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The Einstein and Maxwell equations are both systems of hyperbolic equations which need to satisfy a set
of elliptic constraints throughout evolution. However, while electrodynamics and magnetohydrodynamics
have benefited from a large number of evolution schemes that are able to enforce these constraints and are
easily applicable to curvilinear coordinates, unstructured meshes, or N-body simulations, many of these
techniques cannot be straightforwardly applied to existing formulations of the Einstein equations.
We develop a 3þ 1 a formulation of the Einstein equations that shows a striking resemblance to the
equations of relativistic magnetohydrodynamics and to electrodynamics in material media. The funda-
mental variables of this formulation are the frame fields, their exterior derivatives, and the Nester-Witten
and Sparling forms. These mirror the roles of the electromagnetic four potential, the electromagnetic field
strengths, the field excitations and the electric current. The role of the lapse function and shift vector,
corresponds exactly to that of the scalar electric potential. The formulation is manifestly first order and flux-
conservative, which makes it suitable for high-resolution shock capturing schemes and finite-element
methods. Being derived as a system of equations in exterior derivatives, it is directly applicable to any
coordinate system and to unstructured meshes, and leads to a natural discretization potentially suitable for
the use of machine-precision constraint propagation techniques such as the Yee algorithm and constrained
transport. Due to these properties, we expect this new formulation to be beneficial in simulations of many
astrophysical systems, such as binary compact objects and core-collapse supernovae as well as
cosmological simulations of the early Universe.

DOI: 10.1103/PhysRevD.105.124038

I. INTRODUCTION

In the last few years the study of relativistic astrophysics
and in particular of compact objects has made significant
progress. The theoretical understanding of binary black
holes, binary neutron stars, and super-massive black holes
has been validated by a string of impressive observations,
such as the first detection of gravitational waves from
binary black holes [1]; the first and joint detection of
gravitational waves, a gamma ray burst, and a kilonova
from a binary neutron star system [2,3]; and the first direct
imaging of a supermassive accreting black hole [4,5].

These are systems exhibiting extreme complexity, and
whose modeling requires the interplay of different areas of
modern physics, such as relativistic gravitation, fluid
dynamics, electrodynamics, nuclear physics, neutrino
physics, and many others. Therefore the theoretical study
of these and other systems cannot be accomplished with
purely analytical tools. Numerical relativity has instead
emerged as a powerful modeling tool.
The core approach of numerical relativity (NR) consists in

finding approximate solutions to the partial differential
equations (PDEs) describing the system at study, namely
the Einstein’s field equations (EFE), by numerical integra-
tion. To this end, the equations of general relativity (GR)
have first to be recast as an initial boundary value problem.*h.olivares@astro.ru.nl
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This can be accomplished invariousways. Examples include
the generalized-harmonic formalism [6–8], the character-
istic-evolution formalism [9], the conformal approach
[10,11], and fully constrained formulations [12]. These
approaches however are not the subject of this work.
Instead we operate in the context of the most commonly
employed formalism, the so-called3þ 1 formalism [13–15].
In this formalism, the four-dimensional spacetime of GR

is foliated in a succession of purely spatial hypersurfaces;
the EFE themselves split in 12 hyperbolic evolution
equations, governing the evolution of the fields as time
advances, and four elliptic constraint equations. The latter
define constraints that the solution has to satisfy, and at the
analytical level are always satisfied provided the initial data
also satisfy them (and as such they must be solved to
generate the initial data itself, see, e.g., [16]). In order to
obtain a true solution to the EFE, these constraints need
to be satisfied. Violations may easily lead to unstable
numerical simulations. While the constraints will be always
satisfied at the analytical level, numerical truncation errors
will easily cause violations that can accumulate and
destabilize the evolution. It can even be shown that the
Arnowitt-Deser-Misner (ADM) [17,18] formulation of the
EFE can be made strongly hyperbolic by assuming, among
other conditions, that the momentum constraints are iden-
tically satisfied [13]. These considerations have motivated
the search for alternative, more robust formulations of
Einstein equations. Several approaches have been pursued
to ensure stable numerical evolutions. A widely used and
strongly hyperbolic formulation, namely Baumgarte-
Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK),
was introduced in Refs. [19–23]. In this formulation, the
constraint violations cannot be dampened and will accu-
mulate and grow over time. Despite this shortcoming, it
allows for stable, long-term evolutions, yet in some
particularly challenging test cases constraint violations
can grow without bounds, typically crashing the evolution
code [24,25].
A simple extension of the EFE to include propagating

modes for the constraints, is to generalize a Lagrange
multiplier approach, similar to the one adopted for electro-
dynamics [26]. The resulting family of formulations stem-
ming from the Z4 formalism [27], most notably Z4c [28]
and CCZ4 [24,29], include damping terms designed with the
twofold aim of propagating the constraint violations away
from where they occur and also damping them as they
propagate [30].
It is important to understand that this approach does not

guarantee exact fulfilment of the constraint equations.
Techniques to control the growth of constraint violations
however are commonly used in numerical electrodynamics.
Maxwell’s equations include conditions such as the
absence of magnetic monopoles, ∇ · B ¼ 0, which sim-
ilarly to GR are elliptic equations that the solution of the
corresponding evolution equations should satisfy at all

times [31,32]. An example of a technique designed to
handle these requirements is Dedner’s et al. method [26],
employed successfully in numerical magnetohydrodynam-
ics (MHD) and particle-in-cell (PIC) simulations.
Constraint damping was successfully applied in the first

successful merger simulation [6], and it has been mainly
adopted in simulations using the generalized-harmonic for-
mulation of the EFE [8,33]. One important aspect of the
generalized-harmonic system is that the equations can trivi-
ally be recast in first-order form[8],which ismoredifficult for
BSSNOK-like systems, such as FO-CCZ4 [34] or first-order
BSSNOK [35]. First-order formulations are particularly
important when solving the EFE using finite elements or
pseudospectral methods [36], see Refs. [34,37,38].
As recently pointed out, these first-order extensions are

subject to additional curl constraint, which can render the
simulations unstable if not enforced. Generalizing the idea
of divergence cleaning, Ref. [39] introduced the notion of
curl cleaning, which requires to approximately solve four
elliptic equations per constraint (using hyperbolic relaxa-
tion), and applied it to FO-CCZ4. This results in a systemwith
a total of more than a hundred evolved variables, making the
system very expensive to solve and implement efficiently.
Hence it would be beneficial to have a system of first-

order equations that could be solved using simpler and
cheaper approaches. In fact numerical electrodynamics has
benefited also from another class of methods which are able
to maintain a discretized version of the constraints satisfied
to machine accuracy during the evolution, without adding
additional equations to the system. The common feature of
these methods is that the electromagnetic variables are not
all defined and stored at the same spatial points in the
computational domain, but on staggered grids. Belonging
to this class of methods are the popular Yee algorithm [40]
and constrained transport schemes [41], widely used in
numerical electrodynamics and MHD simulations.
A constraint preserving scheme for GR based on

staggered grids was proposed by Ref. [42]. This work
identifies as crucial the role played by the second Bianchi
identities in propagating the constraints and develops a
staggered finite-difference discretization that is able to
satisfy them to machine precision in Riemann normal
coordinates. However when such discretization is applied
to general coordinates, the exact fulfilment of the identities
is prevented by the noncancellation of terms that are cubic
in the Christoffel symbols, which appear as a result of the
noncommutativity of covariant derivatives of the Riemann
tensor. As a result the scheme’s ability to exactly propagate
the constraints is bounded by the truncation error.
In the present work, we realize the importance of

expressing equations as a system that relates differential
forms with the tool of exterior calculus to obtain discre-
tizations that fulfil the constraints to machine precision, and
apply this idea to obtain a 3þ 1 formulation of GR. Being
natural integrands over submanifolds, differential forms are
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very well suited to represent quantities such as total charges
inside volumes or fluxes through surfaces. For this reason,
integrating such equations yields a natural discretization
that reflects the geometric properties of the equations
themselves, and represents in a consistent way both the
evolution and the constraint equations. Two important
schemes derived from this idea are finite volume and
constraint transport methods. In MHD, the former is able
to achieve machine precision conservation of volume-
integrated quantities (e.g., particle number density) by
locating fluxes at the volume boundaries (cells faces),
and the latter is able to achieve machine precision con-
servation of surface-integrated magnetic fluxes (which
results in machine-precision fulfilment of ∇ · B ¼ 0) by
locating electric fields at the surface boundaries (cells
edges). In our endeavor we build upon the fact that a
formulation of GR in the language of exterior calculus
already exists (in fact it has already been proposed to
exploit it in order to obtain coordinate invariant formula-
tions suitable for numerical implementation [43]).
The formulationwe developmirrors at the formal level the

equations of covariant electrodynamics in amovingmaterial
medium [32,44]. We argue that this resemblance would
allow us to apply the knowledge and the methods developed
in those disciplines to the evolution of dynamical space-
times; in particular it would allow to develop constrained
transport schemes for NR, or to apply divergence- or curl-
cleaning methods. In fact, it is conceivable that existing
MHD solvers, e.g., [45–47], could be adapted with minimal
effort to solve the equations derived in this work to evolve
dynamical spacetimes instead. This would hold even when
adopting unstructured and moving meshes [48].
This formulation, that we refer to as DGREM (for

differential forms, general relativity, and electromagnetism)
also posses two other desirable features. First, it contains
only first order derivatives in both space and time, which
can significantly simplify its discretization especially with
some numerical schemes such as discontinuous Galerkin
methods [49]. Second, it can be written as a system of flux-
balance laws, for the discretization of which a lot of
expertise has been amassed over decades of work [50].
To the best of the authors’ knowledge, no formulation of
the Einstein equations available in the literature combines
all of these advantages.
This work is organized as follows: after defining our

notation (Sec. II), in Sec. III we introduce our exterior
calculus-based techniques by applying them to the wave
equation; Sec. IV revisits a formulation of GR as a system
of equations written in terms of differential forms.
Sections V and VI are the central part of this work, in
which we derive and present the proposed DGREM
formulation. A summary of the results is given in
Sec. VII, while several appendices provide details of
derivations hinted at in the main text as well as a primer
on the theory of exterior calculus.

II. NOTATION AND DEFINITIONS

In this section we summarize the notation that is used in
the rest of this work, since due to our reliance on concepts
originating from the framework of exterior calculus, it
may not be completely familiar to readers used to the
NR literature. We direct the reader to Appendix A and
references therein for more details on differential forms and
exterior calculus. We also collect some definitions used
throughout the article, mainly relating to the 3þ 1 split
of GR.
We work within the usual spacetime of general relativity,

i.e., a four-dimensional, Lorentzian, at least twice differ-
entiable manifold M. We differentiate various type of
indices on tensors and differential forms. Letters from the
first half of the Latin alphabet (a; b; c;…) shall represent,
in any basis, indices ranging from 0 to 3. In a coordinate
basis, letters from the first half of the greek alphabet
(α; β; γ;…) shall represent indices ranging from 0 to 3,
and latin letters from the second half of the alphabet
(i; j; k;…) shall represent indices ranging from 1 to 3
(i.e., spatial components). The same convention will apply
in a noncoordinate orthonormal basis, but using hatted
characters, i.e., α̂; β̂; γ̂;… for indices from 0 to 3, and
î; ĵ; k̂;… for indices from 1 to 3.
In what follows many objects contain nontensorial

indices. These objects are collections of differential forms,
which we also call tensor-valued differential forms. The
indices in these objects simply label the components in the
collection and do not necessarily imply that the collection
as a whole transform a tensor (see Appendix A for further
details on tensor-valued differential forms and comments
on the terminology). These indices will not be assigned any
particular notation, although their nontensorial nature will
be indicated in the text.
Without referring to any particular basis, we indicate

both tensors and differential forms with boldface charac-
ters; however in the abstract index notation that we
preferentially employ, we drop the boldface font.
We define the following symbols:

ηab Minkowski metric
δab Kronecker delta
ϵabcd Levi-Civita symbol
εabcd ¼ ffiffiffiffiffiffi−gp

ϵabcd Volume form
εabcd Levi-Civita tensor (dual of volume form)
ea Vector basis
θa Dual basis
∂ Partial derivative
∇ Covariant derivative
d Exterior derivative
D Covariant exterior derivative
L Lie derivative
⋆ Hodge dual

where g denotes the determinant of the metric (see below).
Note that all definitions above, even when written with
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coordinate basis indices, are valid in the case of non-
coordinate bases too; and that in the definition of basis
vectors and forms, the indices are nontensorial, simply
labeling objects in a collection.
While the objects we work with are denoted as scalars,

vectors, tensors, and differential forms, we actually always
mean scalar fields, vector fields, tensor fields, and fields of
differential forms, respectively, even when this is not
explicitly stated. The same holds for objects that are not
tensorial in nature, such as connection coefficients.
The manifoldM is provided with a metric tensor gμν, for

which we choose the “mostly plus” signature ð−;þ;þ;þÞ,
and whose determinant is denoted by g. We also summarize
here the framework of the 3þ 1 split of GR, which we
employ in order to recast the Einstein equations as an initial
value problem (see standard NR textbooks such as [13–15]
for more details). We assume that the spacetime can be
foliated in a sequence of tridimensional, purely spatial
hypersurfaces Σt (i.e., the spacetime is assumed to be
hyperbolic), each of which is parametrized by a value
of a function t. We define the future-directed unit
normal nμ ¼ −α∇μt, where the lapse function α equals
α ¼ −1=gtt. From nμ we can construct the metric restricted
to each hypersurface γμν ¼ gμν þ nμnν, which is purely
spatial. Considering now the vector tμ ¼ gμν∇νt, we
identify it with our basis’s temporal vector (i.e., we choose
a basis adapted to the foliation) and decompose it in a
part parallel to nμ and one perpendicular to it:
tμ ¼ et ¼ ∂t ¼ αnμ þ βμ. The purely spatial vector βμ is
called the shift vector. With these definitions in place we
can then state the expressions of nμ and gμν (or the line
element ds) in a coordinate basis:

nμ ¼ ð−α; 0; 0; 0Þ and nμ ¼ 1

α
ð1;−βiÞT

ds2 ¼ −ðα2 þ βiβ
iÞdt2 þ 2βidtdxi þ γijdxidxj;

where we have denoted with xi the spatial coordinates in
any hypersurface Σt and the T superscript indicates matrix
transposition. We indicate with γ the determinant of γij,
γ ¼ detðγijÞ, and note that

ffiffiffiffiffiffi−gp ¼ α
ffiffiffi
γ

p
.

III. PDEs IN THE LANGUAGE
OF EXTERIOR CALCULUS

Differential forms are natural integrands on submani-
folds, and PDEs that can be written as relations between
differential forms with the tools of exterior calculus can be
naturally discretized by integration on appropriate volumes.
When such a discretization is applied consistently, the
resulting evolution scheme correctly reflects the geometric
structure of the equations. In turn, this opens up the
possibility of developing constraint-preserving evolution
schemes.

In order to introduce the reader to our approach as outlined
above, we apply it in this section to a well-known PDE.
Namely, we explicitly formulate the standard wave equation
on a generic spacetime in terms of differential forms.We then
give a brief review of electrodynamics inmaterialmedia, also
written in the language of exterior calculus. This helps us set
the stage for reformulating GR and the Einstein equations in
the same language in the next section.

A. The wave equation

Rather than stating the usual wave equation (in terms of
scalar or vector fields and ordinary derivatives) and showing
how it can be expressed in terms of differential forms, we
choose here to reverse the exposition order, i.e., stating the
equation as a relation between differential forms and then
recovering the usual formulation. This better reflects the der-
ivation the DGREM formulation of GR in Sec. IV.
Consider a scalar field (or 0-form) ϕ, and its exterior

derivative J ¼ dϕ, which is of course a 1-form. J satisfies
the equation

−⋆−1d⋆J ¼ 0: ð1Þ
Employing the components representation of the exterior
derivative and of the Hodge dual, we can rewrite Eq. (1) as

εαβγν∂ ½νðεαβγ�μJμÞ ¼ 0: ð2Þ
Note that in this section we assume for simplicity a
coordinate basis, hence the indices are labeled by greek
letters.
Recalling the definition of ε it is easy to see that the last

equation becomes

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
JμÞ ¼ 0; ð3Þ

expressing that the divergence of J must vanish. This was
to be expected since operator in (1) (sometimes called the
codifferential) is a generalization of the divergence operator
[see Eq. (A32)]. Substituting the definition of J as the
exterior derivative of ϕ, this equation immediately implies

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μϕÞ ¼ 0; ð4Þ

i.e., the standard homogeneous wave equation for the field
ϕ in a generic spacetime.
We now seek too express Eq. (4) via a 3þ 1 formulation,

i.e., recasting it as an evolution equation for ϕ. To this end
let us define the following projections of J:

ρ ¼ −nμJμ;

ji ¼ γμiJμ: ð5Þ
Substituting these definitions in Eq. (3) and recalling the
relationship between the unit normal nμ, the lapse α, and
the shift βi, yields the equations
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∂tð
ffiffiffi
γ

p
ρÞ þ ∂ið

ffiffiffi
γ

p
ρViÞ ¼ 0;

∂tji þ ∂iðαρ − βkjkÞ ¼ 0; ð6Þ

where Vi ¼ αji=ρ − βi is the transport velocity of ρ.
These are evolution equations for (quantities related to)

the components of J. An evolution equation for ϕ itself can
easily be recovered from the definition of ρ and recalling
that Jt ¼ ∂tϕ, resulting in

∂tϕ ¼ −αρþ βkjk: ð7Þ

Thewave equation Eq. (4), or the system (6), is subject to
a set of differential constraints. Working with differential
forms, this can be seen as follows. The nilpotency of the
exterior derivative, Eq. (A13), immediately gives

dJ ¼ ddϕ ¼ 0: ð8Þ

This of course implies that ⋆dJ ¼ 0, and by comparing
with Eq. (A33), we can expect this equation to be requiring
the curl of J to vanish. Indeed switching to a components
representation and using the variables ρ and ji, Eq. (8) is
equivalent to

∂ijk − ∂kji ¼ 0: ð9Þ
These are three constraint equations for the spatial com-
ponents of J (a fourth equation, stemming from considering
the time components and involving the variable ρ, turns out
to be identical to the evolution equation for ji).
Equation (9) simply asserts the commutativity of second

spatial derivatives of ϕ, but as the wave equation itself it can
be stated much more compactly and expressively in terms
of differential forms.
As mentioned in the Introduction, writing the system in

terms of differential forms can be also useful to determine
the spatial localization of variables for a constraint pre-
serving discretization. However, the direct integration of
Eqs. (1) and (8), would yield a four-dimensional discre-
tization staggered in time. For methods such as finite
volume, it is more convenient to derive a semidiscrete
evolution equation with all variables located on the hyper-
surface Σt. In order to achieve this, we employ Cartan’s
“magic” formula [see Eq. (A14) in Appendix A], and
compute the Lie derivative of J and ⋆J, with respect to the
basis vector et, which coincides with ∂t.

LetJ ¼ dðet · JÞ;
Let⋆J ¼ dðet · ⋆JÞ; ð10Þ

or

∂tJ¼ dð−αρþ βkjkÞ; ð11Þ

∂t⋆J ¼ dF; ð12Þ

where the flux form F is defined as

F ¼ εijkðαji − ρβiÞðdxj ∧ dxkÞ:

The nontrivial components of (11) and (12) give identical
equations to those in (6); however, the advantage of writing
them in this way is that the submanifolds on which they
should be integrated become explicit. All terms in (11) are
1-forms, and all terms in (12) are 3-forms, which invites to
integrate them, respectively, on curves and volumes. For the
purpose of a numerical scheme which decomposes a three-
dimensional simulation domain in zones, this corresponds to
integrate the equations over zone edges and zone volumes.
After applying the Stokes theorem (A30), exterior derivatives
are replaced by evaluations of the forms on zone boundaries
(i.e., respectively, on zone vertices and zone faces).
It is straightforward to see that such discretization

conserves globally the volume-integrated “charge” ρ: since
faces are shared by two zones, the amount of flux leaving
one zone and entering the other will contribute with
opposite signs to the time update of each zone’s content,
and the total charge content in the simulation domain will
remain constant to machine precision as long as there is no
flux through the simulation boundaries.
The discretization also fulfils a discretized version of

Eq. (9) to machine precision. This can be seen by integrating
Eq. (8) over a zone face (i.e., a surface, since it is a 2-form).
The application of Stoke’s theorem oncemore transforms the
exterior derivative into the sum of the forms J integrated on
the contour formed by the edges surrounding that face (i.e.,
the circulation around it). Also in this case, each of the scalars
αρþ βkjk defined at zone vertices will be shared by two
edges and contribute to their time update of J with opposite
signs, canceling their contributions to the circulation. The
discretization is therefore able to preserve an integrated
version of constraint (9) to machine precision when supplied
with constraint-fulfilling initial data.

B. Maxwell equations

In the language of differential forms, Maxwell equations
can be written as

dF ¼ 0; ð13Þ
du ¼ ⋆J; ð14Þ

where F is the electromagnetic field strength, a 2-form with
the components of the Faraday tensor ðFÞμν ≔ Fμν, and u is
the electromagnetic field excitation.1 In the particular case

1The most common notation for the electromagnetic field
excitation isHμν. Here we have used instead the symbols u, uμν to
avoid confusion with the those used for the Eulerian magnetic
field in this section, and to highlight the similarity of its role
within electrodynamics to that of the Nester-Witten form (defined
in Sec. IV) in general relativity.
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of vacuum, u ¼ ⋆F, but in general it may be related by
more complicated local constitutive equations u ¼ uðFÞ
[51]. The 1-form J has the components of the electric
four current. The form F can be obtained as the exterior
derivative of a 1-form potential A, and we can thus write

F ¼ dA; ð15Þ

which allows us to recover (13) due to the nilpotency of the
exterior derivative. Similarly, by taking the exterior deriva-
tive of (14), we obtain

d⋆J ¼ 0; ð16Þ

which, as discussed for Eq. (1), represents a conservation
equation, in this case that of electric charge.
In components form, Eqs. (13) and (14) acquire the form

∂μð
ffiffiffiffiffiffi
−g

p ⋆FμνÞ ¼ 0; ð17Þ

∂μ
ffiffiffiffiffiffi
−g

p ð−⋆uμνÞ ¼ ffiffiffiffiffiffi
−g

p
Jν: ð18Þ

The expression in components for the definition of the four
potential (15) gives

Fμν ¼ ∂μAν − ∂νAμ; ð19Þ

and that for the conservation of electric charge (16) reads

∂μð
ffiffiffiffiffiffi
−g

p
JμÞ ¼ 0: ð20Þ

The electric field Eμ, the magnetic induction Bμ, the electric
displacement Dμ, and the magnetic field Hμ, as measured
by an observer moving at four-velocity nμ, are obtained by
projecting F, u, and their duals onto nμ. Setting nμ as the
velocity of Eulerian observers, we can thus define the
Eulerian fields as

Eμ ≔ Fμνnν; ð21Þ

Bμ ≔ ⋆Fμνnν; ð22Þ

Dμ ≔ −⋆uμνnν; ð23Þ

Hμ ≔ uμνnν; ð24Þ

where ⋆Fμν ¼ ð⋆FÞμν and ⋆uμν ¼ ð⋆uÞμν. These are purely
spatial vectors, as can be verified using the antisymmetry of
Fμν and uμν (for more details on the 3þ 1 formulation of
electrodynamics, see [52]). These projections allow us to
write the components of each of the 2-forms as

Fμν ¼ nμEν − nνEμ − εμνλσnλBσ;

uμν ¼ nμHν − nνHμ þ εμνλσnλDσ: ð25Þ

For the electric current 1-form J, we can adopt the same
projections defined in Eq. (5) and identify ρwith the charge
density and ji with the electric current in direction i as
measured by Eulerian observers. Similar projections can be
adopted for the four potential, which allows us to define the
usual scalar and vector potentials as

ϕ ¼ −nμAμ; ð26Þ

Ai ¼ γμiAμ: ð27Þ

Substituting projections (26) and (27) in Eq. (19) gives the
familiar 3þ 1 expressions for the electric and magnetic
fields in terms of the vector potential

∂tAi þ ∂iðαϕ − βiAiÞ ¼ −αEi − ϵilkβ
lBk; ð28Þ

ϵijkBk ¼ ∂iAj − ∂jAi: ð29Þ

Similarly, substituting projections (21) and (22) in the
homogeneous Maxwell Eq. (17) gives an evolution equa-
tion and a differential constraint, namely Faraday’s law and
Gauss’s law for magnetism,

∂t
ffiffiffi
γ

p
Bk þ ∂i

ffiffiffi
γ

p ðαϵijkEj − βiBk þ βkBiÞ ¼ 0; ð30Þ

∂i
ffiffiffi
γ

p
Bi ¼ 0: ð31Þ

Projections (23) and (24) substituted in the inhomogeneous
Maxwell Eq. (18) also gives an evolution equation and a
differential constraint, this time Ampère-Maxwell’s law
and Gauss’s law for electricity,

∂t
ffiffiffi
γ

p
Dk − ∂i

ffiffiffi
γ

p ðαϵkijHj þ βiDk − βkDiÞ ¼ −
ffiffiffi
γ

p
jk; ð32Þ

∂i
ffiffiffi
γ

p
Di ¼ ffiffiffi

γ
p

ρ: ð33Þ

The equation for charge conservation (20), when expressed
in 3þ 1 form, becomes identical to the conservation
equation (6) derived for the wave equation in Sec. III A.
As mentioned earlier, the system is closed by the con-
stitutive relations, which now express the 3þ 1 fields Ei

and Hi in terms of Di and Bi, and depend on the medium
considered. For the special case of vacuum, u ¼ ⋆F
implies Ei ¼ Di and Hi ¼ Bi.
Following the same procedure as for the wave equation,

Cartan’s magic formula (A14) can be used in combination
with Eqs. (13)–(15) to obtain a set of expressions that,
when integrated, will lead to a constraint-preserving semi-
discrete scheme. These are

∂tAþ dðαϕ − βiAiÞ ¼ −E; ð34Þ

∂tB þ dE ¼ 0; ð35Þ

∂tD − dH ¼ −J ; ð36Þ
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where

A ¼ Aidxi; ð37Þ

E ¼ ðαEi þ εilkβ
lBkÞdxi; ð38Þ

H ¼ ðαHi − εilkβ
lDkÞdxi ð39Þ

are 1-forms and

B ¼ εijkBidxj ∧ dxk; ð40Þ

D ¼ εijkDidxj ∧ dxk; ð41Þ

J ¼ εijkðαji − βiρÞdxj ∧ dxk ð42Þ

are 2-forms. Integration of Eqs. (34)–(36) suggests a
constraint-preserving discretization with 1-forms located
at cell edges and 2-forms located at cell faces. This is the
discretization adopted for constrained-transport methods in
ideal and resistive magnetohydrodynamics. A related dis-
cretization is that of the Yee algorithm, widely used in PIC
simulations. It employs two shifted staggered grids, one for
electric and another for magnetic fields, so that cell faces
from one grid coincide with cell edges of the other, which is
especially useful to avoid interpolations in flat spacetime
with Cartesian coordinates.
Finally, when adopting the different symbols used for the

exterior derivative in three-dimensional vector calculus,
one recovers the familiar expressions for the definition of
the electromagnetic potential,

E⃗ ¼ −∂tA⃗ −∇ðαϕ − β · A⃗Þ; ð43Þ

B ¼ ∇ × A⃗; ð44Þ

Maxwell’s equations,

∂t
ffiffiffi
γ

p
Bþ ffiffiffi

γ
p ∇ × E⃗ ¼ 0; ð45Þ

∇ ·B ¼ 0; ð46Þ

∂t
ffiffiffi
γ

p
D −

ffiffiffi
γ

p ∇ × H⃗ ¼ −
ffiffiffi
γ

p
J⃗ ; ð47Þ

∇ ·D ¼ ρ; ð48Þ

and charge conservation,

∂t
ffiffiffi
γ

p
ρþ ffiffiffi

γ
p ∇ · J⃗ ¼ 0; ð49Þ

where the arrow denotes the operation of transforming a
1-form to its dual vector, and D ¼ Diei, B ¼ Biei, and
β ¼ βiei. The presence of the

ffiffiffi
γ

p
factors depends on the

definition adopted for the ∇ operators. For the conventions
used here, we refer the reader to Appendix A.

IV. GENERAL RELATIVITY IN THE
LANGUAGE OF EXTERIOR CALCULUS

In this section, we first lay the groundwork to derive the
DGREM formulation by outlining a reformulation of the
Einstein equations in terms of exterior calculus and using
objects known as the Nester-Witten and Sparling forms.
This results in writing the Sparling equation, which is fully
equivalent to the EFE.
We then introduce a change of variables and a particular

choice of connection that ultimately allows us to reexpress
the Sparling equation, and therefore the EFE, as a system of
evolution equations resembling the Maxwell equation of
electrodynamics, i.e., the titular DGREM formulation.
Let us define for convenience the “hypersurface forms”

as [53]

Σa1…ar ¼
1

ð4 − rÞ! εa1…ararþ1…a4θ
arþ1 ∧ … ∧ θa4 : ð50Þ

Loosely speaking, they can be thought as (the dual forms
to) vectors orthogonal to submanifolds spanned by given
subsets of the basis θa1 ∧ … ∧ θa4 , e.g., the 3-form Σ0 ¼
ε0123θ1 ∧ θ2 ∧ θ3 is orthogonal to the tridimensional
hypersurface spanned by θ1, θ2, and θ3. They satisfy the
identity

θb ∧ Σa1…ar ¼ ð−1Þrþ1rδb½a1Σa2…ar�: ð51Þ
For a manifold with curvature and torsion described,

respectively, by the 2-forms Ωa
b and Ξa, the connection

forms ωa
b (see Appendix A for a definition) are completely

specified by Cartan’s structure equations,

Ξa ¼ dθa þ ωa
b ∧ θb; ð52Þ

Ωa
b ¼ dωa

b þωa
c ∧ ωc

b; ð53Þ

and by the condition of metric compatibility of the
connection,

dgab ¼ ωab þωba: ð54Þ
Note that in this last equation the individual components of
the metric are seen as 0-forms, i.e., the metric itself is a
tensor-valued 0-form, hence it is possible to apply the
exterior derivative to it.
The curvature and torsion forms are related to the

Riemann and the torsion tensors Ra
bcd and Ta

bc by

Ωa
b ∧ Σcd ¼ Ra

bcdΣ; ð55Þ

Ξa ¼ Ta
bcθb ∧ θc: ð56Þ
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It can be shown [43,53] that the curvature form is related to
the Ricci tensor Rb

c, the curvature scalar R ¼ Rb
b, and the

Einstein tensor Gc
d ¼ Rc

d − Rgcd in the following ways:

Ωab ∧ Σac ¼ Rb
cΣ; ð57Þ

Ωab ∧ Σab ¼ RΣ; ð58Þ

−
1

2
Ωab ∧ Σdab ¼ Gc

dΣc: ð59Þ

By taking the exterior derivative of Cartan’s structure
equations [Eqs. (52)–(53)], it is possible to obtain the first
and second Bianchi identities,

dΞa ¼ Ωa
e ∧ θe − ωa

e ∧ Ξe; ð60Þ

dΩa
b ¼ Ωa

e ∧ ωe
b − ωa

e ∧ Ωe
b; ð61Þ

which for a manifold with no torsion and in a coordinate
basis take the usual form

Rμαβγ þ Rμβγα þ Rμγαβ ¼ 0; ð62Þ

∇αRμνβγ þ∇βRμνγα þ∇γRμναβ ¼ 0: ð63Þ

To formulate general relativity as a system with exterior
derivatives, we first define a 2-form ua, known as the
Nester-Witten form [43,53,54]:

ua ≔ −
1

2
ωbc ∧ Σabc: ð64Þ

Taking its exterior derivative and using the two Cartan
structure equations, we obtain

dua ¼−
1

2
Ωbc ∧Σabcþ

1

2
Ξd ∧ωbc ∧Σabcd

−
1

2
ðωb

d ∧ωdc ∧Σabcþωd
a ∧ωbc ∧ΣdbcÞ: ð65Þ

The terms in parentheses can be grouped in a 3-form
known as the Sparling form:

ta ≔ −
1

2
ðωb

d ∧ ωdc ∧ Σabc þ ωd
a ∧ ωbc ∧ ΣdbcÞ; ð66Þ

whose pullbacks in different bases are related to different
expressions for the gravitational energy momentum. In
particular, in a coordinate basis it is the Einstein pseudo-
tensor [54]. For convenience, let us define tba such that

ta ¼ tbaΣb: ð67Þ

Assuming no torsion, relation (59) and Eq. (65) can be
used to obtain the Sparling equation:

dua ¼ ta þ κTa; ð68Þ

where the nongravitational energy-momentum 3-form Ta is
defined as

Ta ¼ Tμ
aΣμ; ð69Þ

andwhereTμ
a are the components of the energy-momentum

tensor.
At this point a few comments are necessary. First of all,

Eq. (68) is equivalent to the Einstein equations [43,53,54],
and the sum of the Nester-Witten and Sparling forms is
related to the Einstein tensor by

dua − ta ¼ Gb
aΣb; ð70Þ

or in components form,

Gc
a ¼

1ffiffiffiffiffiffi−gp ∂b½
ffiffiffiffiffiffi
−g

p ð−⋆uaÞbc� − tca: ð71Þ

This equivalence holds despite the fact that the index in
the objects ua and ta is nontensorial, i.e., the components of
the Nester-Witten form uabc ¼ ðuaÞbc2 are not part of a
single three-indices tensor but belong to a collection of four
2-forms labeled by the index a, which transforms as ð0

2
Þ

tensors with indices b and c (see also Appendix A).
This also means that the objects ua and ta are not unique:

a different choice of basis 1-forms from which to compute
the connection will lead to different collections of objects,
although Eq. (68) will still hold, in the same way as the
choice of different bases and connections does not alter the
validity of the Einstein equations.
Although the nontensorial behavior of these quantities

might be startling, this behavior is natural, as it is linked to
the local flatness of spacetime. In the language of tensors,
various quantities (such as the metric first partial derivatives
or energy-momentum pseudotensors) can be made to
vanish locally in a free-falling frame. This is possible
owing to the nontensorial nature of these objects, as tensors
cannot made to vanish by a coordinate (i.e., linear) trans-
formation. By the same token, the Sparling form, which is
related to various kinds of energy-momentum pseudoten-
sors [53,54], displays a similar behavior thanks to its own
nontensorial nature.

2Here and in the following, we often employ a simplified
notation, writing e.g., uabc instead of the more verbose ðuaÞbc,
when dealing with the components of various (collections of)
differential forms.
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V. EXPLOITING THE ANALOGIES
WITH MAXWELL’S EQUATIONS

A. Evolution equations and constraints

Equation (68) presents the Einstein equations as a set of
four equations with a structure very similar to that of the
inhomogeneous Maxwell equations, i.e., with the exterior
derivative of a 2-form at the left-hand side and a conserved
current at the right-hand side. In fact, taking the exterior
derivative of Eq. (68) it can be seen that the four currents
Ja ¼ ⋆ðta þ κTaÞ are globally conserved. Each antisym-
metric tensor uaμν in the Nester-Witten form plays the role
of the Maxwell 2-form, and, in a coordinate basis, Eq. (68)
takes a form completely analogous to that of the inhomo-
geneous Maxwell equations,

∂b
ffiffiffiffiffiffi
−g

p ð−⋆uabcÞ ¼ ffiffiffiffiffiffi
−g

p ðtca þ κTc
aÞ: ð72Þ

Comparing (72) with (71), its equivalence to the Einstein
equations becomes clear.
Exploiting further the similarity with electrodynamics,

we can define the following projections of the Nester-
Witten form and its dual

Ha
μ ≔ uaμνnν and Da

μ ≔ −⋆uaμνnν: ð73Þ

This allows us to decompose these forms as

uaμν ¼ nμHaν − nνHaμ þ εμναβnαDa
β; ð74Þ

⋆uaμν ¼ −nμDaν þ nνDaμ þ εμναβnαHa
β: ð75Þ

Defining as well the following projections of the compo-
nents of the Sparling form and the energy-momentum
tensor,3

ρa ≔ nμtμa;

sia ≔ γiμtμa;

Pa ≔ nμTμ
a;

Sia ≔ γiμTμ
a: ð76Þ

Equation (72) can be separated into four constraint
equations

Ca ≔ ∂i
ffiffiffi
γ

p
Da

i −
ffiffiffi
γ

p ðρa þ κPaÞ ¼ 0; ð77Þ

and 12 evolution equations

F k
a ≔ ∂t

ffiffiffi
γ

p
Da

k − ∂i
ffiffiffi
γ

p ðαεkijHaj þ βiDa
k − βkDa

iÞ
þ ffiffiffi

γ
p ðjka þ κJkaÞ ¼ 0; ð78Þ

where

jka ¼ αska − βkρa; ð79Þ

Jka ¼ αSka − βkPa: ð80Þ

The fulfilment of Eq. (77) is equivalent to that of the
Einstein constraints. This can be seen by the definition of
the usual Hamiltonian and momentum constraints and the
3þ 1 evolution equations [55] as

H ≔ nμnνðGμν − κTμνÞ ¼ 0;

Mi ≔ γμinνðGμν − κTμνÞ ¼ 0;

Eij ≔ γμiγ
ν
jðGμν − κTμνÞ ¼ 0; ð81Þ

from which

C0 ¼ −H;

Ci ¼ −Mi=α;

F i
0 ¼ αMi þ βiH;

F i
j ¼ Ei

j þ βiMj=α; ð82Þ

and therefore Ca ¼ 0 is equivalent to Mi ¼ 0 and H ¼ 0.
The twice-contracted second Bianchi identities imply that if
the Hamiltonian constraint is fulfilled on a spacelike
hypersurface, its fulfilment on the “next” hypersurface is
guaranteed as long as the momentum constraints are
satisfied exactly and the system is evolved using evolution
3þ 1 Einstein equations [55]. Similar equations for the
propagation of constraints Ca can be obtained after taking
the exterior derivative of the Sparling equation (68). This
results in a set of equations equivalent to the twice-
contracted second Bianchi identities of the form

∂t
ffiffiffiffiffiffi
−g

p
Ca þ ∂i

ffiffiffiffiffiffi
−g

p
F i

a ¼ 0: ð83Þ

Therefore, also in this case the evolution equations for
Dk

i and the exact fulfilment of the momentum constraints
Ci are sufficient to propagate the fulfilment of C0 between
subsequent hypersurfaces.

B. Energy-momentum conservation

The exterior derivative of Eq. (68) can also be used to
obtain evolution equations for the “charge densities” ρa and
Pa, as it expresses the global conservation of the sum of
their currents,

dðta þ κTaÞ ¼ 0: ð84Þ
3Note however that these are different from those usually

employed in the literature, where the energy momentum tensor is
projected twice on the normal vector and on the hypersurface.
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Together with the local conservation of matter energy-
momentum DTa ¼ 0,4 this gives

dTa ¼ ωb
a ∧ Tb and ð85Þ

dta ¼ −κωb
a ∧ Tb; ð86Þ

or in component form and in a coordinate basis,

∂μ
ffiffiffiffiffiffi
−g

p
Tμ

a ¼
ffiffiffiffiffiffi
−g

p
ωb

aμTμ
b and ð87Þ

∂μ
ffiffiffiffiffiffi
−g

p
tμa ¼ −κ

ffiffiffiffiffiffi
−g

p
ωb

aμTμ
b: ð88Þ

Substituting the projections defined above [Eq. (76)],

∂t
ffiffiffi
γ

p
ρa þ ∂i

ffiffiffi
γ

p ðαsia − βiρaÞ ¼ −κ
ffiffiffi
γ

p
Qa; ð89Þ

∂t
ffiffiffi
γ

p
Pa þ ∂i

ffiffiffi
γ

p ðαSia − βiPaÞ ¼ ffiffiffi
γ

p
Qa; ð90Þ

where

Qa ¼ −ðωb
at þ ωb

aiβ
iÞPb þ αωb

aiSib: ð91Þ

The physical interpretation of Eqs. (68), (85), and (86)
can be that of four vector fields described by the four
2-forms ua which have as sources two currents ⋆κTa and
⋆ta. The sum of the latter two is globally conserved, but
they exchange charge (in this case, energy and momentum)
via the “force” term κωb

a ∧ Tb. These currents are those of
gravitational (⋆ta) and nongravitational (⋆κTa) energy and
momentum. Equations (77) and (78) are the analog of the
inhomogeneous Maxwell equations in 3þ 1 form, and
Eqs. (89) and (90) that of the conservation of the two
charges.
While Eqs. (89) and (90) convey an interesting physical

picture of energy exchange between the purely gravita-
tional and the matter sector, there is another possibility of
how to read these equations in practice. Adding up (89) and
(90), we obtain

∂t½ ffiffiffi
γ

p ðρa þ κPaÞ� þ ∂i½ ffiffiffi
γ

p ðαðsia þ κSiaÞ
− βiðρa þ κPaÞÞ� ¼ 0: ð92Þ

When comparing this equation with the equation of energy-
momentum conservation (87), it is striking to see that using
the Sparling form all source terms in (92) have disappeared.
In this formulation, the geometric source terms of Eq. (87)
have been recast into a fully flux conservative form. A
similar observation has recently also been made by [56].
While previously such a formulation was known to exist for
the time component of Eq. (87) in static spacetimes [57],

this is the case here in any dynamical and nondynamical
spacetime. While sounding trivial at first, such a formu-
lation opens up the exciting prospects of applying advanced
techniques from flux-balance equations to the Einstein-
matter system, such first-order flux limiting [58] to ensure
positivity of energy- and momentum densities.
This is particularly interesting when combined with

the relativistic (magneto)hydrodynamics description of
the matter part, for which nontrivial constraints on the
physicality of the energy-momentum density Pa exist. A
formulation such as this one, clearly separating gravita-
tional and matter contribution, as well as having no explicit
sources, might make it possible to transfer advances made
on physicality preserving schemes in special relativity over
to general spacetimes [59,60].

C. Choosing a connection

In Sec. IV, we showed that the Einstein equations and the
conservation of energy and momentum can be expressed as
a system of equations with close similarities to the
inhomogeneous Maxwell equations and the equation of
charge conservation. However, even assuming that we have
equations to evolve the matter energy momentum, in order
to close the system we need to specify a way of updating
the quantities that appear in the equations for which no
evolution equation is provided, that is,

ffiffiffi
γ

p
, ωb

ac, Hμ
a, and

sμa. To find relations between these quantities and the
evolved variables, we start by noticing that the Hodge dual
of the Nester-Witten form can be written in terms of the
connection as

ð⋆uaÞbc ¼ ω½bc�
a þ δbaω

½cd�
d − δcaω

½bd�
d: ð93Þ

The detailed calculation is provided in Appendix B. The
relation (93) can be contracted to obtain

ð⋆ucÞbc ¼ −2ω½bc�
c; ð94Þ

from which

ω½bc�
a ¼ ð⋆uaÞbc − 1

2
δbað⋆udÞcd þ 1

2
δcað⋆udÞbd: ð95Þ

This shows that the part of the connection that is anti-
symmetric with respect to its first two indices is completely
determined by the Nester-Witten form. Since the full
connection appears in other parts of the system, namely
inside ta [Eq. (66)] and Qa [Eq. (91)], in principle it could
be necessary to evolve also the part that is symmetric with
respect to these indices. To simplify calculations, it would
be useful to exploit the nonuniqueness of the Nester-Witten
and the Sparling forms to build them from a connection that
is purely antisymmetric with respect to its first two indices.
This is the case for the spin connection (cf. Appendix J of
[61]), also known as the Ricci rotation coefficients

4In this equation D represents the exterior covariant derivative
(see Appendix A), and the equation is equivalent to the usual
∇μTμν ¼ 0.

H. OLIVARES et al. PHYS. REV. D 105, 124038 (2022)

124038-10



(cf. Sec. 3.4b of [62]). It will also turn out to be crucial that
the spin connection can be interpreted as a combination of
exterior derivatives of 1-forms, which will directly establish
a connection to the Maxwell equations, see (15).

1. Tetrads and spin connection

For an orthonormal vector basis feα̂g with dual 1-form
basis fθα̂g, the spin connection ωα̂

β̂ ¼ωα̂
β̂ μ̂θ

μ̂ is defined by

∂ ν̂eμ̂ ≔ Aν
ν̂∂νeμ̂ ¼ ωα̂

μ̂ ν̂θμ̂eα̂; ð96Þ
where Aν

ν̂ are the coefficients that relate the orthonormal
basis to the coordinate basis feαg, eν̂ ¼ Aν

ν̂eν. The ortho-
normal 1-form basis fθμ̂g and the coordinate basis fθμg are
related by the transformations θμ̂ ¼ Aμ̂

μθμ and θμ ¼ Aμ
μ̂θμ̂.

The form of the metric when expressed in an orthonormal
basis is that of Minkowski metric, and is therefore constant.
From metric compatibility (54), it follows that this con-
nection is completely antisymmetric with respect to its first
two indices. This can also be seen from the metricity
condition, which states that the covariant derivative of the
metric must vanish,

∇α̂ημ̂ ν̂ ¼ ∂ α̂ημ̂ ν̂ − ωβ̂
μ̂ α̂ηβ̂ ν̂ − ωβ̂

ν̂ α̂ημ̂ β̂ ¼ 0: ð97Þ
In what follows, we still express the equations in a

coordinate basis to keep the convenience of directly
integrating p-forms over coordinate submanifolds, but
construct an orthonormal tetrad field to obtain the con-
nection from which ua and ta are defined.
Given the 3þ 1 foliation of the spacetime, a natural

choice for the tetrad is that of an Eulerian observer moving
at velocity nμ, i.e., we take the vector nμ to be part of the
basis we are seeking. In order to accomplish this, the
components of the tetrad basis 1-forms in the coordinate
basis can be written as

A0̂
μ ¼ ðα; 0iÞ ¼ −nμ; ð98Þ

Aî
μ ¼ ðβî; Aî

iÞ; ð99Þ

where

ημ̂ ν̂Aμ̂
μAν̂

ν ¼ gμν; ð100Þ

βî ¼ Aî
iβ

i; ð101Þ
δî ĵA

î
iAĵ

j ¼ γij: ð102Þ
Conversely, the inverse transformation is given by

Aμ
0 ¼ ð1=α;−βi=αÞ ¼ nμ ð103Þ

Aμ
î ¼

�
0î

Ai
î

�
; ð104Þ

where also

ημ̂ ν̂Aμ
μ̂Aν

ν̂ ¼ gμν; ð105Þ

δî ĵAi
îA

j
ĵ ¼ γij: ð106Þ

The spin connection is calculated from the commutation
coefficients of the basis, cα̂μ̂ ν̂, which in turn can be obtained
either as the commutators of the basis vectors, or as the
exterior derivatives of the basis 1-forms. While the two
quantities coincide when expressed in the orthonormal
basis, they obey different transformation laws, transform-
ing, respectively, as a vector and as a 2-form. To keep
exploiting the analogies with electromagnetism, we decide
to calculate the commutation coefficients in the second
way, and define the set of 2-forms

Fα̂ ¼ dθα̂; ð107Þ

which in a coordinate basis takes the form

Fα̂
μν ¼ ∂μAα̂

ν − ∂νAα̂
μ: ð108Þ

The commutation coefficients are equal to the compo-
nents of these forms when expressed in the tetrad basis,

cα̂μ̂ ν̂ ¼ Fα̂
μ̂ ν̂ ¼ Aμ

μ̂Aν
ν̂Fα̂

μν; ð109Þ

and the connection can be calculated as

ωα̂ μ̂ ν̂ ¼
1

2
ðcμ̂ α̂ ν̂ þ cν̂ α̂ μ̂ − cα̂ μ̂ ν̂Þ: ð110Þ

The striking similarity of the spin connection to the Levi-
Civita connection is by no means a coincidence. The spin
connection can be used to generalize the covariant deriva-
tive for general tensors Vν

α̂,

DμVν
α̂ ¼ ∂μVν

α̂ þ Γν
μβV

β
α̂ − ωγ̂

α̂μV
ν
γ̂ : ð111Þ

It can be shown that this derivative is covariant in the tetrad
and the coordinate frame. The specific form of the spin
connection (109) now arises because the choice of 2-forms
in (107) is equivalent to demanding metric compatibility of
the local flat metric in the tetrad under transformations of
the generalized covariant derivative (111),

Dμηα̂ β̂ ¼ 0: ð112Þ

In the same way, that metric compatibility of the spacetime
metric uniquely results in the Levi-Civita connection, the
choice of (112) imposes the form of the connection
coefficients (109). Put differently, we have defined both
the global manifold and the local tetrad to be torsion free.
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2. Spin connection and electrodynamics

Conversely, by inverting relation (110) it can be found
that the forms Fα̂ collect the antisymmetric part of the spin
connection with respect to the last two indices,

Fα̂ μ̂ ν̂ ¼ ωα̂ ν̂ μ̂ − ωα̂ μ̂ ν̂: ð113Þ

We now define the following projections of Fα̂ and its
dual ⋆Fα̂ as

Eα̂μ ≔ Fα̂μνnν

Bα̂μ ≔ ⋆Fα̂μνnν; ð114Þ

so that we can write their components as

Fα̂
μν ¼ nμEα̂

ν − nνEα̂
μ − εμνλσnλBα̂σ;

⋆Fα̂
μν ¼ nμBα̂

ν − nνBα̂
μ þ εμνλσnλEα̂σ: ð115Þ

Substituting Eqs. (115) and (98) in (108), we find the
following evolution equations for the transformation coef-
ficients on the slice

∂tAî
i − ∂iβ

î ¼ −αEî
i − εilkβ

lBîk;

¼ −αEî
i −

ffiffiffi
γ

p
ϵilkβ

lBîk; ð116Þ

along with the constraints

E0̂
i ¼ ∂i ln α;ffiffiffi

γ
p

B0̂i ¼ 0;ffiffiffi
γ

p
Bîk ¼ ϵijk∂iAî

j: ð117Þ

These equations are in close analogy to electromagnetism,
with the role of the three-vector potential played by Aî

i and
that of the scalar potential played by α and βî. It is
interesting to see that Eq. (107) does not provide evolution
equations for these scalar potentials, which is in agreement
with the gauge freedom of the spacetime foliation.
By taking the exterior derivative of Eq. (107), we obtain

dFα̂ ¼ 0; ð118Þ

which is nothing more than the first Bianchi identity, as can
be seen by comparing Eq. (107) with (52) and (60) with
(118). Using the projections in definition (114), Eq. (118)
splits in four equations with a form analogous to the Gauss
law for magnetism, namely

∂i
ffiffiffi
γ

p
Bα̂i ¼ 0; ð119Þ

and 12 evolution equations analogous to the Faraday
equation,

∂t
ffiffiffi
γ

p
Bα̂k þ ∂i

ffiffiffi
γ

p ðαϵijkEα̂
j − βiBα̂k þ βkBα̂iÞ ¼ 0: ð120Þ

For α̂ ¼ 0̂, Eqs. (119) and (120) are trivially fulfilled, since
B0̂i ¼ 0, and Eq. (120) becomes simply an expression of
the commutativity of the partial derivatives of α.

D. Closing the system

We have now obtained all the evolution equations of the
system, and can list the elements of the state vector as
U⃗ ¼ fAk̂

i; Dα̂
i; ρα̂; Pα̂g, where the first 25 quantities deter-

mine the state of the gravitational field, while the four
momentum densities Pα̂ depend on the properties of matter.
Additionally, we need a set of relations to obtain the
remaining quantities that appear in their evolution equa-
tions, namely Q⃗ ¼ f ffiffiffi

γ
p

; Eα̂
i; Bk̂i; Hα̂

i; siα̂; Siα̂; Qα̂g, where
again the momentum fluxes Siα̂ depend on the properties of
matter. Although

ffiffiffi
γ

p
and Bk̂i can in principle be obtained as

the determinant and the curl of Ak̂
i, respectively, it may be

useful to evolve them with an independent evolution
equation. In the case of

ffiffiffi
γ

p
, the reason being to evolve

it at the side of conformally rescaled quantities or to avoid
errors associated to the numerical computation of the
determinant. An evolution equation for

ffiffiffi
γ

p
, can be obtained

by using (50) to define the hypersurface form orthogonal to
−nμ, that is, to θ0̂, and taking its exterior derivative. The
resulting expression has the form of a conservation equa-
tion for volume,

∂t
ffiffiffi
γ

p
− ∂i

ffiffiffi
γ

p
βi ¼ 5

2
α

ffiffiffi
γ

p
Dk̂

k̂; ð121Þ

in which the rate of change in volume of a small region is
related to the amount of volume that enters through its
boundaries due to the motion of coordinates (represented
by βi) plus the amount of volume generated within the
region due to the presence of a field Dk̂

i. A derivation of
this equation can be found in Appendix C.
In the case of Bk̂i, an independent evolution equa-

tion (120) may be needed in constraint-damping schemes
(as opposed to constrained transport schemes), where the
identity of Bk̂i as the curl of Ak̂

i, and therefore the
fulfillment of the first Bianchi identity, is not guaranteed
and needs to be enforced. The gauge functions G⃗ ¼ fα; βig
may belong to either of the sets U⃗ or Q⃗, depending on
whether we enforce new differential equations for their
evolution, or set them as algebraic functions of U⃗. Finally,
the rest of quantities can be obtained from algebraic
relations analogous to the constitutive equations in
electrodynamics.
These constitutive relations can be obtained from

Eqs. (95) and (110), which determine the relations between
the connection coefficients in terms of the Nester-Witten
form and the form Fα̂ in the orthonormal frame.
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D0̂
î ¼ −ϵî ĵ k̂Bĵ k̂; ð122Þ

Dk̂
î ¼ −

1

2
ðEk̂

î þ Eî
k̂Þ þ δk̂

îEl̂
l̂; ð123Þ

H0̂ î ¼
1

2
ϵî ĵ k̂E

ĵ k̂; ð124Þ

Hk̂ î ¼ −Bî k̂ þ
1

2
δk̂ îBl̂

l̂ − ϵk̂ î l̂E0̂
l̂; ð125Þ

E0̂
î ¼

3

2
D0̂ î −

1

2
ϵî ĵ k̂H

ĵ k̂; ð126Þ

Eĵ
k̂ ¼ −Dk̂

ĵ −
1

2
δĵ k̂Dl̂

l̂ þ ϵĵ k̂ l̂H0̂
l̂; ð127Þ

B0̂ î ¼ −ϵî ĵ k̂Dĵ k̂; ð128Þ

Bî ĵ ¼ δî ĵHl̂
l̂ −Hî ĵ þ 1

2
ðHĵ î −Hî ĵ þ ϵî ĵ k̂D0̂ k̂Þ: ð129Þ

We are interested in obtaining the unknown quantities
(Ek̂

î andHα̂
î) needed for evolution from the known evolved

variables (Dα̂ î and Bk̂ î). We have already expressions for

B0̂ î, and E0̂
î, since they are determined by the gauge from

Eq. (117). Therefore, the required relations are given by
Eqs. (127) and (125).
The system (122)–(125) and (126)–(129) also gives

constraints on some of thevariables determined by evolution.
In particular, Eqs. (122) and (123) imply that the Dî ĵ is
symmetric, and that D0̂

k̂ is related to the antisymmetric part
ofBî ĵ. This is a consequence of the symmetry of the Einstein
equations, which allows us to express some of the quantities
as linear combinations of the others. In principle this could
help us reducing the number of necessary evolution equa-
tions, as one could evolve justDî

ĵ for î ≥ ĵ, and obtain their
derived quantities when they are needed. However, the
variables involved in these constraints have different geo-
metric meanings. For example, Dî

ĵ is jth component of the
three-vector field Dî, while Dĵ

î is the ith component of Dĵ,
and they are orthogonal to different surfaces. This will
become relevant when designing a staggered scheme that
allows us to keep the constraints fulfilled to machine
precision, and where Dî

ĵ and Dĵ
î will have different spatial

representations, so it may be convenient to evolve them
separately. The case of D0̂

k̂ is slightly different, since the
propagation of constraint C0 is ensured by the exact fulfil-
ment of Ci, so it might be possible to drop completely its
evolution as well as that of the gravitational energy ρ0̂. An

approximate value ofD0̂
k̂ can then always be obtained from

Bî ĵ and an approximate value of ρ0̂ from calculating the

divergence of D0̂
k̂ and taking the difference with the matter

energy P0̂ according to Eq. (77). However, their evolution
can still be useful to keep track of the transport of

gravitational energy and to provide information on the
differences between the components of Bî ĵ, which might
increase the accuracy of interpolations.
Finally, another interesting feature of the constitutive

relations (122)–(129) is that they provide no means of
calculating H0̂ î from the evolved variables. Similarly as
for the gauge variables α and βi, this indicates that H0̂ î
represents an additional freedom of the formulation, and in
fact, it can be related to the customchoice of rotating the tetrad
bases between different hypersurfaces. To see this, let us
consider a special case of a spacetime devoid of matter and
gravitational energy-momentum, for which Dα̂

i ¼ 0 is a
solution to constraints (77). Choosing a gauge in which
the shift is zero and the lapse is one (geodesic gauge), the
evolution equations for the tetrad coefficients [Eq. (116)] read

∂tAî
i ¼ −Eî

i ¼ −Aĵ
iϵ

î
ĵ k̂H0̂

k̂; ð130Þ
so that

Aî
iðtþ δtÞ ≈ ðδî ĵ − δtϵî ĵ k̂H0̂

k̂ÞAĵ
i; ð131Þ

where δt represent an infinitesimal displacement along the
time coordinate. This is an infinitesimal rotation of the spatial
part of the tetrad basis about the angular velocity vector H0̂.
We will now obtain explicit algebraic expressions in

terms of the three-vector fields Hα̂, Dα̂, Eα̂, Bα̂ for the
projections of the Sparling form ρα̂ and sjα̂, of which the
latter are needed for evolution. Expressing Eq. (66) in
component form in the orthonormal frame and using the
definition in Eq. (67), we obtain

tγ̂ α̂ ¼
1

2
ðωσ̂

α̂ μ̂ω
ρ̂ ξ̂

ν̂δ
τ̂
σ̂ þ ωρ̂

σ̂ μ̂ω
σ̂ ξ̂

ν̂δ
τ̂
α̂Þδν̂ μ̂ γ̂τ̂ ρ̂ ξ̂

; ð132Þ

where we have made use of the generalized Kronecker delta
to keep the notation compact.5 Using the relations given by
Eq. (110), for a connection that is antisymmetric with
respect to its first two indices Eq. (132) can be rewritten as

tγ̂ α̂ ¼ Fδ̂
β̂ α̂⋆uδ̂ β̂ γ̂ − 1

4
δγ̂α̂Fδ̂

β̂ d̂⋆uδ̂β̂ d̂; ð133Þ

and taking the projections defined in Eq. (76), we obtain

ρ0̂ ¼ −
1

2
ðEα̂ k̂Dα̂ k̂ þ Bα̂ k̂Hα̂ k̂Þ; ð134Þ

ρî ¼ −ϵî ĵ k̂Bα̂ ĵDα̂
k̂; ð135Þ

sî0̂ ¼ −ϵî ĵ k̂Eα̂
ĵHα̂ k̂; ð136Þ

5The generalized Kronecker delta δ
μ1…μp
ν1…νp is defined so that it

equals:
8<
:

þ1 if ν1…νpare an even permutation ofμ1…μp

−1 if ν1…νpare an odd permutation ofμ1…μp

0 otherwise

:
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sîĵ ¼ Eα̂
ĵDα̂

î þ Bα̂ îHα̂ ĵ −
1

2
δî ĵðEα̂ k̂Dα̂ k̂ þ Bα̂ k̂Hα̂ k̂Þ:

ð137Þ
Although Eqs. (134) and (135) express algebraic con-

straints between variables that are evolved with their own
differential equation, if the momentum densities are evolved
using a finite volume scheme, these relations between the
numerical representation of the variables should not be
expected to hold strictly. The reason is that the representa-
tion of the momentum densities is that of a volume average,
which does not need to coincide with the value of the right-
hand side of the equations calculated at a given point (orwith
values interpolated from a set of given points). However,
these expressions may still be useful to obtain additional
information on these quantities, e.g., to improve interpola-
tions. In this case the scheme would sacrifice the exact
fulfilment of these expressions in favor ofmachine precision
conservation of energy and momentum.
The last quantity for which we need to give an explicit

expression is the “force” term given by Eq. (91). After
substituting (67) in (91) and decomposing Fα̂ as in
Eq. (115), we obtain

Q0̂ ¼ Eî ĵSî ĵ − E0̂ ĵPĵ; ð138Þ

Qî ¼ Ek̂
îSk̂ 0̂ þ E0̂

îP0̂ þ Eî ĵ k̂B
l̂ ĵSk̂l̂: ð139Þ

In order to close the system completely, it is necessary to
specify a set of relations between the nongravitational energy
and momentum Pα̂ and their associated fluxes Skα̂, which
will depend on the kind of nongravitational fields considered
(e.g., ideal fluid, electromagnetic fields, or a scalar field).

VI. THE DGREM FORMULATION

Finally, we can summarize here the equations obtained in
the previous section in order to describe the system
completely. For each equation we indicate its common
name (or that of the equations more closely related to it)
and the number that labels it in the part of the text where it
is discussed.

A. Evolution equations

First Cartan structure equations:

∂tAî
i − ∂iβ

î ¼ −αEî
i − ϵilkβ

lBîk: ð116Þ
First Bianchi identities:

∂t
ffiffiffi
γ

p
Bα̂k þ ∂i

ffiffiffi
γ

p ðαϵijkEα̂
j − βiBα̂k þ βkBα̂iÞ ¼ 0: ð120Þ

Einstein evolution equations:

∂t
ffiffiffi
γ

p
Dα̂

k − ∂i
ffiffiffi
γ

p ðαϵkijHα̂j þ βiDα̂
k − βkDα̂

iÞ
¼ −

ffiffiffi
γ

p ðjka þ κJkaÞ: ð78Þ

Conservation of gravitational energy-momentum:

∂t
ffiffiffi
γ

p
ρα̂ þ ∂i

ffiffiffi
γ

p
jiα̂ ¼ −κ

ffiffiffi
γ

p
Qα̂: ð89Þ

Conservation of “matter” energy-momentum:

∂t
ffiffiffi
γ

p
Pα̂ þ ∂i

ffiffiffi
γ

p
Jiα̂ ¼ ffiffiffi

γ
p

Qα̂: ð90Þ

Auxiliary evolution equation for
ffiffiffi
γ

p
:

∂t
ffiffiffi
γ

p
− ∂i

ffiffiffi
γ

p
βi ¼ 5

2
α

ffiffiffi
γ

p
Dk̂

k̂: ð121Þ

B. Differential constraints

First Cartan structure equations:

E0̂
i ¼ ∂i ln α; ð117aÞ

B0̂i ¼ 0; ð117bÞ

Bîk ¼ ϵijk∂iAî
j: ð117cÞ

First Bianchi identities:

∂i
ffiffiffi
γ

p
Bα̂i ¼ 0: ð119Þ

Hamiltonian and momentum constraints:

∂i
ffiffiffi
γ

p
Dα̂

i ¼ ffiffiffi
γ

p ðρα̂ þ κPα̂Þ: ð77Þ

C. Constitutive relations

Hk̂ î ¼ −Bî k̂ þ
1

2
δk̂ îBl̂

l̂ − ϵk̂ î l̂E0̂
l̂ ð125Þ

Eĵ
k̂ ¼ −Dk̂

ĵ −
1

2
δĵ k̂Dl̂

l̂ þ ϵĵ k̂ l̂H0̂
l̂ ð127Þ

Gravitational energy-momentum current:

jkα̂ ¼ αskα̂ − βkρα̂; ð79Þ

sî0̂ ¼ −ϵî ĵ k̂Eα̂
ĵHα̂ k̂; ð136Þ

sîĵ ¼ Eα̂
ĵDα̂

î þ Bα̂ îHα̂ ĵ −
1

2
δî ĵðEα̂ k̂Dα̂ k̂ þ Bα̂ k̂Hα̂ k̂Þ:

ð137Þ

“Matter” energy-momentum current:

Jkα̂ ¼ αSkα̂ − βkPα̂: ð80Þ

“Gravitational force”:
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Q0̂ ¼ Eî ĵSî ĵ − E0̂ ĵPĵ; ð138Þ

Qî ¼ Ek̂
îSk̂ 0̂ þ E0̂

îP0̂ þ ϵî ĵ k̂B
l̂ ĵSk̂l̂: ð139Þ

D. Algebraic constraints

D0̂
î ¼ −ϵî ĵ k̂Bĵ k̂; ð123Þ

Dî ĵ ¼ Dĵ î; ð128Þ

ρ0̂ ¼ −
1

2
ðEα̂ k̂Dα̂ k̂ þ Bα̂ k̂Hα̂ k̂Þ; ð134Þ

ρî ¼ −ϵî ĵ k̂Bα̂ ĵDα̂
k̂: ð135Þ

E. Free quantities

The fields α, βi, and H0̂
k are not determined by any

equation and can be chosen arbitrarily. The matter energy-
momentum fluxes Skα̂ are not determined by any of the
equations here but depend on the specific properties of the
matter fields.

F. Properties of the formulation

The final system of equations is in a form that closely
resembles those of electromagnetism in the 3þ 1 decom-
position, with the difference that the gravitational field is
represented not by one, but by four “electromagneticlike”
fields ðEα̂

i; Bα̂iÞ, and that due to the particular choice of the
observers frame the field corresponding to α̂ ¼ 0 is purely
“electric.”
Being more explicit in this analogy, the gauge variables α

and βî, or more specifically the quantities −βî and ln α, play
a role analogous to that of the scalar potential in electro-
magnetism; while the components of the spatial part of the
tetrad play the role of the vector potential, as can be seen
from Eqs. (116) and (117).
The first Bianchi identities take a form analogous to that

of the Faraday equation (120) and the Gauss law for
magnetism (119), while the Einstein equations take that
of the Ampère-Maxwell equation (78) and the Gauss law
for electricity (77), with the sum of matter and gravitational
energy-momentum playing the role of the electric current,
which satisfies an exact conservation law [see Eqs. (89),
(90), and (92)].
Although not of immediate use for a numerical imple-

mentation, it is interesting to notice other similarities of the
equations with those of electromagnetism. For instance, the
expressions for the gravitational energy-momentum density
and fluxes are analogous to those given by Minkowski’s
energy-momentum tensor for the electromagnetic field in
material media [32], and contain an expression related to
the transport of gravitational energy (136) that is analogous
to the Poynting vector in electrodynamics. The force

terms that describe the exchange between matter and the
gravitational field in Eqs. (89) and (90) have a form similar
to that of the work done by the electric field on a system of
charges (138) and to the Lorentz force (139).
However, there are also important differences with

respect to Maxwell’s equations. The most noticeable one
is that the inhomogeneous equations contain source terms
quadratic in the fields, which represent the fact that the
gravitational energy-momentum current jμα̂ is itself a
source for the gravitational field Dα̂

μ. Another important
difference is that the presence of the square root of the
metric determinant

ffiffiffi
γ

p ¼ detðAî
kÞ eliminates the gauge

freedom that in electrodynamics allows one to replace
A0
μ → Aμ þ ∂μψ , where ψ is a scalar function and Aμ the

vector potential. This prevents us from choosing to solve
the “Faraday equation” (120) in place of the evolution
equation for the vector potential (116) and forces us to
solve the latter in order to know the transformation
coefficients from the “laboratory frame” to the tetrad frame
where the constitutive relations (125) and (127) are valid.
Although the gauge freedom of electrodynamics does

not exist for this system, it posses other gauge freedoms.
These come in through the quantities for which neither the
Cartan structure equations nor the Einstein equations
provide an evolution equation, namely the components
of the vector normal to the hypersurface nμ ¼ ð1=α;−βi=αÞ
and the “magnetic field” H0̂μ. While the freedom in
choosing nμ represents the freedom to foliate the spacetime
in different sets of 3D hypersurfaces and to perform spatial
translations of the lines of constant spatial coordinates, the
freedom to choose H0̂μ represents the liberty to perform
rotations of the spatial part of the tetrad from one slice to
the other (see Sec. V D). Although in contrast to electro-
magnetism these gauge freedoms do not leave unchanged
the vector fields Eα̂

i ; B
α̂i; Di

α̂; Hα̂i, the Einstein tensor at a
given point, given by Eq. (71) will be the same object
regardless of the foliation and the orientation of the basis
vectors. Going beyond GR to include torsion, the system
does contain an additional freedom that leaves the fields
unchanged.6 It is conceivable that, similarly to the gauge
variables α and βi, the vector H0̂ could play an important

6This freedom comes from regarding the field strengthFα̂ as the
sum of the torsion Ξα̂ and the product ωα̂

β̂ ∧ θβ̂ [cf. Eqs. (60) and
(107)]. For a set of 2-forms Sα̂ðFα̂Þ which has the same functional
dependence on Fα̂ as that of ⋆uα̂ðFα̂Þ in GR, the Lagrangian

L½Aα̂
μ; ∂λAα̂

μ� ¼
ffiffiffiffiffiffi−gp
4κ

Fα
μ̂ ν̂S

μ̂ ν̂
α

will lead to equations of motion identical to those presented here
regardless of the amount of torsion contained in Fα̂. For Ξα̂ ¼ 0,
this Lagrangian is equivalent to the Einstein-Hilbert Lagrangian up
to a boundary term, and for the extreme case Fα̂ ¼ Ξα̂ it
corresponds to that of the teleparallel equivalent of GR, with Sα̂
identified as the superpotential (cf. Appendix C of [63]).
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role in the numerical stability of the system, and more
studies on a proper way to handle this additional freedom
are required.
Related to its similarity to the Maxwell equations, the

DGREM system also posses the important properties of
being first order in spatial and temporal derivatives, and
being expressible as a system of flux-balanced laws. As
mentioned in the Introduction, such properties make
possible the use of the huge amount of technology
developed to simulate such systems.
Finally, being formulated as a system of equations in

differential forms and exterior derivatives, it is possible to
retrieve a natural constraint-preserving discretization,
which would also make redundant some of the evolution
equations, reducing the number of variables needed for
evolution. An example of such discretization with a
reduced number of variables will be presented in the next
section.

G. A geometric interpretation

One of the advantages of using a constrained transport
scheme is that many of the equations in the system
described in Sec. VI become redundant when using the
proper discretization. The reason is that if a consistent
discretization is adopted for all the equations, those that are
exterior derivatives of others are automatically fulfilled. In
particular, the scheme described here requires only the
evolution of Eqs. (116) and (78) to satisfy all equations in
the system summarized in Sec. VI. The equations presented
in this section are only those related to the evolution of
spacetime, while the matter sector is assumed to be evolved
with an unspecified scheme that is conservative for energy-
momentum.
Similarly as done for the wave equation in Sec. III,

we will obtain a constraint-preserving discretization on
the hypersurface Σt by first applying Cartan’s “magic”
formula (A14), followed by integrating the differential
forms on their respective submanifolds and applying
Stoke’s theorem (A30).
The first step of the procedure yields the equations

Letθ
α̂ − dðet · θα̂Þ ¼ et · Fα̂; ð140Þ

Letuα̂ − dðet · uα̂Þ ¼ et · ðtα̂ þ κTα̂Þ; ð141Þ

which can also be written as

∂tAî − dβî ¼ −E î; ð142Þ

∂tDα̂ − dHα̂ ¼ −J α̂; ð143Þ

where

Aî ¼ Aî
idxi; ð144Þ

E î ¼ ðαEî
i þ εilkβ

lBîkÞdxi; ð145Þ

Hα̂ ¼ ðαHα̂i − εilkβ
lDα̂

kÞdxi; ð146Þ

and

Dα̂ ¼ εijkDα̂
iðdxj ∧ dxkÞ; ð147Þ

J α̂ ¼ εijkðjiα̂ þ κJiα̂Þðdxj ∧ dxkÞ; ð148Þ

and where the system is closed by the constitutive relations
and by adopting a consistent discretization for the forms

Bα̂ ¼ εijkBα̂iðdxj ∧ dxkÞ; ð149Þ

in order to obtain Bα̂i from Eq. (117).
Each term in Eq. (142) [(143)] is a 1-form (a 2-form in),

and thus an integrand over a 1D (2D) submanifold. We then
choose to integrate them over zone edges and zone faces,
respectively. After applying Stokes’s theorem and replacing
exterior derivatives with evaluations of forms at zone
vertices and zone edges, the resulting discretization is as
shown in Fig. 1, and in principle could be able to preserve
to machine accuracy simultaneously the Bianchi identities
(119), the Einstein constraints (77), as well as the global
conservation of the sum of gravitational plus matter energy-
momentum (92), provided that they are satisfied in the
initial data, by the mechanism described in Sec. III.
For completeness, we can also express the equations of

the system in the language of three-dimensional vector
calculus, in a way completely analogous as it was done for
electromagnetism in Sec. III B. These are the first Cartan
structure equations,

E⃗ î ¼ −∂tA
��!î þ∇ðβ · A⃗îÞ; ð150Þ

E⃗0̂ ¼ ∇α; ð151Þ

Bî ¼ ∇ × A⃗î; ð152Þ

the first Bianchi identities,

∂t
ffiffiffi
γ

p
Bî þ ffiffiffi

γ
p ∇ × E⃗ î ¼ 0; ð153Þ

∇ · Bî ¼ 0; ð154Þ

the Sparling equation (i.e., Einstein equations),

∂t
ffiffiffi
γ

p
Dα̂ −

ffiffiffi
γ

p ∇ × H⃗α̂ ¼ −
ffiffiffi
γ

p
J⃗ α̂; ð155Þ

∇ · Dα̂ ¼ ρα̂ þ κPα̂; ð156Þ

and the conservation of energy momentum,
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∂t
ffiffiffi
γ

p ðρα̂ þ κPα̂Þ þ ffiffiffi
γ

p ∇ · J⃗ α̂ ¼ 0; ð157Þ

where similarly as in Sec. III B, Dα̂ ¼ Dα̂
iei, Bĵ ¼ Bĵiei,

and β ¼ βiei.

H. Gravity and electrodynamics as gauge theories

Although when deriving the equations of the DGREM
formulation in Sec. V we have discussed the similarities
with electromagnetism from a purely operational point of
view, it may be useful to reinterpret these equations in the
language of gauge theory to gain more insight into the
origin of these similarities.
Yang-Mills theory, which can be considered as a

generalization of electromagnetism, is the prototypical
example of a gauge theory. Its basic ingredients are a
Lie algebra-valued one-form, known as the gauge potential,
a covariant derivative, and a field strength. The gauge
potential can be written as

A ≔ Aαdxα ¼ Aα̂
αλα̂dxα; ð158Þ

where λα̂ are the generators of the Lie algebra (indexed by
hatted symbols) and dxα are the spacetime basis 1-forms
(for simplicity, in a coordinate frame). The (gauge) covar-
iant derivative is related to parallel transport in the abstract
space of the Lie group, and takes the form

Dα ¼ ∂α þ Aα; ð159Þ

from which it can be seen that the gauge potential also plays
a role analogous to the connection in general relativity, and
in fact is often also called a “connection” [64]. The field
strength quantifies the failure of covariant derivatives to
commute, and takes the form

F αβ ¼ ∂αAβ − ∂βAα þ ½Aα; Aβ�; ð160Þ

where the brackets denote the commutator of the Lie
algebra. Because of its role analogous to that of the

Riemann tensor in general relativity, the field strength is
often also known as the “curvature” [64]. A field con-
structed in this way satisfies a set of Bianchi identities,
which state that certain combinations of its derivatives
vanish. The final ingredient of the theory is an action
quadratic in the field,

SYM½Aμ; ∂μAν� ¼
1

4

Z
dx4trðFαβFαβÞ; ð161Þ

from which the remaining equations of motion can be
derived.
Electromagnetism is the Yang-Mills theory built on the

Lie algebra of the Uð1Þ group. Since this group is Abelian,
the commutator in (160) vanishes and one can see a direct
correspondence between the equations in this section and
those in Sec. III B. The Bianchi identities and the equations
resulting from the action (161) are, respectively, the
homogeneous and inhomogeneous Maxwell equations
(with no sources, unless coupling with charge is included
in the action). Applying the Noether machinery to this
action yields the conservation of electric charge.
However, the analogy between the structure of gravity

and that of Yang-Mills theory is less direct. The approach
most commonly adopted in textbooks (see, e.g., [64,65]) is
to reinterpret the second Cartan structure equation (53) as
giving a field strength from a gauge potential,

F α̂ β̂
μν ≔Rα̂ β̂

μν ¼ ∂μω
α̂β̂

ν−∂νω
α̂β̂

μþ½ωα̂β̂
μ;ωα̂β̂

ν�; ð162Þ

so that the true connection and the Riemann tensor also
acquire the roles of “connection” and “curvature” in the
Yang-Mills sense. Exploiting this analogy, it is always
possible to introduce generalized Yang-Mills electric, E,
and magnetic, B, fields via

Eα̂ β̂
μ ¼ nνF α̂ β̂

μν; ð163Þ

Bα̂ β̂
μ ¼ nν�F α̂ β̂

μν: ð164Þ

FIG. 1. Collocation of variables for a constraint-preserving discretization. These are classified in four categories: “evolved” variables
are those obtained by integrating the evolution equations of the scheme, “boundary” variables are those localized at the boundaries of the
regions where the evolved variables are defined, and “source” variables are those sharing the same spatial location as the evolved
variables. Finally, “auxiliary” variables are those that can be obtained from the evolved variables, but are neither sharing their spatial
location nor that of their boundaries.
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A definition of “electromagneticlike” fields either as
projections or components of the Riemann tensor is present
in several of the formulations that are reviewed in Sec. VI I,
see also Refs. [66,67] for interpretations of these quantities.
However, when expressed in these variables, the Einstein
equations do not acquire a structure similar to that of the
inhomogeneous Maxwell equations. In fact, they do not
contain derivatives of the field strength, and to obtain
evolution equations for them, one needs to go one order
higher in differentiation. This can be traced back to the
form of the Einstein-Hilbert action,

SEH½gμν� ¼
Z

dx4
ffiffiffiffiffiffi
−g

p
R; ð165Þ

which is only linear in the components of the Riemann
tensor. Strictly speaking, an action closer to that of
expression (161) is that of Palatini,

SP½Aμ̂
μ;ωμ̂ ν̂

λ� ¼
Z

dx4Aα̂
μAβ̂

νF α̂ β̂
μν; ð166Þ

which is equivalent to (165) in the tetrad formulation, but
makes explicit its dependence on the gauge potential
adopted, i.e., the connection [64,68].
However, the connection ωab is not the only possible

choice for a gauge potential for gravity, and different
potentials result in different field strengths and conserved
quantities [69]. If the basis 1-forms are adopted as the
gauge potential, then the first Cartan structure equation (52)
can be reinterpreted to give the torsion as the field
strength,

T α̂
μν ¼ ∂μAα̂

ν − ∂νAα̂
μ þ cα̂μ̂ ν̂Aμ̂

μAν̂
ν; ð167Þ

where cα̂μ̂ ν̂ are the commutation coefficients defined in
Eq. (109). In general relativity, however, the torsion
vanishes. Therefore, with the only purpose of obtaining
an equation with the same form as for the electromagnetic
case, we identify instead the field strength with the last term
of Eq. (167) [cf. Eq. (109)], and obtain (108).
A general torsion-free connection can be written as a

linear combination of the gradients of the metric and the
commutation coefficients:

ωabc ¼
1

2
ð∂bgac þ ∂cgab − ∂agbc þ cbac þ ccab − cabcÞ:

ð168Þ

On the other hand, also for a general connection, the
following action is equivalent to the Einstein-Hilbert one up
to a boundary term [53]:

S ¼
Z �

1

2κ
ωa

e ∧ ωeb ∧ Σab

�
: ð169Þ

For the special case of the spin connection, the metric
derivatives in (168) vanish, so that it becomes a linear
combination of the commutation coefficients only and,
therefore, of the components of our field strength Fα̂. As a
result, the action is now quadratic in the field strength. The
fact that both the field strength and the Nester-Witten form
are completely determined by the spin connection allows us
to obtain the “constitutive equations” derived in Sec. V D.
Using them, for the special case of the spin connection, it is
possible to rewrite the action (169) as

S½Aα̂
μ; ∂λAα̂

μ� ¼
Z

dx4
� ffiffiffiffiffiffi−gp

4κ
Fα̂

μν⋆uα̂μν
�
: ð170Þ

This action is closer in form to that of Eq. (161), which
results in a form of the Einstein equations closer to that of
Maxwell equations when written in these variables.
Interestingly, the canonical momentum associated to the
one-form basis for this action is precisely the Nester-Witten
form. A schematic comparison of the structure of general
relativity in this formulation and that of electromagnetism
is shown in Fig. 2.

FIG. 2. Comparison of the structure of electromagnetism (top
panel) and general relativity (bottom panel) in the formulation
employed in this work.
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I. Relation to other formulations

Here we briefly describe some of the points in common
and differences between the DGREM formulation and
those present in the literature which, to the best of our
knowledge, are most closely related to it. Before going into
more details, we will summarize the most important
properties that characterize DGREM. DGREM is a 3þ 1
formulation of the Einstein equations specifically targeted
towards numerical relativity simulations. To this end, it has
been designed to have a structure very close in form to
Maxwell equations. Most importantly, the resulting equa-
tions are flux conservative and admit both constraint-
preserving discretizations (in the vacuum case), as well
as constraint damping approaches to enforce the first
Bianchi identities and the Einstein constraints. It adopts
an orthonormal tetrad formulation equipped with a torsion-
free spin connection. More specifically, the fundamental
variables are the spatial coefficients of an orthonormal
tetrad field and a subset of the projections of the Nester-
Witten form. These are evolved, respectively, using the
evolution parts of the first Cartan structure equation (52)
and the Sparling equation (68), which is equivalent to the
Einstein field equations.
Although not a formulation of general relativity by itself

and not developed for numerical spacetime evolution,
gravitoelectromagnetism (GEM) also provides a way of
casting general relativity in a form that resembles Maxwell
equations (see [70] for a review). GEM is extremely useful
to study effects such as the spin-gravity coupling, in which
almost direct analogies exist between gravity and electro-
magnetism. The main difference between our formulation
and GEM is that the latter constitutes an approximation
valid in the linear perturbation regime, or in special frames
on arbitrary curved spacetimes for which the spatial
curvature can be ignored. This results in a single electro-
magneticlike field built from some of the projections of the
Riemann tensor, as opposed to the four electromagneticlike
fields that appear in our formulation, each of them with a
basis 1-form acting as the four-vector potential.
When coming to 3þ 1 formulations designed for

numerical relativity, the main differences between
DGREM and most of them is that it does not include
the spatial metric and the extrinsic curvature among the
fundamental variables evolved. The Einstein-Bianchi for-
mulation described in [71] expands the set of evolution
equations and constraints with relations derived from the
Bianchi identities in order to obtain a hyperbolic system.
This introduces additional electromagneticlike evolved
variables labeled E, B, D, and H. These fields are,
however, defined as subsets of the components of the
Riemann tensor. In contrast, the DGREM fields are
projections of two different objects and their duals, namely,
Eâ and Bâ are obtained from the field strength (the tetrad
commutation coefficients), whileDâ andHâ come from the
Nester-Witten form. As a result, the electromagneticlike

variables in DGREM are “one order lower” in derivatives
than those in [71], since they can be obtained as linear
combinations of the connections coefficients, while the
Riemann tensor already involves derivatives of the con-
nection. This different definition of the electromagneticlike
fields results in evolution equations for them that, although
reminiscent of Maxwell’s equations, do not mirror them
directly as it happens for DGREM. An alternative defi-
nition of electromagneticlike fields Eij and Bij, in this case
as projections of the Weyl tensor, appears in the elegant
formulation of [72], which presents hyperbolic reductions
of the Einstein equations in the orthonormal frame and in
the ADM representation.
The work of [73] presents a formulation closely related

to that of [71], and highlights the similarities in the
procedure to obtain a flux-conservative, symmetric hyper-
bolic system for a Yang-Mills field and for general
relativity, although it differs slightly from the approach
presented here. While in [73] the role of the Yang-Mills
gauge potential and field strength is associated, respec-
tively, with that of the metric and the extrinsic curvature, in
our formulation these are associated, also respectively, with
the basis 1-forms and the commutation coefficients.
Other formulations closely related to DGREM are the

symmetric hyperbolic ones by [74,75], written in terms of
Ashtekar variables. Similarly to the present work, they do
not use directly the spatial metric as an evolution variable,
but use instead some form of “square root” of it, being it the
soldering forms in [74] or the complex components of the
spatial orthonormal basis in [75]. Another similarity is that
the self-dual connection used to define the Ashtekar
variables (also evolved and used to close the system), is
closely related to the spin connection employed in this
work. A crucial difference is, however, that the use of
complex variables requires imposing reality conditions,
which are not needed in our formulation.
However, the formulation that is probably closest to ours

is that described in [76]. In that work, a system that evolves
the coefficients of the spin connection is shown to be
symmetric hyperbolic. The formulation allows us to freely
specify the lapse and the shift, and being all quantities real,
it does not require imposing reality conditions. A difference
with respect to our formulation is that in such a formulation
the evolution is carried out completely on the tetrad frame,
and there is no need to evolve the tetrad transformation
coefficients. Although this gives a very simple and elegant
structure to their system based on directional derivatives, it
becomes problematic when expressing the equations in a
form suitable for integration over a finite region, which is
required to express the equations in flux-conservative form
and to obtain constraint-preserving discretizations as those
presented here.
Lacking still a proof of the hyperbolicity of our system,

the fact that it is possible to build a symmetric hyperbolic
system for the coefficients of the spin connection is very
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promising. In fact the components of the field strength and
the Nester-Witten form are linear combinations of them
when expressed in the tetrad frame. The closer similarity of
our system to Maxwell’s equations is also encouraging,
even though the relation between the constitutive equations
and hyperbolicity for the latter is still a matter of study [51].

VII. CONCLUSIONS

By expressing the equations that govern spacetime
dynamics in general relativity in the language of exterior
calculus and projecting them onto three-dimensional space-
like hypersurfaces, we have obtained a new 3þ 1 formu-
lation of the field equations of general relativity. This new
formulation, which we name DGREM, shows a surprising
resemblance to the equations of relativistic MHD and to
electromagnetism in material media. The system, summa-
rized in Sec. VI, consists of a set of first-order evolution
equations, in conservative form, and a set of algebraic,
divergence, and curl constraints, closed by a set of con-
stitutive relations.
The similarities with 3þ 1 electrodynamics make

explicit some important features of general relativity, such
as the global conservation of total energy-momentum
currents (in analogy to that of electric current), the fact
that both the gravitational and matter energy momentum act
as sources of the gravitational field, as well as the energy-
momentum exchange between the gravitational and matter
sectors.
Additionally, the DGREM formulation exhibits several

interesting properties from the point of view of numerical
implementations. Being first order and flux conservative, it
is suitable for the application of high-resolution shock-
capturing schemes such as finite-volume and finite-element
methods. In particular the formulation contains a global
conservation equation for the sum of gravitational and
“matter” energy-momentum in which source terms have
been eliminated, and which opens the possibility of
applying techniques such as first-order flux limiting to
ensure positivity of energy-momentum densities.
As shown in Sec. VI G, the expression of the formulation

as a set of equations in differential forms permits to
integrate them over mesh zones and use Stoke’s theorem
to obtain a natural staggered discretization potentially
suitable for machine-precision constraint-preserving
schemes. One such scheme could potentially reduce the
number of evolution variables to a minimum of 21, both by
not requiring extra variables to clean the constraints and by
making redundant some of the equations.
Although a staggered scheme would enforce at machine

precision both the fulfilment of the Einstein constraints and
the conservation of energy-momentum, these advantages
may be limited in practice for general relativistic hydro-
dynamic simulations due to the adoption of a floor model as
it is customarily done to handle vacuum regions.

However, these techniques could in principle also be
exploited in fully general relativistic N-body simulations,
which could recycle the infrastructure developed for PIC
simulations of collisionless plasmas, in which both stag-
gered schemes and divergence cleaning techniques have
been successfully applied.
In the same way, it is conceivable that resemblance of the

form taken by the constraints of this formulation to Gauss’s
laws in electromagnetism could present advantages for the
computation of initial data by recycling techniques used to
solve the Poisson equation.
Finally, another benefit of deriving the system as a set of

equations in terms of differential forms and exterior
derivatives is that they naturally give relations between
quantities evolved inside mesh cells and quantities evalu-
ated at cell boundaries, regardless of the shape of the cells.
This makes them particularly suitable for simulations using
non-Cartesian coordinates and unstructured meshes.
Finally, the matter sector of the Einstein field equations

(including relativistic dissipative fluid dynamics) can be
also formulated in the language of differential forms and
exterior calculus [77,78], and thus can be relatively easily
incorporated in the constrained transport computational
scheme discussed in Sec. VI G.
Together with the promising properties summarized

above, there are still some questions regarding DGREM
that need to be answered for a successful numerical
implementation. The most important one is perhaps on
its hyperbolicity, and how it could depend on gauge choices
and on the new degrees of freedom given by spatial
rotations of the tetrads between different hypersurfaces.
Other particulars of an actual numerical implementation

are still under development, and will be part of a
future work.
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APPENDIX A: A SMALL PRIMER
ON DIFFERENTIAL FORMS AND

EXTERIOR CALCULUS

We collect here some fundamental results about differ-
ential forms and exterior calculus, necessary to follow the
derivations in this work. The modern theory of differential
forms and exterior calculus stems from the work of Élie
Cartan in the first half of the 20th century, and the literature
regarding this field is by now very extensive. For further
reading we refer the reader to [43,79,80] and references
therein, which are the sources this primer is based on. Note
that we quote definitions and results in the form they
assume in the spacetime of GR, i.e., a four-dimensional
Lorentzian manifold, indicated by the symbolM. We refer
the interested reader to the literature for statements valid in
more general settings.
A sum of the form

F ¼ Faθa ðA1Þ

is called a 1-differential form, or simply a 1-form, and Fa
are its components; 1-forms are therefore identical to
covariant vectors. More generally, p-differential forms
(in the following simply p-forms) are rank-p totally
antisymmetric covariant tensors on M. The differential
forms of highest possible degree are 4-forms, since for
higher degrees the antisymmetry requirement would make
any differential form vanish identically; 0-forms are defined
as scalar functions on M (scalar fields).
The set of p-forms at a point P of M forms a ð4pÞ-

dimensional vector space. Therefore the dimensions of the
spaces of 0-, 1-, 2-, 3- and 4-forms (and the number of
components of any form in one of these spaces) are,
respectively, 1, 4, 6, 4, 1.
For the rest of this section, let A and B be generic p- and

q-forms, respectively. We define an operation that acts
on two such forms to produce a (pþ q)-form. This is

referred to as the exterior product or wedge product, and it
is defined as

A ∧ B ≔ AltðA ⊗ BÞ; ðA2Þ
where ⊗ is the standard tensor product and AltðTÞ denotes
is the totally antisymmetric part of the tensor T. The
components of a the result of the wedge product are
therefore

ðA ∧ BÞa1…apþq

¼ 1

ðpþ qÞ!
X
P∈S

sgnðPÞAaPð1Þ…aPðpÞBbPðpþ1Þ…bPðpþqÞ ; ðA3Þ

where S is the set of all possible permutations of pþ q
elements, P is one such permutation and sgnðPÞ equals þ1
for even permutations and −1 for odd ones. Using a
shorthand notation common in the GR literature, this
formula can be written as

ðA ∧ BÞc1…apþq
¼ A½a1…apBapþ1…apþq�: ðA4Þ

The exterior product is associative, and more importantly
it satisfies the relation

A ∧ B ¼ ð−1ÞpqB ∧ A: ðA5Þ
This in particular implies that for 1-forms the exterior
product is antisymmetric.
Recall that the set θa is a basis of the vector space of

1-forms. Leveraging the antisymmetry of the exterior
product for 1-forms, it can be seen that the set of elements
of the form

θa1 ∧ … ∧ θap ; ðA6Þ
i.e., the exterior product of p elements of the basis of
1-forms, constitutes a basis for the vector space of p-forms.
For example, a basis for the space of 2-forms in a four-
dimensional spacetime is

fθ0 ∧ θ1;θ0 ∧ θ2;θ0 ∧ θ3;θ1 ∧ θ2;θ1 ∧ θ3;θ2 ∧ θ3g; ðA7Þ

which as noted above has six elements.
A 1-form defines a linear operator acting on vectors and

producing a real number, so that the result of a 1-form F
acting on a vector X can be written

FðXÞ ¼ FaXa ¼ hF;Xi; ðA8Þ
where the last equality shows that this is nothing but the
interior product between vectors and their duals induced by
the metric.
The interior product is instead an operation between a

p-form and a vector X, which gives as result a (p − 1)-form
according to the following definition:
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ðιXAÞa2…ap ≔ Xa1Aa1a2…ap : ðA9Þ

While the inner product and the interior product should not
be confused, the latter is in a sense an extension of the
former, since ιXF ¼ hX;Fi ¼ FðXÞ.
As stated above, p-forms are antisymmetric ð0; pÞ

tensors, and as tensors they are acted upon by the standard
partial and covariant derivatives. There is however another
type of derivation which affects these objects (and is instead
not defined for more general tensors). This is called the
exterior derivative and denoted by the symbol d. It can be
defined by stating that the exterior derivative of a form
A ¼ Aa1…apθ

a1 ∧ … ∧ θap is

dA ¼ ð∂bAa1…apÞθb ∧ θa1 ∧ … ∧ θap : ðA10Þ

Since the exterior products automatically antisymmetrize
the coefficients, this definition implies that the components
of the result can be written as

ðdAÞba1…ap ¼ ∂ ½bAa1…ap�: ðA11Þ

The exterior derivative associates to any p-form a
(pþ 1)-form, and it clearly does not depend on the metric
or on any other additional structure on the manifold.
Despite the partial derivative being used in its definition,
the components of the exterior derivative form the compo-
nents of a tensor, i.e., objects obtained by applying it
transform as tensors under changes of basis.
Note that as the partial derivative, the exterior derivative

is a linear operation, however it exhibits a modified Leibniz
rule with respect to the exterior product:

dðA ∧ BÞ ¼ dA ∧ Bþ ð−1ÞpA ∧ dB; ðA12Þ

where A is a p-form.
Another fundamental property of the exterior derivative,

which is leveraged at several points in the present work, is
its nilpotency:

ddA ¼ 0: ðA13Þ

Note that having defined the exterior derivative and
interior product, the definition of the Lie derivative of a
p-form A along a vector X becomes particularly compact
and easy to recall:

LXA ¼ dιXAþ ιXdA: ðA14Þ

This is known as “Cartan’s magic formula.”
There also exists a definition of a exterior covariant

derivative, but to state it we need to first introduce so-called
tensor-valued differential forms. So far in this section we
only have used real-valued differential forms, i.e., forms
that when acting upon (sets of) vectors return a real value.

However in the main text we make extensive use of tensor-
valued forms, which return a collection of real values
instead. These forms can be seen as collections of real-
valued forms, each member of the collection labeled by
indices. Such objects are the connection forms ωa

b, a
collection of 1-forms, defined by

∇eaeb ¼ ωc
bðeaÞec: ðA15Þ

If the connection is chosen as the usual Levi-Civita
connection, then ωμ

ν ¼ Γμ
λνθλ where Γμ

λν are the usual
Christoffel symbols. In general however the connection
forms encode any arbitrary connection.
A few comments are in order. First of all, despite the

possibly confusing notation, note that ωa
b is not a rank-2

tensor of type (1, 1). It is collection of 1-forms, which
becomes apparent by noting that it is defined as the product
of the basis 1-forms and a collection of numbers. Second,
just as the components of the Christoffel symbols do not
transform as the components of a tensor, neither do the
components of the object that the connection forms yield
when applied to a vector. In this sense the name “tensor-
valued form” if applied to the connection forms is a
misnomer, since the components of the object yielded by
such a form do not, in general, transform as a tensor. The
locution “collection ofp-forms”while possibly less descrip-
tive, is also more appropriate. In light of this, we refer to the
indices of the connection 1-forms in (A15) as “nontensorial”
indices. In the main text we deal with collection of forms,
some of which are nontensorial like the connection forms
and others instead are proper tensor-valued forms, i.e., their
components do transform as those of tensors.
The connection 1-forms allow us to finally define the

exterior covariant derivative of a tensor-valued p-form by

DTa…d
e…h¼dTa…d

e…hþωa
i∧Ti…d

e…hþωd
i∧Ta…i

e…h

þ−ωi
e∧Ta…d

i…h−ωi
h∧Ta…d

e…i: ðA16Þ

Note however that this operation is only defined when
applied on a form that is tensor valued in the strict sense,
i.e., when its indices are actually tensorial and transform as
the components of a tensor. Under this condition, the
indices of the result of applying the covariant exterior
derivative will also transform as those of a tensor.
In what follows we go back to real-valued forms. As a

consequence of the antisymmetry of differential forms, all
the 4-forms (i.e., the highest possible degree forms in a
four-dimensional manifold) are multiples of a single
4-form, called volume form or metric volume element,
and defined as

ε ¼ ffiffiffiffiffiffi
−g

p
θ0 ∧ θ1 ∧ θ2 ∧ θ3: ðA17Þ

Its components can be written as
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εabcd ¼
ffiffiffiffiffiffi
−g

p
ϵabcd; ðA18Þ

where as anticipated in Sec. II, g is the determinant of the
metric and the Levi-Civita symbol ϵabcd equals þ1 or −1
depending on whether ða; b; c; dÞ is an even or an odd
permutation of (0, 1, 2, 3). Note also that raising the
components of the volume element with the metric results in

εabcd ¼ −
1ffiffiffiffiffiffi−gp ϵabcd: ðA19Þ

It is also useful to note these properties of the volume
form and Levi-Civita symbol when restricted to purely
spatial, tridimensional hypersurfaces, which are used
extensively in the main text:

ε0ijk ¼ −αεijk; ðA20Þ

ε0ijk ¼ 1

α
εijk; ðA21Þ

εijk ¼ ffiffiffi
γ

p
ϵijk; ðA22Þ

εijk ¼ 1ffiffiffi
γ

p ϵijk: ðA23Þ

Furthermore, we note that, in a noncoordinate, orthonormal
frame, g ¼ −1 so that

εα̂ β̂ γ̂ δ̂ ¼ ϵα̂ β̂ γ̂ δ̂ and εî ĵ k̂ ¼ ϵî ĵ k̂: ðA24Þ

Accordingly in such a case (but not in general) we can write
the former for the latter and vice versa.
As outlined above the vector space of p-forms and that of

(4 − p)-forms have the same dimension. Therefore it is
possible to build an isomorphism between these spaces.
A very important such isomorphism is the Hodge duality,
represented by the symbol ⋆. The components of the Hodge
dual can be obtained as

ð⋆AÞapþ1…a4 ¼ εa1…ap;apþ1…a4A
a1…ap : ðA25Þ

Applying this formula to computing the Hodge dual
of 0-forms, it follows in particular that ⋆1 ¼ ϵ.
An important property of the Hodge dual is that for any

p-form

⋆⋆A ¼ ð−1Þ1þpð4−pÞA; ðA26Þ

which implies

⋆−1A ¼ ð−1Þ1þpð4−pÞ⋆A: ðA27Þ

Another property of p-forms that is fundamental for
the present work is that they are natural integrands over

p-dimensional (sub)manifolds of M. In particular, if a
p-dimensional submanifold of M is further divided into a
set of nonoverlapping p-dimensional regions, a p-form A
naturally establishes a map from this set to the set of real
numbers. If S1 and S2 are such regions, then

A½S1� ¼
Z
S1

A ðA28Þ

and

A½S1 ∪ S2� ¼
Z
S1

Aþ
Z
S2

A: ðA29Þ

Note in particular that the integral of ϵ over a portion ofM
is nothing but the volume of that portion, hence the name
volume form for ϵ.
We can then state the modern version of Stokes’s

theorem, which generalizes the well-known theorems of
vector calculus by Green, Stokes, and Gauss. It allows us to
relate integrals over a general submanifold S of M to
integrals over its boundary ∂S

Z
S
dA ¼

Z
∂S

A: ðA30Þ

Equation (A30) too has a fundamental importance for
this work.
Finally, it can be useful to restate standard vector-

calculus operators in terms of differential forms and
exterior calculus operators, e.g.,

∇f ¼ df
�!

; ðA31Þ

∇ · ðuÞ ¼ −⋆−1d⋆ũ; ðA32Þ

∇ × ðuÞ ¼ ⋆dũ��!
: ðA33Þ

In these expressions f is a generic scalar field (or
equivalently a 0-form), and u a generic vector; an arrow
is used to denote the operation of transforming a differential
1-form to its dual vector, and a tilde to denote the inverse
operation.

APPENDIX B: HODGE DUAL OF THE
NESTER-WITTEN FORM IN TERMS

OF THE CONNECTION

In order to obtain Eq. (93), we start from the definition of
the Nester-Witten form (64), which can also be written as

ua ¼ −
1

2
ωbc

dθd ∧ Σabc: ðB1Þ

Using the identity (51), we obtain
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ua ¼ −
3

2
ωbc

dδ
d½aΣbc�: ðB2Þ

Expanding the antisymmetric brackets,

ua ¼ −
1

4
½ωbc

aΣbc þ ωbd
dΣab þ ωdc

dΣca

− ωbc
aΣcb − ωdc

dΣac − ωbd
dΣba�; ðB3Þ

and renaming indices to factor out Σbc,

ua ¼ −
1

2
ðω½bc�

a þ δbaω
½cd�

d − δcaω
½bd�

dÞΣbc: ðB4Þ

From the definition of the hypersurface forms (50) and the
formula to obtain the components of the Hodge dual (A25),
it follows that the expression in parenthesis equals the
components of ⋆ua, as stated in Eq. (93).

APPENDIX C: DERIVATION OF EVOLUTION
EQUATION FOR

ffiffiffi
γ

p

As mentioned in Sec. V D, one can obtain an evolution
equation for

ffiffiffi
γ

p
in a conservative form by taking the

exterior derivative of the hypersurface form Σ0̂ orthogonal

to −nμ. This form is identical to the Hodge dual of θ0̂, and
in a coordinate basis it has components

ðΣ0̂Þμνλ ¼ −εαμνλnα: ðC1Þ

Similarly as in Sec. III, the components of its exterior
derivative will take the form of a conservation equation
for nα, �

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
nμ
�
Σ ¼ dΣ0̂: ðC2Þ

To find an expression for the right-hand side, we recall the
definition of hypersurface forms (50) and take the exterior
derivative. After applying the Leibniz rule for the exterior
product (A12), we substitute the definition of Fâ (107) and
relabel indices, which gives

dΣ0̂ ¼
1

6
ε0̂ î ĵ k̂F

î ∧ θĵ ∧ θk̂: ðC3Þ

Finally, we can use the relation

εα̂ β̂ γ̂ δ̂Σ ¼ θα̂ ∧ θβ̂ ∧ θγ̂ ∧ θδ̂; ðC4Þ
which can also be derived from (50), to obtain

dΣ0̂ ¼ Fî
0̂ îΣ ¼ −Eî

îΣ ¼ 5

2
Dî

îΣ; ðC5Þ

where relation (127) was used. Equating (C2) and (C5), we
arrive to the result shown in (121).
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[37] F. Hébert, L. E. Kidder, and S. A. Teukolsky, Phys. Rev. D

98, 044041 (2018).
[38] M. K. Bhattacharyya, D. Hilditch, K. Rajesh Nayak, S.

Renkhoff, H. R. Rüter, and B. Brügmann, Phys. Rev. D 103,
064072 (2021).

[39] M. Dumbser, F. Fambri, E. Gaburro, and A. Reinarz,
J. Comput. Phys. 404, 109088 (2020).

[40] K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
[41] C. Evans and J. Hawley, Astrophys. J. 332, 659 (1988).
[42] D. L. Meier, Astrophys. J. 595, 980 (2003).
[43] J. Frauendiener, Classical Quantum Gravity 23, S369

(2006).
[44] M. Dumbser, I. Peshkov, E. Romenski, and O. Zanotti,

J. Comput. Phys. 348, 298 (2017).
[45] Z. B. Etienne, V. Paschalidis, R. Haas, P. Mösta, and S. L.

Shapiro, Classical Quantum Gravity 32, 175009 (2015).
[46] O. Porth, H. Olivares, Y. Mizuno, Z. Younsi, L. Rezzolla,

M. Moscibrodzka, H. Falcke, and M. Kramer, Comput.
Astrophys. 4, 1 (2017).

[47] J. M. Stone, K. Tomida, C. J. White, and K. G. Felker,
Astrophys. J. Suppl. Ser. 249, 4 (2020).

[48] P. Mocz, M. Vogelsberger, and L. Hernquist, Mon. Not. R.
Astron. Soc. 442, 43 (2014).

[49] J. S. Hesthaven and T. Warburton, Nodal Discontinuous
Galerkin Methods—Algorithms, Analysis, and Applications
(Springer, New York, NY, 2008).

[50] E. F. Toro, Riemann Solvers and Numerical Methods for
Fluid Dynamics (Springer-Verlag, Berlin, Heidelberg, 2009).

[51] V. Perlick, J. Math. Phys. (N.Y.) 52, 042903 (2011).
[52] K. S. Thorne and D. MacDonald, Mon. Not. R. Astron. Soc.

198, 339 (1982).
[53] L. B. Szabados, Classical Quantum Gravity 9, 2521 (1992).
[54] J. Frauendiener, Gen. Relativ. Gravit. 22, 1423 (1990).
[55] S. Frittelli, Phys. Rev. D 55, 5992 (1997).
[56] K. Clough, Classical Quantum Gravity 38, 167001 (2021).
[57] C. F. Gammie, J. C. McKinney, and G. Toth, Astrophys. J.

589, 444 (2003).
[58] X. Y. Hu, N. A. Adams, and C.-W. Shu, J. Comput. Phys.

242, 169 (2013).
[59] K. Wu, Phys. Rev. D 95, 103001 (2017).
[60] K. Wu and H. Tang, Z. Angew. Math. Phys. 69, 84 (2018).
[61] S. M. Carroll, Spacetime and Geometry. An Introduction to

General Relativity (Addison Wesley, San Francisco, CA,
USA, 2004).

[62] R. M. Wald, General Relativity (The University of Chicago
Press, Chicago, USA, 1984).

[63] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity
(Springer Dordrecht, Dordrecht, Germany, 2013), Vol. 173.

[64] J. C. Baez and J. P. Muniain, Gauge Fields, Knots and
Gravity (World Scientific Publishing Company, Singapore,
1994), Vol. 4.

[65] L. H. Ryder, Quantum Field Theory, 2nd ed. (Cambridge
University Press, Cambridge, England, 1996).

[66] R. Owen et al., Phys. Rev. Lett. 106, 151101 (2011).
[67] D. A. Nichols et al., Phys. Rev. D 84, 124014 (2011).
[68] K. Krasnov, Formulations of General Relativity: Gravity,

Spinors and Differential Forms (Cambridge University
Press, Cambridge, England, 2020).

[69] F. W. Hehl, J. D. McCrea, E. W. Mielke, and Y. Ne’eman,
Phys. Rep. 258, 1 (1995).

[70] B. Mashhoon, arXiv:hep-th/0311030.
[71] A. Anderson, Y. Choquet-Bruchat, and J. W. York, Jr.,

Topol. Methods Nonlinear Anal. 10, 353 (1997).
[72] H. Friedrich, Classical Quantum Gravity 13, 1451 (1996).
[73] A. Abrahams, A. Anderson, Y. Choquet-Bruhat, and J. W.

York, Phys. Rev. Lett. 75, 3377 (1995).
[74] M. S. Iriondo, E. O. Leguizamón, and O. A. Reula, Phys.

Rev. Lett. 79, 4732 (1997).
[75] G. Yoneda and H. A. Shinkai, Phys. Rev. Lett. 82, 263

(1999).
[76] L. T. Buchman and J. M. Bardeen, Phys. Rev. D 67, 084017

(2003).
[77] E. Romenski, I. Peshkov, M. Dumbser, and F. Fambri, Phil.

Trans. R. Soc. A 378, 20190175 (2020).
[78] I. Peshkov, E. Romenski, and M. Dumbser, Continuum

Mech. Thermodyn. 31, 1517 (2019).
[79] M. Nakahara,Geometry, Topology and Physics (CRC Press,

Boca Raton, 2018).
[80] D. A. Burton, Theor. Appl. Fract. Mech. 30, 85 (2003).

NEW FIRST-ORDER FORMULATION OF THE EINSTEIN … PHYS. REV. D 105, 124038 (2022)

124038-25

https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.79.104029
https://doi.org/10.1103/PhysRevD.70.104004
https://doi.org/10.1103/PhysRevD.70.104004
https://doi.org/10.1143/PTPS.90.1
https://doi.org/10.1143/PTPS.90.1
https://doi.org/10.1103/PhysRevD.85.064040
https://doi.org/10.1103/PhysRevD.85.084004
https://doi.org/10.1006/jcph.2001.6961
https://doi.org/10.1103/PhysRevD.67.104005
https://doi.org/10.1103/PhysRevD.67.104005
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevD.81.084003
https://doi.org/10.1103/PhysRevD.88.064049
https://doi.org/10.1103/PhysRevD.88.064049
https://doi.org/10.1088/0264-9381/22/17/025
https://doi.org/10.1088/0264-9381/23/16/S13
https://doi.org/10.1103/PhysRevD.97.084053
https://doi.org/10.1103/PhysRevD.85.084004
https://doi.org/10.1016/j.jcp.2016.02.031
https://doi.org/10.1103/PhysRevD.98.044041
https://doi.org/10.1103/PhysRevD.98.044041
https://doi.org/10.1103/PhysRevD.103.064072
https://doi.org/10.1103/PhysRevD.103.064072
https://doi.org/10.1016/j.jcp.2019.109088
https://doi.org/10.1109/TAP.1966.1138693
https://doi.org/10.1086/166684
https://doi.org/10.1086/377166
https://doi.org/10.1088/0264-9381/23/16/S05
https://doi.org/10.1088/0264-9381/23/16/S05
https://doi.org/10.1016/j.jcp.2017.07.020
https://doi.org/10.1088/0264-9381/32/17/175009
https://doi.org/10.1186/s40668-017-0020-2
https://doi.org/10.1186/s40668-017-0020-2
https://doi.org/10.3847/1538-4365/ab929b
https://doi.org/10.1093/mnras/stu865
https://doi.org/10.1093/mnras/stu865
https://doi.org/10.1063/1.3579133
https://doi.org/10.1093/mnras/198.2.339
https://doi.org/10.1093/mnras/198.2.339
https://doi.org/10.1088/0264-9381/9/11/017
https://doi.org/10.1007/BF00756840
https://doi.org/10.1103/PhysRevD.55.5992
https://doi.org/10.1088/1361-6382/ac10ee
https://doi.org/10.1086/374594
https://doi.org/10.1086/374594
https://doi.org/10.1016/j.jcp.2013.01.024
https://doi.org/10.1016/j.jcp.2013.01.024
https://doi.org/10.1103/PhysRevD.95.103001
https://doi.org/10.1007/s00033-018-0979-9
https://doi.org/10.1103/PhysRevLett.106.151101
https://doi.org/10.1103/PhysRevD.84.124014
https://doi.org/10.1016/0370-1573(94)00111-F
https://arXiv.org/abs/hep-th/0311030
https://doi.org/10.12775/TMNA.1997.037
https://doi.org/10.1088/0264-9381/13/6/014
https://doi.org/10.1103/PhysRevLett.75.3377
https://doi.org/10.1103/PhysRevLett.79.4732
https://doi.org/10.1103/PhysRevLett.79.4732
https://doi.org/10.1103/PhysRevLett.82.263
https://doi.org/10.1103/PhysRevLett.82.263
https://doi.org/10.1103/PhysRevD.67.084017
https://doi.org/10.1103/PhysRevD.67.084017
https://doi.org/10.1098/rsta.2019.0175
https://doi.org/10.1098/rsta.2019.0175
https://doi.org/10.1007/s00161-019-00770-6
https://doi.org/10.1007/s00161-019-00770-6
https://doi.org/10.2298/TAM0302085B

