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In this work, we elaborate on the development of a general relativistic formalism that allows one to
analytically express the mass and spin parameters of the Kerr black hole in terms of observational data: the
total redshift and blueshift of photons emitted by massive geodesic particles revolving the black hole and
their orbital parameters. Thus, we present concise closed formulas for the mass and spin parameters of the
Kerr black hole in terms of few directly observed quantities in the case of equatorial circular orbits either
when the black hole is static or is moving with respect to a distant observer. Furthermore, we incorporate
the gravitational dragging effect generated by the rotating nature of the Kerr black hole into the analysis and
elucidate its nontrivial contribution to the expression for the light bending parameter and the frequency
shifts of photons emitted by orbiting particles that renders simple symmetric expressions for the kinematic
redshift and blueshift. We also incorporate the dependency of the frequency shift on the azimuthal angle, a
fact that allows one to express the total redshift/blueshift at any point of the orbit of the revolving particle
for the cases when the black hole is both static or moving with respect to us. These formulas allow one to
compute the Kerr black hole parameters by applying this general relativistic formalism to astrophysical
systems like the megamaser accretion disks orbiting supermassive black holes at the core of active galactic
nuclei. Our results open a new window to implement parameter estimation studies to constrain black hole
variables, and they can be generalized to black hole solutions beyond Einstein’s gravity.
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I. INTRODUCTION AND BRIEF OVERVIEW OF
THE FORMALISM

Black hole physics has been experiencing a vital boost in
the last few years and is currently a very active research
field. On the one hand, the recent detection of the
gravitational waves by the LIGO-Virgo collaborations
[1,2] unveiled the existence of black holes through their
coalescence. On the other hand, two research groups of
astronomers managed to track the orbital motion of several
stars around the center of our galaxy during the last three
decades and provided convincing dynamical evidence of
the existence of a supermassive black hole hosted at the
center of the Milky Way [3–6]. These extraordinary efforts
have been crowned with the 2017 and 2020 Nobel prize
in physics, respectively. Besides, the Event Horizon

Telescope Collaboration imaged the shadow of a super-
massive black hole located at the core of the M87 [7,8] and
SgrA* [9–11] galaxies in accordance to predictions of
general relativistic numerical simulations, supporting fur-
ther the existence of these enigmatic black entities.
Within this black hole impulse we refine a general

relativistic method that allows one to express the Kerr
black hole parameters, mass and spin, as functions of
directly observed quantities provided by astrometry and
spectroscopy, namely, by the positions on the sky of
particles revolving around the black hole in geodesic
motion and the redshift experienced by the photons they
emit when detected on Earth [12]. This general relativistic
formalism has been applied to several black hole metrics
and compact objects in the literature so far. In [13], the
authors studied the frequency shifts of photons emitted by
particles near a Myers–Perry black hole with higher
dimensions. A similar method was used in the case of
the Kerr–Newman and Kerr–Newman–de Sitter black hole
geometries [14] and the Plebanski–Demianski black hole
[15]. This approach was used in [16] to obtain the mass
parameters of compact objects such as boson stars, as well
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as the Schwarzschild and Reissner-Nordström black holes
from redshifts and blueshifts emitted by geodesic particles
around them. In another work [17], the authors utilized a
similar methodology to find the mass parameter of regular
black holes and found the bounds on redshift and blueshifts
of photons emitted by orbiting emitter particles. A gener-
alization of this methodology was used to obtain the mass
and the spin of a Kerr black hole in modified gravity [18].
These authors used the redshift as a tool to test the Kerr
black hole hypothesis. In [19], the authors calculated
frequency shifts of photons emitted from geodesics of
black holes with nonlinear electrodynamics, especially, the
Bardeen and Bronnikov black holes and the Born–Infeld
and Dymnikova black holes. Further, the study of the
redshift of light emitted by particles orbiting a black hole
immersed in a strong magnetic field was performed in [20].
Redshift data could be essential to study the features of
motion of objects such as individual stars and compact gas
clouds as well as compact binary stars around black holes
as discussed in [21,22].
All these attempts were based on the kinematic redshift,

a fact that rendered involved formulas for the mass of those
black holes. However, the kinematic redshift is not a
directly measured observational quantity as the total red-
shift of photons is. In this work we make use of the total
redshift expression in order to parametrize the mass and
spin of the Kerr black hole, along with the orbital radius of
the revolving body. In this way we obtain concise and
elegant analytic relations that allow us to compute the mass
and the spin parameters in terms of few observational data,
for the cases when the black hole is static or moving with
respect to a distant observer located on Earth. It is to be
noted that [23] has applied a similar approach in the case of
the Kerr–Sen black hole without using the kinematic
redshift in their calculations. In this paper, we show that
the total redshift must also incorporate an additional
contribution coming from the special relativistic boost
generated by the relative motion of the Earth with respect
to the black hole. We further elucidate the effect of the
gravitational dragging produced by the black hole rotation
on the light bending parameter and on the gravitational
and the kinematic components of the total redshift, correcting
previous expressions where this relevant effect was ignored.
This novel approach allows us to extract a closed formula

for the gravitational redshift in a very clean and neat
manner. In principle, this relation also allows us to quantify
this general relativistic effect for concrete real astrophysical
systems like the accretion disks with water masers orbiting
supermassive black holes of several active galactic nuclei if
the precision in the involved observations is high enough.
We manage as well to incorporate the special relativistic
redshift associated with the motion of a galactic black hole
with respect to us. Thus, we are able to consistently
disentangle and quantify both the general and special
relativistic redshifts from the total frequency shift measured

here on Earth. It is worthwhile to mention that, although
these relativistic corrections have been considered in
previous studies, they could not be identified and quantified
properly. Hence, the contribution of the general and special
relativistic corrections to the detected total redshift was
obfuscated.
In addition, previous works dealt with redshifted or

blueshifted photons which have the maximum light bend-
ing parameter. It occurs when the radial component of the
4-momentum of the detected photons is zero when they are
emitted from the source. This also restricts the formalism to
some specific source positions with respect to the line of
sight. Naturally, a general formula is required that can
incorporate the redshift or blueshift of photons emitted
from sources in any arbitrary positions around a black hole.
This paper also aims to develop a formalism incorporating a
general light bending parameter corresponding to a photon
emitted from an arbitrary source position.
The paper is organized as follows: We present a brief

overview of our general relativistic method in Sec. I A. We
further derive concise analytic expressions for the black hole
mass and spin parameters as functions of directly observable
quantities in Sec. II. In Sec. III, we take into account the
dragging effect produced by the rotating character of theKerr
black hole on the light bending parameter and both the
gravitational redshift and the kinematic frequency shift. In
Sec. IV, we boost the black hole with respect to a distant
observer with the aid of a composition of the Kerr redshift
with a special relativistic frequency shift. In Sec. V, we
introduce the dependency of theKerr redshift andblueshift of
photons on the azimuthal angle spanned by a probe particle,
allowing us to model the photons’ frequency shift coming
from a general point in the equatorial plane. In Sec. VI, we
also boost the Kerr black hole with respect to a distant
observer and compose the expressions for the frequency shift
with the incorporated azimuthal angle with a special rela-
tivistic redshift that takes into account the black hole motion.
Finally, in Sec. VII, we conclude with some final remarks
related to the application of the developed general relativistic
formalism to real astrophysical systems aswell aswith a brief
discussion of our results.

A. Brief overview of the GR formalism

Here we review previous results of our general relativ-
istic method in order to place our original contributions in
context. We first consider the geodesic motion of massive
probe particles orbiting a Kerr black hole metric given by
the following line element

ds2¼ gttdt2þ2gtφdtdφþgφφdφ2þgrrdr2þgθθdθ2 ð1Þ

with the metric components

gtt ¼−
�
1−

2Mr
Σ

�
; gtφ ¼−

2Marsin2θ
Σ

; grr ¼
Σ
Δ
;
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gφφ ¼
�
r2 þ a2 þ 2Ma2r sin2θ

Σ

�
sin2θ; gθθ ¼ Σ;

where M2 ≥ a2, g2tφ − gφφgtt ¼ Δ sin2 θ and

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2cos2θ;

where M is the total mass of the black hole and a is the
angular momentum per unit mass, a ¼ J=M (0 ≤ a ≤ M).
The probe particles feel the curvature of spacetime pro-
duced by the black hole through the metric and keep
memory of its parameters: the mass and the spin. On the
other hand, observers located on these particles can
exchange electromagnetic signals (photons) that travel
along null geodesics from emission to detection and have
information of the aforementioned memory. Therefore, the
frequency shifts that these photons experience during their
path, along with the orbital parameters of the emitter and
the observer can be used to determine the mass and the spin
parameters of the Kerr black hole according to the inverse
method introduced in [12]. Thus, this formalism allows one
to compute the values of the Kerr black hole parameters
based on directly measured observational quantities: the
total redshifts and blueshifts of the emitted photons and
the positions of their source, in contrast to the commonly
used radial velocities, which are coordinate dependent
observables.
Within general relativity (GR), the frequency of a photon

with 4-momentum kμc ¼ ðkt; kr; kθ; kφÞjc, which is emitted
or detected by an emitter or an observer with proper
4-velocity Uμ

c ¼ ðUt; Ur; Uθ; UφÞjc at the point c, is a
general relativistic invariant quantity that reads

ωc ¼ −ðkμUμÞjc; ð2Þ
where the index c refers to the point of emission e or
detection d of the photon. In the special case when the
detector is located far away from the emitter source, ideally
at spatial infinity ðr → ∞Þ, the 4-velocity simplifies

Uμ
d ¼ ð1; 0; 0; 0Þ:

Besides, in axially symmetric backgrounds of the form
(1), the most general expression for the frequency shift that
light signals emitted by massive particles experience in
their path along null geodesics toward a detecting observer
is given by the following relation [12]

1þ zKerr ¼
ωe

ωd

¼ ðEγUt − LγUφ − grrUrkr − gθθUθkθÞje
ðEγUt − LγUφ − grrUrkr − gθθUθkθÞjd

; ð3Þ

where the conserved quantities Eγ and Lγ stand for the
total energy and axial angular momentum of the photon.

This equation for the redshifts and blueshifts includes
stable orbits of any kind for the probe particles (stars,
for instance): Circular, elliptic, irregular, equatorial, non-
equatorial, etc. when moving around a Kerr black hole.

1. Redshift of photons emitted by bodies in circular and
equatorial orbits

In order to explore the basic properties of accretion disks,
studying the equatorial circular motion of test particles in
the background geometry of the rotating black holes is
inevitable because any tilted disk should be driven to the
equatorial plane of the rotating background [24]. Hence, we
focus on the important case of circular and equatorial orbits
of probe massive particles, whenUr ¼ 0 ¼ Uθ, and present
closed formulas for both the mass and rotation parameters
of the Kerr black hole in terms of measured redshifts and
blueshifts of light signals detected by an observer located
far away from their source.
For the frequency shift of photons in this case, the

general expression (3) adopts the form

1þ zKerr1;2 ¼
ωe

ωd
¼ ðEγUt − LγUφÞje

ðEγUt − LγUφÞjd
¼ Ut

e − beð∓ÞU
φ
e

Ut
d − bdð∓ÞU

φ
d
;

ð4Þ

where the ð∓Þ subscripts denote two different values of the
light bending parameter that correspond to photons emitted
by two different source positions either side of the line of
sight; the subindices 1 and 2 correspond to the ð−Þ and ðþÞ
signs, respectively. Besides, the deflection of light param-
eter b is defined by b≡ Lγ=Eγ and it takes into account the
light bending generated by the gravitational field in the
vicinity of the rotating black hole. This parameter is
preserved along the whole null geodesics followed by
photons from their emission till their detection, and we
have be ¼ bd since both Eγ and Lγ are constants of motion.
In a natural form, one sees that zKerr1 ≠ zKerr2 by

definition. In fact, this difference has two reasons: (i) the
gravitational redshift produced by the black hole mass and
its angular momentum, which is always positive, and
(ii) different light bending parameters beð∓Þ experienced
by the emitted photons on either side of the line of sight (in
both cases, when the photon source is corotating and
counterrotating with respect to the angular velocity of
the black hole). Thus, the gravitational field bends the light
in a different way for approaching and receding photon
sources due to these general relativistic effects.
The maximum value of the light bending parameter is

attained when kr ¼ 0, where the position vectors of
orbiting objects with respect to the black hole location
are approximately orthogonal to the line of sight (see
Fig. 1), rendering for the Kerr metric [12]
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bð�Þ ¼ −
gtφð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2tφ − gttgφφ

q
gtt

¼ −2Mað�Þr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2Mrþ a2

p

r − 2M
; ð5Þ

where the latter equality stands for photons emitted by
particles in circular equatorial orbits. It is notable to
mention that, as we shall see, the sign of b characterizes
whether a photon is redshifted or blueshifted when the
particle is corotating with respect to the black hole (and
vice versa when it is counterrotating). Therefore, from now
on, the minus sign enclosed in parentheses denotes the
redshifted photons, whereas the plus sign represents blue-
shifted ones in the frequency shift formulas.
On the other hand, the nonvanishing components of the

4-velocity for circular equatorial orbits read [9]

Utðr; π=2Þ ¼ r3=2 � aM1=2

X�
; ð6Þ

Uφðr; π=2Þ ¼ �M1=2

X�
; ð7Þ

with X� ¼ r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 − 3Mr1=2 � 2aM1=2

p
. In these rela-

tions, the upper sign corresponds to a corotating object
while the lower sign refers to a counterrotating one, and we
use this convention in the upcoming equations. By con-
sidering Eqs. (6) and (7), we can also obtain the angular
velocity of an object orbiting around the Kerr black hole as
below

Ω� ¼ dφ
dt

¼ Uφ

Ut ¼
�M1=2

r3=2 � aM1=2 ; ð8Þ

which acquires an additional subscript e=d for the emitter/
detector as well.

II. BLACK HOLE MASS AND SPIN FROM
REDSHIFT/BLUESHIFT OF PHOTONS IN

EQUATORIAL ORBITS

With the quantities presented in the previous section at
hand, we now express the frequency shift zKerr1;2 and obtain
the mass and angular momentum parameters of the Kerr
black hole in terms of the redshift and blueshift of the
photons emitted by orbiting objects and their orbital radii.
By substituting (5)–(7) into (4), we obtain

1þ zKerr1 ¼
Xd�½r3=2e ðre−2MÞ�M1=2reðaþ

ffiffiffiffiffiffi
Δe

p Þ�
Xe�½r3=2d ðre−2MÞ�M1=2reðaþ

ffiffiffiffiffiffi
Δe

p Þ�
; ð9Þ

1þ zKerr2 ¼
Xd�½r3=2e ðre−2MÞ�M1=2reða−

ffiffiffiffiffiffi
Δe

p Þ�
Xe�½r3=2d ðre−2MÞ�M1=2reða−

ffiffiffiffiffiffi
Δe

p Þ�
; ð10Þ

where Xc� ¼ X�jr¼rc , Δc ¼ Δjr¼rc , re (rd) denotes the
radius of the emitter (detector) orbit, and we used bd ¼ be.
In the particular case, when the detector is located far away
from the source (rd ≫ M ≥ a and rd ≫ re), these relations
reduce to

1þ zKerr1 ¼
ð1 − 2M̃Þ � M̃1=2ðãþ

ffiffiffiffiffiffi
Δ̃e

p
Þ

ð1 − 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p ; ð11Þ

1þ zKerr2 ¼
ð1 − 2M̃Þ � M̃1=2ðã −

ffiffiffiffiffiffi
Δ̃e

p
Þ

ð1 − 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p ; ð12Þ

with M̃ ¼ M=re, ã ¼ a=re and Δ̃e ¼ 1þ ã2 − 2M̃.
Now, it is straightforward to show that

RB ¼ 1

1 − 2M̃
; ð13Þ

R
B
¼ 1 − 2M̃ � M̃1=2ã� M̃1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p
1 − 2M̃ � M̃1=2ã ∓ M̃1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p ; ð14Þ

where we introduced R ¼ 1þ zKerr1 and B ¼ 1þ zKerr2 .
In this case, we are able to find a closed formula for the

mass of the black hole in terms of observational quantities,
namely, the total redshift and blueshift of photons emitted
by particles revolving the black hole as well as their orbital
radius

FIG. 1. Schematic diagram depicts the frequency shifts of three
different light rays emitted by timelike sources orbiting a Kerr
black hole in an equatorial, circular geodesic and detected by an
observer also located on the equatorial plane. The blue and red
trajectories are emitted with kr ¼ 0 indicating maximum fre-
quency shifts, whereas the yellow ray is radially emitted, i.e.,
kφ ¼ 0 at its emission point. Due to the frame dragging of the
Kerr background, trajectories are asymmetric with respect to the
line of sight (dashed line). The colored points indicate different
amount of frequency shifts depending on the different positions
of the sources.
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M ¼ RB − 1

2RB
re ¼

ð1þ zKerr1Þð1þ zKerr2Þ − 1

2ð1þ zKerr1Þð1þ zKerr2Þ
re: ð15Þ

Since the right-hand side of the derivation of the black
hole mass in (13) does not involve the angular momentum
parameter, it is valid as well for the Schwarzschild black
hole mass and it can be generalized straightforwardly for
any spherically symmetric metric depending on more free
parameters.
We would like to emphasize that the mass expression

(15) is given in terms of the total Kerr frequency shifts
(11)–(12) which are directly measured quantities in real
astrophysical systems. This elegant relation differs from
previous attempts to express the mass parameter in terms of
the kinematic frequency shift [12,16,17,25]. Indeed, since
Eq. (13) is a linear relation forM, it has no degeneracy in its
values as in the case of higher order algebraic equations
arising in [16,17] when expressing M in terms of the
kinematic redshift for several spherically symmetric space-
times and for configurations involving several photon
sources [25].
Now, by substituting the relation (15) into (14), we

obtain the rotation parameter versus the same quantities

jaj ¼ ðR − BÞ2 − ðRþ BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ B2 − 2R2B2

p

ð2RBÞ3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RB − 1

p re: ð16Þ

It is also straightforward to show that the expression for
the rotation parameter is consistent with the boundM ≥ jaj.
By computing the ratio jaj=M, we get rid of the orbital

radius dependence and obtain a bounded expression for the
spin parameter per unit mass in terms of observational
frequency shifts

jaj
M

¼ ðR − BÞ2 − ðRþ BÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ B2 − 2R2B2

p
ffiffiffiffiffiffiffiffiffi
2RB

p ðRB − 1Þ3=2 ; ð17Þ

where 0 ≤ jaj=M ≤ 1.
We should note that there are some constraints on R and

B to have positive definiteM and a in the relations (15) and
(16), respectively. These conditions are RB > 1 and R2 þ
B2 ≥ 2R2B2 which must be obeyed. On the other hand, the
radius of innermost stable circular orbit (ISCO) in the Kerr
geometry is given by [26]

FIG. 2. The redshift zKerr1 and blueshift zKerr2 versus the rotation parameter for corotating branch (left panels) and counterrotating
branch (right panels). The dashed curves (denoted by rms) correspond to the value of redshift/blueshift emitted by geodesic particles on
marginally stable orbit rms (ISCO). The continuous curves show the redshift/blueshift values as R2 þ B2 → 2R2B2 and RB → 1 from
above. The shaded region indicates the valid values of zKerr1 and zKerr2 for the Kerr black hole.
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rms ¼ Mð3þ β ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3 − αÞð3þ αþ 2βÞ

p
Þ;

α ¼ 1þ
�
1 −

a2

M2

�
1=3

��
1þ a

M

�
1=3

þ
�
1 −

a
M

�
1=3

�
;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ 3

a2

M2

r
; ð18Þ

that approximately characterizes the inner edge of orbiting
accretion disk and “ms” stands for “marginally stable”
orbit. Thus, the lower bound on the emitter radius as re ≥
rms leads to a bound on the redshift/blueshift presented in
(11) and (12).
The redshift (11) and blueshift (12) of photons emitted

by geodesic particles orbiting the Kerr black hole are
illustrated in Fig. 2. This figure shows that the redshift is
bounded from the top by marginally stable orbits and from
the bottom by the condition R2 þ B2 ≥ 2R2B2, and also,
RB > 1 in the case of corotating objects. However, the
blueshift is bounded from the bottom by marginally stable
orbits and from the top by the condition R2 þ B2 ≥ 2R2B2.
Therefore, generally, the shaded area indicates the valid
values for the redshift and blueshift of photons radiated by
stable objects orbiting the Kerr black hole, bounded
between two curves characterized by rms and the condition
R2 þ B2 ≥ 2R2B2 (and also, RB > 1 in the case of corotat-
ing objects).
Note that, for the corotating branch, the absolute value of

the redshift/blueshift at the ISCO (dashed curves in the left
panels of Fig. 2) is an increasing function of a, whereas for
the counterrotating case, jzKerr1;2 j is a decreasing function of
a (see the dashed curves in the right panels of Fig. 2). The
dependency of zKerr1;2 on the rotation parameter is a
consequence of the dragging effect produced by the
rotation nature of the Kerr black hole that we shall
investigate in detail.

III. THE DRAGGING EFFECT ON THE LIGHT
BENDING PARAMETER AND THE REDSHIFT

In contrast to the Schwarzschild black hole case, a probe
particle cannot be static in the Kerr background due to the
dragging effect generated by rotation. Thus, a massive
particle located on the line of sight in its circular orbit
necessarily feels a drag that modifies the corresponding
redshift experienced by the emitted photons when detected
by a distant observer.
Therefore, we now develop our formalism to take into

account the dragging effect produced by the rotating nature
of the Kerr metric on the central light bending parameter,
the gravitational redshift zg, and kinematic redshifts and
blueshifts zkin� . The latter quantities encode the rotational
motion of probe particles around the black hole. The
inclusion of this effect was missing in the analysis
performed in [12] and all subsequent works which

considered rotating metrics (see [14,18], for instance).
Here we fill this important gap.
It is worthwhile to mention that the light bending

parameter bc of a light ray emitted radially at the central
point (on the line of sight) is nonzero due to the dragging
effect. Therefore, a light ray which is emitted radially at the
central point, bends due to the dragging effect and cannot
reach the observer located on the line of sight. This also
means that the photon must be emitted from a point away
from the central point so that it can reach the observer and
deliver to it information about the gravitational redshift
(See Fig. 1). This quantity has no analog in the Newtonian
picture and we are going to take this effect into account
through this section.
In general, for a stationary axisymmetric spacetime, the

following components of the 4-momentum of photons can
be expressed in terms of the metric components and the
constants of motion as follows [26,27]

kt ¼ Eγgφφ þ Lγgtφ
g2tφ − gttgφφ

; ð19Þ

kφ ¼ −
Eγgtφ þ Lγgtt
g2tφ − gttgφφ

: ð20Þ

The φ-component vanishes for a radially emitted photon, a
fact that leads to the following relation for the light bending
parameter

bc ¼ −
gtφ
gtt

¼ −
2Ma

r − 2M
; ð21Þ

where the second equality takes place for photons emitted
by bodies in equatorial orbits around the Kerr black hole.
Here, the effect of the dragging due to the rotating character
of the Kerr black hole spacetime becomes clear since bc is
proportional to a and it vanishes for a Schwarzschild black
hole configuration.
Thus, by considering the light bending parameter of a

radially emitted photon, the gravitational redshift of circu-
lar motion in the equatorial plane around the Kerr black
hole becomes

1þ zg ¼
Ut

e − bcU
φ
e

Ut
d − bcU

φ
d
¼ 1 − 2M̃ � M̃1=2ã

ð1 − 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2M̃1=2ã

p ;

ð22Þ

where the last part is obtained for a far away detector
(rd ≫ M ≥ a and rd ≫ re). This expression depends on
both the mass and the spin parameters, implying the fact
that the gravitational redshift is generated by the black hole
mass (given by the first two items when the spin vanishes)
and its rotation (the third term). This quantity generalizes
the gravitational redshift formula for the Schwarzschild
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black hole given in [28] and reproduces it when the rotation
parameter is trivial.
On the other hand, the kinematic redshift zkin� is defined

by subtracting from the Kerr redshift zKerr1;2 , the gravita-
tional redshift zg experienced by photons radially emitted,
such that b ¼ bc, as follows

zkin� ¼ zKerr1;2 − zg ¼
Ut

e − beð∓ÞU
φ
e

Ut
d − bdð∓ÞU

φ
d
−
Ut

e − bcU
φ
e

Ut
d − bcU

φ
d
: ð23Þ

We recall that the upper/lower sign in zKerr1;2 (or U
t and

Uφ) corresponds to a co/counterrotating object while the
minus/plus sign enclosed in parentheses denotes the red-
shifted/blueshifted photons. Thus, by taking into account
the maximum values of the light bending parameter (5) on
either side of the line of sight, we are led to two different
kinematic frequency shifts for receding and approaching
objects.
By using the definition of the angular velocity (8) of the

detector (Ωd ¼ Uφ
d=U

t
d) and emitter (Ωe ¼ Uφ

e =Ut
e), the

kinematic frequency shifts zkinþ and zkin− take the following
form

zkinþ ¼ Ut
e

Ut
d

�
1 − be−Ωe

1 − bd−Ωd
−
1 − bcΩe

1 − bcΩd

�
; ð24Þ

zkin− ¼ Ut
e

Ut
d

�
1 − beþΩe

1 − bdþΩd
−
1 − bcΩe

1 − bcΩd

�
: ð25Þ

Alternatively, by substituting the 4-velocity components
(6) and (7) into these kinematic redshifts zkin� [Eqs. (24)
and (25)], we obtain the following expressions

zkinþ ¼ Xd�Ωd�
Xe�Ωe�

�
1 − be−Ωe�
1 − bd−Ωd�

−
1 − bcΩe�
1 − bcΩd�

�
; ð26Þ

zkin− ¼ Xd�Ωd�
Xe�Ωe�

�
1 − beþΩe�
1 − bdþΩd�

−
1 − bcΩe�
1 − bcΩd�

�
: ð27Þ

By directly substituting (5)–(7) and (21) into (23) [or,
equivalently, by employing (5), (8), and (21) in relations
(26)–(27)], it is possible to write these expressions versus
the black hole parameters and orbital radii

zkinþ ¼ �M
1
2Xd�ðr

3
2

d − r
3
2
eÞðre − 2MÞ ffiffiffiffiffiffi

Δe
p

re

X e�½r
3
2

dðre − 2MÞ � aM
1
2re�½r

3
2

dðre − 2MÞ �M
1
2reðaþ ΔeÞ�

; ð28Þ

zkin− ¼ ∓ M
1
2Xd�ðr

3
2

d − r
3
2
eÞðre − 2MÞ ffiffiffiffiffiffi

Δe
p

re

Xe�½r
3
2

dðre − 2MÞ � aM
1
2re�½r

3
2

dðre − 2MÞ �M
1
2reðaþ ΔeÞ�

; ð29Þ

where we used bd ¼ be. For a far away detector
(rd ≫ M ≥ a and rd ≫ re), the kinematic redshift and
blueshift take the following simple forms

zkinþ ¼ �M̃1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p
ð1 − 2M̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p ; ð30Þ

zkin− ¼ ∓ M̃1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p
ð1 − 2M̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p ; ð31Þ

that are symmetric with respect to the line of sight such
that zkinþ ¼ −zkin− as one would expect. These symmetric
expressions contrast with the asymmetric ones previously
obtained in [12] when the gravitational dragging effect due
to the spin of the Kerr black hole metric was ignored.

IV. BOOSTING THE BLACK HOLE WITH
RESPECT TO A DISTANT OBSERVER

At this stage, we further compose the Kerr shift zKerr1;2
[or equivalently Eqs. (11) and (12)] with the redshift
describing the relative motion [29] of a black hole from
a distant observer, zboost, which is associated with a special
relativistic boost

1þ zboost ¼ γð1þ βÞ; γ ¼ ð1 − β2Þ−1=2; β ¼ v0
c
;

ð32Þ

where v0 ¼ z0c is the radial peculiar velocity of the black
hole with respect to a far away observer. Here we are
neglecting a possible transversal component in the black
hole motion which would be taken into account by the
relation

1þ zboost ¼ γ½1þ cosðδÞβ�;
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where δ is an angle that codifies the special relativistic
transverse Doppler shift [30], introducing one more param-
eter in our model. For the sake of simplicity we shall
consider just the galactic motion projected along the line of
sight, setting δ to zero.
We shall call z0 the peculiar redshift since it encodes the

receding from us or approaching toward us motion of the
black hole. Astronomers usually call this motion systemic
when referring to orbiting the black hole particles lying
close to the line of sight, where the radial component of the
rotational velocity vanishes.
Now, by considering the peculiar redshift, the total

redshift becomes [28]

ztot1;2 ¼ ð1þ zkin� þ zgÞð1þ zboostÞ − 1; ð33Þ

in which the kinematic shifts zkin� are given in (30) and (31)
respectively, and the gravitational redshift zg is taken from
(22). By substituting the expressions of zkin� and zg for
different branches including the corotating/counterrotating
(þ=−) bodies in the equations mentioned above, we find
their following explicit form

ztot1 ¼
ð1−2M̃Þ� M̃1=2ðãþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2−2M̃

p
Þ

ð1−2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ãM̃1=2−3M̃

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1− z0

s
−1;

ð34Þ

ztot2 ¼
ð1− 2M̃Þ � M̃1=2ðã−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p
Þ

ð1− 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ãM̃1=2 − 3M̃

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1− z0

s
− 1:

ð35Þ

From these relations, the general effect of the peculiar
redshift z0 on the Kerr shift zKerr1;2 is obvious. For z0 > 0,
when the black hole is receding from us, we have ztot1 >
zKerr1 for redshift and jztot2 j < jzKerr2 j for blueshift. But, for
z0 < 0, when the black hole is approaching toward us, we
have ztot1 < zKerr1 for redshift and jztot2 j > jzKerr2 j for
blueshift. Therefore, in the case of the total shifts ztot1;2 ,
the shaded region of Fig. 2 moves upward (downward) for
z0 > 0 (z0 < 0) while the borders are specified by (18),
R̂ B̂ ð1 − z0Þ2 > ð1 − z20Þ, and G2 ≥ 0 (we shall introduce
R̂, B̂, and G below). Besides, note that ztot1 and ztot2 reduce
to the corresponding relations (11) and (12), respectively,
when the peculiar redshift z0 vanishes.
The total frequency shifts (34)–(35) for large orbits of the

emitter M̃; ã ≪ 1 read

ztot1 ≈ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s �
1�

ffiffiffiffiffi
M̃

p

þ 3

2
M̃ � 5

2
M̃3=2 þ 27

8
M̃2 − M̃ ã

�
; ð36Þ

ztot2 ≈ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s �
1 ∓

ffiffiffiffiffi
M̃

p

þ 3

2
M̃ ∓ 5

2
M̃3=2 þ 27

8
M̃2 þ M̃ ã

�
; ð37Þ

if indeed the peculiar redshift is also small, z0 ≪ 1, then
these quantities become

ztot1 ≈�M̃1=2 þ z0 þ
3

2
M̃ � M̃1=2z0

� 5

2
M̃3=2 þ 3

2
M̃z0 þ

1

2
z20 − ã M̃; ð38Þ

ztot2≈ ∓ M̃1=2 þ z0 þ
3

2
M̃ ∓ M̃1=2z0

∓ 5

2
M̃3=2 þ 3

2
M̃z0 þ

1

2
z20 þ ã M̃; ð39Þ

which reduce to those for the Schwarzschild black hole for
ã ¼ 0 [28], as it should be.
If we consider a real astrophysical system like the set of

megamasers circularly orbiting supermassive black holes in
the center of active galactic nuclei, from these relations, we
observe that the leading term in this expansion corresponds
to the frequency shift due to the rotational motion of the
probe particles orbiting the black hole, the so-called
Doppler or kinematic shifts. This is the item that corre-
sponds to the purely Newtonian approach that describes
their rotational motion around a black hole. The subleading
term corresponds to the peculiar motion of the black hole
from/toward us as a whole entity. The third item corre-
sponds to the main (nonrotating) contribution of the
gravitational redshift and constitutes a purely general
relativistic effect produced by the black hole mass. The
fourth item in this expansion corresponds to a special
relativistic correction that involves the product of the
kinematic frequency shift and the peculiar redshift.
Finally, the spin parameter makes its appearance just in
the eighth term of this series expansion, making it clear that
it encodes a very subtle effect.
Interestingly, we can also find explicit relations for the

mass and angular rotation parameter of the Kerr black hole
in terms of ztot1 , ztot2 , re and z0 by employing (34) and (35).
Thus, we use the relations (34) and (35) to obtain

R̂ B̂ ¼ 1þ z0
ð1 − 2M̃Þð1 − z0Þ

; ð40Þ

and

R̂

B̂
¼ 1þ M̃1=2ðã − 2M̃1=2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p
Þ

1þ M̃1=2ðã − 2M̃1=2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ã2 − 2M̃

p
Þ
; ð41Þ
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where R̂ ¼ 1þ ztot1 and B̂ ¼ 1þ ztot2 . Equation (40) leads
to the following relation for the mass

M ¼ R̂ B̂ ð1 − z0Þ − ð1þ z0Þ
2R̂ B̂ ð1 − z0Þ

re: ð42Þ

Now, by replacing this quantity into (41), we obtain the
angular rotation parameter as well

a ¼ ðR̂ − B̂Þ2ð1þ z0Þ − ðR̂þ B̂ÞG
ð2R̂ B̂Þ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R̂ B̂ ð1 − z0Þ2 − ð1 − z20Þ

q re; ð43Þ

where G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR̂2 þ B̂2Þð1þ z0Þ2 − 2R̂2B̂2ð1 − z20Þ

q
. Note

that these relations reduce to (15) and (16) in the limit
z0 ¼ 0, as we expected.
Thus, we have obtained closed formulas for determining

both the black hole mass and spin parameters from very few
observational data: the redshift and blueshift of emitted
photons, as well as the orbital radius re of the emitter and
the peculiar motion of the black hole encoded in z0.
These relations enable us to compute the mass and spin

parameters of a black hole hosted at the core of a galaxy
moving with respect to us. Here, it is worth mentioning that
these closed formulas relate the black hole parameters M
and a to the frequency shifts ztot1 and ztot2 , and the orbital
radius re, which are directly measured quantities, as well as
to the peculiar redshift, which is not a measurable quantity,
but can be statistically estimated with the help of relations
(34)–(35).

V. DEPENDENCY OF THE REDSHIFT ON THE
AZIMUTHAL ANGLE

In this section, we are going to obtain expressions for the
redshift and blueshift of photons coming from a general
point of their orbit in the equatorial plane. To do so, we
should obtain the dependency of the redshift on the
azimuthal angle φ. The equation of motion of photons
(kμkμ ¼ 0) in the equatorial plane is

gttðktÞ2 þ grrðkrÞ2 þ 2gtφktkφ þ gφφðkφÞ2 ¼ 0; ð44Þ

where kt and kφ can be found through the Killing vector
fields ∂t and ∂φ and are presented in relations (19)–(20).
By using (19) and (20), the equation of motion (44) takes

the following form

grrðkrÞ2 −
gttL2

γ þ 2gtφLγEγ þ gφφE2
γ

g2tφ − gttgφφ
¼ 0; ð45Þ

that gives kr versus constants of motion and metric
components

ðkrÞ2 ¼ gttL2
γ þ 2gtφLγEγ þ gφφE2

γ

grrðg2tφ − gttgφφÞ
: ð46Þ

Now, we geometrically introduce the auxiliary bidimen-
sional vector K defined by the following decomposition

kr ¼ K cos φ; ð47Þ

rkφ ¼ K sin φ; ð48Þ

where K2 ¼ ðkrÞ2 þ r2ðkφÞ2, 0 ≤ φ ≤ 2π, and therefore,
we can use (20) and (46) to obtain K2

K2 ¼ gttL2
γ þ 2gtφLγEγ þ gφφE2

γ

grrðg2tφ − gttgφφÞ
þ r2

ðEγgtφ þ LγgttÞ2
ðg2tφ − gttgφφÞ2

:

ð49Þ

On the other hand, substituting (47) in (46) leads to the
following relation for K2

K2 ¼ gttL2
γ þ 2gtφLγEγ þ gφφE2

γ

grrðg2tφ − gttgφφÞ cos2 φ
: ð50Þ

Equating previous relations gives an equation for the
light bending parameter bφ ¼ Lγ=Eγ as below

ðgttb2φ þ 2gtφbφ þ gφφÞðg2tφ − gttgφφÞ sin2 φ
− r2grrðgttbφ þ gtφÞ2 cos2 φ ¼ 0; ð51Þ

that leads to the solution for bφ

bφ ¼ −
gtφ
gtt

−
ðg2tφ − gttgφφÞ sinφ

gtt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2tφ − gttgφφÞ sin2 φ − r2gttgrr cos2 φ

q ;

ð52Þ

where we should recall that 0 ≤ φ ≤ 2π. Note that this
equation plausibly reduces to relation (5) for φ ¼ �π=2
and to (21) for φ ¼ 0, as it should be.
This formula for the light bending parameter is quite

remarkable since it unifies the two expressions we had for
this quantity when considering the motion of a particle on
either side of the line of sight. We shall see below that it
unifies the relations (11)–(12) for the Kerr redshift into a
single one as well. Besides, it is a relation encoding the
light bending for an arbitrary point of the orbit on the
equatorial plane.
Since we are investigating photons traveling on the

equatorial plane, the relation (52) takes the following
explicit form
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bφ ¼ −
2aM

r − 2M

þ rΔ3=2 sinφ

ðr − 2MÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 sin2 φþ ðr − 2MÞr3 cos2 φ

p ; ð53Þ

which generalizes the known expressions for the light
bending parameter (5) and (21) to an arbitrary value of the
azimuthal angle φ along the circular orbit of a particle in
geodesic motion around a Kerr black hole.
Here, it is evident that the light bending parameter bφ

does not vanish on the line of sight where φ ¼ 0 due to the
dragging effect produced by the spin of the black hole. This
fact implies that giving this parameter an impact factor
interpretation necessarily neglects the dragging effect and
therefore is misleading.
Having the light bending bφ given in (53), we look

for redshift expressions as the next step. For a far away

detector with rd ≫ M ≥ a, the frequency shift (4)
reduces to

1þ zKerrφ 1;2
¼ Ut

e − bφU
φ
e ;

where we used the fact that Uμ
d ¼ δμt , a relation obtained

through Eqs. (6) and (7) in the limit r → ∞. We replace Ut
e

and Uφ
e from (6) and (7) to find

1þ zKerrφ 1;2
¼ �M1=2ða − bφÞ þ r3=2e

r3=4e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2e − 3Mr1=2e � 2aM1=2

q : ð54Þ

Now, by substituting bφ from (53), we obtain the
following explicit form for the frequency shift

1þ zKerrφ 1;2
¼ 1

ð1 − 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p
�
1 − 2M̃ � M̃1=2

�
ãþ Δ̃3=2

e sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ̃2

esin2φþ ð1 − 2M̃Þcos2φ
q ��

; ð55Þ

for an arbitrary point of the orbit on the equatorial plane
that reproduces the expressions for the redshift (11) and the
blueshift (12) when φ ¼ �π=2, respectively, as well as the
formula (22) for the gravitational redshift when the azimu-
thal angle vanishes φ ¼ 0.
When one tries to solve for the mass parameter by

making use of the product ð1þ zKerrφ 1
Þð1þ zKerrφ 2

Þ cor-
responding to probe particles lying at the same angular
distance to the left and to the right of the line of sight, an
eight order algebraic equation for M arises.
Figure 3 shows the general behavior of zKerrφ 1;2

versus the
azimuthal angle φ. For the Schwarzschild black hole,
the continuous green curve confirms that it does not
matter whether the geodesic particle is corotating or

counterrotating. Besides, jzKerrφ 1;2
j for jφj > π=4 is an

increasing function of a for corotating branch, whereas
it is a decreasing function for counterrotating particles. This
uncovers the importance of particles’ angular momentum
orientation in this analysis and shows that the behavior of
zKerr1;2 for re ¼ rms (dashed curves in Fig. 2) is valid for
re > rms as well.
There are also two notable points. First, from the left

panel of Fig. 3, we see nonzero zKerrφ 1;2
at the line of sight

(φ ¼ 0) for the Schwarzschild solutions which increases
for the Kerr solutions as the rotation parameter increases.
The nonzero zKerrφ 1;2

for the Schwarzschild case is due to
the gravitational redshift (Eq. (22) as ã → 0), whereas its
upward moving for the Kerr black holes is because of the

FIG. 3. The φ-dependent frequency shifts zKerrφ 1;2
(55) versus the azimuthal angle for the corotating branch (left panel) and

counterrotating branch (right panel). The continuous green curves represent the Schwarzschild redshift/blueshift. This figure is
evaluated on re ¼ 10rms.

PRITAM BANERJEE et al. PHYS. REV. D 105, 124037 (2022)

124037-10



dragging effect encoded in Eq. (22) due to (21). Second, we
observe vanishing zKerrφ 1;2

at a critical angle, say
φ ¼ φ̄ < 0, which means the kinematic blueshift cancel
the gravitational redshift (we have zkinφ̄− ¼ −zgφ̄ at φ̄, hence
zKerrφ̄ 1;2

¼ zkinφ̄− þ zgφ̄ ¼ 0). The position of this root
moves to the left by increasing the rotation parameter
due to the dragging effect (Note: the dragging effect
increases the redshift of particles in this case). However,
one can see the opposite behavior for the counterrotating
branch in the right panel of Fig. 3. These two points are
among the crucial findings of the present study.
For astrophysical applications it is important as well to

compute the redshift for bodies lying in the vicinity of the
line of sight on their orbital motion. Thus, for angles close
to zero (either side of the line of sight where φ ≈ 0), we
have

1þ zKerrφ 1;2
≈
ð1 − 2M̃Þ � M̃1=2½ãþ ð1 − 2M̃Þ−1=2Δ̃3=2

e φ�
ð1 − 2M̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2M̃1=2ã

p ;

ð56Þ

where it is worth noticing that the angle φ is negative if
measured clockwise with respect to the line of sight.
This expression for orbiting objects with large radius

(re ≫ M, a) reduces to

zKerrφ 1;2
≈
3

2
M̃ �

ffiffiffiffiffi
M̃

p
φþ 27

8
M̃2 � M̃3=2

�
3

2
φ − ã

�
: ð57Þ

From these relations, we have

ϖ ≡ zKerrφ 1
− zKerrφ 2

¼ �
ffiffiffiffiffi
M̃

p
ð2þ 3M̃Þφ; ð58Þ

λ≡ zKerrφ 1
þ zKerrφ 2

¼ M̃

�
3 ∓ 2ã

ffiffiffiffiffi
M̃

p
þ 27

4
M̃

�
; ð59Þ

that lead to the following approximate expressions for M
and a in terms of the redshift and blueshift

M ≈
re
9Γ

ðΓ − 2Þ2; ð60Þ

a ≈
9½ðΓ − 2Þ2ðΓ2 þ 4Þ − 12λΓ2�re

8
ffiffiffi
Γ

p ðΓ − 2Þ3 ; ð61Þ

with

Γ ¼
�
8þ 9ϖ

2φ2
ð9ϖ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81ϖ2 þ 32φ2

q
Þ
�
1=3

: ð62Þ

Here, we should note that these expressions indicate
approximate closed formulas for the black hole parameters
M and a in terms of observable redshift and blueshift of
photons emitted in the vicinity of the line of sight whereas

the similar exact expressions given in (15) and (16) were
obtained for either side of the black hole, where the position
vector of orbiting object with respect to the black hole
location is orthogonal to the line of sight. Therefore, the
relations (15), (16), (60), and (61) indicate closed formulas
for M and a versus zKerrφ 1;2

that can be considered for a
single orbit but at different emission points, namely, φ ¼
�π=2 and φ ≈ 0. The expressions (60)–(61) can find
astrophysical applications when modeling the frequency
shift of photons emitted by systemic water masers located
on accretion disks revolving around a black hole at the core
of active galactic nuclei (see below).

A. The Schwarzschild black hole mass versus the
azimuthal angle φ

Even though Eq. (55) cannot be algebraically solved for
the Kerr black hole parametersM and a, it renders a closed
formula for the black hole mass in the Schwarzschild case
when the spin parameter is neglected

M ¼ Hþ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

− þ 6RB sin2ð2φÞ
p
12RB sin2 φ

re; ð63Þ

with H� ¼ 3ðRB− sin2φÞ�2RB sin2φ, R ¼ 1þ zKerrφ 1
,

and B ¼ 1þ zKerrφ 2
which correctly reproduces the expres-

sion (15) for the mass at the points of maximal emission,
i.e., when the azimuthal angle is equal to �π=2.
It might seem that this formula does not hold for

computing the mass parameter through the redshift mea-
sured at the line of sight where φ ¼ 0. However, in this
limiting case one recovers from (56) the expression for the
central redshift given in (22). For the Schwarzschild case,
we find the following formula for the mass measured at the
line of sight

M ¼ ð1þ zgÞ2 − 1

3ð1þ zgÞ2
re; ð64Þ

where the gravitational redshift is given by (22) when a
vanishes.

VI. BOOSTING THE SOLUTION WITH
INCORPORATED AZIMUTHAL ANGLE

At the final stage, it is crucial to obtain the dependency of
redshift on the azimuthal angle φ for the black holes
experiencing the peculiar redshift z0. This will allow us to
include the redshift of emitted photons from an arbitrary
point in a moving galaxy receding from us or approaching
toward us in the calculations. To do so, we compose the φ-
dependent redshift zKerrφ 1;2

given in (55) with the peculiar
redshift z0, as described in Sec. IV.
By considering the relation zKerrφ 1;2

¼ zkinφ� þ zgφ , the
φ-dependent total redshift ztotφ 1;2

(33) takes the form
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ztotφ 1;2
¼ ð1þ zKerrφ 1;2

Þð1þ zboostÞ − 1: ð65Þ

Now, by employing Eq. (55), we can find the explicit
form of ztotφ 1;2

as below

ztotφ 1;2
¼ −1þ 1

ð1 − 2M̃Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2ãM̃1=2

p

×

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s �
1 − 2M̃ � M̃1=2

×

�
ãþ Δ̃3=2

e sinφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ̃2

esin2φþ ð1 − 2M̃Þcos2φ
q ��

; ð66Þ

which reduces to (55) for z0 ¼ 0. This expression is the
most general relation for the redshift ztotφ 1

and blueshift
ztotφ 2

of photons emitted by geodesic particles from an
arbitrary point (charachterized by the azimuthal angle φ) in
the equatorial plane with the emitter radius re orbiting
(either corotating or counterrotating) the Kerr black hole
with the peculiar redshift z0, while the detector is located
far away from the source.
If we set φ ¼ �π=2, we get back the boosted redshift

expressions corresponding to the maximum value of the
light bending parameter, given by (34) and (35) respec-
tively. The expansions in (36) and (37) are also valid for
sources in close proximity to φ ≈�π=2.
The frequency shifts of orbiting particles close to the line

of sight, where φ ≈ 0, simplify to

ztotφ 1;2
≈ −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s

×
ð1 − 2M̃Þ � M̃1=2½ãþ ð1 − 2M̃Þ−1=2Δ̃3=2

e φ�
ð1 − 2M̃Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M̃ � 2M̃1=2ã

p :

ð67Þ

Interestingly, it is also possible to obtain closed formulas
for the mass and spin parameters of the Kerr black hole in
terms of the total redshift in the vicinity of the line of sight
incorporating the peculiar redshift z0. By expanding the
above relation for large emitter radius, we first compute the
generalized form of Eq. (57) as

ztotφ 1;2
≈ −1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s �
1þ 3

2
M̃ �

ffiffiffiffiffi
M̃

p
φ

þ 27

8
M̃2 � M̃3=2

�
3

2
φ − ã

��
: ð68Þ

Then, we combine these equations to find the following
expressions

ϖ̂ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s
ð2þ 3M̃Þ

ffiffiffiffiffi
M̃

p
φ; ð69Þ

λ̂ ¼ −2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1 − z0

s �
2þ M̃

�
3 ∓ 2ã

ffiffiffiffiffi
M̃

p
þ 27

4
M̃

��
; ð70Þ

where ϖ̂ ¼ ztotφ 1
− ztotφ 2

and λ̂ ¼ ztotφ 1
þ ztotφ 2

. Now, we
take advantage of these expressions to obtain the following
approximate closed formulas for M and a in terms of the
total redshift and blueshift

M ≈
re

9Γ̂ð1þ z0Þ
½Γ̂ − 2ð1þ z0Þ�2; ð71Þ

a≈
9re

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ̂ð1þ z0Þ

q
½Γ̂−2ð1þ z0Þ�3

×

�
½Γ̂−2ð1þ z0Þ�2½Γ̂2þ4ð1þ z0Þ2�

−12Γ̂2ð1þ z0Þ
ffiffiffiffiffiffiffiffiffiffiffi
1− z20

q �
λ̂þ2−2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0
1− z0

s ��
; ð72Þ

Γ̂¼
�
8ð1þ z0Þ3þ

9ϖ̂ð1þ z0Þ2
2φ2

× ð9ϖ̂ð1− z0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81ϖ̂2ð1−z0Þ2þ32φ2ð1− z20Þ

q
Þ
�1

3

;

which reduce to Eqs. (60)–(62) in the limit z0 ¼ 0,
respectively. We recall that the closed formulas for the
black hole parameters M and a in terms of observable total
redshift and blueshift of photons presented in (42), (43),
(71), and (72) can be employed for a single orbit of radius
re at different emission points φ ¼ �π=2 and φ ≈ 0.
In particular, the above equations are important to obtain

the mass and rotation parameters of a Kerr black hole using
the detected redshift and blueshift of photons emitted from
sources which lie on both sides of the line of sight at equal
but small angular separations, a setup of photon sources
that can be applied to systemic masers in active galactic
nuclei (see below).
Besides, the total frequency shifts (68) for low peculiar

redshifts (z0 ≪ 1) and large orbits of the emitter
(M; a ≪ re) read

ztotφ 1;2
≈
3

2
M̃ þ z0 �

ffiffiffiffiffi
M̃

p
φþ 27

8
M̃2 þ 3

2
M̃z0

þ 1

2
z20 �

3

2
M̃3=2φ ∓ M̃3=2ã: ð73Þ
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VII. DISCUSSION AND FINAL REMARKS

In this work, we have solved an inverse problem in order
to obtain closed formulas for the Kerr black hole mass and
spin parameters in terms of directly observable quantities.
This analysis has been performed for both the cases where
the Kerr black holes are static and moving (either approach-
ing or receding) with respect to us.
These expressions can be applied to real astrophysical

systems where stars or water maser clouds, for instance, are
equatorially revolving in circular motion around a central
black hole [31–34]. The motion of these so-called mega-
masers has been tracked for several galaxies using astrom-
etry techniques to determine positions and spectroscopy to
measure frequency shifts.
We would like to highlight that a simplified version of

this formalism for static (Schwarzschild) black holes has
been already applied to the accretion disk with water
masers that orbit circularly and equatorially around a
supermassive black hole hosted at the center of the active
galactic nucleus of NGC 4258 [28]. In the aforementioned
study, the mass-to-distance ratio was estimated and, more-
over, the gravitational redshift of the closest maser to the
black hole was quantified using this general relativistic
method. Remarkably, the first estimation of the mass-to-
distance ratio for the central black hole harbored at the core
of the so-called gigamaser TXS-2226-184 has been also
performed in [35], where a quantitative estimate of the
gravitational redshift of the closest maser cloud to the black
hole was given as well.
The new findings presented here will also be useful for

such real astrophysical systems. In particular, the results
obtained in Sec. IV are relevant for applications to certain
astrophysical systems that present the geometrical proper-
ties as well as the receding motion required for our
modeling. As an example we can mention some super-
massive black holes hosted at the center of active galactic
nuclei like NGC 4258 and NGC 2273. Both of these
galaxies possess an accretion disk with water masers that
orbit circularly and equatorially around a black hole center;
moreover, they are moving away from us and their motion
is parametrized by the so-called peculiar redshift z0.

On the other hand, the results presented in Secs. Vand VI
can be applied to some astrophysical systems that present
circularly orbiting bodies that lie close to the line of sight as
in almost all the water megamaser clouds of accretion disks
revolving around a black hole in the center of active
galactic nuclei (see, for instance, [31,33]). These central
systemic masers lie precisely around the line of sight and so
far have been omitted when fitting observational data
within a general relativistic modeling, even for the
Schwarzschild black hole case [28].
Besides, the aforementioned expressions for the fre-

quency shifts allow us to statistically estimate the Kerr
black hole parameters M and a, as well as the peculiar
redshift z0, by making use of a Bayesian fit. Here it is worth
mentioning that in order to attain a physically viable
estimation for the spin parameter, it is necessary to measure
all the observable quantities, the total frequency shifts as
well as the emitter positions in the sky, with enough
precision since this parameter introduces a very subtle
effect on the gravitational field generated by the black hole.
Finally, we would like to mention that the aforemen-

tioned predicted values of the total redshift and blueshift are
bounded for the Kerr black hole metric, placing a simple
test on general relativity in its strong field regime. Thus, if
the observed values of redshifts and blueshifts of photons
emitted by astrophysical sources do not lie within the
physically allowed shaded area of Fig. 2, as predicted by
the Kerr spacetime, then this would imply that the photon
source is not orbiting a Kerr black hole, but a different
metric.
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