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The dynamics of charged particles moving around a Kerr-Newman black hole surrounded by cloud
strings, quintessence and electromagnetic field is integrable due to the presence of a fourth constant of
motion like the Carter constant. The fourth motion constant and the axial symmetry of the spacetime give a
chance to the existence of radial effective potentials with stable circular orbits in two-dimensional planes,
such as the equatorial plane and other nonequatorial planes. They also give a possibility of the presence of
radial effective potentials with stable spherical orbits in the three-dimensional space. The dynamical
parameters play important roles in changing the graphs of the effective potentials. In addition, variations of
these parameters affect the presence or absence of stable circular orbits, innermost stable circular orbits,
stable spherical orbits, and marginally stable spherical orbits. They also affect the radii of the stable circular
or spherical orbits. It is numerically shown that the stable circular orbits and innermost stable circular orbits
can exist not only in the equatorial plane but also in the nonequatorial planes. Several stable spherical orbits
and marginally stable spherical orbits are numerically confirmed too. In particular, there are some stable
spherical orbits and marginally stable spherical orbits with vanishing angular momenta which cover the
whole range of latitudinal coordinates.
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I. INTRODUCTION

Cosmological observations, such as the cosmic micro-
wave background thermal anisotropies, support the accel-
erating expansion of the Universe [1]. The expansion is
well explained by dark energy with repulsive gravitational
effect. The dark energy is dependent on the cosmological
constant and the so-called quintessence surrounding a black
hole [2]. The cosmological constant acting as vacuum
energy with negative pressure causes the acceleration. The
quintessence as a scalar field coupled to gravity has
negative pressure. The quintessence plays a role in the
cosmological constant for an appropriate choice of the
quintessence parameters [2]. The Robertson-Walker metric
with the accelerating scale factor caused by the quintes-
sence and the Reissner-Nordström–de Sitter black hole
surrounded by the quintessence can be found in [2,3]. The
importance of quintessential fields in the physical processes
occurring around black holes has been discussed in [4–7].
In addition to the quintessence, another extra source

representing the Universe is not a collection of point
particles, but is a collection of extended objects, such as

one-dimensional strings considered by Letelier [8]. These
extended objects like the cloud of strings surrounding a
black hole are helpful to describe physical phenomena in
the Universe, and have astrophysical observable conse-
quences [9]. A static and spherically symmetric black hole
surrounded by quintessence and the cloud of strings was
given in [10]. The Reissner-Nordström metric with quintes-
sence and a cloud of strings was also obtained in [11].
With the aid of the Newman-Janis algorithm [12], the

above-mentioned nonrotating black holes with the quintes-
sence and/or the cloud of strings can be transformed to
rotating black hole counterparts [13–16]. Adding the cos-
mological constant, the authors of [17] obtained the Kerr-
Newman–AdS solutions of the Einstein-Maxwell equation
in quintessence field. Toledo and Bezerra [18] studied the
Kerr-Newman–AdS black hole with quintessence and the
cloud of strings. In this case, the electromagnetic potential is
generated due to the charge in the black hole.
If these extra perturbation sources like quintessence,

cloud of strings, and electromagnetic fields are not con-
sidered, the Schwarzschild, Reissner-Nordström metric,
Kerr, and Kerr-Newman metrics are integrable. As far as
the axially-symmetric Kerr spacetime is concerned, it is
integrable due to four constants of motion; the particle*wuxin_1134@sina.com
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(or photon) energy, angular momentum, and rest mass
associated with the 4-velocity normalizing condition and
the Carter constant governing the motion of geodesics in the
latitudinal direction [19]. The existence of theCarter constant
as the fourth constant gives theKerr spacetime the possibility
of nonplanar orbits with constant coordinate radii corre-
sponding to spherical photon orbits [20,21], as well as the
existence of circular orbits in the equatorial plane. Wilkins
[22] first found the existence of unstable spherical photon
orbits around the Kerr black hole and studied many proper-
ties of the spherical photon orbits. This resultwas extended to
spherical orbits of charged particles in a Kerr-Newman
geometry by Johnston and Ruffini [23]. Several numerical
examples of spherical photon orbits around a Kerr black hole
were plotted by Teo [20,24]. Exact formulas for spherical
photon orbits around Kerr black holes were given by
Tavlayan and Tekin [25]. The observability of a series of
images produced by spherical photon orbits around near-
extremalKerr black holes was shown by Igata et al. [26]. The
authors of [27] studied properties of spherical photon orbits
in the Kerr naked singularity spacetimes. Spherical photon
orbits were discussed in the field ofKerr-de Sitter black holes
[28,29] and a five-dimensional rotating black hole [30].
The ringdown and shadow observables are relevant to a
special set of unstable null orbits with constant radii. These
orbits are light rings [31–36] for the spherically-symmetric
Schwarzschild type black holes and spherical photon orbits
for the axially-symmetric Kerr type spacetimes. The thresh-
old spherical photon orbits mark a boundary between the
photons captured by the black hole and the photons escaping
to infinity. Therefore, there have been many other papers
focusing on these spherical photon orbits (see, e.g., [37–39]).
When the quintessence and the cloud of strings as two

extra perturbation sources are included, they do not destroy
the integrability of the considered spacetimes. However, the
fourth constant or the integrability becomes absent in most
cases when electromagnetic fields as an external perturba-
tion source are further included in these spacetimes. Even
these external magnetic fields induce chaos of charged-
particle motions under appropriate circumstances [40–48].
In spite of this, not all the external magnetic fields
surrounding the black holes can eliminate the existence
of the fourth constant. As Carter [19] claimed, not only the
geodesic equations of particles (or photons) around the
Kerr black hole but also the equations of charged-particle
orbits in the Kerr spacetime with an electromagnetic field
described by a covariant vector potential are analytically
solved. Their solutions are expressed in terms of explicit
quadratures. Although such a covariant vector potential is
replaced with a more complicated form, the integrability of
charged particle motions in Kerr-Newmann spacetimes was
shown by Hackmann and Xu [49]. In other words, the
fourth constant of motion is still existent.
Apart from the two Kerr type black holes with external

magnetic fields mentioned in [19,49], the dynamics of

charged particles moving around the Kerr-Newman black
hole surrounded by cloud strings, quintessence, and
electromagnetic field [18] is integrable. Providing such
an integrable example is the main motivation of the present
paper. Based on this integrability, stable circular charged-
particle orbits exist in two-dimensional planes, which are
not confined to the equatorial plane. Stable spherical
charged-particle orbits are also present. Unlike the authors
who studied the spherical photon orbits in the literature
[37–39], we mainly focus on the stable circular charged-
particle orbits in two-dimensional nonequatorial planes and
the stable spherical charged-particle orbits. They are
important in an astrophysical scenario. The structure of
the thin accretion Keplerian disks is governed by the stable
equatorial circular orbits of test particles [27]. Above all,
the innermost stable circular orbits act as the inner
boundary of the Keplerian disks. The threshold spherical
charged-particle orbits are important to model the capture
or accretion of matter by the black hole.
The outline of the paper is organized as follows.

In Sec. II we introduce the considered dynamical model.
In Sec. III we analyze the integrability of this system, radial
effective potentials, circular orbits, and spherical orbits of
charged particles. Finally, we conclude our conclusions
in Sec. IV.

II. KERR-NEWMAN BLACK HOLE WITH
EXTRA PERTURBATION SOURCES

The considered spacetime metric is introduced briefly.
A super-Hamiltonian for describing the motion of charged
particles around the Kerr-Newman black hole immersed in
an external electromagnetic field is given.

A. Description of spacetime metric

A negative pressure from a gravitationally repulsive
energy component leads to the accelerated expansion of
the universe. Its origin may be due to quintessence dark
energy surrounding a black hole. In Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ, a spherically-symmetric static
Schwarzschild black hole surrounded by the quintessence
is expressed in [2] as

ds2 ¼ gαβdxαdxβ; ð1Þ
where covariant metric gαβ has four nonzero components,

gtt ¼ −
�
1 −

2M
r

−
αq

r3ωqþ1

�
; ð2Þ

grr ¼
�
1 −

2M
r

−
αq

r3ωqþ1

�
−1
; ð3Þ

gθθ ¼ r2; ð4Þ

gϕϕ ¼ r2 sin2 θ: ð5Þ
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andM is the black hole mass. The state equation describing
the relation among the quintessential state parameter ωq,
the pressure pquint, and the energy density ρquint is

pquint ¼ ωqρquint; ð6Þ

ρquint ¼ −
3

2

αqωq

r3ðωqþ1Þ : ð7Þ

αq ≠ 0 is a quintessence parameter, and αq ¼ 0 corre-
sponds to the Schwarzschild black hole. If ρquint > 0, then
αqωq < 0. The parameter αq is positive for the quintessence
field. Thus, the quintessential state parameter ωq is neg-
ative. The state parameter has three cases [7,16]: −1 <
ωq < −1=3 for the quintessence, ωq < −1 for the phantom
energy, and ωq ¼ −1 acting as a cosmological constant.
The quintessence corresponds to the stress-energy tensors

Tt
t ¼ Tr

r ¼ ρquint; ð8Þ

Tθ
θ ¼ Tϕ

ϕ ¼ −
ρquint
2

ð3ωq þ 1Þ: ð9Þ

The properties of quintessence in an astrophysical scenario
have been discussed in some literature [4–7].
Letelier [8] considered the Schwarzschild black hole

surrounded by another extra source, which is a spherically-
symmetric cloud of strings as a collection of extended
objects instead of point particles. In this case, the stress-
energy tensors are

Tt
t ¼ Tr

r ¼ ρcloud ¼
bc
r2

; ð10Þ

Tθ
θ ¼ Tϕ

ϕ ¼ 0; ð11Þ

where ρcloud represents the energy density regarding the
string cloud and bc is a positive parameter measuring the
intensity of the cloud of strings. Replacing the quintessence
term in Eqs. (2) and (3) with the string cloud intensity bc,
Letelier obtained two metric components of the
Schwarzschild black hole with the string cloud as follows:

gtt ¼ −
�
1 −

2M
r

− bc

�
; ð12Þ

grr ¼
�
1 −

2M
r

− bc

�
−1
: ð13Þ

When the quintessence and the cloud of strings as two
extra sources of energy surround the Schwarzschild black
hole, the total stress-energy tensor is a linear combination
of the stress-energy tensors corresponding to the quintes-
sence and the one associated with the cloud of strings,

Tt
t ¼ Tr

r ¼ ρquint þ ρcloud ¼
bc
r2

−
3

2

αqωq

r3ðωqþ1Þ ; ð14Þ

Tθ
θ ¼ Tϕ

ϕ ¼ −
ρquint
2

ð3ωq þ 1Þ: ð15Þ

Based on Eqs. (2), (3), (12), and (13), two components of
the metric for the description of the Schwarzschild black
hole surrounded by the quintessence and the cloud of
strings can be written in [10] as follows:

gtt ¼ −
�
1 − bc −

2M
r

−
αq

r3ωqþ1

�
; ð16Þ

grr ¼
�
1 − bc −

2M
r

−
αq

r3ωqþ1

�
−1
: ð17Þ

Suppose the black hole has an electrical charge Q
inducing an electromagnetic field. The authors of [11]
provided a metric for the Reissner-Nordström black hole
surrounded by the quintessence and the cloud of strings.
The two metric components gtt and grr are

gtt ¼ −
�
1 − bc −

2M
r

þQ2

r2
−

αq
r3ωqþ1

�
; ð18Þ

grr ¼
�
1 − bc −

2M
r

þQ2

r2
−

αq
r3ωqþ1

�
−1
: ð19Þ

In terms of the Newman-Janis algoritm [12], the
Reissner-Nordström black hole metric with the quintes-
sence and the cloud of strings can be transformed into the
Kerr-Newman black hole metric in the quintessence and the
cloud of strings [13–16]. Adding a cosmological constantΛ
[17], the authors of [18] obtained a Kerr-Newman–AdS
solution immersed in quintessence and string cloud. The
metric solution has six nonzero components [18],

gtt ¼
1

ΣΞ2
ðΔθa2 sin2 θ − ΔrÞ; ð20Þ

gtϕ ¼ a sin2 θ
ΣΞ2

½Δr − Δθðr2 þ a2Þ� ¼ gϕt; ð21Þ

grr ¼
Σ
Δr

; ð22Þ

gθθ ¼
Σ
Δθ

; ð23Þ

gϕϕ ¼ sin2 θ
ΣΞ2

½Δθðr2 þ a2Þ2 − Δra2 sin2 θ�: ð24Þ

The above notations are specified by

Σ ¼ r2 þ a2 cos2 θ; ð25Þ
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Δr ¼ ð1 − bcÞr2 þ a2 þQ2 − 2Mr

−
Λ
3
r2ðr2 þ a2Þ − αqr1−3ωq ; ð26Þ

Δθ ¼ 1þ Λ
3
a2 cos2 θ; ð27Þ

Ξ ¼ 1þ Λ
3
a2: ð28Þ

The angular momentum of the rotating black hole is given
in the range a ∈ ½−M;M�. The black hole’s electrical
charge is given in the range Q ∈ ½−M;M�. The speed of
light c and the gravitational constant G take geometrized
units, c ¼ G ¼ 1.

B. Super-Hamiltonian system

The charge in the Kerr-Newman–AdS black hole gen-
erates an electromagnetic potential [18]

Aμ ¼ −
Qr
Σ

δtμ þ
Qra sin2θ

ΣΞ
δϕμ : ð29Þ

The motion of a test particle with charge q and mass m
around the Kerr-Newman–AdS black hole surrounded with
the quintessence, string cloud, and electromagnetic field is
governed by the super-Hamiltonian

H ¼ 1

2m
gμνðpμ − qAμÞðpν − qAνÞ

¼ 1

2m
gttðpt − qAtÞ2 þ

1

2m
gϕϕðpϕ − qAϕÞ2

þ 1

m
gtϕðpt − qAtÞðpϕ − qAϕÞ þ

1

2m
grrp2

r

þ 1

2m
gθθp2

θ; ð30Þ

where the six nonzero covariant metric components (20)–
(24) correspond to their contravariant components

gtt ¼ Ξ2

Σ

�
a2

Δθ
sin2 θ −

ðr2 þ a2Þ2
Δr

�
; ð31Þ

gtϕ ¼ aΞ2

Σ

�
1

Δθ
−
r2 þ a2

Δr

�
¼ gϕt; ð32Þ

grr ¼ Δr

Σ
; ð33Þ

gθθ ¼ Δθ

Σ
; ð34Þ

gϕϕ ¼ Ξ2

Σ

�
1

Δθ sin2 θ
−
a2

Δr

�
: ð35Þ

Considering a set of Hamiltonian canonical equations
_xμ ¼ ∂H=∂pμ ¼ gμνðpν − qAνÞ=m, we have the covariant
generalized momenta

pμ ¼ mgμν _xν þ qAμ: ð36Þ

Because another set of Hamiltonian canonical equations
satisfy _pt ¼ −∂H=∂t ¼ 0 and _pϕ ¼ −∂H=∂ϕ ¼ 0, pt and
pϕ are two constants of motion. pt corresponds to an
energy of the particle, and pϕ is an angular momentum of
the particle. They are

E ¼ −pt ¼ −½mðgtt_tþ gtϕ _ϕÞ þ qAt�; ð37Þ

L ¼ pϕ ¼ mðgtϕ_tþ gϕϕ _ϕÞ þ qAϕ: ð38Þ

Dimensionless operations are given to Eq. (30). The
distances, coordinate time t and a take the black hole mass
M as units; that is, r → rM, t → tM, and a → aM. The
proper time τ also takes the mass unit, τ → τM. In addition,
Q → QM, Λ → Λ=M2, αq → αqM1þ3ωq , H → Hm,
E → Em, pr → prm, pθ → pθMm, L → LMm, and
q → qm. It is particularly pointed out that E and pr are
measured in terms of m, but pθ is measured in terms of
mM. The particle’s angular momentum L is also measured
in terms of mM, whereas the black hole’s angular momen-
tum a is measured in terms of M. After the dimensionless
operations are implemented, a ∈ ½−1; 1�, Q ∈ ½−1; 1�, and
−2Mr in Eq. (26) becomes −2r. The Hamiltonian (30)
becomes a dimensionless form

H ¼ 1

2

Ξ2

Σ

�
a2

Δθ
sin2θ −

ðr2 þ a2Þ2
Δr

��
Q�r
Σ

− E
�

2

þ 1

2

Ξ2

Σ

�
1

Δθsin2θ
−
a2

Δr

��
L −

Q�ar
ΣΞ

sin2θ

�
2

þ aΞ2

Σ

�
1

Δθ
−
r2 þ a2

Δr

��
L −

Q�ar
ΣΞ

sin2θ

�

·

�
Q�r
Σ

− E

�
þ 1

2

Δr

Σ
p2
r þ

1

2

Δθ

Σ
p2
θ; ð39Þ

where Q� ¼ qQ is an electromagnetic field parameter.
The Hamiltonian (39) is a relatively complicated

4-dimensional nonlinear system with two degrees of free-
dom r and θ. For the timelike case, this Hamiltonian is
always identical to a given constant

H ¼ −
1

2
: ð40Þ

The existence of this constant is because the particle’s
4-velocity _xμ¼ð_t; _r; _θ; _ϕÞ¼Uμ¼∂H=∂pμ¼gμνðpν−qAνÞ
satisfies the relation UμUμ ¼ −1 or the particle’s rest mass
is conserved.
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III. INTEGRABLE DYNAMICS
OF CHARGED PARTICLES

Firstly, we discuss the integrability of the Hamiltonian
system (39) with a vanishing cosmological constant by
finding a fourth integral of motion in this system. Secondly,
physically allowed motion regions are analyzed. Thirdly,
radial effective potentials in two-dimensional planes are
focused on and some stable circular orbits are given.
Finally, radial effective potentials in the three-dimensional
space are considered and some stable spherical orbits are
obtained.

A. Integrability of the system (39)
without cosmological constant

As is demonstrated above, the particle’s energy E,
angular momentum L, and rest mass are three constants
of motion in the system (39). Does a fourth constant exist?
Yes, it does when Λ ¼ 0 although the magnetic field, cloud
strings, and quintessence field are included in the Kerr-
Newman spacetime. In what follows, we introduce how to
find the fourth constant.
Clearly, Δθ ¼ Ξ ¼ 1 in the case of Λ ¼ 0. The system

(39) satisfying Eq. (40) becomes

−Σ ¼
�
a2sin2θ −

ðr2 þ a2Þ2
Δr

��
Q�r
Σ

− E

�
2

þ
�

1

sin2θ
−
a2

Δr

��
L −

Q�ar
Σ

sin2θ

�
2

þ 2a

�
1 −

r2 þ a2

Δr

��
L −

Q�ar
Σ

sin2θ

�

·

�
Q�r
Σ

− E

�
þ Δrp2

r þ p2
θ: ð41Þ

This equation has a separable variable form

1

Δr
½aL − Eðr2 þ a2Þ þQ�r�2 − r2 − Δrp2

r

¼
�
Ea sin θ −

L
sin θ

�
2

þ a2cos2θ þ p2
θ: ð42Þ

The left-hand side of this equality is a function of r, but the
right-hand side of this equality is another function of θ. In
general, the equality is impossible. If and only if both sides
are equal to a new constant denoted by K, the equality (42)
is admissible. This means that Eq. (42) can be split into two
equations

1

Δr
½aL − Eðr2 þ a2Þ þQ�r�2 − r2 − Δrp2

r ¼ K; ð43Þ

p2
θ þ

�
aE sin θ −

L
sin θ

�
2

þ a2cos2θ ¼ K: ð44Þ

They belong to a first integral of motion similar to the Carter
constant [19]. Equation (43) or Eq. (44) is the fourth constant
of motion in the system (39). In fact, the obtainment of the
fourth constant, or Eq. (42), implicitly comes from the
Hamilton-Jacobi equation of the Hamiltonian (39).
The four independent constants are described by

Eqs. (37), (38), (40), and (43) [or (44)]. They determine
the integrability of the system (39). If Λ ≠ 0, then no
separable form (42) exists, and Eqs. (43) and (44) do not
exist, either. Thus, the system (39) is nonintegrable. Only
the case of Λ ¼ 0 is considered in our later discussions.

B. Physically allowed motion regions

Equations (43) and (44) are respectively rewritten as

Σ2 _r2 ¼ ½aL − Eðr2 þ a2Þ þQ�r�2 − ðr2 þ KÞΔr

¼ ℜðrÞ; ð45Þ

Σ2 _θ2 ¼ K − a2cos2θ −
�
aE sin θ −

L
sin θ

�
2

¼ K − a2 þ 2aELþ a2ð1 − E2Þsin2θ − L2

sin2θ
¼ ΘðθÞ: ð46Þ

The conditions for physically allowed motions are

ℜðrÞ ≥ 0; ð47Þ

ΘðθÞ ≥ 0: ð48Þ

Equation (47) corresponds to E ≥ Eþ or E ≤ E−, where
E� are given by

E� ¼ ðaLþQ�r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ KÞΔr

q
Þ=ðr2 þ a2Þ: ð49Þ

In fact, their expressions are based on ℜðrÞ ¼ 0. For
jEj < 1, r in Eq. (47) can be allowed in a finite range
outside the event horizon; that is, the corresponding orbit is
bound [22]. For jEj ≥ 1, r in Eq. (47) can be allowed in a
semi-infinite range outside the event horizon; namely, the
orbit is unbound.
The physically allowed ranges of parameters for

Eq. (48) are given according to several cases. Because
dΘ=dθ ¼ 2 cos θ½a2ð1 − E2Þ sin θ þ L2= sin3 θ�, the func-
tion Θ has a maximum at θ ¼ π=2 for jEj < 1 (precisely
speaking, Eþ ≤ E < 1 or −1 < E ≤ E−), i.e., Θmax ¼
K − ðaEþ LÞ2 with K ≥ ðaEþ LÞ2. In this case, we have
ϑ ≤ θ ≤ π − ϑ, where ϑ is a positive root of the equation
Θ ¼ 0 as follows:
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ϑ¼ arcsin
n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ2 þ 4a2ð1−E2ÞL2

q
− ϱ

�.
½2a2ð1−E2Þ�

o1
2

ðjEj< 1 and a ≠ 0Þ; ð50Þ

ϑ ¼ arcsinðL= ffiffiffi
ϱ

p Þ ða ¼ 0Þ; ð51Þ

ϱ ¼ K − a2 þ 2aEL > 0:

If jEj ≥ 1 (precisely speaking, E ≥ maxfEþ; 1g or
E ≤ minfE−;−1g), the function Θ reaches a maximum
at θ ¼ ψ or θ ¼ π − ψ, where ψ and the maximum are
expressed as

ψ ¼ arcsin

�
L2

a2ðE2 − 1Þ
�
1=4

ð0 ≤ L ≤ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
Þ; ð52Þ

Θmax ¼ K − a2 þ 2aLðE −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
Þ: ð53Þ

The motions are confined to a region θ ∈ ð0; ζ� ∪ ½π − ζ; πÞ,
where

ζ ¼ arcsin
n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ2 þ 4a2ð1−E2ÞL2

q
þ ϱ

�.
½2a2ðE2 − 1Þ�

o1
2

ða ≠ 0; jEj ≠ 1Þ: ð54Þ

Thus, the motions for these cases are always confined to the
region θ ∈ ½ϑ; π − ϑ� or θ ∈ ð0; ζ� ∪ ½π − ζ; πÞ.
In particular, the conditions for the orbits covering whole

the range of the latitudinal coordinate θ ∈ ð0; πÞ (note that 0
and π are coordinate singularities) and reaching the sym-
metry axis at θ ¼ 0 can be found from Eq. (48) or the
physically allowed ranges of θ. The conditions for θ ∈ ð0; πÞ
are one of the following two cases: (i) L ¼ 0, jEj < 1 and
K ≥ a2 ≥ 0, and (ii) L ¼ 0, jEj ≥ 1 andK ≥ a2E2 ≥ 0. It is
clear that zero angular momentum L ¼ 0 is a necessary
condition for the orbits covering whole the range of the
latitudinal coordinate.

FIG. 1. Radial effective potentials Vþ of Eq. (58) in two-dimensional planes θ ¼ σ. (a)–(c) They are plotted at the equatorial plane
σ ¼ π=2, (d) They are plotted in five planes σ ¼ π=6, π=5, π=4, π=3, and π=2. The impacts of the cloud strings parameter bc in Eq. (10),
quintessential state parameter ωq in Eq. (6), quintessence parameter αq in Eq. (7) and plane parameter σ on the effective potentials are
shown in panels (a)–(d), respectively. The plane parameters σ satisfy Eq. (57) with pθ ¼ 0 and are constants. For a given separation r,
the potentials (i.e., energies) decrease as each of the string cloud bc, quintessence parameter αq and plane parameter σ increases, and
increase when the quintessential state parameter ωq increases.
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C. Effective potentials and stable circular orbits
in two-dimensional planes

Based on Θ ¼ 0 with θ ¼ π=2, the fourth constant K is
given by

K ¼ a2 − 2aLE� − a2½1 − ðE�Þ2� þ L2: ð55Þ

In this case, E� are the standard radial effective potentials
at the equatorial plane θ ¼ π=2 in many references (e.g.,
[31–36]). Solving Eqs. (49) and (55) [or Eq. (42) with
θ ¼ π=2], we have the energies

V�
π=2 ¼

−B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AC

p

A
;

A ¼ ðr2 þ a2Þ2 − a2Δr;

B ¼ aLΔr − ðaLþQ�rÞðr2 þ a2Þ;
C ¼ ðaLþQ�rÞ2 − ðr2 þ L2ÞΔr: ð56Þ

The radial effective potentials V�
π=2 at the equatorial plane

θ ¼ π=2 depend on separation r and parameters a, L, Q,
Q�, bc, αq, and ωq.
Besides the radial effective potentials in the equatorial

plane, they are present in other planes. The planes are
determined by ΘðθÞ ¼ 0 corresponding to _θ ¼ 0 in
Eq. (46) and can be described by θ ¼ σ. Here, σ is a
parameter describing some plane. In this case, K reads

K ¼
�
aE sin σ −

L
sin σ

�
2

þ a2cos2σ: ð57Þ

The energies obtained from Eqs. (43) and (57) are
expressed as

V�
σ ¼ −B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AσCσ

p
Aσ

;

Aσ ¼ ðr2 þ a2Þ2 − a2Δr sin2 σ;

Cσ ¼ ðaLþQ�rÞ2 −
�
r2 þ L2

sin2 σ
þ a2 cos2 σ

�
Δr: ð58Þ

Equation (58) is the radial effective potentials in the plane
θ ¼ σ and includes the results in Eq. (56). Such radial
effective potentials in the nonequatorial planes are seldom
met in the existing literature.
Without loss of generality, Vþ

σ is considered. The local
extrema of the effective potentials Vþ

σ correspond to
circular orbits with constant radii r, which satisfy the
conditions

ΘðθÞ ¼ 0;
dVþ

σ

dr
¼ 0: ð59Þ

The local minima of the effective potentials Vþ
σ represent

stable circular orbits (SCOs), which satisfy Eq. (59) and the
following condition

d2Vþ
σ

dr2
≥ 0: ð60Þ

The equality symbol “¼” indicates the innermost stable
circular orbits (ISCOs). The local maxima of the effective
potentials Vþ

σ mean unstable circular orbits, which satisfy
Eq. (59) and

d2Vþ
σ

dr2
< 0: ð61Þ

We focus on the radial motions of charged particles in the
quintessence field with −1 < ωq < −1=3 and αq > 0.
Since the effects of parameters a, L, Q, and Q� on the

TABLE I. The radii RC of SCOs and the radii RI of ISCOs for
the parameters considered in Fig. 1. The notation “� � �”means the
absence of SCOs and ISCOs. The energies E of the SCOs are not
arbitrarily given but are determined by RC. E and the angular
momentum L of the ISCOs are not arbitrarily given but are
determined by RI. The values are not given for E ≥ 1. The radii
RC of SCOs decrease as anyone of the string cloud bc,
quintessence parameter αq, quintessential state parameter ωq

and plane parameter σ increases. The radii RI of ISCOs increase
with the string cloud bc and quintessence parameter αq increas-
ing, but decrease with the quintessential state parameter ωq and
plane parameter σ increasing.

Fig. 1(a) bc 0 0.05 0.1 0.15 0.2

SCO RC 10.15 8.26 … … …
E 0.89 0.86 … … …

ISCO RI 6.33 6.72 7.17 7.67 8.25
L 3.71 3.93 4.18 4.45 4.78
E 0.88 0.86 0.83 0.8 0.78

Fig. 1(b) αq 0 0.1 0.2 0.3 0.4
SCO RC 12.13 9.84 … … …

E 0.96 0.89 … … …
ISCO RI 5.67 6.4 7.37 8.72 10.77

L 3.38 3.75 4.22 4.85 5.7
E 0.93 0.88 0.82 0.75 0.68

Fig. 1(c) ωq −0.35 −0.4 −0.45 −0.5 −0.55
SCO RC 11.94 12.14 12.65 14.06 …

E 0.953 0.948 0.946 0.937 …
ISCO RI 5.73 5.76 5.8 5.88 6.06

L 3.42 3.41 3.39 3.38 3.34
E 0.94 0.93 0.92 0.91 0.90

Fig. 1(d) σ π=2 π=3 π=4 π=5 π=6
SCO RC 11.93 17.5 28.3 44.71 60.66

E 0.95 0.96 0.97 0.98 0.99
ISCO RI 5.73 5.77 5.82 5.87 5.89

L 3.41 2.97 2.62 2.03 1.73
E 0.89 0.90 0.91 0.92 0.93
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FIG. 3. Radial effective potentials Eþ of Eq. (49) in the three-dimensional configuration: (a) The dependence of Eþ on the cloud
strings parameter bc shows the decrease of Eþ with the increase of bc, (b) The dependence of Eþ on the quintessence parameter αq
describes the decrease of Eþ with the increase of αq, (c) The dependence of Eþ on the quintessential state parameter ωq indicates the
increase of Eþ with the increase of ωq, and (d) The dependence of Eþ on the Carter-like constant K exhibits the increase of Eþ with the
increase of K, where K does not satisfy Eq. (57) with pθ ¼ 0 but is freely given and satisfies Eq. (44) with pθ ≠ 0.

FIG. 2. Three examples of SCOs and ISCOs in two-dimensional planes: (a) The SCO colored black on the plane σ ¼ π=2 has its radius
r ¼ 11.93 and the ISCO colored red has the radius r ¼ 5.73 and angular momentum L ¼ 3.41, (b) The SCO colored black on the plane
σ ¼ π=4 has its radius r ¼ 28.3 and the ISCO colored red has the radius r ¼ 5.82 and angular momentum L ¼ 2.62, and (c) The SCO
colored Black on the plane σ ¼ π=6 has its radius r ¼ 60.66 and the ISCO colored red has the radius r ¼ 5.89 and angular momentum
L ¼ 1.73. The plane parameters σ satisfy Eq. (57) with pθ ¼ 0 and are constants. The other parameters in each of the panels are the same
as those of Fig. 1(d). The upper part of each panel corresponds to the practical trajectories, and the bottom part relates to projections of
the practical trajectories. These orbits still remain circular and stable in the three-dimensional space XYZ when the integration
time τ ¼ 105.
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charged particle dynamics have been discussed in some
references (e.g., [50,51]), the parameters bc, αq, ωq and σ
how to affect the radial effective potentials are mainly
considered in Fig. 1. The graph at the equatorial plane
σ ¼ π=2 in Fig. 1(a) shifts to the observer at infinity as the
cloud strings parameter bc increases. In this case, the
energy decreases and the gravity from the black hole is
weakened. This fact can be explained simply and intuitively
in terms of the second term on line 1 of Eq. (39). The term
Ψ ¼ −ðr2 þ a2Þ2ðQ�r=Σ − EÞ2=ð2ΣΔrÞ gives gravita-
tional effects to the charged particles. It is clear that Δr
is a decreasing function of bc andΨ is too. This implies that
the gravity from the black hole becomes small as bc
increases. Therefore, Vþ is a decreasing function of bc.
When the cloud strings parameter bc increases in Table I,
the graph going away the black hole leads to increasing the
radius of ISCO at the equatorial plane, but decreasing the
radius of SCO. Here, the ISCOs and SCOs are considered
under the condition 0 < Vþ < 1 as well as the condition
(60). The energy also decreases with an increase of the
positive quintessence parameter αq in Fig. 1(b). However,
the energy increases with the negative quintessential state
parameter ωq increasing in Fig. 1(c). These results are
because Δr is a decreasing function of αq (>0) but an
increasing function of ωq. The radii of ISCOs in Table I get
larger when αq and ωq increase. An increase of ωq enlarges
the radius of SCO, while that of αq diminishes the
radius of SCO. Figure 1(d) describes that the shape of
the effective potential depends on the plane parameter σ.
The potential decreases as σ increases. This result can be
seen clearly from Eq. (58). Equation (58) is rewritten as
Vþ ¼ −Cσ=ðBþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − AσCσ

p
Þ. Because Cσ is an increas-

ing function of σ and Aσ is a decreasing function of σ, Vþ is
a decreasing function of σ. An increase of σ results in
decreasing the radii of SCOs and ISCOs.
In short, the main results concluded from Fig. 1 and

Table I are given as follows. When anyone of the three
parameters bc, αq > 0, and σ ∈ ð0; π

2
� increases, the poten-

tial (or energy) decreases, whereas the potential increases
with ωq < 0 increasing. The radii of SCOs decrease as the
four parameters increase. The radii of ISCOs gets larger
with bc and αq > 0 increasing, but smaller with ωq and σ
increasing.
Figure 2 plots three SCOs and ISCOs at the planes

σ ¼ π=2, π=4 and π=6 for the other parameters considered
in Fig. 1(d). Here, an eighth-order and ninth-order Runge-
Kutta-Fehlberg integrator (RKF89) with adaptive step sizes
is applied to solve the canonical equations of the
Hamiltonian (39). This integrator can give an order of
10−12 to the Hamiltonian error ΔH ¼ H þ 1=2 when the
integration time τ ¼ 105. These orbits still remain circular
and stable in the three-dimensional configuration with
x ¼ r sin θ cosϕ, y ¼ r sin θ sinϕ, and z ¼ r cos θ during
the integration time. Thus, the SCOs and ISCOs can exist

not only in the equatorial plane but also in the non-
equatorial planes.

D. Effective potentials and stable spherical orbits
in the three-dimensional space

If K does not satisfy Eq. (57) with pθ ¼ 0 but is freely
given and satisfies Eq. (44) with pθ ≠ 0, E� in Eq. (49) are
radial effective potentials in the three-dimensional space.
The effective potentials are functions of separation r and
depend on parameters a, L, K, Q, Q�, bc, αq, and ωq.
The local extrema of the effective potentials Eþ are

spherical orbits with constant radii r. The spherical orbits
should satisfy the condition

TABLE II. The radii RS of SSOs and the radii RM of MSSOs
for the parameters considered in Figs. 3 and 5(a). The radii RS of
SSOs decrease when anyone of the string cloud bc, quintessence
parameter αq, and quintessential state parameter ωq increases,
but increase with the increase of the Carter-like constant K.
The radii RM of MSSOs increase as the string cloud bc,
quintessence parameter αq and Carter-like constant K increase,
whereas decrease with the increase of the quintessential state
parameter ωq.

Fig. 3(a) bc 0 0.1 0.2 0.3 0.4

SSO RS 19.45 15.79 … … …
E 0.91 0.85 … … …

MSSO RM 8.78 8.65 8.59 8.69 9.06
L −25.18 −13.37 0.64 18.16 41.76
E 0.89 0.84 0.77 0.71 0.63

Fig. 3(b) αq 0 0.1 0.2 0.3 0.4
SSO RS 18.48 15.79 … … …

E 0.92 0.85 … … …
MSSO RM 8.62 8.65 8.76 9.06 9.78

L −24.95 −13.37 0.63 18.62 43.93
E 0.91 0.84 0.77 0.69 0.60

Fig. 3(c) ωq −0.35 −0.4 −0.45 −0.5 −0.55
SSO RS 15.79 19.11 … … …

E 0.85 0.81 … … …
MSSO RM 8.65 10.06 … … …

L −13.37 −15.99 … … …
E 0.84 0.80 … … …

Fig. 3(d) K 8 12 16 20 24
SSO RS … … … 11.85 15.79

E … … … 0.84 0.85
MSSO RM 5.31 6.15 7 7.83 8.65

L 22.8 14.74 5.93 −3.47 −13.37
E 0.81 0.82 0.83 0.84 0.85

Fig. 5(a) K 8 12 16 20 24
SSO RS … … … 10.39 14.68

E … … … 0.84 0.85
MSSO RM 5.31 6.15 7 7.83 8.65

L 22.8 14.74 5.93 −3.47 −13.37
E 0.81 0.82 0.83 0.84 0.85
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dEþ

dr
¼ 0; ð62Þ

but do not always satisfy the condition ΘðθÞ ¼ 0 for any
time. The spherical orbits must be unstable in the unbound
case of Eþ > 1. In the bound case of 0 < Eþ < 1, the
spherical orbits may either be stable or unstable. They are
stable under perturbations in the radial direction if

d2Eþ

dr2
≥ 0: ð63Þ

Equations (49), (62), and (63) are the conditions for the
existence of the stable spherical orbits (SSOs). The equality
symbol “¼” in Eq. (63) corresponds to the marginally
stable spherical orbits (MSSOs). In fact, the conditions for
the SSOs are equivalent to the following conditions

ℜðrÞ ¼ dℜðrÞ
dr

¼ 0;
d2ℜðrÞ
dr2

≤ 0; ð64Þ

which were considered in the existing publications [20,24].
All stable (or unstable) spherical orbits are of course confined
to the ranges θ ∈ ½ϑ; π − ϑ� or θ ∈ ð0; ζ� ∪ ½π − ζ; πÞ.

FIG. 4. Three examples of SSOs and MSSOs in the three-dimensional space: (a) The SSO colored black has the initial values
σ ¼ 2π=5 and pθ ¼ 2.64, and the MSSO colored red has the initial values σ ¼ 2π=5 and pθ ¼ 2.46, (b) The SSO colored black has the
initial values σ ¼ π=2 and pθ ¼ 2.94, and the MSSO colored red has the initial values σ ¼ π=2 and pθ ¼ 2.71, and (c) The SSO colored
black has the initial values σ ¼ 3π=5 and pθ ¼ 2.64, and the MSSO colored red has the initial values σ ¼ 3π=5 and pθ ¼ 2.46. In these
panels, all SSOs have the radii RS ¼ 15.79 and the Carter-like constant K ¼ 24, and all MSSOs correspond to the radii RM ¼ 7.83, the
angular momentum L ¼ −3.47 and the Carter-like constant K ¼ 20. The other parameters are the same as those of Fig. 3(d). Unlike
those in Figs. 1 and 2, the values of σ do not satisfy Eq. (57) with pθ ¼ 0 and are no longer constant plane parameters. In fact, the values
of σ in the three panels, such as σ ¼ 2π=5 in panel (a), are only the initial values of σ but are not invariant with time. The upper part of
each panel corresponds to the practical trajectories, and the bottom part relates to projections of the practical trajectories. These orbits
still remain spherical and stable when the integration time τ ¼ 105.

FIG. 5. (a) Relation between the Carter-like constant K and radial effective potential Eþ with zero angular momentum L ¼ 0 in the
three-dimensional configuration. The potential increases with K increasing, where K does not satisfy Eq. (57) with pθ ¼ 0 but is freely
given and satisfies Eq. (44) with pθ ≠ 0. (b) A stable spherical orbit with K ¼ 24, the radius RS ¼ 14.68 and the initial value pθ ¼ 4.89.
(c) A marginally stable spherical orbit with K ¼ 18.54, the radius RM ¼ 7.53 and the initial value pθ ¼ 4.31. The other parameters of
panels (b) and (c) are those of panel (a). Unlike those in Figs. 1 and 2, the values of σ do not satisfy Eq. (57) with pθ ¼ 0 and are no
longer constant plane parameters. In fact, σ ¼ π=2 is only the initial value of σ but varies with time. The upper part of each panel
corresponds to the practical trajectories, and the bottom part relates to projections of the practical trajectories. The two spherical orbits
seem to have same sizes but have different radii; RS ¼ 14.68 in panel (b) and RM ¼ 7.53 in panel (c). These orbits with vanishing
angular momenta for covering whole the range of the latitudinal coordinate in panels (b) and (c) still remain spherical and stable when
the integration time τ ¼ 105.
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In particular, the conditions for the spherical orbits covering
whole the range of the latitudinal coordinate are given in the
above two cases. ForL ≠ 0, the spherical orbits do not cover
whole the range of the latitudinal coordinate.
Figure 3 describes the three-dimensional effective poten-

tials Eþ, which correspond to the parameters for the two-
dimensional effective potentialsVþ in Fig. 1 but σ gives place
toK. The dependence of the three-dimensional potentialsEþ
on each of the three parameters bc, αq, andωq is in agreement
with that of the two-dimensional potentials Vþ. Unlike the
dependence of Vþ on σ in Fig. 2(d), Eþ increases with an
increase ofK in Fig. 3(d). The reason is thatEþ in Eq. (49) is
an increase function of K. The impacts of the parameters bc,
αq, and ωq on the radii of SSOs and MSSOs in Table II are
similar to those of SCOs and ISCOs in Table I. The radii of
SSO and MSSO in Table II increase when the parameter K
increases. Three spherical orbits and marginally spherical
orbits are shown in Fig. 4. When the integration time reaches
τ ¼ 105, these spherical orbits still remain stable.
There are other notable points in Table II. The presence

of negative angular momenta L for some of the MSSOs
means that of retrograde orbits moving against the black
hole’s rotation [23]. However, positive angular momenta L
correspond to prograde orbits moving in the same direction
as the black hole’s rotation. In addition to these positive and
negative angular momenta, vanishing angular momenta
L ¼ 0 are also possible. For the case of zero angular
momenta, stable spherical orbits, and marginally stable
spherical orbits cover whole the range of the latitudinal
coordinate and reach the symmetry axis at θ ¼ 0, as shown
in Fig. 5. Such spherical orbits are called as the polar
spherical orbits [28]. However, the stable circular orbits are
difficulty present for vanishing angular momentum L ¼ 0.
Why do the stable spherical orbits exist in the case of
L ¼ 0? Why do the stable circular orbits not exist? The
reason is that K does not satisfy Eq. (57) and is freely given
for the stable spherical orbits, but must satisfy Eq. (57) and
is not freely given for the stable circular orbits.

IV. CONCLUSIONS

We analytically show the integrability of the dynamics of
charged particles moving around the Kerr-Newman black
hole surrounded by cloud strings, quintessence, and electro-
magnetic field. This integrability is due to the existence of a
fourth constant of motion like the Carter constant. If a
nonvanishing cosmological constant is included in the Kerr-
Newman spacetime, then the fourth constant is absent.
Because of the presence of the fourth motion constant

and the axial-symmetry of the spacetime, radial effective
potentials, and stable circular orbits in two-dimensional
planes involving the equatorial plane and other nonequa-
torial planes can be present. The dynamical parameters play
important roles in changing the graphs of the effective
potentials. In addition, variations of these parameters affect

the presence or absence of stable circular orbits and
innermost stable circular orbits, and they also affect the
radii of the stable circular orbits and innermost stable
circular orbits. When each of the cloud strings parameter,
quintessence parameter, and plane parameter increases, the
graph of effective potential shifts to the observer at infinity,
and the effective potential decreases. However, the graph of
effective potential goes toward the black hole and the
effective potential increases as the quintessential state
parameter increases. The radii of stable circular orbits
decrease. The radii of the innermost stable circular orbits
excluding those for the plane parameter and the quintes-
sential state parameter increase. The changes of these
parameters exert more influences on those of the radii of
the stable circular orbits, but minor influences on those of
the radii of the innermost stable circular orbits. Numerical
tests show that the stable circular orbits and innermost
stable circular orbits can exist not only in the equatorial
plane but also in the nonequatorial planes.
On the other hand, the presence of the Carter-like constant

and the axial-symmetry of the spacetime also gives a chance
to the existence of radial effective potentials and stable
spherical orbits in the three-dimensional space. The three-
dimensional potential depending on each of the cloud strings
parameter, quintessential state parameter and quintessence
parameter is similar to the two-dimensional potential. The
three-dimensional potential increases with an increase of the
fourth motion constant. The radii of stable spherical orbits
andmarginally stable spherical orbits varyingwith the cloud
strings parameter, quintessential state parameter and
quintessence parameter is consistent with those of stable
circular orbits and innermost stable circular orbits varying
with these parameters. The radii of stable spherical orbits
and marginally stable spherical orbits increase when the
Carter-like constant increases. The existence of some stable
spherical orbits and marginally stable spherical orbits are
numerically confirmed. In particular, some stable spherical
orbits or marginally stable spherical orbits with vanishing
angular momenta for covering whole the range of the
latitudinal coordinate can also be found.
In sum, the Carter-like constant and the axial symmetry

of the spacetime can ensure the presence of stable circular
orbits in two-dimensional nonequatorial planes and stable
spherical orbits in the three-dimensional space if a vanish-
ing cosmological constant appears in the Hamiltonian (30).
Neither the stable circular orbits in nonequatorial planes
nor the stable spherical orbits exist for a nonvanishing
cosmological constant.
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