifies the use of the
nonsingular orbital elements that were introduced in the
previous section.
Let us emphasize that the secular change in the longitude

of the pericenter occurs on a much shorter timescale than
the gravitational radiation. Indeed, the 1PN order pertur-
bation’s characteristic timescale reads as

t1PN ∼ c2ðGmÞ−2=3Φ0
−5=3: ð46Þ

For a binary with a total mass of m ¼ 1.5 M⊙, this
corresponds to t1PN ∼ 103 yr when Φ0 ¼ 10−4 Hz and to
t1PN ∼ 4 day when Φ0 ¼ 10−1 Hz.
We conclude that, in the context of the LISA mission, the

rate of change of the shape of the orbit can be neglected
while solving for the rotational motion. Accordingly, ν1 and
ν2 can be considered constant. On the contrary, the 1PN
effect must be accounted for, especially for the high
frequency band, since it occurs on a timescale that is
comparable to the time duration of the LISA mission.
The first-order solutions for the rotational motion can be

derived by substituting the following first-order ansatz in
the right-hand side of (34) and (36):

ϵ1 ¼ ϵ10; β1 ¼ β10 þ _β1t; ð47Þ
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where ϵ10 and β10 are two constants corresponding to the
initial conditions for the orientations of the primary. Similar
relationships are used for the secondary. The coefficient _β1
corresponds to the rate of change of the precession angle
and is determined by identification after integration. Note
that substituting (47) in the right-hand side of (34) and (36)
amounts to assuming small periodic variations.
Using (47) and integrating Eqs. (34) and (36), the first-

order solutions read as

ϵ1ðtÞ ¼ ϵ10 þ ϵ̃1ðtÞ − ϵ̃1ð0Þ; ð48aÞ

β1ðtÞ ¼ β10 þ β̃1ðtÞ − β̃1ð0Þ þ _β1t; ð48bÞ

where a “tilde” denotes a periodic contribution and a “dot”
refers to a secular rate of change. We have similar relation-
ships for the secondary. The secular precessing components
are given by

_β1 ¼ 2ν10 cos ϵ20; ð49aÞ

_β2 ¼ 2ν20 cos ϵ10; ð49bÞ

and the periodic variations read as

ϵ̃1ðtÞ ¼ −
ν10

_β1 − _β2
sin ϵ20

× cos½ð _β1 − _β2Þtþ β10 − β20�; ð50aÞ

β̃1ðtÞ ¼
ν10

_β1 − _β2
cot ϵ10 sin ϵ20

× sin½ð_β1 − _β2Þtþ β10 − β20�; ð50bÞ

and

ϵ̃2ðtÞ ¼
ν20

_β1 − _β2
sin ϵ10

× cos½ð _β1 − _β2Þtþ β10 − β20�; ð51aÞ

β̃2ðtÞ ¼
ν20

_β1 − _β2
cot ϵ20 sin ϵ10

× sin½ð_β1 − _β2Þtþ β10 − β20�: ð51bÞ

The frequencies ν10 and ν20 are obtained after substitut-
ing the constant zeroth-order orbital elements in the right-
hand side of Eqs. (35) and (37), respectively.
Let us emphasize that the first-order solutions cannot be

employed near resonance, namely when j _β1j ∼ j _β2j, that is
to say when S1j cos ϵ10j ∼ S2j cos ϵ20j. When the two rates
of precession are similar, a more sophisticated method of
resolution is needed, numerical integration for instance.
This is the reason why the secular Eqs. (29), (31), (34), and
(36) are also solved numerically with the MATLAB double

precision variable order method ode113with variable step
size and for a relative error tolerance equal to 10−12.
The first-order solutions for ϵ1ðtÞ, β1ðtÞ, ϵ2ðtÞ, and β2ðtÞ

are compared with the numerical ones in Figs. 3 and 4 for
the three different initial values of the semimajor axis
(cf. Table I). For the cases shown here, we have
j cos ϵ10j=j cos ϵ20j ¼ 1.0 and S2=S1 ¼ 0.16. This ensures
that the rates of precession _β1 and _β2 are different and
justifies the use of the first-order solutions.
In Figs. 3 and 4 it is shown that the precession angles β1

and β2 vary linearly with time while the obliquity angles ϵ1
and ϵ2 oscillate. In addition, we note that the amplitudes of
the oscillations are independent of the star separation. This
is confirmed by the analytic solutions in Eqs. (50) and (51).
Indeed, after recalling that S1 ≫ S2, the amplitudes in
Eqs. (50) and (51) reduce to

ν10
_β1 − _β2

∝ −
S2
S1

;
ν20

_β1 − _β2
∝ −1: ð52Þ

This shows that the amplitudes vary with the ratio between
the magnitude of the spins. The frequency of the oscil-
lations changes with star separation.
It is now possible to estimate the effect of the dipole-

dipole interaction on the orbital motion. In order to further
simplify the integration of Eqs. (31), we only consider the
secular variations in the precession angles β1 and β2 and
neglect the oscillations. In addition, we account for GR by
substituting zwith the 1PN solution [i.e., by taking the limit
_eGR → 0 in Eq. (42c)] into the right-hand side of Eqs. (31).
The 2.5PN contribution is reinserted after integration for
completeness. Since GR has no effect on the inclination nor
the longitude of the node, we replace ζ by ζ0 in Eqs. (31).
After integrating the secular equations with respect to

time, the total first-order solutions for the orbital motion of
the binary reads as follows:

ζðtÞ ¼ ζ0 þ ζ̃MðtÞ − ζ̃Mð0Þ; ð53aÞ

λðtÞ ¼ λ0 þ λ̃MðtÞ − λ̃Mð0Þ þ ð_λGR þ _λMÞt; ð53bÞ

zðtÞ ¼ z0e_eGRt=e0eiðϖðtÞ−ϖ0Þ: ð53cÞ

The solution for a is the same than in Eq. (42a) since the
dipole-dipole interaction has no secular effect on the
semimajor axis evolution. The expression for the longitude
of the pericenter [in Eq. (53c)] is given by

ϖðtÞ ¼ ϖ0 þ ϖ̃MðtÞ − ϖ̃Mð0Þ þ ð _ϖGR þ _ϖMÞt: ð54Þ

From Eqs. (53b), we can compute the secular evolution of
the mean longitude. Indeed, after substituting for nðtÞ from
Eq. (44) into (28), we find
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FIG. 4. Difference between analytical (thin red curves) and numerical solutions (thick black curves) for the evolution of ϵ2 (left-hand
side) and β2 (right-hand side) considering the magnetic dipole-dipole interaction. The initial values ϵ20 and β20 have been removed for
more readability. The axis are the same than in Fig. 3.
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LðtÞ ¼ L0 þ λ̃MðtÞ − λ̃Mð0Þ

þ ðn0 þ _λGR þ _λMÞt −
3n0
4a0

_aGRt2 ð55Þ

with L0 ¼ λ0. The secular contributions _ϖM and _λM are,
respectively, given by

_ϖM ¼ 2ν0 cos ϵ10 cos ϵ20; ð56aÞ

_λM ¼ _ϖMð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e02

q
Þ; ð56bÞ

where the frequency ν0 is determined by substituting the
constant zeroth-order orbital elements into the right-hand
side of Eq. (33).
The expressions of the periodic contributions ζ̃MðtÞ,

λ̃MðtÞ, and ϖ̃MðtÞ are given explicitly in Eqs. (B1). With
these, we can now compute the evolution of the regular
elements, using Eqs. (42a), (53), (54), and (55), together
with the secular pieces in Eqs. (56).
We recall that, when the eccentricity and the inclination

are different from zero, it is straightforward to re-express
the solutions (53) in terms of the more familiar but singular
elements ða; e; ι;Ω;ω; τÞ. In Figs. 5 and 6, we present the
comparison between the analytic estimates (given in terms
of the singular elements) and the results of a numerical
integration for the three different initial values of the LISA
main frequency (cf. Table I).
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FIG. 5. Difference between analytical (thin red curves) and numerical solutions (thick black curves) for the evolution of ι (left-hand
side) and Ω (right-hand side) considering the magnetic dipole-dipole interaction. The initial values ι0 and Ω0 have been removed for
more readability. The axis are the same than in Fig. 3.

TABLE I. Numerical values and initial conditions.

Parameter Unit Value

Physical parameters

m1 M⊙ 1.2
m2 M⊙ 0.3
R1 km 6 × 103

R2 km 15 × 103

P1 h 1
P2 h 10
B1 G 109

B2 G 109

D kpc 1

LISA frequency

Φ0 Hz 10−1 10−2 10−3

a0 km 4.3 × 104 2.0 × 105 9.2 × 105

Orbital parameters

e0 � � � 0.1
ι0 deg 45
Ω0 deg 0
ω0 deg 45
τ0 s 0

Rotational parameters

ϵ1 deg 10
β1 deg 10
ϵ2 deg 160
β2 deg 20
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As it can be seen from the analytic solutions, the
evolution of the inclination and the longitude of the
node (which are determined from ζ and its complex
conjugate) is a sum of two periodic oscillations. The
longest periodic oscillation possesses an amplitude Θ1,
while the other one, with the shortest period, has the
amplitude Θ2 (cf. Eqs. (B2a) and (B2b) for the expressions
of Θ1 and Θ2, respectively). In addition, one can see from
Fig. 5 that the amplitudes Θ1 and Θ2 increase when the
semimajor axis decreases. This behavior is highlighted in
Fig. 8, which shows the evolution of Θ1 and Θ2 with
respect to the semimajor axis. It is shown that the
amplitudes of the oscillations are actually negligible
relative to the secular variations and for the LISA frequency
band. This point is further discussed in appendix B.
In conclusion, the overall magnetic effect that must be

eventually considered are the secular change of the mean
longitude [i.e., terms ∝ t and ∝ t2 in Eq. (55)] and the
secular change in the longitude of the pericenter [i.e., terms
∝ t in Eq. (54)]. The solution for the mean longitude in
Eq. (55) is used in the following section to model the
combined effects of GR and magnetism on the GW mode
polarizations at zeroth-order in eccentricity. The solution
for the longitude of the pericenter in Eq. (54), is used to
model the GW mode polarizations at the first-order in
eccentricity.

V. IMPACT OF THE DIPOLE-DIPOLE
INTERACTION ON THE GW STRAIN

In this section, we derive the expressions of the mode
polarizations up to the first-order in eccentricity in agree-
ment with the assumption that GBs are in quasicircular
orbit. Mode decomposition is performed in the source
frame in order to be coherent with the conventions of the
LISA Data Challenge (LDC) [38]. We then use the method
of variation of arbitrary constants to account for the
combined effects of GR and magnetic perturbations on
the orbital dynamics. We make use of the secular solutions
derived in Sec. IV. Finally, we discuss the effects of the
perturbations, in both the time and frequency domains, and
in the context of the future LISA mission.

A. Gravitational radiation from
quasicircular binary system

We now suppose that the observer is in the far-away
wave zone. Hence, the field point is considered far from the
source point in the sense that the separation between the
two is much larger than the characteristic wavelength of the
GWemitted by the binary system. Accordingly, the relative
motion of the observer can be neglected. We assume for
convenience that the êZ-axis is aligned with the direction of
the observer. In contrast with LDC conventions [38], we do
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FIG. 6. Difference between analytical (thin red curves) and numerical solutions (thick black curves) for the evolution of ω (left-hand
side) and τ (right-hand side) considering the magnetic dipole-dipole interaction. The initial value ω0 has been removed for more
readability. The secular contribution from GR is removed too, so that the remaining secular effect is only due to magnetism. The axis are
the same than in Fig. 3.
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not suppose that the êX-axis is aligned with the direction of
the ascending node. This choice is motivated by the fact
that, in general, Ω is time-dependent when perturbations
are considered. In order to recover LDC conventions, one
has to take the limit Ω → 0.
For an observer in the far-away wave zone, it is well

known (see e.g., Peters andMathews [64], Poisson andWill
[50]) that the GW mode polarizations hþ and h× are given
by the following expressions

hþ ¼ 1

2
½ðêXÞjðêXÞk − ðêYÞjðêYÞk�hjk; ð57aÞ

h× ¼ 1

2
½ðêXÞjðêYÞk þ ðêYÞjðêXÞk�hjk; ð57bÞ

in the source frame. The components hjk are defined by the
well-known quadrupole formula

hjkðt;xÞ ¼ 2G
c4D

̈Ijkðt�Þ: ð58Þ

In the latter expression, D is the distance between the
source and the field points, namely D ¼ jxj, and t� is the
retarded time, namely t� ¼ t −D=c. The last term in
Eq. (58) is the second time derivative of the quadrupole
moment of inertia evaluated at the retarded time. The
components of the quadrupole moment of inertia are
defined by

IjkðtÞ ¼
Z

ρðt;xÞxjxkd3x: ð59Þ

For a binary formed by two point-masses, the expression of
the second time derivative of (59) can be derived straight-
forwardly from the tensor virial theorem. It involves the
Kepler solution [cf. Eqs. (15)]. Therefore, the mode polar-
izations (57) are conveniently expressed in term of the
orbital elements ða; e; ι;Ω;ω; fÞ, where the true anomaly is
the angle varying on short timescale [64,65]. Here, we give
the expression of the mode polarizations up to first-order in
eccentricity and in terms of nonsingular elements
ða; z; ζ; LÞ. Hence, we use the mean longitude instead of
the true anomaly, given that the former is still defined for
quasicircular orbits. The mode polarizations hþ and h× are
conveniently given by the following Fourier series:

hþ − ih× ¼ hðaÞ
Xþ3

k¼−3
ckðz; ζÞeikL; ð60Þ

where ck, the Fourier coefficients, are given by

cþ3 ¼ − 9

2
z̄ζ̄4; ð61aÞ

cþ2 ¼ −2ζ̄4; ð61bÞ

cþ1 ¼
3

2
zζ̄4 þ z̄ζ̄2ð1 − ζζ̄Þ; ð61cÞ

c−1 ¼
3

2
z̄ð1 − ζζ̄Þ2 þ zζ̄2ð1 − ζζ̄Þ; ð61dÞ

c−2 ¼ −2ð1 − ζζ̄Þ2; ð61eÞ

c−3 ¼ − 9

2
zð1 − ζζ̄Þ2; ð61fÞ

with c0 ¼ 0. Let us remind that the complex variables z and
ζ are defined in Eqs. (23). The GW strain amplitude, h, is
function of the semimajor axis and is given by

h ¼ 2η

�
a
D

��
Gm
c2a

�
2

: ð62Þ

According to the method of variation of arbitrary
constants, Eq. (60) is also valid beyond Kepler motion.
Hence, in order to compute the combined effects of GR (up
to the 2.5PN order) and magnetism on the mode polar-
izations, we just have to insert the first-order solutions
(42a), (53), and (55) into the right-hand side of Eq. (60).
This shows that, as the semimajor axis decreases because of
the energy loss due to the gravitational radiation, the GW
strain amplitude increases as 1=aðtÞ, giving rise to the so-
called “chirp.” On the other hand, the magnetic dipole-
dipole interaction secularly affects the mean longitude and
the longitude of the pericenter. Because the latter only
appears in Eq. (60) at first-order in eccentricity, it can be
neglected for quasicircular orbits. Hence, only the secular
drift on the mean longitude need to be kept for circular
orbit. Therefore, we anticipate that magnetism slightly
changes the frequency of the mode polarizations with
respect to the frequency that would be expected for two
point-masses in circular orbit (without GR corrections).

B. Time evolution

The effect of the magnetic interaction on the mode
polarizations can be shown in the time domain. For this, we
compute the relative error made when evaluating Eqs. (60)
without the dipole-dipole interaction. The relative error on
the mode polarization hþ reads as

errðhþÞ ¼
jðhþÞGRþM − ðhþÞGRj

hGRþM
; ð63Þ

where ðhþÞGRþM is the “þ” polarization computed with
both GR and magnetism, and ðhþÞGR contains the gravi-
tational contribution only. There exists a similar relation-
ship for the “×” polarization.
The evolutions of errðhþÞ and errðh×Þ are depicted in

Fig. 7. It can be seen that, in the low frequency band of
LISA (i.e., from 10−3 Hz and below), which corresponds to
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a semimajor axis of the order of 9.2 × 105 km, neglecting
the magnetic dipole-dipole interaction for a binary system
made of highly magnetic WDs generates a relative error of
the order of 1% after 400 yr. This effect is probably not
detectable in the time-span of the LISA mission. For the
intermediate frequency band (i.e., around 10−2 Hz), which
corresponds to a semimajor axis of the order of
2.0 × 105 km, the relative error reaches 1% after 4 yr
and could potentially be observed for highly magnetic
binaries. From 10−2 Hz to 10−1 Hz, which corresponds to a
semimajor axis of the order of 4.3 × 104 km, the effect of
the magnetic interaction on the GW mode polarizations
becomes significant in a time much shorter than mission
duration. Indeed, the relative errors reaches 100% in only
145 days for a binary in close orbit and composed of two
highly magnetic WDs.
This behavior is retrieved from the scaling laws

derived in Sec. IV. Indeed, we have shown in Eqs. (56)
that the dipole-dipole interaction induces a precession
motion of the mean longitude and the longitude of the
pericenter. The rate of precession is proportional to ν0,
namely ∝ μ1μ2a0−7=2.

In order to determine whether or not LISA could detect
magnetic effects, it is more appropriate to decompose the
GW strain signal in terms of its fundamental harmonics, to
be able to identify the measurable parameters. This is the
topic of the next section.

C. Frequency shifts

In order to track the effect of magnetism on the GW
mode polarizations, let us substitute the first order
solutions (42a), (53), and (55) into the right-hand
side of Eq. (60). At the zeroth-order in eccentricity,
we find

hð0Þþ ¼ −h0ð1þ cos2ι0Þ cosðϕþΦt� þ _Φt2�Þ; ð64aÞ

hð0Þ× ¼ −2h0 cos ι0 sinðϕþΦt� þ _Φt2�Þ; ð64bÞ

where h0 is the amplitude of the GW signal at t� ¼ 0, ϕ is
the initial phase of the signal,Φ is the main frequency, and
_Φ is the frequency shift.
According to the results presented in Sec. IV, these

quantities are directly linked to the dynamics of the binary
system, that is to say

Φ ¼ 2n0

�
1þ

_λGR
n0

þ
_λM
n0

�
; ð65aÞ

_Φ ¼ −
3n0
2a0

_aGR; ð65bÞ

with ϕ ¼ 2L0. We have used Eq. (55) for Lðt�Þ, omitting
the periodic oscillations and considering the
secular variations only. For clarity and without loss of
generality, we have used the LDC conventions by impos-
ing Ω0 ¼ 0.
It can be seen from Eqs. (65a) that when GR and

magnetic effects are negligible, the main frequency Φ
reduces to Φ0, namely 2n0, as it might be expected for a
circular orbit [38]. In the frequency domain, the circular
case thus corresponds to a main peak at frequency 2n0.
However, if the contributions from GR and magnetism are
too important to be neglected, we see from Eq. (65a) that
the main frequency is shifted by the amount 2_λGR þ 2_λM
due to both GR and magnetism. Therefore, we expect that
magnetic effects should be accounted for while interpreting
the main frequency that is measured by LISA, only if σΦ,
the uncertainty in the main frequency, satisfies a relation as
follows

�
σΦ
Φ

�
<

_λM
n0

; ð66Þ

where _λM is given by Eqs. (56). A numerical estimate yields
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FIG. 7. Relative errors caused by the fact of neglecting the
dipole-dipole interaction in the computation of the mode polar-
izations hþ (thin red curve) and h× (thick black curve). The
evolutions are represented for different values of the LISA main
frequency for GBs, namely Φ0 ¼ 10−1 Hz (top panel), 10−2 Hz
(middle panel), and 10−3 Hz (bottom panel). The bottom x-axis is
the number of orbits and the top x-axis represents the
elapsed time.
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�
σΦ
Φ

�
< 6.8 × 10−7

�
Φ0

10−1 Hz

�
4=3

×

�
1.2 M⊙

m1

��
0.3 M⊙

m2

��
B1

109 G

��
B2

109 G

�

×

�
R1

6 × 103 km

�
3
�

R2

15 × 103 km

�
3

; ð67Þ

where the values of e0, ϵ10, and ϵ20 are taken from Table I.
This relation can be used as a threshold to determine which
sources of gravitational waves might necessitate to care-
fully account for the magnetic dipole-dipole effect while
attempting to interpret the physical content behind the
measured frequency. As a matter of fact, most of the current
verification binaries [66] are actually known with relative
uncertainties ranging from 10−6 to 10−9 and we expect
LISA to be able to determine the main frequencies of GBs
with a better accuracy [38].
However, if the orbit is elliptic, we expect the GW signal

to have a discrete frequency decomposition. Indeed, as one
might infer from Eqs. (60) and (61), the secondary peaks
are expected with harmonic frequencies at n0 and 3n0 at
linear order in eccentricity. The dominant signal at first
order in eccentricity occurs at 3n0 and can be written
such as

hð1Þþ ¼ − 9

4
e0h0ð1þ cos2ι0Þ cosðϕ0 þΦ0t� þ _Φ0t2�Þ; ð68aÞ

hð1Þ× ¼ −
9

2
e0h0 cos ι0 sinðϕ0 þΦ0t� þ _Φ0t2�Þ; ð68bÞ

where according to results presented in Sec. IV, we have the
following relationships

Φ0 ¼ 3n0

�
1þ 3_λGR − _ϖGR

3n0
þ 3_λM − _ϖM

3n0

�
; ð69aÞ

_Φ0 ¼ −
9n0
4a0

_aGR; ð69bÞ

with ϕ0 ¼ 3L0 −ϖ0. When GR and magnetism are neg-
ligible, Φ0, the frequency of the first harmonic reduces to
Φ0

0 ¼ 3n0 as expected. However, if the contributions from
GR and magnetism are too important to be neglected, we
see that the frequency Φ0 is shifted by the amount
3ð_λGR þ _λMÞ − ð _ϖGR þ _ϖMÞ. Therefore, we expect that
magnetic corrections shall be accounted for while inter-
preting Φ0 in term of its physical content, if the relative
precision in the frequency of the first harmonic satisfies

�
σΦ0

Φ0

�
<

3_λM − _ϖM

3n0
: ð70Þ

By making use of Eqs. (56), we deduce

�
σΦ0

Φ0

�
< 5.6 × 10−7

�
Φ0

10−1 Hz

�
4=3

×

�
1.2 M⊙

m1

��
0.3 M⊙

m2

��
B1

109 G

��
B2

109 G

�

×

�
R1

6 × 103 km

�
3
�

R2

15 × 103 km

�
3

: ð71Þ

The relative precision inΦ0 is actually related to the relative
precision in Φ by

�
σΦ0

Φ0

�
¼

�
σΦ
Φ

� 2
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e02

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e02

p ≃
5

6

�
σΦ
Φ

�
; ð72Þ

where the last equality is given at zeroth-order in
eccentricity.
Because LISA will measure Φ and not directly Φ0, we

expect the frequency shift due to magnetism to be degen-
erated with the determination of the main frequency Φ [see
Eq. (65a)]. However, if the binary system is in quasicircular
orbit and if Φ0, the frequency of the first harmonic, can be
measured as well, then the magnetic information can be
extracted from the GW signal. Indeed, Φ and Φ0 are shifted
differently by magnetism and GR as it can be seen in
Eqs. (65a) and (69a). Therefore, the following linear
combination:

3Φ
2

−Φ0 ¼ _ϖGR þ _ϖM; ð73Þ

allows one to determine _ϖM from the measurements of Φ
and Φ0 and the modeling of _ϖGR.

D. Degeneracy between tides and magnetic
dipole-dipole interaction

Dynamical tides within WD binaries have been thor-
oughly discussed by Fuller and Lai [41–44]. In the context
of LISA, they have strong implications and shall be
considered simultaneously with magnetism for a careful
description of the secular evolution of the binary system. In
this section, we investigate how considering dynamical
tides can change the previous results.
In Fuller and Lai [42], the authors show that the rate of

tidal energy transfer at which orbital energy is damped
inside the outer layer of the primary is given by

_Etide ¼ n0G

�
m2

a03

�
2

R1
2FðωtideÞ; ð74Þ

where F is a dimensionless function of the tidal frequency
ωtide which scales such as FðωtideÞ ∝ ωtide

5. We adapted the
notations of Fuller and Lai so that it matches ours.
Hereafter, in order to simplify the discussion, we consider
the tides raised by the secondary on the primary
only. Assuming that the loss of the orbital energy
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Eorb ¼ −Gm1m2=ð2aÞ is caused by the rate of tidal energy
transfer, we deduce: _Eorb ¼ − _Etide, which is equivalent to

_atide ¼ −2n0a0
�
m2

m1

��
R1

a0

�
5

FðωtideÞ: ð75Þ

As we saw in Eq. (55), a secular change in the semimajor
axis gives rise to a term ∝ t2 in the mean longitude. This is
not the only effect that tides should produce on the orbital
dynamics of the binary system. Indeed, tides are also
known to give rise to the so-called “apsidal advance”
which is a secular advance at a steady rate of the longitude
of the pericenter (see e.g., Poisson andWill [50]). This term
is generated by the radial component of the tidal force and
is given by

_ϖtide ¼ 15n0ðk2Þ1
�
m2

m1

��
R1

a0

�
5

; ð76Þ

where ðk2Þ1 is the Love number of degree 2 of the primary.
In this expression, we neglected the eccentricity for clarity.
Because this radial component of the force only secularly
changes the longitude of the pericenter, we deduce that
_λtide ¼ _ϖtide. Therefore, the secular orbital solutions that
take into account GR, the dipole-dipole magnetic inter-
action and the dynamical tides should eventually be written
as follows:

ϖðtÞ ¼ ϖ0 þ ð _ϖGR þ _ϖM þ _ϖtideÞt; ð77aÞ

LðtÞ ¼ L0 þ ðn0 þ _λGR þ _λM þ _λtideÞt

−
3n0
4a0

ð _aGR þ _atideÞt2: ð77bÞ

In these expressions, we neglected the periodic contri-
butions and kept the secular variations only.
Therefore, at zeroth-order in the eccentricity, the GWs

mode polarizations have a frequency Φ and a frequency
shift _Φ whose expressions should be given by

Φ ¼ 2n0

�
1þ

_λGR
n0

þ
_λM
n0

þ
_λtide
n0

�
; ð78aÞ

_Φ ¼ −
3n0
2a0

ð _aGR þ _atideÞ: ð78bÞ

From the expression of the frequency shift, we actually
expect the tidal energy transfer to be degenerated with the
loss of energy due to the gravitational radiation (see also
Fuller and Lai [42,43]). Similarly, from the expression of
the frequency Φ, we also expect a degeneracy between
the dipole-dipole magnetic interaction and the radial part of
the tidal effects, namely the apsidal advance. However, the
degeneracy between magnetism and tides can be broken at

first-order in the eccentricity. Indeed, in this case the
dominant signal has a frequency Φ0 and a frequency shift
_Φ0 whose expressions are given by

Φ0 ¼ 3n0

�
1þ3_λGR− _ϖGR

3n0
þ3_λM− _ϖM

3n0
þ2_λtide

3n0

�
; ð79aÞ

_Φ0 ¼ −
9n0
4a0

ð _aGR þ _atideÞ: ð79bÞ

Therefore, the tidal information can be removed from the
GW signal by forming the following linear combination:

Φ0 −Φ ¼ n0 þ ð_λGR − _ϖGRÞ þ ð_λM − _ϖMÞ: ð80Þ
This combination can be used first to extract the magnetic
information from the measured frequencies Φ and Φ0.
Then, it can be injected into the linear combination (73):
3Φ=2 −Φ0 ¼ _ϖGR þ _ϖM þ _ϖtide, in order to determine
the tidal information. Therefore, at first-order in eccentric-
ity, the degeneracy between tides and the magnetic dipole-
dipole interaction can be broken since the shifts of
frequency produced by tides are similar for both Φ and
Φ0 when they are different for the magnetic interaction.

VI. CONCLUSION

Observations have shown that WDs or NSs can develop
large scale magnetic fields at the level of 109 G and 1015 G,
respectively. In addition, there should exist, in the galaxy,
hundreds of millions of WD-WD binary systems and
millions of NS-WD binaries. In this context, we have
aimed at quantifying the effect of the magnetic interaction
on the generation of GWs by compact GBs. In this work,
we modeled a well-separated binary system composed of
WDs or NSs considering both the orbital and rotational
motion of the degenerate stars. We used the magnetostatic
approximation, in accordance with the fossil-field hypoth-
esis. This enabled us to assume that the magnetic fields of
both stars in the binary system are dominated by their
dipole moments. In addition, we supposed, for simplicity,
that the direction of the magnetic moments are aligned with
the spin axis direction of the stars. We employed a post-
Newtonian description of the point-mass interaction up to
terms proportional to c−5. Within this framework, we
derived the secular equations governing the orbital and
rotational motion of the binary system. We showed that the
rotational motion can be mainly decoupled from the orbital
motion. We provided first analytical estimates that we
validated by comparison to results of a numerical integra-
tion of the equations of motion for the orbit and rotation.
Then, we solved for the orbital motion and showed that
the longitude of the pericenter and the mean longitude are
the only orbital elements being secularly impacted by the
dipole-dipole interaction. The rate of precessions are given
by [cf. Eqs. (56)]
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_ϖM ¼ 3μ0
4π

ffiffiffiffi
G

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þm2

p
m1m2

μ1μ2

a7=20

cos ϵ10 cos ϵ20
ð1 − e02Þ2

; ð81aÞ

_λM ¼ _ϖMð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e02

q
Þ: ð81bÞ

This shows that a system of double WD in a closed orbit
is more likely to feel the effect of the magnetic interaction
since it is proportional to μ1μ2 and evolves as the inverse of
the semimajor axis raised to a power 7=2. The inclination
and the longitude of the node are varying periodically with
an amplitude which remains negligible. We evaluated the
relative error that is generated when computing the GW
mode polarizations without taking into account the
secular drift of the longitude of the pericenter due to the
dipole-dipole interaction. We showed that neglecting mag-
netism can generate a relative error of the order of 1% after
4 yr, and 100% after 145 days for typical frequencies at
10−2 Hz and 10−1 Hz, respectively. Finally, we demon-
strated that, at leading order in eccentricity, the magnetic
effect shifts the frequency Φ0 (with Φ0 ¼ 2n0) by the
amount 2 _ϖMð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e02

p
Þ. Hence, if one wants to

interpret the circular frequency measured by LISA in terms
of its physical contents, one has to worry about magnetism
if the main frequency is determined with sufficient accu-
racy [cf. Eq. (67)].
Because LISAwill directly determinesΦ and notΦ0, we

can conclude that magnetism is totally degenerated with the
determination of the main frequency at zeroth-order in
eccentricity [cf. Eqs. (64)]. In other words, LISA
observations alone cannot disentangle between the con-
tribution of magnetism and the total mass within the
determination of the frequency for circular orbit.
Combining LISA with EM observations (e.g., using spec-
tropolorimetric observations) could help to determine the
masses and the amplitude of the magnetic moments
unambiguously. The degeneracy can be broken in the case
where the binary system is in noncircular orbit. Indeed, the
eccentricity gives rise to an additional sinusoidal signal
with the phase 3L −ϖ [cf. Eqs. (60) and (61)]. We thus
expect magnetism to shift the expected frequency of the
new signal (i.e., Φ0

0 ¼ 3Φ0=2 ¼ 3n0) by the amount

_ϖMð2þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e02

p
Þ. Therefore, by combining linearly

Φ, the measured main frequency, and Φ0, the measured
frequency of the first harmonic, the product μ1μ2 can, in
principle, be directly inferred. As a matter of fact, the
following linear combination: 3Φ=2 −Φ0, allows to
directly determine _ϖM [cf. Eq. (81a)] from the measured
values of Φ and Φ0. This point will be further investigated
in a future work by making use of the LDC tools [38] for
circular GBs, that we will adapt to the case of magnetic
GBs in eccentric orbits.
Other planned future work is two-fold. First, we will

further improve the magnetic field’s “static” picture that is
presented in this paper. Indeed, by focusing on the inspiral

phase of GBs, we implicitly assumed that the internal
physics is decoupled from the orbital dynamics, and so we
have considered that the direction, the structure, and the
magnitude of the magnetic fields were frozen and inde-
pendent of time. Within this “static” picture, several
improvements can be made. Given that some stars present
nonaxisymmetric magnetic field configurations, even when
they bear strong magnetic fields [17,35,36], one possibility
is to investigate the effect of higher multipole structures on
the GW strain. Another interesting perspective is to include
the effect of a misalignment between the magnetic
moments and the direction of the spins for future applica-
tions to the dynamics of pulsar stars.
The second step will be to explore the “dynamical”

picture, where internal physics is treated simultaneously
with the orbital dynamics. The idea is to build a coherent
model for the dynamics and GW strain of GBs, accounting
for dissipation through magnetohydrodynamic processes.
Within the dynamical picture, we first plan to investigate
the effect of energy dissipation through the unipolar
induction mechanism [59,67–69], whose EM energy dis-
sipation may potentially compete with the loss of energy
caused by gravitational radiation. In addition, given that
WDs and NSs can develop strong magnetic fields [15], and
can efficiently dissipate energy through internal gravity
waves excited by tides [42], we plan to investigate the
impact of magnetism in the modeling of internal magneto-
gravito-inertial waves [70,71]. Then, the backreaction on
the orbital dynamics and on the GW signal will be
investigated.
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APPENDIX A: POST-NEWTONIAN MOTION

Blanchet [52] gives the 3PN equations of motion for a
binary system (see also [49]). We consider the expansion up
to the 2.5PN approximation. It involves two coefficientsA0
and B0 (without primes in Blanchet’s paper) multiplying n̂
and v, respectively. By making use of the method of
variation of arbitrary constants, we can always enforce
the solution (15) for the velocity v, so that the GR
contribution can be written as in Eq. (3) where the
dimensionless coefficients A and B are given by

A ¼ A1PN þA2PN þA2.5PN; ðA1aÞ
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B ¼ B1PN þ B2PN þ B2.5PN; ðA1bÞ

with

A1PN ¼ 1

c2

��
η

2
− 4

�
v2n þ ð1þ 3ηÞv2 −Gm

r
ð4þ 2ηÞ

�
;

ðA2aÞ

A2PN ¼ 1

c4

��
51

8
−
21η

8

�
ηv4n − ð12 − 4ηÞηv2nv2

þ ð3 − 4ηÞηv4 −Gm
r

��
9

2
− 2η

�
ηv2n

þ
�
13

2
− 2η

�
ηv2

�
þG2m2

r2

�
9þ 87η

4

��
; ðA2bÞ

A2.5PN ¼ −
1

c5

�
16ηvnv2

5

Gm
r

þ 64ηvn
15

G2m2

r2

�
; ðA2cÞ

and

B1PN ¼ −
1

c2
fð4 − 2ηÞvnvug; ðA2dÞ

B2PN ¼ 1

c4

��
9

2
þ 3η

�
ηv3nvu −

�
15

2
þ 2η

�
ηvnvuv2

þ Gm
r

�
2þ 41η

2
þ 4η2

�
vnvu

�
; ðA2eÞ

B2.5PN ¼ 1

c5

�
8ηvuv2

5

Gm
r

þ 24ηvu
5

G2m2

r2

�
: ðA2fÞ

Similarly, the coefficients for finding the individual
positions from the relative position can be determined
by substituting for x and v from Eq. (15) into Eq. (216) of

Blanchet [52]. After some algebra, we find Eqs. (7), where
the dimensionless coefficients P and Q are given by

P ¼ P1PN þ P2PN; ðA3aÞ

Q ¼ Q2PN þQ2.5PN; ðA3bÞ

with

P1PN ¼ 1

c2

�
v2

2
−
Gm
2r

�
; ðA4aÞ

P2PN ¼ 1

c4

��
3

8
−
3η

2

�
v4 −

Gm
r

��
15

8
−
3η

4

�
v2n

−
�
19

8
þ 3η

2

�
v2
�
þ G2m2

r2

�
7

4
−
η

2

��
; ðA4bÞ

and

Q2PN ¼ −
1

c4

�
7vnvu
4

Gm
r

�
; ðA4cÞ

Q2.5PN ¼ 1

c5

�
4vuv2

5

Gm
r

−
8vu
5

G2m2

r2

�
: ðA4dÞ

APPENDIX B: AMPLITUDES OF OSCILLATIONS

Three of the nonsingular orbital parameters present
periodic variations following the magnetic dipole-dipole
perturbation, namely z, the complex eccentricity vector, ζ,
the complex inclination vector, and λ, the mean longitude.
Oscillating signatures occurring on z are actually caused

by oscillations of ϖ, the longitude of the pericenter. After
integrating the secular equations of motion with respect to
time, we find that the magnetic periodic variations, ζ̃MðtÞ,
λ̃MðtÞ, and ϖ̃MðtÞ, are given by

ζ̃MðtÞ ¼
1

2e0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ζ0ζ̄0

p X2
k¼1

iΘk

��
1 −

ζ0ζ̄0
2

�
z0ei½ð _ϖGRþ _ϖMþ_βkÞtþβk0� þ ζ20

2
z̄0e−i½ð _ϖGRþ _ϖMþ _βkÞtþβk0�

�
ðB1aÞ

λ̃MðtÞ ¼ ϖ̃MðtÞ −Ψð−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin½ð _β1 − _β2Þtþ β10 − β20�

þ 4ΨðþÞð1 − e2Þ ½1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
− e2ð1 − 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
Þ�

e4
sin½ð_β1 þ _β2Þtþ β10 þ β20�; ðB1bÞ

ϖ̃MðtÞ ¼ −Ψð−Þ sin½ð_β1 − _β2Þtþ β10 − β20� þ
X2
k¼1

Θk tan

�
ι0
2

�
cos½ð _ϖGR þ _ϖM þ _βkÞtþ βk0 þ ω0�: ðB1cÞ

In these expressions, we introduce the amplitudes Θ1,
Θ2, and Ψð�Þ which are defined by

Θ1 ¼
�

ν0
_ϖGR þ _ϖM þ _β1

�
sin ϵ10 cos ϵ20; ðB2aÞ
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Θ2 ¼
�

ν0
_ϖGR þ _ϖM þ _β2

�
cos ϵ10 sin ϵ20; ðB2bÞ

Ψð�Þ ¼
�

ν0
_β1 � _β2

�
sin ϵ10 sin ϵ20: ðB2cÞ

The amplitudes Θ1 and Θ2 increase when the semimajor
axis decreases (cf. Fig. 8). For the set of numerical values
that we selected, and for the LISA frequency band (i.e.,
betweenΦ0 ¼ 10−4 Hz and 10−1 Hz), we can approximate
Θ1 by ν0= _ωGR, namely

Θ1 ≃
μ0c2

8πG2

μ1μ2
ηm3

sin ϵ10 cos ϵ20
a0ð1 − e02Þ

: ðB3Þ

For the high frequency part of the LISA band
(i.e., Φ0 ¼ 10−1 Hz), we can approximate Θ2 by ν0= _β2,
that is to say

Θ2 ≃
3

2
ffiffiffiffi
G

p
ffiffiffiffi
m

p
m1m2

S2 sin ϵ20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ð1 − e02Þ

p : ðB4Þ

However, as seen from Fig. 8, the transition between the
regimes _ωGR ≫ _β2 and _ωGR ≪ _β2 occurs precisely within
the LISA frequency band meaning that the general expres-
sion (B2b) must be favored between Φ0 ¼ 10−2 Hz to
10−3 Hz. From Φ0 ¼ 10−3 Hz to 10−4 Hz, Θ2 can be
approximated by ν0= _ωGR [cf. Eq. (B3)].
For the amplitude Θ1, the transition between the regimes

where _ωGR ≫ _β1 and _ωGR ≪ _β1 occurs for a ¼ a1 with a1

being the abscissa of the intersection between the curves
ν0= _β1 and ν0= _ωGR, as depicted in Fig. 8. The expression of
a1 is given by

a1 ¼
μ20c

4

144π2G3

μ21μ
2
2

S21m
3

cos2 ϵ20
ð1 − e02Þ

: ðB5Þ

Similarly, for the amplitude Θ2, the transition between
the regimes where _ωGR ≫ _β2 and _ωGR ≪ _β2 occurs for
a ¼ a2 where the expression for a2 is found by inter-
changing subscripts “1” and “2” in the expression of a1.
Both a1 and a2 are depicted as vertical lines in Fig. 8 (black
line for a1 and red line for a2). The relative separation
between a1 and a2 is thus mainly dependent of the
ratio ðS2 cos ϵ20Þ2=ðS1 cos ϵ10Þ2.
Higher amplitudes of oscillation can be reached in

regions _ωGR ≫ _β1 or _ωGR ≫ _β2 if the ratio ν0= _ωGR
increases. This can be done, for instance, with a higher
value of the product μ1μ2. The amplitudes Θ1 and Θ2 can
also be higher in regions _β1 ≫ _ωGR or _β2 ≫ _ωGR, respec-
tively, if the ratios ν0=_β1 and ν0=_β2 increase. This can
happen, for instance, when the magnitudes of the angular
momentum S1 and S2 are higher than in Eqs. (40) and (41).
As discussed in [42,43] spin-orbit tidal synchronization can
become efficient below orbital period ∼1 h. This tidal
synchronization is due to tidally excited gravity waves that
propagate outwards and which are efficiently dissipated by
nonlinear effects or radiative damping in the outer layer of
carbon–oxygen WDs. Therefore, for LISA high frequency
band, we could expect the spin periods of both the primary
and secondary to be P1 ¼ P2 ¼ 2π=n0. Hence, the magni-
tude of the spins’ angular momentum become

S1 ¼
m1R1

2

5
Φ0 ≃ 1.7 × 1042 kg · m2 · s−1

×

�
m1

1.2 M⊙

��
R1

6 × 103 km

�
2
�

Φ0

10−1 Hz

�
; ðB6Þ

and

S2 ¼
m2R2

2

5
Φ0 ≃ 2.7 × 1042 kg · m2 · s−1

×

�
m2

0.3 M⊙

��
R2

15 × 103 km

�
2
�

Φ0

10−1 Hz

�
: ðB7Þ

Comparison with Eqs. (40) and (41) reveals that numerical
values of S1 and S2 can actually be increased by factors 30
and 300, respectively, when spins are synchronized with the
orbit because of tidal dissipation. In this case, we expect the
curves ν0= _β1 and ν0= _β2 to be enhanced by factors 30 and
300, respectively. Therefore, within the LISA frequency
band, both Θ1 and Θ2 can actually be approximated by
Θ1 ¼ Θ2 ¼ ν0= _ωGR which is at the level of ∼5 × 10−2 rad
(see Eq. (B3). These amplitudes can still be safely
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FIG. 8. Evolution of the amplitude Θ1 (thick black line) and Θ2

(thick red line) with the semimajor axis.
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TABLE II. List of notations used in this paper.

Physical constants

μ0 Permeability of vacuum
c Speed of light in vacuum
G Gravitational constant

Physical parameters

m1=2 Mass of the primary/secondary
m Total mass of the binary
Δ Relative mass difference
η Symmetric mass ratio
μ1=2 Magnitude of the magnetic moment of the primary/secondary
B1=2 Magnitude of the magnetic field of the primary/secondary
S1=2 Magnitude of the spin of rotation of the primary/secondary
R1=2 Equatorial radius of the primary/secondary
P1=2 Period of proper rotation of the primary/secondary

Unit-vectors

ðêX; êY; êZÞ Vectorial basis for the source frame
ðêx; êy; êzÞ Vectorial basis for the orbit frame
ðn̂; û; êzÞ Vectorial basis for the corotating frame
N̂ Unit-vector for the direction of the observer
ŝ1=2 Unit-vector for the direction of the magnetic moment of the primary/secondary

Keplerian solution and orientation of the magnetic moments

p Semilatus rectum
a Semimajor axis
e Eccentricity
ι Inclination
Ω Longitude of the ascending node
ω Argument of the pericenter
τ Time of pericenter passage
z Imaginary eccentricity vector
ζ Imaginary inclination vector
f True anomaly
M Mean anomaly
ϖ Longitude of the pericenter
L Mean longitude
n Mean motion
P Orbital period
r Relative separation between the stars
v Magnitude of the relative velocity
vn Component of the relative velocity along n̂
vu Component of the relative velocity along û
ϵ1=2 Obliquity of the magnetic moment of the primary/secondary
β1=2 Precession angle of the magnetic moment of the primary/secondary

Perturbations

N Component of the perturbation along n̂
U Component of the perturbation along û
S Component of the perturbation along êz

Frequencies and rate of changes

Φ Mean frequency of the GW strain
ν Orbital frequency due to the magnetic dipole-dipole interaction
ν1=2 Rotational frequency of the primary/secondary due to the magnetic dipole-dipole interaction
_β1=2 Rate of precession of the magnetic moments of the primary/secondary due to the magnetic dipole-dipole interaction

(Table continued)
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neglected before the secular variations of the mean longi-
tude and the longitude of the pericenter. Nevertheless, this
might no longer be the case for higher frequencies than
0.1 Hz. Therefore, future decihertz GWs detectors, such as

TianGO [72], could reveal the periodic oscillations in the
inclination vector due to the dipole-dipole interaction, if the
magnetostatic and PN approximations still hold true
above 0.1 Hz.
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TABLE II. (Continued)

_λM Rate of precession of the mean longitude due to the magnetic dipole-dipole interaction
_λGR Rate of precession of the mean longitude due to general relativity at 1PN approximation
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