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In this paper, we continue our study of the motion of spinning test bodies orbiting Kerr black holes.
Nonspinning test bodies follow geodesics of the spacetime in which they move. A test body’s spin couples
to the curvature of that spacetime, introducing a “spin-curvature force” which pushes the body’s worldline
away from a geodesic trajectory. The spin-curvature force is an important example of a postgeodesic effect
which must be modeled carefully in order to accurately characterize the motion of bodies orbiting black
holes. One motivation for this work is to understand how to include such effects in models of gravitational
waves produced from the inspiral of stellar mass bodies into massive black holes. In this paper’s
predecessor, we describe a technique for computing bound orbits of spinning bodies around black holes
with a frequency-domain description which can be solved very precisely. In that paper, we present an
overview of our methods, as well as present results for orbits which are eccentric and nearly equatorial (i.e.,
the orbit’s motion is no more thanOðSÞ out of the equatorial plane). In this paper, we apply this formulation
to the fully generic case—orbits which are inclined and eccentric, with the small body’s spin arbitrarily
oriented. We compute the trajectories which such orbits follow, and compute how the small body’s spin
affects important quantities such as the observable orbital frequencies Ωr, Ωθ and Ωϕ.

DOI: 10.1103/PhysRevD.105.124041

I. INTRODUCTION

A. Spinning-body motion around black holes

The orbital motion of a spinning test body in a black
hole spacetime represents a clean limit of the relativistic
two-body problem. It also is of astrophysical significance
as a model for extreme mass-ratio inspirals (EMRIs).
Astrophysical EMRIs consist of stellar-mass compact
objects (of mass μ) orbiting a massive black hole (mass
M). Such systems are expected to inspiral over their
lifetime due to the backreaction of the gravitational waves
(GWs) they emit. If the large black hole is in the mass
range 105 M⊙ ≲M ≲ 107 M⊙, EMRI waves are expected
to radiate in the sensitive frequency band of the planned
low-frequency space-based Laser Interferometer Space
Antenna (LISA) [1,2]. Measurements of EMRI GWs are
expected to make possible precision measurements of the
properties of the larger black hole [3] and of the EMRI’s
astrophysical environment [4–7].
Enabling such precise measurements will require observ-

ers to use accurate waveform models which can match
phase with astrophysical signals over the inspiral, both to
integrate EMRI signals out of detector noise as well as to
facilitate characterizing their sources. Thanks to their small
mass ratio, ε≡ μ=M ∼ 10−7 − 10−4, it is natural to use
perturbation theory to model EMRIs. A natural place to
begin such models is using Kerr geodesics [8] to describe
the motion of the smaller body at zeroth order in ε. We then

introduce corrections which encode the nature of
“postgeodesic” physics that affects the smaller body’s
motion. A body traveling on a Kerr geodesic obeys the
equation of motion

Dpα

dτ
¼ 0; ð1:1Þ

where pα is the four-momentum of the body, D=dτ is the
covariant derivative computed along the orbit, and τ is the
body’s own proper time. Postgeodesic effects lead to an
additional force on the right-hand side of Eq. (1.1). In this
paper and in our accompanying companion analysis [9], we
study the force that arises when the spin of the small body
couples to background spacetime curvature. The equation
describing the small body’s motion becomes

Dpα

dτ
¼ fαS; ð1:2Þ

which is one of the Mathisson-Papapetrou equations. We
discuss the precise form of the spin-curvature force fαS and
the Mathisson-Papapetrou equations in Sec. II B; see also
Sec. III A of Ref. [9] for further details.
This work is a continuation of Ref. [9], which lays out

the general framework that we use but presents results only
for equatorial or nearly equatorial orbits (“nearly equato-
rial” meaning they would be equatorial if the small body
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were not spinning, but can oscillate by OðSÞ out of the
equatorial plane due to spin precession effects). In this
paper, we present results for orbits of spinning bodies
around black holes with completely generic orbital con-
figurations and spin orientations. For a discussion of related
past work, see Sec. I B in Ref. [9].

B. Synopsis of our frequency-domain description

We use a frequency-domain framework to compute the
orbits of spinning bodies. Bound Kerr geodesics naturally
lend themselves to this type of treatment as they are
characterized by the three coordinate-time frequencies
Ω̂r, Ω̂θ and Ω̂ϕ related to radial, polar, and axial motions,
respectively. This triperiodicity allows for a frequency-
domain description of functions which are computed along
Kerr orbits:

f½r̂ðtÞ; θ̂ðtÞ� ¼
X
kn

fkne−inΩ̂rte−ikΩ̂θt; ð1:3Þ

where fkn are Fourier expansion coefficients. Notice that
the function f we use to illustrate this expansion depends
on the orbit’s radial coordinate r and polar coordinate θ.
This is common for many relevant functions in our
analysis; because the Kerr spacetime is axisymmetric,
the coordinate ϕ often does not enter the analysis.
Notice also we write certain quantities in (1.3) using a
“hat” accent, e.g., r̂ðtÞ or Ω̂r. Throughout this paper, we use
this accent to denote a quantity which corresponds to a
geodesic orbit. A slight modification to the formulation
(1.3) allows us to characterize the properties of spinning-
body orbits, as was observed in Ref. [10]. We describe our
frequency-domain formulation in detail in Sec. IVA.
The spin of the small body injects additional harmonic

structure into the orbit—spin precession introduces a new
frequency [11], which we label Ωs. In addition, the spin
of the small body changes the orbital frequencies. Let us
denote the changes relative to an appropriately defined
geodesic by ΩS

r and ΩS
θ . Quantities expanded along a

spinning body’s orbit, such as the spin-curvature force fαS,
can be written as a Fourier expansion in terms of frequen-
cies Ωr ¼ Ω̂r þ ΩS

r , Ωθ ¼ Ω̂θ þ ΩS
θ , and Ωs:

f½rðtÞ; θðtÞ; SμðtÞ� ¼
X
jkn

fjkne−ijΩste−inΩrte−ikΩθt: ð1:4Þ

Here Sμ is a 4-vector which describes the spin of the small
body. Note that the radial and polar indices n and k both
range from −∞ to∞; the spin harmonic index j only varies
over the range j ∈ ½−1; 0; 1�. As with the geodesic expan-
sion (1.3), the frequency-domain expansion (1.4) provides
useful machinery for characterizing properties associated
with spinning-body orbits.
We find it convenient to associate each spinning-body

orbit with a “reference” geodesic. We thus begin by

discussing the parametrization we use for geodesic orbits.
Up to initial conditions, a geodesic is characterized by its
semi-latus rectum p, its eccentricity e and an inclination
angle I. In terms of these parameters, a geodesic’s radial
and polar motion are parametrized by

r̂ ¼ pM
1þ e cos χ̂r

; cos θ̂ ¼ sin I cos χ̂θ; ð1:5Þ

where the angles χ̂r and χ̂θ are relativistic versions of “true
anomaly” angles used in Keplerian orbital dynamics.
Notice that the radial motion oscillates between periapsis
at pM=ð1þ eÞ and apoapsis at pM=ð1 − eÞ; the polar
motion oscillates such that − sin I ≤ cos θ ≤ sin I.
Spinning-body orbits have a more ornate structure than

geodesics, and in most cases cannot be parametrized in
exactly this manner. An exception is the limit of equatorial
orbits in which the small body’s spin is aligned with the
normal to the orbital plane. In that case, we set I ¼ 0° or
180°, and we find we can parametrize the orbit such that it
has the same turning points pM=ð1� eÞ as a geodesic
orbit. Note that the motion between turning points differs,
however, thanks to the spin-curvature force; see detailed
discussion in Secs. V and VI of [9], especially discussion
near Eqs. (5.16), (5.54), and (6.4).
If the small body’s spin is misaligned with the orbit, or

the orbit is inclined with respect to the equatorial plane, the
libration region varies along the orbit. These variations
couple the radial, polar, and spin precessional motions,
complicating the equations of motion, and preventing them
from fully separating. Despite the complications of the
libration region’s variation, we can constrain the “purely
radial” motion—the aspects of the motion which only
have harmonics in Ωr—to lie between pM=ð1þ eÞ and
pM=ð1 − eÞ. We can likewise constrain the “purely polar”
motion, which only has harmonics in Ωθ, to lie between
− sin I and sin I. In this sense, we parametrize the spinning-
body orbits with respect to a reference geodesic which has
radial and polar turning points precisely at pM=ð1� eÞ and
� sin I. We then compute shifts to important properties of
the orbit relative to this reference geodesic. For example,
for spinning-body orbits confined entirely to the equatorial
plane, we compute shifts to the orbital frequencies relative
to geodesic orbits with the same radial turning points; this
case is discussed in detail in our companion paper [9].
In this paper, we further elucidate how reference geodesics
are characterized briefly in Sec. III A, and in much greater
detail in Sec. IVA 2. In Appendix A, we discuss different
definitions of reference geodesics (i.e., geodesics “close to”
a corresponding spinning-body orbit) that have been used
in the literature.

C. Organization of this paper

We begin by summarizing the key concepts and notation
which underlie our description of spinning-body motion in
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Sec. II. We provide a concise review of bound Kerr
geodesics in Sec. II A and we discuss how spin-curvature
coupling modifies the equations of motion (relative to a
geodesic reference) for a spinning test body in Sec. II B.
In Sec. III A, we describe spinning-body orbits qualita-
tively. This description is then made quantitative as we
outline the small-spin perturbative approach (Secs. III B)
and computational framework (Sec. III C) that we use to
calculate the orbits.
In Sec. IV, we use a frequency-domain treatment to

compute generic orbits,which are both inclined and eccentric,
and for which the small body’s spin is arbitrarily oriented.
We outline the general principles of the frequency-domain
description in Sec. IVA. In Secs. IV B 1 and IV B 2, we
focus specifically on spinning-body orbits that are “nearly
circular,” with aligned spins discussed in Sec. IV B 1 and
misaligned spins discussed in Sec. IV B 2. Nearly circular
orbits have an associated reference geodesic that is
circular; the orbits have a Boyer-Lindquist coordinate
radius that is constant modulo a small variation of OðSÞ.
In Sec. IV B 3, we consider the fully generic case, with
both arbitrary eccentricities and inclinations. We conclude
in Sec. V by summarizing our results and outlining plans
for related future research. In Appendix B, we compare
our results with an alternative method for computing these
frequency shifts presented in Ref. [12].
As in our companion paper, quite a few of the functions

which enter into this analysis are extremely lengthy. Both
because this makes them difficult to read and because the
likelihood of introducing errors when typesetting them is
high, we provide the explicit formulas for these expressions
using a Mathematica notebook included with this paper’s
Supplemental Material [13], rather than writing the expres-
sions out in the paper.
Throughout this paper, we work in geometrized units

with G ¼ 1, c ¼ 1.

II. THE MOTION OF A SPINNING BODY

In this analysis, we formulate the motion of a spinning
body in terms of a nearby “reference” geodesic orbit. In
order to introduce important notation and to keep this
manuscript self contained, we begin in Sec. II Awith a brief
synopsis of Kerr geodesic spacetime. For a more detailed
discussion of these geodesics, see Sec. II of the companion
paper to this work, Ref. [9], as well as numerous other
articles [14–23]. We then summarize the key concepts and
equations governing spinning-body orbits in Sec. II B, with
a particular focus on how one describes the parallel
transport of an orbiting body’s spin angular momentum
in Sec. II C.

A. Kerr geodesics

The metric for the Kerr spacetime in Boyer-Lindquist
coordinates is [24]

ds2 ¼ −
�
1 −

2r
Σ

�
dt2 þ Σ

Δ
dr2 −

4Mar sin2 θ
Σ

dtdϕ

þ Σdθ2 þ ðr2 þ a2Þ2 − a2Δ sin2 θ
Σ

sin2 θdϕ2; ð2:1Þ

where M is the mass and a is the spin parameter a of the
black hole and

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 þ a2cos2θ: ð2:2Þ

The Kerr geometry possesses two Killing vectors ξt
and ξϕ; these Killing vectors yield two constants of motion
given by

Ê ¼ −ξαt uμ ¼ −ût; ð2:3Þ

L̂z ¼ ξαϕuμ ¼ ûϕ; ð2:4Þ

where we have normalized these quantities by the mass μ of
the small body. As mentioned in the Introduction, through-
out this paper a quantity with a hat accent, such as Ê, means
that it corresponds to a geodesic orbit.
The Kerr spacetime admits an antisymmetric Killing-

Yano tensor which is given by [25,26]

F μν ¼ a cos θðē1μē0ν − ē0μē1νÞ þ rðē2μē3ν − ē3μē2νÞ; ð2:5Þ

where

ē0μ ¼
� ffiffiffiffi

Δ
Σ

r
; 0; 0;−asin2θ

ffiffiffiffi
Δ
Σ

r �
; ð2:6Þ

ē1μ ¼
�
0;

ffiffiffiffi
Σ
Δ

r
; 0; 0

�
; ð2:7Þ

ē2μ ¼ ½0; 0;
ffiffiffi
Σ

p
; 0�; ð2:8Þ

ē3μ ¼
�
−
a sin θffiffiffi

Σ
p ; 0; 0;

ðr2 þ a2Þ sin θffiffiffi
Σ

p
�
: ð2:9Þ

The Kerr metric also admits a Killing tensor Kμν which can
be thought of as the “square” of F μν:

Kμν ¼ F μαF ν
α: ð2:10Þ

The existence of the Killing tensor allows us to define a
fourth conserved constant for Kerr geodesic motion [27]
(in addition to the orbiting body’s rest mass μ, its energy Ê,
and its axial angular momentum L̂z):

K̂ ¼ Kαβûαûβ: ð2:11Þ
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This quantity is called the Carter constant. A related
conserved quantity Q̂, also called the Carter constant, is
defined by

Q̂ ¼ K̂ − ðL̂z − aÊÞ2: ð2:12Þ

The geodesic equations for the Kerr metric separate in
Boyer-Lindquist coordinates as first shown by Carter [27],
yielding

Σ2

�
dr̂
dτ

�
2

¼ ½Êðr̂2 þ a2Þ − aL̂z�2

− Δ̂½r̂2 þ ðL̂z − aÊÞ2 þ Q̂�
≡ Rðr̂Þ; ð2:13Þ

Σ2

�
dθ̂
dτ

�2

¼ Q̂ − cot2θ̂L̂2
z − a2cos2θ̂ð1 − Ê2Þ

≡ Θðθ̂Þ; ð2:14Þ

Σ
dϕ̂
dτ

¼ csc2 θ̂L̂z þ aÊ

�
r̂2 þ a2

Δ̂
− 1

�
−
a2L̂z

Δ̂
≡Φðr̂; θ̂Þ; ð2:15Þ

Σ
dt̂
dτ

¼ Ê

�ðr̂2 þ a2Þ2
Δ̂

− a2 sin2 θ̂

�
þ aL̂z

�
1 −

r̂2 þ a2

Δ̂

�
≡ Tðr̂; θ̂Þ: ð2:16Þ

Introducing a time parameter λ, called “Mino time,” such
that dλ ¼ dτ=Σ, allows the radial and polar equations of
motion to decouple entirely [28]. Equations (2.13)–(2.16)
become

�
dr̂
dλ

�
2

¼ Rðr̂Þ;
�
dθ̂
dλ

�2

¼ Θðθ̂Þ;

dϕ̂
dλ

¼ Φðr̂; θ̂Þ; dt̂
dλ

¼ Tðr̂; θ̂Þ: ð2:17Þ

Note that the Kerr geodesic equations can be solved in
closed form when they are parametrized using Mino time.
The explicit form of these solutions in terms of elliptic
functions can be found in Refs. [11,20].
The bounds of Kerr geodesics are defined by a torus

with radius ranging between r1 ≤ r̂ ≤ r2 and polar angle
between θ− ≤ θ̂ ≤ ðπ − θ−Þ. We find it convenient to define
turning points r1 and r2 in terms of semilatus rectum p and
eccentricity e, according to

r1 ¼
pM
1 − e

; r2 ¼
pM
1þ e

; ð2:18Þ

and θ− can be expressed in terms of inclination angle I
where

I ¼ π=2 − sgnðLzÞθ−: ð2:19Þ

We can then write r̂ and θ̂ in terms of these bounds,
yielding

r̂ ¼ pM
1þ e cos χ̂r

; ð2:20Þ

cos θ̂ ¼ sin I cos χ̂θ: ð2:21Þ

The angles χ̂r and χ̂θ are relativistic generalizations of the
“true anomaly” angles found in the Keplerian versions of
these expressions.
As mentioned in Sec. I B, bound Kerr geodesics are

triperiodic [14,16,20]. It is convenient to define these
frequencies, associated with radial, polar and axial motions,
with respect to Mino-time. We define Λ̂r, Λ̂θ, and Λ̂ϕ as
the radial, polar, and axial Mino-time periods; related to
each of these periods is a Mino-time frequency ϒ̂r;θ;ϕ ¼
2π=Λ̂r;θ;ϕ. Because much of our calculation depends on
frequency-domain descriptions of geodesic motion, Mino-
time frequencies are particularly important. As shown
in Ref. [16], Fourier expansions of functions fðλÞ ¼
f½r̂ðλÞ; θ̂ðλÞ� evaluated along Kerr orbits can be written

f ¼
X∞
k¼−∞

X∞
n¼−∞

fkne−iðkϒ̂θþnϒ̂rÞλ ð2:22Þ

where the Fourier coefficient fkn is straightforwardly
computed using

fkn ¼
1

Λ̂rΛ̂θ

Z
Λ̂r

0

Z
Λ̂θ

0

f½r̂ðλrÞ; θ̂ðλθÞ�eikϒ̂θλθeinϒ̂rλrdλθdλr:

ð2:23Þ

The quantities ϒ̂ϕ and Γ̂ are defined as the orbit averages
of the functionsΦðr̂; θ̂Þ and Tðr̂; θ̂Þ in Eq. (2.17), where f00
is the orbit-average of the function f½r̂ðλÞ; θ̂ðλÞ�. The
quantity Γ̂ is used to convert between the Boyer-
Lindquist coordinate-time frequencies Ω̂r;θ;ϕ and Mino-

time frequencies ϒ̂r;θ;ϕ, via

Ω̂r;θ;ϕ ¼ ϒ̂r;θ;ϕ

Γ̂
: ð2:24Þ

See Sec. II C of Ref. [9] for further detail on the frequency-
domain description of geodesic motion. In this article,
Sec. IVA 4 provides a prescription for computing the
coordinate-time analogues of Mino-time frequencies asso-
ciated with spinning-body orbits.
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B. Spin-curvature coupling

The motion of a spinning body is governed by the
Mathisson-Papapetrou equations [29–32]

Dpα

dτ
¼ −

1

2
Rα

νλσuνSλσ; ð2:25Þ

DSαβ

dτ
¼ pαuβ − pβuα; ð2:26Þ

where Sαβ is the spin tensor and the 4-momentum pμ is
given by

pα ¼ μuα − uγ
DSαγ

dτ
: ð2:27Þ

To close the system of equations (2.25)–(2.26), we need
an additional constraint known as the spin supplementary
condition (SSC). A commonly used SSC is the Tulczyjew
SSC,

pαSαβ ¼ 0; ð2:28Þ

which we employ throughout this analysis [33]. We define
the spin vector in terms of the spin tensor through [34]

Sμ ¼ −
1

2μ
ϵμναβpνSαβ; ð2:29Þ

where

ϵαβγδ ¼
ffiffiffiffiffiffi
−g

p ½αβγδ�; ð2:30Þ
ffiffiffiffiffiffi−gp

is the metric determinant, and ½αβγδ� is the totally
antisymmetric symbol.
One can define two conserved quantities associated with

these equations: the energy and axial angular momentum
per unit mass. These are given by

ES ¼ −ut þ
1

2μ
∂βgtαSαβ; ð2:31Þ

LS
z ¼ uϕ −

1

2μ
∂βgϕαSαβ: ð2:32Þ

respectively. The magnitude of the spin vector S is another
constant of motion, given by

S2 ¼ SαSα ¼
1

2
SαβSαβ: ð2:33Þ

The magnitude S can then be defined in terms of a
dimensionless spin parameter s,

S ¼ sμ2: ð2:34Þ

If the smaller body is itself a Kerr black hole, then
0 ≤ s ≤ 1. In addition, pμpμ ¼ −μ2 is constant along the
worldline of the orbiting body to linear order in S. Finally,
an analogue of the Carter constant is conserved at linear
order in S and is given by [35]

KS ¼ Kαβuαuβ þ δCS; ð2:35Þ

where

δCS ¼ −
2

μ
ûμSρσðF ν

σ∇νF μρ − F μ
ν∇νF ρσÞ: ð2:36Þ

Using the Tulczyjew SSC in Eq. (2.28), we can deduce
that pα ¼ μuα þOðS2Þ. Examining the motion to leading
order in the small body’s spin, we therefore have

pα ¼ μuα; ð2:37Þ

i.e., 4-velocity and 4-momentum are parallel at this order.
Accordingly, Eqs. (2.25)–(2.26) now become

Duα

dτ
¼ −

1

2μ
Rα

νλσuνSλσ; ð2:38Þ

DSαβ

dτ
¼ 0; ð2:39Þ

to leading order in small-body spin. Once we have linearized
in spin, we can write the small body’s 4-velocity as

uα ¼ ûα þ uαS; ð2:40Þ

where ûα solves the geodesic equation. As first noted in
Sec. I B, the hat accent denotes quantities that are evaluated
along a geodesic with 4-velocity ûα; uαS then denotes the
OðSÞ correction to the 4-velocity. Equation (2.29) becomes

Sμ ¼ −
1

2
ϵμναβûνSαβ; ð2:41Þ

once we have linearized in S. Equivalently, we can write

Sαβ ¼ ϵαβμνûμSν: ð2:42Þ

C. Parallel transport in Kerr

When we combine Eqs. (2.39) and (2.42), we obtain

DSμ

dτ
¼ 0; ð2:43Þ

which means that the spin vector is parallel transported
at this order. Parallel transport of a vector in the Kerr
spacetime has a closed form solution presented in Ref. [11]
which builds on the tetrad formulation introduced by
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Marck [36–38]. Following Ref. [11], we outline the
procedure for constructing tetrad legs fe0α; ẽ1α; ẽ2α; e3αg.
First, we observe that, by definition, ûμ is parallel-
transported along a geodesic worldline. We let e0α ¼ ûα
be the first leg of the tetrad. Next, we define the vector

L̂ν ¼ F μνûμ; ð2:44Þ

which we call the orbital angular momentum 4-vector.
This vector is also parallel transported in Kerr, so we

define e3α ¼ L̂αðλÞ=
ffiffiffiffî
K

p
as the fourth leg of the tetrad. It is

worth noting that other sources (e.g., [11,12]) define Lν

with the contraction on the other index of F μν. Because
of the antisymmetry of the Killing-Yano tensor, this
introduces an overall minus sign. As discussed in our
companion paper [9], this sign flip insures that the angular
momentum has the right components in the equatorial
limit (in particular, that L̂θ ∝ −L̂z). We have found that
this convention is needed for our results to agree with past
post-Newtonian results.
We next define ẽ1α and ẽ2α by constructing two vectors

which lie in the plane orthogonal to e0α and e3α; explicit
expressions for ẽ1α and ẽ2α are given in Eqs. (50) and (51)
of Ref. [11]. We let

e1α ¼ cosψpðλÞẽ1α þ sinψpðλÞẽ2α; ð2:45Þ

e2α ¼ − sinψpðλÞẽ1α þ cosψpðλÞẽ2α; ð2:46Þ

where we define ψpðλÞ such that

dψp

dλ
¼

ffiffiffiffî
K

p �ðr2 þ a2ÞÊ − aL̂z

K̂ þ r2
þ a

L̂z − að1 − z2ÞÊ
K̂ − a2z2

�
:

ð2:47Þ

By construction, we have now obtained tetrad legs fe0; e1;
e2; e3g that are orthogonal, normalized and parallel trans-
ported along geodesics [11,36,37]. As mentioned above, a
closed form solution of Eq. (2.47) is presented in Ref. [11]
with the form

ψpðλÞ ¼ ϒsλþ ψ rðϒrλÞ þ ψθðϒθλÞ; ð2:48Þ

where ϒs is the Mino-time frequency of the precession of
this tetrad along the geodesic. We let Λs ¼ 2π=ϒs be the
Mino-time precession period. The KerrGeodesics
package of the Black Hole Perturbation Toolkit [39]
includes code for computing these tetrad legs and ϒs.
In general, the spin vector of the small body can be

written

Sα ¼ S0e0αðλÞ þ S1e1αðλÞ þ S2e2αðλÞ þ S3e3αðλÞ; ð2:49Þ

where fS0; S1; S2; S3g are all constants. The Tulczyjew
SSC in Eq. (2.28) requires that S0 ¼ 0. The component
S3 ≡ sk describes components of the small body’s spin
aligned or antialigned with the orbital angular momentum;
S1 and S2 are components in the orbital plane,
perpendicular to the direction of orbital angular momen-
tum. Using the dimensionless spin parameter 0 ≤ s ≤ 1
defined in Eq. (2.34), we can write Sα as

Sα ¼ μ2ðs⊥ cosϕse1α þ s⊥ sinϕse2α þ ske3αÞ: ð2:50Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2⊥ þ s2k

q
, and ϕs describes the orientation of

the spin components in the orbital plane. In terms of ẽ1α
and ẽ2α, we have

Sα ¼ μ2½s⊥ðcosðϕs þ ψpÞẽ1α þ sinðϕs þ ψpÞẽ2αÞ þ ske3α�:
ð2:51Þ

The small body’s spin precesses only when either S1 or S2

are nonzero and hence s⊥ ≠ 0. In this case, the frequency-
domain description of Sα includes harmonics of the spin-
precession frequency ϒs. If s⊥ ¼ 0, the spin vector does
not precess.

III. GENERIC SPINNING-BODY ORBITS:
GENERAL PRINCIPLES

We begin our discussion of spinning-body motion by
presenting a qualitative overview of their orbits and the
parametrizations used to describe them (Sec. III A). In
Sec. III B, we then discuss spin-induced deviations to
geodesic trajectories and orbital quantities. In Sec. III C,
we present the mathematical framework we use to compute
spinning-body orbits.

A. Characteristics of spinning-body orbits

Spinning-body orbits generally tend to be qualitatively
distinct from geodesic orbits. The most obvious difference
is the introduction of harmonics at frequency ϒs, which
appear when s⊥ ≠ 0 due to the precession of the spin
vector. However, even when s⊥ ¼ 0 so that there is no spin
precession, the libration range can vary over the course of
the orbit due to harmonics of both ϒr and ϒθ. Unlike the
geodesic orbits given in Eqs. (2.17), the radial and polar
motions of a spinning body do not fully separate thanks to
their coupling via the variations in orbit’s libration region.
Instead, the radial turning points are functions of θ and ψp,
while the polar turning points are functions of r and ψp;
see Ref. [12] for explicit analytic expressions for turning
point corrections.
Because bound geodesics have turning points that are

fixed for the duration of the orbit, we cannot in general
find a geodesic with the same turning points as a given
spinning-body orbit. We find, however, that aspects of the
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motion which are totally described by harmonics of the
radial frequency Ωr do in fact have fixed radial turning
points; we call this the “purely radial” portion of the orbit.
Likewise, aspects of the motion which are totally described
by harmonics of the polar frequency Ωθ have fixed polar
turning points; we call this the “purely polar” orbital
motion. With this in mind, we define the reference geodesic
as the geodesic that has the same radial turning points as the
purely radial part of the spinning-body orbit, and that has
the same polar turning points as the purely polar part of that
orbit. Aspects of the motion which cannot be written as
purely radial or purely polar describe variations in the
orbit’s turning points, and are incorporated into functions
which combine the radial, polar, and precessional frequen-
cies. Section IVA 2 expands on this idea, providing
computational detail; see also Appendix A for discussion
of alternative mappings between geodesic and spinning-
body orbits used in the literature.
The simplest case is an equatorial orbit with aligned spin,

so that s⊥ ¼ 0. In this case, an orbit’s radial and polar
motion can be parametrized as

r ¼ pM
1þ e cos χr

; θ ¼ π

2
: ð3:1Þ

This constrains the radial motion to the interval
p=ð1þ eÞ ≤ r ≤ p=ð1 − eÞ, exactly as for geodesic
motion. Note, however, that the true anomaly angle χr
for the spinning-body orbit is not the same as the geodesic
true anomaly χ̂r: there is a shift in the radial frequency from
ϒ̂r to ϒr ¼ ϒ̂r þϒS

r , as well as a shift to an oscillating
contribution to this angle.
For misaligned spin, with s⊥ ≠ 0, the spin vector

precesses and truly equatorial orbits do not exist.
However, we can find “nearly equatorial” orbits which
oscillate OðSÞ out of the equatorial plane. For the nearly
equatorial orbits, we can still parametrize the radial motion
in the same way as a geodesic, but there are adjustments to
the polar libration range due to the spin precession. The
turning points of the polar motion then depend on the spin
precession phase ψp. We write nearly equatorial orbits in
the form

r ¼ pM
1þ e cos χr

; θ ¼ π

2
þ δϑS; ð3:2Þ

where the angle δϑS describes the OðSÞ librations in
polar angle. We investigate these orbits in detail in our
companion paper [9].
Spinning-body orbits which are inclined with respect to

the equatorial plane cannot be parametrized in the same
way as geodesics even when s⊥ ¼ 0. Inclined orbits
with aligned spin (i.e., with s⊥ ¼ 0) that are OðSÞ away
from circular—“nearly circular” orbits—can be parame-
trized using

r ¼ pM þ δrS; ð3:3Þ

cos θ ¼ sin I cos χθ: ð3:4Þ

The polar motion in this parametrization is the same as that
for an inclined geodesic orbit (bearing in mind that the true
anomaly angle χθ differs from the true anomaly χ̂θ that
describes a geodesic), but the radial motion includes a
function δrS which accounts for oscillations in the radial
libration region due to spin-curvature coupling. This form
is discussed in detail in Sec. IV B 1.
For nearly circular orbits with misaligned spin, the radial

turning points depends on both θ and ψp; the polar turning
points depend on r and ψp. The orbits in this case are
described by

r ¼ pM þ δrS; ð3:5Þ

cos θ ¼ sin I cos χθ þ δzS: ð3:6Þ

The function δzS accounts for variations in the cos θ
libration region. This parametrization can be written as a
variation in polar angle:

δzS ¼ −δϑS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2 I cos2 χθ

q
: ð3:7Þ

This relationship is most useful for nearly equatorial orbits
which have sin I ¼ 0, for which δzS ¼ −δϑS. Circular,
inclined orbits with misaligned spin are discussed in detail
in Sec. IV B 2.
Finally, in the fully generic case when the orbit is

eccentric and inclined with arbitrarily oriented spin, the
parametrization we use has the form

r ¼ pM
1þ e cos χr

þ δrS; ð3:8Þ

cos θ ¼ sin I cos χθ þ δzS: ð3:9Þ

This case is discussed in detail in Sec. IV B 3.

B. Perturbative framework for the motion
of spinning bodies

In Eq. (2.34), we defined a dimensionless spin parameter
s which satisfies 0 ≤ s ≤ 1 if the small body is itself a Kerr
black hole. The magnitude of the small body’s spin is then
S ≤ μ2, and so linear-in-spin effects are quadratic in the
system’s mass ratio. In what follows, we neglect terms in
our equations that are OðS2Þ or higher, as such terms are
negligible for the extreme mass ratio systems we are
interested in. Our approach thus hinges on the use of
perturbation theory in the mass ratio.
With a linear-in-spin analysis in mind, it is possible to

write the small body’s trajectory as
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xαðλÞ ¼ x̂αðλÞ þ δxαSðλÞ: ð3:10Þ

Here, x̂αðλÞ is the trajectory of a geodesic, and δxαSðλÞ is the
OðSÞ-deviation from the geodesic trajectory due to the spin
of the small body. Similarly, as defined in Eq. (2.40), we
can write

uα ¼ ûα þ uαS: ð3:11Þ

Observe, however, that the periodic motions which con-
tribute to x̂αðλÞ in general have different periods than the
ones which contribute to xαðλÞ. Using Eq. (3.10), we
therefore expect δxαS to contain secular terms which
grow without bound. This means that δxαSðλÞ as defined
in Eq. (3.10) cannot easily be characterized using a
frequency-domain description.
For this reason, we do not directly use the form

Eq. (3.10) when we evaluate spinning-body orbits in
Sec. IV. We instead parametrize spinning-body orbits using
amplitude-phase variables, where the frequency shift is
incorporated into the parametrization; see Eqs. (4.7)–(4.8)
and surrounding text. These variables are either periodic or
constant and do not contain secularly growing terms; they
can be described using Fourier expansions as outlined in
Sec. IVA. Once we have solved for the frequency shifts and
other unknowns, it is then possible to compute radial and
polar spin corrections δrS and δθS, whose explicit forms
in terms of the amplitude-phase variables are given by
Eqs. (4.25) and (4.26).
One of our goals is to compute corrections relative to

geodesic motion of important quantities associated with the
orbit. Such quantities include the constants of motion,
which we write in the form

XS ¼ X̂ þ δXS; ð3:12Þ

where X ∈ ½E;Lz; K;Q�. Here X̂ is the quantity associated
with the reference geodesic and δXS is the correction
required when we include the spin of the orbiting body.
Explicitly, the leading-order-in-spin corrections to the energy
δES and axial angular momentum δLS

z are defined by

ES ¼ Êþ δES; LS
z ¼ L̂z þ δLS

z : ð3:13Þ

where ES and LS
z are given by Eqs. (2.31) and (2.32).

Similarly, the first order in spin correction to K is defined by

KS ¼ K̂ þ δKS; ð3:14Þ

where

δKS ¼ 2Kαβûαu
β
S þ δrS∂rKαβûαûβ þ δθS∂θKαβûαûβ þ δCS:

ð3:15Þ

and where δCS is given by Eq. (2.36). Finally, using
Eq. (2.12), we can obtain the first-order shift in Q:

δQS ¼ δKS − 2ðL̂z − aÊÞðδLS
z − aδESÞ: ð3:16Þ

The spin of the small body also introduces corrections to
the fundamental frequencies of the orbit, which we write
in the form

ϒx ¼ ϒ̂x þϒS
x; Γ ¼ Γ̂þ ΓS; ð3:17Þ

where x ∈ ½r; θ;ϕ�. As discussed in Sec. II C, the spin
of the small body also introduces the spin-precession
frequency ϒs into the motion, meaning that orbits of
spinning bodies can generally be described using Mino-
time Fourier expansions with harmonics of frequencies
ϒ̂r þϒS

r , ϒ̂θ þϒS
θ and ϒs. This frequency-domain

approach is what we will use in Sec. IV to compute
properties of spinning-body orbits.

C. Computing spinning-body orbits

We now outline the explicit mathematical framework
we use to compute the modification to the small body’s
trajectory arising from the spin-curvature interaction.
Equation (2.38) is the governing equation for the spin-
ning-body orbits discussed in this work. We repeat this
equation below:

Duα

dτ
¼ −

1

2μ
Rα

νλσuνSλσ ≡ fαS=μ: ð3:18Þ

We define the right-hand side of this equation to be the
spin-curvature force fαS. When we expand the covariant
derivative, we have

duα

dτ
þ Γα

βγuβuγ ¼ fαS=μ; ð3:19Þ

where Γα
βγ is the Christoffel connection for the Kerr

spacetime. We find it convenient to perform all our
calculations in Mino-time, so we define

Uα ≡ dxα

dλ
¼ Σuα; ð3:20Þ

where the 4-velocity is uα ¼ dxα=dτ and Mino-time is
defined by d=dλ ¼ Σd=dτ. Now that we have defined Uα

by Eq. (3.20), we multiply Eq. (3.19) by Σ2, yielding

dUα

dλ
þ Πα ¼ Fα

S=μ; ð3:21Þ

where

LISA V. DRUMMOND and SCOTT A. HUGHES PHYS. REV. D 105, 124041 (2022)

124041-8



Fα
S ≡ Σ2fαS; Πα ≡ −

Uα

Σ
dΣ
dλ

þ Γα
βγUβUγ: ð3:22Þ

Consider Eq. (3.21) component by component. We start
with the axial and temporal components of the 4-velocity.
Begin by writing ut and uϕ as

ut ¼ −Êþ uSt ; uϕ ¼ L̂z þ uSϕ; ð3:23Þ

where uSt;ϕ ¼ OðSÞ. Combining the axial and temporal
components of Eq. (2.38) yields two equations of the form

duSϕ
dλ

¼ Rϕ;
duSt
dλ

¼ Rt; ð3:24Þ

where Rϕ and Rt are functions of known geodesic
quantities. For the case of nearly equatorial orbits, these
functions are given in Eqs. (5.13) and (5.14) of our
companion paper [9]; for the general case, they are among
the functions which we include in the supplementary
Mathematica notebook which accompanies this paper.
Using Eqs. (3.24), we can then solve for uSt and uSϕ.
Turn next to the radial and polar components of

Eq. (3.21), which we write

d2r
dλ2

þ Πr ¼ Fr
S; ð3:25Þ

d2θ
dλ2

þ Πθ ¼ Fθ
S: ð3:26Þ

We solve Eqs. (3.25) and (3.26) by linearizing in spin
and expanding in the frequency domain. In addition, we
preserve the norm of the 4-velocity along the orbit,
requiring that

uαuα ¼ −1: ð3:27Þ

We linearize Eq. (3.27) in spin, and expand in the frequency
domain. Our full frequency-domain treatment of spinning-
body orbits is discussed in detail in Sec. IV.

IV. GENERIC SPINNING-BODY ORBITS:
FREQUENCY-DOMAIN TREATMENT

We now compute spinning-body orbits which have
arbitrary eccentricity and inclination, using a frequency-
domain treatment of the spinning body’s motion. In our
companion paper, Ref. [9], we described equatorial and
nearly equatorial spinning-body orbits in detail. In that
work, we used essentially the same frequency-domain
techniques to study equatorial (aligned spin) and nearly
equatorial (misaligned spin) orbits with arbitrary eccen-
tricity. We now extend this technique to encompass orbits
that have any orbital inclination, not only those that are
within polar angles OðSÞ of the equatorial plane.

A. Frequency-domain description

Writing quantities defined on a spinning body’s orbit in
expansions of the form

fðλÞ ¼
X1
j¼−1

X∞
n;k¼−∞

fjnke−iðjϒsþnϒrþkϒθÞλ; ð4:1Þ

allows us to compute orbits to a high level of precision.
The Fourier coefficient fjnk is defined by

fjnk ¼
1

ΛrΛθΛs

Z
Λr

0

Z
Λθ

0

Z
Λs

0

fðλr; λθ; λsÞ

× eiðjϒsλsþnϒrλrþkϒθλθÞdλrdλθdλs: ð4:2Þ

The techniques we describe below allow us to precisely
compute a spinning body’s orbital frequencies ϒr and ϒθ

for fully generic orbits. As discussed and defined in
Eq. (3.17), we treat these frequencies as “spin shifted”
relative to the radial and polar frequencies of a reference
geodesic, writing ϒr ¼ ϒ̂r þϒS

r and ϒθ ¼ ϒ̂θ þϒS
θ .

1. Generalities

We first examine the t and ϕ components of the
4-velocity. The frequency-domain expansion allows us to
solve the axial and temporal components of Eq. (2.38),
which we write explicitly in the form shown in Eqs. (3.24).
To do this, we expand uSt and uSϕ as1:

uSt ¼
X1
j¼−1

X∞
n;k¼−∞

uSt;jnke
−iðjϒsþnϒrþkϒθÞλ; ð4:3Þ

uSϕ ¼
X1
j¼−1

X∞
n;k¼−∞

uSϕ;jnke
−iðjϒsþnϒrþkϒθÞλ: ð4:4Þ

We split uSt into a constant uSt;0 plus an oscillatory
contribution δuSt ðλÞ:

uSt ¼ uSt;0 þ δuSt ðλÞ: ð4:5Þ

We divide uSϕ in the same way:

uSϕ ¼ uSϕ;0 þ δuSϕðλÞ ð4:6Þ

Using Eqs. (3.24), we can immediately solve for δuSt
and δuSϕ.

1Note that if the function we are Fourier expanding already has
a subscript, we use a comma to denote the specific Fourier mode.
For example, uSt;1;0;−1 is the j ¼ 1, n ¼ 0, k ¼ −1 harmonic of
function uSt .
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We also use a frequency-domain description to solve
the radial and polar Eqs. (3.25)–(3.26). As described in
Sec. III A, generic orbits can be parametrized by

r ¼ pM
1þ e cos χr

þ δrS; ð4:7Þ

cos θ ¼ sin I cos χθ þ δzS: ð4:8Þ

We break the radial true anomaly χr in Eq. (4.7) into a mean
anomaly wr ¼ ϒrλ and oscillating contributions δχr; we
break up the polar true anomaly χθ in Eq. (4.8) similarly,
using wθ ¼ ϒθλ:

χr ¼ wr þ δχr; χθ ¼ wθ þ δχθ: ð4:9Þ

The mean anomalies have geodesic and spin-curvature
pieces,

wr ¼ ðϒ̂r þϒS
r Þλ; wθ ¼ ðϒ̂θ þϒS

θÞλ; ð4:10Þ

where ϒS
r is the contribution to the radial Mino-time

frequency arising from spin-curvature coupling, and ϒS
θ is

the analogous contribution to the polar Mino-time frequency.
The oscillating contributions likewise have one piece that
arises from geodesic motion δχ̂x and another associated with
spin-curvature coupling δχSx , where x ∈ ½r; θ�:

δχr ¼ δχ̂rðwrÞ þ δχSr ; δχθ ¼ δχ̂θðwθÞ þ δχSθ : ð4:11Þ

In Eq. (4.11), the Fourier coefficients of δχ̂rðwrÞ and
δχ̂θðwθÞ are identical to those used to describe the anomaly
angle of a geodesic orbit with parameters p, e and I in
Eqs. (2.20) and (2.21):

δχ̂rðwrÞ ¼
X∞
n¼−∞

δχ̂r;ne−inwr ; ð4:12Þ

δχ̂θðwθÞ ¼
X∞
k¼−∞

δχ̂θ;ke−ikwθ : ð4:13Þ

Note, however, that the phases wr andwθ are not the same as
those for the geodesic orbit with corresponding values of
ðp; e; IÞ, due to the presence of ϒS

r and ϒS
θ in Eq. (4.10).

The spin-corrections to the fundamental frequencies are built
into our parametrization of spinning-body orbits. We explic-
itly include the wr and wθ arguments in Eq. (4.11) to
emphasize this.

2. Reference geodesics

As we have discussed, we cannot in general constrain
the radial or polar motion of spinning body orbits to lie
between two fixed turning points as we can for bound
geodesics. However, we can constrain the purely radial

motion (aspects of the motion that only involve harmonics
of ϒr) and the purely polar motion (with only harmonics
in ϒθ) to lie within the radial and polar turning points of a
given geodesic orbit. In our approach, we parametrize an
orbit by selecting a geodesic with parameters ðp; e; IÞ, as
well as an initial spin-vector orientation. The purely radial
motion of the spinning body’s motion is then confined to
the region pM=ð1þ eÞ ≤ r ≤ pM=ð1 − eÞ, and its purely
polar is confined to − sin I ≤ cos θ ≤ sin I. We call the
geodesic with parameters ðp; e; IÞ in this picture the
“reference geodesic.” We briefly introduced this concept
in Sec. III A. Note that there are alternative mappings
between geodesics and spinning bodies that have been used
in the literature; see Appendix A for further discussion.
We write δχSr and δχSθ as Fourier expansions,

δχSr ¼
X∞
n¼−∞

δχSr;ne−inwr ; ð4:14Þ

δχSθ ¼
X∞
k¼−∞

δχSθ;ke
−ikwθ : ð4:15Þ

Note that because δχSr and δχSθ both have average values
of zero (they represent oscillatory contributions to the χSr
and χSθ , we set δχSr;0 ¼ 0 and δχSθ;0 ¼ 0). Notice that the
expansion for δχSr in Eq. (4.14) consists purely harmonics at
the radial frequency; δχSθ in Eq. (4.15) likewise consists
purely of harmonics at the polar frequency. In this way, we
have constrained the purely radial motion to the interval
p=ð1þ eÞ ≤ r ≤ p=ð1 − eÞ and purely polar motion to the
interval − sin I ≤ cos θ ≤ sin I.
The remaining dynamics, consisting of motion that is

neither purely radial nor purely polar, describes how the
libration regions varies, and is mapped onto the quantities
δrS and δzS. We expand these quantities using generic
Fourier expansions of the form shown in Eq. (4.1):

δrS ¼
X1
j¼−1

X∞
n;k¼−∞

δrS;jnke−iðjwsþnwrþkwθÞ; ð4:16Þ

δzS ¼
X1
j¼−1

X∞
n;k¼−∞

δzS;jnke−iðjwsþnwrþkwθÞ; ð4:17Þ

where ws ¼ ϒsλ. Notice that harmonics of all three
frequencies—radial, polar, and spin precession—are
present in these expansions. When we evaluate
Eq. (4.16), we require that k and j cannot both be zero;
otherwise, that contribution would represent a purely radial
dynamic, which we have constrained to be in the anomaly
angle χr. Likewise, when we evaluate Eq. (4.17), we
require that n and j cannot both be zero, since the purely
polar dynamics is entirely contained in χθ.

LISA V. DRUMMOND and SCOTT A. HUGHES PHYS. REV. D 105, 124041 (2022)

124041-10



In summary, the anomaly angles δχSr and δχSθ control the
shape of the orbit while keeping the turning points
unchanged relative to the reference geodesic orbit, whereas
δrS and δzS affect the position of the turning points and
introduce spin precession effects into the dynamics. In the
nearly equatorial case (I ¼ 0), we find δzS ¼ −δθS; in the
nearly circular case (e ¼ 0), we have δrS ¼ δrS.

3. Deviation of a spinning body’s orbit
from its reference geodesic

Once we expand the anomaly variables χr and χθ as
discussed in Sec. IVA 1, a generic orbit’s radial and polar
motion as described by Eqs. (4.7) and (4.8) can be written
in the form

rðλÞ ¼ pM
1þ e cosðwr þ δχ̂rðwrÞ þ δχSr Þ

þ δrS; ð4:18Þ

cos θðλÞ ¼ sinðIÞ cosðwθ þ δχ̂θðwθÞ þ δχSθÞ þ δzS: ð4:19Þ

Here, δχ̂rðwrÞ, δχSr and δrS are given by Eqs. (4.12), (4.14)
and (4.16); the analogous quantities for the polar motion
δχ̂θðwθÞ, δχSθ , and δzS are given by Eqs. (4.13), (4.15)
and (4.17). Notice that the functions δχ̂rðwrÞ and δχ̂θðwθÞ
have as their arguments wr and wθ, whose forms are given
in Eq. (4.10). These functions are exactly the oscillating
contributions to the anomaly angles that one computes for
geodesic orbits, but with their frequencies shifted to remain
phase-locked with spinning-body orbits. For geodesics,
their arguments would be ŵr ¼ ϒ̂rλ and ŵθ ¼ ϒ̂θλ.
In Sec. III B, we defined the deviation from the geodesic

trajectory induced by the spin of the small body by writing
xαðλÞ as

δxαSðλÞ ¼ xαðλÞ − x̂αðλÞ; ð4:20Þ

where x̂αðλÞ is a geodesic orbit. Using the reference
geodesic in this equation, r̂ and θ̂ are given by

r̂ðλÞ ¼ pM
1þ e cos ðŵr þ δχ̂rðŵrÞÞ

; ð4:21Þ

cos θ̂ðλÞ ¼ sin I cos ðŵθ þ δχ̂θðŵθÞÞ: ð4:22Þ

Here we use the purely geodesic forms

δχ̂rðŵrÞ ¼
X∞
n¼−∞

δχ̂r;ne−inŵrλ; ð4:23Þ

δχ̂θðŵθÞ ¼
X∞
k¼−∞

δχ̂θ;ke−ikŵθλ: ð4:24Þ

Combining the definition (4.20) with our solutions for the
spinning body’s motion, Eqs. (4.18) and (4.19), and for the
reference geodesic, Eqs. (4.21) and (4.22), we find

δrSðλÞ ¼ epM
ϒS

rλð1 − i
P

nnδχ̂r;ne
−inŵrÞ þ δχSr ðwrÞ

½1þ e cos ðŵr þ δχ̂rðŵrÞÞ�2
× sin ðŵr þ δχ̂rðŵrÞÞ þ δrS; ð4:25Þ

δθSðλÞ ¼ ϒS
rλ

�
1 − i

X
k

kδχ̂θ;ke−ikŵθ

�
þ δχSθðwθÞ

−
δzS

sin I sin ðŵθ þ δχ̂θðŵθÞÞ
; ð4:26Þ

where we have used the fact that ϒS
r ¼ OðSÞ. Notice

that both δrSðλÞ and δθSðλÞ show secular growth. This is
because of the difference in frequencies between the
geodesic x̂αðλÞ and spinning-body xαðλÞ orbits. The pres-
ence of these secularly growing terms means that, as
defined, δrSðλÞ and δθSðλÞ cannot easily be studied using
a frequency-domain treatment [40].
To address this, consider a slightly modified version of

this definition:

δxαS;shiftðλÞ ¼ xαðλÞ − x̂αshiftðλÞ: ð4:27Þ

This deviation is defined versus a frequency-shifted for-
mulation of the geodesic motion:

r̂shiftðλÞ ¼
pM

1þ e cos ðwr þ δχ̂rðwrÞÞ
; ð4:28Þ

cos θ̂shiftðλÞ ¼ sin I cos ðwθ þ δχ̂θðwθÞÞ: ð4:29Þ

Equations (4.28) and (4.29) describe a trajectory that is
identical to the reference geodesic, but with all periodic
features oscillating at the frequency associated with the
spinning body’s orbit. The deviation from this shifted
geodesic is given by

δrS;shiftðλÞ¼epM
δχSr ðwrÞsin ½wrþδχ̂rðwrÞ�
ð1þecos ½wrþδχ̂rðwrÞ�Þ2

þδrS; ð4:30Þ

δθS;shift ¼ δχSθðwθÞ −
δzS

sin I sin ðŵθ þ δχ̂θðŵθÞÞ
: ð4:31Þ

We discuss a variant of Eq. (4.30) which does not include
the libration shift δrS in Appendix A of our companion
paper [9]. These modified offsets from the reference
geodesic do not exhibit any secular growth, and can
be nicely described using this paper’s frequency-domain
expansions.
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4. Coordinate-time quantities

We can use our spinning-body solutions for uϕ to
compute the Mino-time ϕ-frequency ϒϕ, using

ϒS
ϕ ¼ Uϕ

S;000; ð4:32Þ

where

Uϕ
S;000 ¼

1

ΛrΛθΛs

Z
Λr

0

Z
Λθ

0

Z
Λs

0

Uϕ
Sdλrdλθdλs; ð4:33Þ

we remind the reader that Uϕ ≡ dϕ=dλ. Similarly, we
can calculate the spin-correction to Γ which denotes the
average rate of accumulation of coordinate-time t per unit
Mino-time using

ΓS ¼ Ut
S;000; ð4:34Þ

where

Ut
S;000 ¼

1

ΛrΛθΛs

Z
Λr

0

Z
Λθ

0

Z
Λs

0

Ut
Sdλrdλθdλs: ð4:35Þ

Once we have the correction to Γ, we can convert any of the
Mino-time frequencies into coordinate-time frequencies.
Observing that

Ω̂k þΩS
k ¼

ϒ̂k þϒS
k

Γ̂þ ΓS
ð4:36Þ

for k ∈ ðr; θ;ϕÞ, we see that shifts to the coordinate-time
frequencies are given by

ΩS
k ¼ Ω̂k

�
ϒS

k

ϒ̂k

−
ΓS

Γ̂

�
ð4:37Þ

to linear order in the small body’s spin.

B. Results

1. Nearly circular orbits: Aligned spin

We now discuss spinning-body orbits that areOðSÞ away
from being circular–nearly circular orbits. We outline
how we compute the first-order in spin contribution to
the polar Mino-time frequency ϒS

θ using a frequency-
domain description for the motion.
We consider a circular inclined reference geodesic, with

the spin vector of the small body aligned with the orbit.
In this case, orbits can be described using expansions
of the form

fðλÞ ¼
X∞
k¼−∞

fke−ikwθ : ð4:38Þ

In order to evaluate these expressions, we truncate the
Fourier expansion at a finite value; for the expansion above,
we truncate the series at kmax. By truncating this Fourier
expansion at an appropriately large kmax, we can compute
orbits with an arbitrarily high inclination.
As described in Sec. III A, we use a parametrization to

describe the motion in θ which resembles the form typically
used to describe geodesic orbits, as in Eq. (2.21). In
addition to this, we must account for the fact that the spin
of the test body induces oscillations about pM, the radius of
the circular reference geodesic. We thus parametrize the
orbit as

r ¼ pM þ δrS; ð4:39Þ

cos θ ¼ sin I cos ðwθ þ δχ̂θðwθÞ þ δχSθÞ: ð4:40Þ

The functions δχSθ and δrS are described by purely polar
oscillations in this case:

δχSθ ¼
X∞
k¼−∞

δχSθ;ke
−ikwθ ; ð4:41Þ

δrS ¼
X∞
k¼−∞

δrS;ke−ikwθ : ð4:42Þ

We insert Eqs. (4.39), (4.40) and (3.23) into (3.25)–
(3.26) and linearize in spin. The first-order-in-spin piece of
Eq. (3.25) becomes

F r
d2δrS
dλ2

þ Gr
dδrS
dλ

þ Gθ
dδχSθ
dλ

þHrδrS þHθδχ
S
θ

þ I1θϒS
θ þ I2uSt;0 þ I3uSϕ;0 þ J ¼ 0; ð4:43Þ

where F r, Gr, Gθ, Hr, Hθ, I1θ, I2, I3 and J are all
functions of known quantities evaluated on geodesics. We
now consider the first-order-in-spin piece of Eq. (3.26),
which becomes

Qθ
d2δχSθ
dλ2

þ Sr
dδrS
dλ

þ Sθ
dδχSθ
dλ

þ T rδrS þ T θδχ
S
θ

þ U1θϒS
θ þ U2uSt;0 þ U3uSϕ;0 þ V ¼ 0; ð4:44Þ

where Qθ, Sr, Sθ, T r, T θ, U1θ, U2, U3 and V are all
functions of known quantities on geodesics. Third, we use
the constraint uαuα ¼ −1 to obtain a linearized equation of
the form

Kr
dδrS
dλ

þKθ
dδχSθ
dλ

þMrδrS þMθδχ
S
θ þN 1θϒS

θ

þN 2uSt;0 þN 3uSϕ;0 þ P ¼ 0; ð4:45Þ
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where Kr, Kθ, Mr, Mθ, N 1θ, N 2, N 3 and P are again all
functions2 of known quantities on geodesics.
We write the functions F r, Gr, Gθ, Hr, Hθ, I1θ, I2, I3,

J , Qθ, Sr, Sθ, T r, T θ, U1θ, U2, U3, V, Kr, Kθ, Mr, Mθ,
N 1θ, N 2, N 3 and P as Fourier expansions of the form
(4.38). The explicit forms for many of these expressions
in the limiting case of nearly equatorial Schwarzschild
orbits (a ¼ 0) can be found in Appendix C of Ref. [9].
For the general case, we provide expressions using the
Mathematica notebook in this paper’s Supplemental
Material [13]. Some of the general expressions are very
lengthy (hundreds of terms long) and could likely be
simplified with some effort; we present them in a

companion Mathematica notebook for convenience and
completeness.
We insert these expansions along with (4.41) and (4.42)

into (4.43), (4.44) and (4.45). We then solve for the
unknown variables δrS, δχSθ , ϒ

S
θ uSt and uSϕ.

In the left-hand panels of Fig. 1, we show r and θ for a
circular, inclined, spin-aligned orbit; r and θ for the
corresponding reference geodesic orbit are overplotted.
The period associated with the spinning-body orbit’s polar
motion is shifted so that it remains phase-locked with the
geodesic orbit. The right-hand panels of Fig. 1 show δrS
and δχSθ for the spinning-body orbit. We also plot uSt and uSϕ
alongside the spin contributions to the orbit’s energy and
axial angular momentum, δES and δLS

z . Notice that the
spinning-body orbit we obtain is not circular; this can be
seen in the top left panel of Fig. 1, where the effect is
exaggerated so that the oscillations in r are clearly visible.
In our companion paper Ref. [9], we perturbed about an
equatorial reference geodesic and obtained a spinning-body

FIG. 1. Example of the motion of a nearly circular orbit for an aligned spinning test body around a Kerr black hole with a ¼ 0.9M.
Top left panel shows r versus λ for a geodesic (black dashed) and a spinning test body (blue solid) orbit. The radial reference
geodesic is circular, with p ¼ 10, e ¼ 0. Bottom left panel shows cos θ versus λ for a geodesic (black dashed) and a spinning test
body (blue solid) orbit. These orbits share polar turning points, corresponding to I ¼ 30°. Note that, in the left two panels, we have
used an unphysically high spin μs=M ¼ 103 in order make the spin-curvature effects clearly visible. Also note that the spinning-
body orbit has been shifted slightly: its polar frequency ϒθ ¼ ϒ̂θ þϒS

θ has been replaced with ϒ̂θ. This is done so that the geodesic
and the spinning-body orbit pass through their polar turning points at the same times, which helps to illustrate differences in their
motion between each turning point. Top right shows −uSt (red), ∂βgtαSαβ=2μ (orange), δES (blue) as well as δrS (black), all versus λ.
Finally, the bottom right panel shows uSϕ (red), −∂βgϕαSαβ=2μ (orange), δLS

z (blue) as well as δχSθ (black), all versus λ. Notice that
the spin-induced shifts to the integrals of motion E and Lz are constants, although each such term has contributions that oscillate.
In making these plots, we have used s ¼ sk and kmax ¼ 6.

2The functions F r, Gr, etc., follow a mostly alphabetic
sequence; however, we skip the letter L in our scheme to avoid
confusion with the angular momentum 4-vector defined in
Eq. (2.44).
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orbit that did not lie in the equatorial plane; here we perturb
about a circular reference geodesic, yielding a correspond-
ing spinning-body orbit that is not circular. In contrast to
the behavior we saw in Ref. [9], we cannot attribute this
behavior only to spin precession, since we see this effect
even when the spin vector is aligned.
In Fig. 2, we see how ϒθ, uSt;0 and uSϕ;0 converge to their

true values in the case of nearly circular, inclined orbits. We
define “residuals” here to mean the difference between the
value of the quantity computed at successive kmax’s, rather
than a direct comparison with an exact value (as they were
defined in Ref. [9]). As expected, the residuals generally
decrease as kmax increases. However, the pattern of con-
vergence is not strictly monotonic; the residuals tend to tick
upwards for odd values of kmax.

2. Nearly circular orbits: Misaligned spin

We now consider nearly circular inclined orbits with the
spin of the test body misaligned from the orbit (i.e., circular
orbits s⊥ ≠ 0). Taking into account the effect of spin
precession, many orbital quantities can be described using
frequency-domain expansions of the form

fðλÞ ¼
X1
j¼−1

X∞
k¼−∞

fjke−iðjwsþkwθÞ: ð4:46Þ

As described in Sec. III A, the parametrization of the orbit
in this case has the form

r ¼ pM þ δrS; ð4:47Þ

cos θ ¼ sin I cos ðwθ þ δχ̂θðwθÞ þ δχSθÞ þ δzS: ð4:48Þ

Compared to the parametrization in Sec. IV B 1, there is a
new term δzS which adjusts the polar turning points relative
to the reference geodesic. The libration variations δrS
and δzS depend on both ϒθ and ϒs, while δχSθ only has
oscillations at harmonics of ϒθ:

δχSθ ¼
X∞
k¼−∞

δχSθ;ke
−ikwθ ; ð4:49Þ

δrS ¼
X1
j¼−1

X∞
k¼−∞

δrS;jke−iðkwθþjwsÞ; ð4:50Þ

δzS ¼
X1
j¼−1

X∞
k¼−∞

δzS;jke−iðkwθþjwsÞ; ð4:51Þ

where, in the last line, j cannot equal zero. We then follow
the same procedure as described for nearly circular inclined
orbits with aligned spin to convert the time-domain
expressions into a linear algebraic system in the frequency
domain, but now including the term δzS in the equations.
We insert equations (4.47), (4.48) and (3.23) into

(3.25)–(3.26) and linearize in spin. Equation (3.25) can
be written

F r
d2δrS
dλ2

þ Gr
dδrS
dλ

þ Gθ
dδχSθ
dλ

þ Gz
dδzS
dλ

þHrδrS

þHθδχ
S
θ þHzδzS þ I1θϒS

θ

þ I2uSt;0 þ I3uSϕ;0 þ J ¼ 0; ð4:52Þ

where F r, Gr, Gθ, Gz,Hr,Hθ,Hz, I1θ, I2, I3 and J are all
functions of known quantities evaluated on geodesics.
Similarly, we can write Eq. (3.26) in the form

FIG. 2. Plot of residuals versus kmax for a nearly circular
(e ¼ 0) orbit of an aligned (sk ¼ s) spinning body. We plot ϒS

θ ,
uSt;0, u

S
ϕ;0 using red circular, orange square and blue triangular

markers respectively. To compute these residuals, we evaluate the
change between subsequent values of kmax for each of the
quantities plotted. Top panel shows I ¼ 10°; middle shows
I ¼ 20°; and bottom shows I ¼ 30°. In all cases, the large black
hole has spin parameter a ¼ 0.9M, and the orbit has p ¼ 10.
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Qθ
d2δχSθ
dλ2

þQz
d2δzS
dλ2

þ Sr
dδrS
dλ

þ Sθ
dδχSθ
dλ

þ Sz
dδzS
dλ

þ T rδrS þ T θδχ
S
θ þ T zδzS

þ U1θϒS
θ þ U2uSt;0 þ U3uSϕ;0 þ V ¼ 0; ð4:53Þ

where Qθ, Qz, Sr, Sθ, Sz, T r, T θ, T z, U1θ, U2, U3 and V
are all functions of known quantities evaluated on geo-
desics. We again also use uαuα ¼ −1, yielding

Kr
dδrS
dλ

þKθ
dδχSθ
dλ

þKz
dδzS
dλ

þMrδrS þMθδχ
S
θ

þMzδzS þN 1θϒS
θ þN 2uSt;0 þN 3uSϕ;0 þ P ¼ 0;

ð4:54Þ

where Kr, Kθ, Kz,Mr,Mθ,Mz, N 1θ, N 2, N 3 and P are
again all functions of known quantities evaluated on
geodesics.
We describe F r, Gr, Gθ, Gz,Hr,Hθ,Hz, I1θ, I2, I3, J ,

Qθ,Qz, Sr, Sθ, Sz, T r, T θ, T z, U1θ, U2, U3, V,Kr,Kθ,Kz,
Mr, Mθ, Mz, N 1θ, N 2, N 3 and P using Fourier
expansions of the form (4.46). We provide the full

expressions for these functions in the Mathematica note-
book in the Supplemental Material accompanying this
article [13]. We insert these expansions along with
(4.49), (4.50) and (4.51), into (4.52), (4.53) and (4.54).
We then solve for the unknown variables δrS, δχSθ , δzS, ϒ

S
θ ,

uSt and uSϕ.
In the left-hand panels of Fig. 3, we show r and θ for a

misaligned nearly circular spinning-body orbit, with the
circular inclined reference geodesic overplotted for refer-
ence. As in Fig. 1, the spinning-body orbit’s polar fre-
quency is shifted so that it remains phase-locked with the
geodesic orbit. The form of δrS, δχSθ and δzS for this orbit
are shown in the right panels of Fig. 3. As in Fig. 1, we plot
uSt and uSϕ as well as the corrections to the spinning body’s
orbital energy δES and axial angular momentum δLS

z in the
right panels of Fig. 3.
In the bottom right panel of Fig. 3, we show the spin-

correction to the Carter constant K. We plot the first-order
in spin correction to the term Kμνuμuν and the quantity δCS

which is defined in (2.36), giving us the overall first-order
correction to K denoted δKS. For equatorial reference
geodesics, δQS has the simple form 2ask, as was discussed
in our companion article Ref. [9]. In this case, when the

FIG. 3. Example of the motion of a nearly circular orbit for a nonaligned spinning test body around a Kerr black hole with a ¼ 0.5M.
Top left panel shows r versus λ for a geodesic (black dashed) and a spinning test body (blue solid) orbit. The radial reference geodesic is
circular, with p ¼ 10, e ¼ 0. Bottom left panel shows cos θ versus λ for a geodesic (black dashed) and a spinning test body (blue solid)
orbit. The polar reference geodesic has I ¼ 15°. Note that, in the two left panels, we have used an unphysically high spin μs=M ¼ 0.5 in
order make the spin-curvature effects clearly visible. Also note that for making this plot, the spinning-body orbit has been shifted
slightly: its polar frequency ϒθ ¼ ϒ̂θ þϒS

θ has been replaced with ϒ̂θ. This is done so that in the plot the geodesic and the spinning-
body orbit pass through their polar turning points at the same times, which helps to illustrate differences in their motion between each
turning point. Middle column shows δrS, δχSθ and δzS, all versus λ and all drawn with black solid lines. Top right panel shows −uSt (red),
∂βgtαSαβ=2μ (orange), δES (blue), all versus λ. Middle right panel shows uSϕ (red), −∂βgϕαSαβ=2μ (orange), δLS

z (blue), all versus λ.
Finally, bottom right panel shows ðKμνuμuνÞS (red), δCS (orange), δKS (blue), all versus λ. Notice that the spin-induced shifts to the
integrals of motion E, Lz and K are constants, although each such term has contributions that oscillate. In making these plots, we have
used sk ¼ s=2, s⊥ ¼ ffiffiffi

3
p

s=2, ϕs ¼ π=2 and kmax ¼ 3.
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orbit is inclined and the spin vector is precessing, we find
that the first-order in spin correction to Kμνuμuν is no
longer constant. The oscillations in this quantity precisely
cancel oscillations in δCS, yielding constant values for
δKS and δQS.

3. Generic orbits

We finally examine generic orbits of spinning test
bodies. We use the following Fourier expansion

fðλÞ ¼
X∞

n;k¼−∞

X1
j¼−1

fjnke−iðjwsþnwrþkwθÞ ð4:55Þ

for the various quantities we must evaluate. To evaluate
these expressions, we truncate the Fourier expansion at a
finite value; for the expansion above, we truncate the radial
series at nmax and the polar series at kmax. By truncating this
Fourier expansion at an appropriately large nmax and kmax,
we can compute orbits with an arbitrarily high eccentricity
and inclination.
In general, the radial and polar motions are coupled

and consequently orbits of spinning bodies have radial and
polar turning points that vary over the course of the orbit.
This means that positions of the radial turning points
depend on θ and likewise the polar turning points depend
on the radial position of the body, as explicitly shown in
Ref. [12]. In addition, the turning points depend on the
precession phase ψp defined in equation (2.48). Therefore,
as in Eqs. (4.7)–(4.8), we include the terms δrS and δzS in
our parametrization to capture the modification to the
libration range, yielding

r ¼ pM
1þ e cos ðwr þ δχ̂rðwrÞ þ δχSr Þ

þ δrS; ð4:56Þ

cos θ ¼ sin I cos ðwθ þ δχ̂θðwθÞ þ δχSθÞ þ δzS: ð4:57Þ

As described in Sec. IVA 2, the true anomaly angles δχSr
and δχSθ contained inside the arguments of the cosines in
Eqs. (4.56) and (4.57) consist of purely radial and purely
polar oscillations, respectively:

δχSr ¼
X∞
n¼−∞

δχSr;ne−inwr ; ð4:58Þ

δχSθ ¼
X∞
k¼−∞

δχSθ;ke
−ikwθ : ð4:59Þ

Motion that is not purely radial or purely polar is subsumed
into the functions δrS and δzS. These quantities are written
as Fourier expansions of the form (4.55). For the radial
libration variation,

δrS ¼
X1
j¼−1

X∞
n;k¼−∞

δrS;jnke−iðnwrþkwθþjwsÞ; ð4:60Þ

where k and j cannot both be zero; for the polar libration
variation,

δzS ¼
X1
j¼−1

X∞
n;k¼−∞

δzS;;jnke−iðnwrþkwθþjwsÞ; ð4:61Þ

where n and j cannot both be zero.
We insert Eqs. (4.56), (4.57) and (3.23) into (3.25)–

(3.26) and linearize in spin. The radial equation (3.25) now
has the form

FIG. 4. Plot of residuals versus kmax for a generic (e ¼ 0.1)
orbit of an aligned (sk ¼ s) spinning body. We plot ϒS

θ , u
S
t;0, u

S
ϕ;0

using red circular, orange square and blue triangular markers
respectively. As in Fig. 2, we compute the residuals by evaluating
the change between subsequent values of kmax for each of the
quantities plotted. Top panel shows I ¼ 10°; middle shows
I ¼ 20°; and bottom shows I ¼ 30°. In all cases, nmax ¼ kmax,
the large black hole has spin parameter a ¼ 0.9M, and the orbit
has p ¼ 10.
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F r
d2δχSr
dλ2

þF r
d2δrS
dλ2

þ Gr
dδχSr
dλ

þ Gr
dδrS
dλ

þGθ
dδχSθ
dλ

þGz
dδzS
dλ

þHrδχ
S
r þHrδrS þHθδχ

S
θ þHzδzS

þ I1rϒS
r þ I1θϒS

θ þ I2uSt;0 þ I3uSϕ;0 þJ ¼ 0: ð4:62Þ

As we have seen in earlier expressions, the quantities F r,
F r, Gr, Gr, Gθ, Gz,Hr,Hr,Hθ,Hz, I1r, I1θ, I2, I3 and J
are all functions of known quantities evaluated on geo-
desics. Eq. (3.26) becomes

Qθ
d2δχSθ
dλ2

þQz
d2δzS
dλ2

þ Sr
dδχSr
dλ

þSr
dδrS
dλ

þSθ
dδχSθ
dλ

þSz
dδzS
dλ

þ T rδχ
S
r þ T rδrS þ T θδχ

S
θ þ T zδzS

þU1rϒS
r þU1θϒS

θ þU2uSt;0 þU3uSϕ;0 þV ¼ 0; ð4:63Þ

whereQθ,Qz, Sr, Sr, Sθ, Sz, T r, T r, T θ, T z, U1r, U1θ, U2,
U3 and V are all functions of known quantities evaluated on
geodesics. We also use uαuα ¼ −1 to obtain

Kr
dδχSr
dλ

þKr
dδrS
dλ

þKθ
dδχSθ
dλ

þKz
dδzS
dλ

þMrδχ
S
r

þMrδrS þMθδχ
S
θ þMzδzS þN 1rϒS

r þN 1θϒS
θ

þN 2uSt;0 þN 3uSϕ;0 þ P ¼ 0; ð4:64Þ

where Kr, Kr, Kθ, Kz,Mr,Mr,Mθ,Mz,N 1r,N 1θ,N 2,
N 3 and P are again all known functions evaluated on
geodesics.
We describeF r, F r, Gr, Gr, Gθ, Gz,Hr,Hr,Hθ,Hz, I1r,

I1θ, I2, I3, J ,Qθ,Qz, Sr, Sr, Sθ, Sz, T r, T r, T θ, T z, U1r,
U1θ, U2, U3, V, Kr, Kr, Kθ, Kz, Mr, Mr, Mθ, Mz, N 1r,
N 1θ, N 2, N 3, and P using Fourier expansions of the form
(4.55). We provide full expressions for these functions in
the Mathematica notebook in the Supplemental Material
for this paper [13]. We insert these expansions along with
(4.58), (4.59), (4.60) and (4.61) into (4.62), (4.63) and
(4.64). We then solve for the unknown variables δχSr , δrS,
δχSθ , δzS, ϒS

r , ϒS
θ , uSt and uSϕ. This frequency-domain

approach therefore naturally allows us to compute the
first-order-in-spin corrections to the orbital frequencies ϒS

r

and ϒS
θ for totally generic orbits of spinning particles.

FIG. 5. Example of generic orbit motion for an aligned spinning test body around a Kerr black hole with a ¼ 0.9M. Top left panel
shows r versus λ for a geodesic (black dashed) and a spinning test body (blue solid) orbit. The radial reference geodesic has p ¼ 4,
e ¼ 0.3. Note that, in the two left panels, we have used an unphysically high spin μs=M ¼ 10 in order make the spin-curvature effects
clearly visible. Also note that the spinning-body orbit has been shifted slightly: its radial frequency ϒr ¼ ϒ̂r þϒS

r has been replaced
with ϒ̂r and its polar frequencyϒθ ¼ ϒ̂θ þϒS

θ has been replaced with ϒ̂θ. This is done so that in the plot the geodesic and the spinning-
body orbit remain phase-locked, which helps to illustrate differences in their motion between each turning point. Bottom left panel
shows cos θ versus λ for a geodesic (black dashed) and a spinning test body (blue solid) orbit. The polar reference geodesic has I ¼ 15°.
Again, note that for making this plot, the spinning-body orbit has been shifted slightly: its polar frequency ϒθ ¼ ϒ̂θ þϒS

θ has been
replaced with ϒ̂θ for the same reason described above. The right column shows δχSr , δrS, δχSθ and δzS, all versus λ and all drawn using
black solid lines. In making these plots, we have used sk ¼ s and nmax ¼ kmax ¼ 3.
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In Fig. 4, we see how ϒθ converges to its true values as
nmax and kmax increase for a reference geodesic that is both
inclined and eccentric. In Sec. IV B 1, the convergence
of ϒθ for nearly circular (e ¼ 0) orbits is plotted in Fig. 2.
At all inclinations, at nmax ¼ 2, the residuals are smaller
for the e ¼ 0 reference orbit than for the slightly eccentric
e ¼ 0.1 reference orbit. For the smallest inclination I ¼ 10°
(top panel), this difference holds for all nmax; the quantities
corresponding to a reference geodesic that is both eccentric
and inclined (Fig. 4) all converge slower than those
corresponding to a reference geodesic that is nearly circular
and inclined (Fig. 2). However, as the inclination is
increased, the difference in the rate of convergence between
the eccentric and circular cases decreases. At the highest
inclination, I ¼ 30°, they converge at roughly the same
rate.
Fig. 5 shows an example of r and θ for a generic

spinning-body orbit, in addition to the functions δχSr , δχSθ ,
δrS and δzS which go into constructing the orbit’s r and θ.
In the two left-hand panels of Fig. 5, the reference geodesic
orbit associated with this spinning-body orbit is overplotted
with a dotted black curve; both the radial and polar
frequencies associated with the spinning-body orbit are
shifted so that it remains phase-locked with the geodesic

reference orbit. In addition, μs=M has been chosen to
have an unphysically large value of 10 in order to clearly
show the effect of spin-curvature coupling on the shape of
the orbit.
Figure 6 shows how ϒS

r varies with p for nearly
equatorial eccentric orbits, and likewise how ϒS

θ varies
with p for nearly circular inclined orbits. Notice that the
spin corrections to the polar Mino-time frequencies ϒS

θ
(bottom left panel) have a different dependence on p
compared to the radial Mino-time frequencies ϒS

r (top left
panel). For all spins, we see that the radial correction ϒS

r
increases rapidly near the last stable orbit (LSO). For small
values of a, the behavior of ϒS

θ is similar, increasing as
orbits approach the LSO, albeit with a shallower slope.
However, for large a (a > 0.8M), a different trend emerges.
For a ¼ 0.85M and a ¼ 0.87M the curve flattens, with a
slight uptick as it approaches the LSO; for a ¼ 0.89M and
a ¼ 0.9M, the curve reaches a maximum and begins to
trend downwards very close to the LSO, as can be seen in
the bottom left panel of Fig. 6. The dependence of the
frequency corrections on a is fairly similar for both ϒS

r and
ϒS

θ : In both cases, at fixed p, the frequency correction is
larger for the smaller value of a. Figure 6 displays
coordinate-time frequency corrections Ωr, Ωθ and Ωϕ for

FIG. 6. Example of the spin contributions ϒS
r and ϒS

θ to the radial and polar Mino-time frequencies ϒr and ϒθ, as well as spin
contributions ΩS

r and ΩS
θ to the radial and polar coordinate-time frequencies Ωr and Ωθ. Top left panel shows ϒS

r versus p with e ¼ 0.5
and I ¼ 0° for different values of a. Bottom left panel shows ϒS

θ versus p with e ¼ 0 and I ¼ 30° for different values of a. Top right
panel shows ΩS

r (black dashed) and ΩS
ϕ (blue solid) versus p with a ¼ 0.9M, e ¼ 0.5 and I ¼ 0°. Bottom right panel shows ΩS

θ (black
dashed) and ΩS

ϕ (blue solid) versus p with a ¼ 0.8M, e ¼ 0 and I ¼ 30°. In making these plots, we have used nmax ¼ kmax ¼ 5.
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an equatorial orbit (top right panel) and an inclined orbit
(bottom right panel).
Figure 7 shows how the corrections to the radial ϒS

r and
polar ϒS

θ Mino-time frequencies vary with p, e and I when
the reference geodesic is both inclined and eccentric. In
Fig. 7, we see similar trends to those in Fig. 6. In the bottom
panel of Fig. 7, ϒS

θ increases with decreasing p until it
reaches a maximum and then begins to decrease as p
approaches the LSO. Increasing the eccentricity of the orbit
shifts the maximumϒS

θ to a higher value. In the top panel of
Fig. 7, ϒS

r increases with decreasing p. Increasing the
inclination angle of the orbit leads to a more rapid increase
in ϒS

r as p approaches the LSO.

V. SUMMARY AND FUTURE WORK

In this paper, we present a frequency-domain approach
for precisely computing the orbits of spinning bodies. This
extends the work presented in our companion paper [9]
by considering completely generic orbits with arbitrarily
oriented spin, going beyond the equatorial and nearly
equatorial orbits discussed previously. In Sec. III, we
outline our perturbative approach to studying spinning-
body dynamics both qualitatively and quantitatively, and in
Sec. IVA, we describe how we compute spinning-body
orbits in the frequency-domain. In Sec. IV B, we discuss
the results we obtain using frequency-domain methods; in

particular, we compute the corrections to the radial ϒS
r and

polar ϒS
θ frequencies due to the spin of the orbiting body.

There are several future avenues we plan to explore
related to this work. First, we aim to study the role played
by nonlinear-in-spin terms near resonance in pushing the
spinning-body dynamics from integrable to chaotic via the
KAM theorem; this would extend the preliminary inves-
tigation in Ref. [10]. Second, we are working on incorpo-
rating secondary spin into gravitational waveform models
using an osculating geodesic scheme [41,42]. For example,
this method has already been applied to produce spinning-
body inspirals for a Schwarzschild background in Ref. [43].
Our goal is to build a framework for completely generic
adiabatic inspirals of spinning bodies.
In addition, we aim to systematically explore and present

the orbital frequencies obtained in this work. First, we want
to explicitly demonstrate that the frequencies obtained
in Ref. [12] are entirely equivalent to those presented in
this work. We explicitly show the equivalence of the
two approaches for the equatorial spin-aligned case in
Appendix B and we intend to extend this comparison to
include frequencies associated with completely generic
orbits. Second, we plan to compare with post-Newtonian
results based on the analysis in Refs. [44,45] as another
validity check of our results. A catalog of these frequencies
and how they vary with the parameters describing orbits
and the small body’s spin orientation is likely to be of use as
waveform models for large mass ratio systems are devel-
oped and incorporated in gravitational-wave measurement
pipelines.
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APPENDIX A: REFERENCE GEODESICS

There are different mappings that can be constructed
from the triplet of constants ðp; e; IÞ defining a geodesic
(i.e., the “reference” geodesic) to a particular spinning-
body orbit. The choice of reference geodesic we use in
this article is discussed in Sec. IVA 2. In brief, we find
spinning-body orbits for which the “purely radial” and
“purely polar” components of the motion have the same
turning points as the reference geodesic; see Sec. IVA 2 for
mathematical details. However, there are other physically
equivalent mappings which can be used instead and may be
particularly useful in certain circumstances. We outline
three approaches that have appeared in the literature below.

FIG. 7. Example of the spin contributions ϒS
r and ϒS

θ to the
radial and polar Mino-time frequencies ϒr and ϒθ. Top panel
shows ϒS

r versus p with e ¼ 0.1 for I ¼ 0° (red), I ¼ 15°
(orange), I ¼ 30° (yellow) and I ¼ 40° (blue). Bottom panel
shows ϒS

θ versus p with I ¼ 15° for e ¼ 0 (red), e ¼ 0.1
(orange), e ¼ 0.2 (yellow) and e ¼ 0.3 (blue). In making these
plots, we have used a ¼ 0.9M and sk ¼ s. In making these plots,
we have used nmax ¼ kmax ¼ 3.
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1. Reference geodesic has the same turning points
as the spinning-body orbit

The definition of reference geodesic we use in this work
is most similar to that used by Mukherjee et al. in Ref. [46]
and Skoupý et al. in Ref. [47]. In Refs. [46,47], they study
eccentric equatorial orbits where the spin is aligned, and in
this case the reference geodesic has the same radial turning
points as the spinning-body orbit under consideration. In
our approach, we generalize this for generic orbital con-
figurations and misaligned small-body spin: The purely
radial and purely polar parts of the spinning-body motion
are constrained to have the same libration range as the
corresponding reference geodesic. Complementary to this,
there are additional corrections to the libration range
due to motion that is not purely radial, or purely polar
(see Sec. IVA 2). For example, if the reference geodesic is
equatorial, the corresponding spinning-body orbit is not
equatorial except in the aligned spin case. Instead, it lies
OðSÞ out of the equatorial plane. An example of a reference
geodesic with the same radial turning points as the
corresponding spinning-body orbit is shown in Fig. 8(a).

2. Reference geodesic has the same initial conditions
as the spinning-body orbit

In the analyses by Bini et al., the reference geodesic is
defined as the geodesic that has the same initial conditions
as the corresponding spinning-body orbit [48,49]. Work
by Mashhoon et al. takes a similar approach [50]. For
example, in Ref. [48], analytic expressions for a spinning-
body orbit with the same initial position and 4-velocity as a
circular equatorial reference geodesic is obtained; this
calculation can represent a scenario where spin-curvature
force is “turned on” at a certain point along a geodesic orbit
and subsequent spinning-body motion is computed. An
example of a reference geodesic with the same initial
conditions as the corresponding spinning-body orbit is
presented in Fig. 8(b).

3. Reference geodesic has the same constants
of motion as the spinning-body orbit

In the analysis by Witzany in Ref. [12], the “fiducial”
geodesic is taken to be the geodesic with the same
constants of motion as the spinning-body orbit, modulo
a −2asksgnðLz − aEÞ correction to the definition of the
Carter constant K. The inclusion of the −2asksgnðLz−aEÞ
term in the choice of fiducial mapping ensures that the
formulas for the turning point corrections presented in
Eq. (48) of Ref. [12] are finite for motion in the equatorial
plane. The turning point spin-corrections corresponding to
those constants of motion are then computed and used to
parametrize the orbital motion. An example of a reference
geodesic with the same constants of motion as the corre-
sponding spinning-body orbit is presented in Fig. 8(c). See
Appendix B for a detailed discussion of the approach in

Ref. [12] and an explicit comparison with our formulation
for the case of equatorial, aligned-spin orbits in a
Schwarzschild background.

APPENDIX B: COMPARISON WITH
WITZANY, 2019

In Ref. [12], Witzany outlines an approach for obtaining
the equations of motion for spinning bodies to first-order in
spin using the Hamilton-Jacobi equation. This approach
yields the equations of motion Eqs. 46(a)-(c) in Ref. [12]
which we reproduce here:

dr
dλ

¼ �Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w02
r − e0reκC;reκBs̃

CD
q

; ðB1Þ

dθ
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w02
θ − e0θeκC;θeκBs̃

CD
q

; ðB2Þ

FIG. 8. Example of radial motion for an aligned, spinning body
in an equatorial orbit around a nonrotating black hole (a ¼ 0). All
panels show r versus λ for a spinning body (blue) and corre-
sponding reference geodesic (black, dashed) orbit. Radial turning
points, corresponding to p ¼ 8.13721, e ¼ 0.525726, of the
spinning body’s orbit are shown by the solid red lines. Different
choices of reference geodesic for the same spinning-body orbit
are shown in (a), (b) and (c). Top. (a) The spinning-body orbit and
reference geodesic have the same turning points. Middle. (b) The
spinning-body orbit and reference geodesic have the same initial
conditions. Bottom. (c) The spinning-body orbit and reference
geodesic have the same constants of motion. In making these
plots, we have used sk ¼ s and μs=M ¼ 0.05.
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dψp

dλ
¼

ffiffiffiffî
K

p �ðr2 þ a2ÞÊ − aL̂z

K̂ þ r2
þ a

L̂z − að1 − z2ÞÊ
K̂ − a2z2

�
;

ðB3Þ

where the tetrad eκC is the parallel transported tetrad given
by Eqs. (2.45)–(2.46) in Sec. II C. Here B, C and D are
labels for the tetrad legs. Note that ψp in Eq. (B3) is
denoted ϕ in Ref. [12]; Eq. (B3) is identical to Eq. (2.47).
The expressions for s̃CD are underneath Eq. (33) in
Ref. [12]. From Eqs. (B1)–(B3), we can find the turning
points of the equations of motion using the condition that
the 4-velocities vanish:

ðw0
yÞ2 − e0yeκC;yeDκsCD ¼ 0; ðB4Þ

where y ¼ r, θ. Using condition (B4), Witzany derives
analytical expressions for the corrections to the turning
points due to the small body’s spin. These expressions can
be found in Eqs. 48(a)-(f) of Ref. [12] and apply for fully
generic orbits in the first order in S limit.

1. Description of the two approaches

The framework used in Ref. [12] is an alternative method
for calculating spinning-body orbital frequencies ϒr and
ϒθ. In an approach analogous to that used by Carter in
Ref. [27], Witzany uses the Hamilton-Jacobi equation
to obtain expressions for dr=dλ and dθ=dλ, yielding
Eqs. (B1)–(B3). The Mino-time frequencies ϒr and ϒθ

are then calculated by integrating these velocities with
respect to angle-type coordinates; this procedure is in
turn analogous to that used in Refs. [16,20] to compute
geodesic Mino-time frequencies. The approach we use in
this article is to solve the Mathisson-Papapetrou equa-
tions (2.38)–(2.39) directly in the frequency-domain. We
introduce a frequency correction explicitly into our para-
metrization and solve for it as one of the unknowns in a
linear-algebraic system.
The orbital motion of the spinning body is parametrized

differently in the two descriptions. In Ref. [12], analytic
expressions for the corrections to the turning points are
obtained using the aforementioned Eqs. (B1)–(B2). The
spinning body’s motion is then parametrized in terms of
these analytic expressions for the turning points. In our
analysis, we do not have explicit expressions for turning
point corrections built into our parametrization. Instead, we
divide the corrections to the motion of the spinning body
into two categories: We include corrections which do not
alter the libration range relative to the reference geodesic
(δχSr , δχSθ), as well as corrections which do modify the
libration range (δrS, δzS).
In summary, in Ref. [12], the constants of motion

ðE;Lz; KÞ associated with a certain geodesic (called the
“fiducial geodesic,” as discussed in Appendix A 3) are
selected, and the turning point corrections for the

corresponding spinning-body orbit with the same constants
of motion are computed (modulo a −2asksgnðLz − aEÞ
adjustment to K), whereupon the frequency corrections can
be obtained. Contrastingly, in our framework, we begin
by choosing the turning points ðp; e; IÞ for a particular
reference geodesic. We then compute the spinning-body
orbit which has purely radial and purely polar motion
constrained to match the turning points of the reference
geodesic. The concomitant frequency corrections and
constants of motion for that orbit can then be computed.
We show below that our method is consistent with Ref. [12]
for orbits in the equatorial plane with aligned small body
spin3; we leave a detailed comparison of the frequency
corrections for fully generic orbits for future work.

2. Numerical comparison of the two approaches

We compare between the method described in this
paper and that presented in Ref. [12] by evaluating the
expressions for the radial turning point corrections. For
equatorial orbits of a small body with aligned spin and
a ¼ 0, Eqs. 48(a)-(f) in Ref. [12] become:

G ¼ LS
zESr2; I ¼ d

dr

�ðESr2Þ2
Δ

− r2
�
; ðB5Þ

e0yeCκ;yeκD ¼ 2
ESLS

z ½rðLS
z Þ2 −Mr2 − 3MðLS

z Þ2�
r½ðLS

z Þ2 þ r2�ðr − 2MÞ2 ; ðB6Þ

δr ¼ −sμ
2Gþ Δ½ðLS

z Þ2 þ r2�e0yeCκ;yeκD
I ½ðLS

z Þ2 þ r2�
����
rgt

; ðB7Þ

where δr is the radial turning point correction evaluated at
the fiducial geodesic turning points, which are denoted rgt.
This reduces to a simple expression for δr:

δr ¼ sμ
ESLS

z ðr − 2MÞðr − 3MÞ
r½ðr − 2MÞ2 − rðESÞ2ðr − 3MÞ�

����
r¼rgt

: ðB8Þ

Note that ES and LS
z here are the energy and angular

momentum of the spinning-body orbit. As discussed in
Appendix A 3, the fiducial geodesic is the geodesic orbit
that has the same energy and angular momentum as the
spinning-body orbit we are considering, i.e., Êfid ¼ ES

and L̂z;fid ¼ LS
z . Equation (B8) is evaluated at the turning

points of the fiducial geodesic, rgt1 and rgt2, and gives the
correction to these turning points δrðrgt1Þ and δrðrgt2Þ due
to the spin of the small body.

3As mentioned in Ref. [12], Witzany conducted a similar
consistency check using the effective potential given by Tod et al.
[51] and Hackmann et al. [52].
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a. Procedure for computing turning points

As discussed in Appendix A, the approach in Ref. [12]
is to consider a fiducial geodesic which has the same
constants of motion as the spinning-body orbit; this
fiducial geodesic has turning points given by rgt1 and
rgt2. The turning point corrections are then computed using
Eqs. 48(a)–(f) in Ref. [12].
(1) We begin with the constants of motion for a

spinning-body orbit with semilatus rectum p and
eccentricity e. The energy ES and angular momen-
tum LS

z corresponding to this choice of p and e are
given by

ES ¼ Êþ δES; LS
z ¼ L̂z þ δLS

z ; ðB9Þ

where expressions for Ê, L̂z, δES and δLS
z are given

by Eqs. (B15), (B16) and (B17) of Ref. [9]. We
reproduce these equations below:

Ê¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp−2Þ2−4e2

pðp−3−e2Þ

s
; L̂z¼

pMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p−3−e2

p ; ðB10Þ

δES ¼ −
sμ
M

ð1 − e2Þ2
2pðp − 3 − e2Þ3=2 ; ðB11Þ

δLS
z ¼ sμ

ð2p − 9 − 3e2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Þ2 − 4e2

p
2p1=2ðp − 3 − e2Þ3=2 : ðB12Þ

(2) By using Êfid ¼ ES and L̂z;fid ¼ LS
z and inverting

Eqs. (B10), we can find expressions for the semi-
latus rectum pfid and eccentricity efid of a geodesic
orbit, given ES and LS

z . Notice that these are not that
same as semi-latus rectum and eccentricity of the
spinning-body orbit—they are the semilatus rectum
and eccentricity corresponding to a geodesic orbit
that has the same energy ES and angular momentum
LS
z as the spinning-body orbit we are considering.

(3) Then, the fiducial turning points can be found, using:

rgt1 ¼
pfidM
1 − efid

; rgt2 ¼
pfidM
1þ efid

: ðB13Þ

(4) Next, we evaluate Eq. (B8) to find δr at each of these
fiducial turning points: δrðrgt1Þ is the correction to
the fiducial apastron and δrðrgt2Þ is the correction to
the fiducial periastron. We add these corrections
to find the spin-correction turning points:

rst1¼ rgt1þδrðrgt1Þ; rst2¼ rgt2þδrðrgt2Þ: ðB14Þ

(5) We can convert these turning points rst1 and rst1 into
semi-latus rectum p and eccentricity e of the
spinning-body orbit using:

pM¼ 2rst1rst2
rst1þrst2

; e¼ rst1−rst2
rst1þrst2

: ðB15Þ

b. Numerical example

We follow the procedure outlined in Sec. B 2 a with a
specific numerical example. For this example case, we
already know the turning points of the radial motion and we
verify that the turning points computed using Eq. (B8) are
consistent. Consider a spinning-body orbit with small-body
spin μs ¼ 0.001M, semilatus rectum pM ¼ 7M and eccen-
tricity e ¼ 0.4.
(1) From Eq. (B9), this orbit has ES ¼ 0.951965

and LS
z ¼ 3.57273M.

(2) Using Êfid ¼ ES and L̂z;fid ¼ LS
z and inverting

Eqs. (B10), we find that pfid ¼ 7.05356 and
efid ¼ 0.394709.

(3) Next, we find the fiducial turning points rgt1 and rgt2
using Eqs. (B13); they are rgt1 ¼ 11.6532M and
rgt1 ¼ 5.05737M.

(4) Then, we find that δrðrgt1Þ ¼ 0.0135323M and
δrðrgt2Þ ¼ −0.0517264M. The spinning-body turn-
ing points are rst1¼11.6667M and rst2¼5.00564M.

(5) The spinning-body p and e are found using
Eq. (B15): p ¼ 7.00553 and e ¼ 0.399527. We
have recovered the expected p and e for this orbit.
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