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We study the motion of a spinning particle with gravimagnetic moment in Schwarzschild-like
spacetimes with a metric ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2, specifically we deal with Schwarzschild,
Reissner-Nordstrom black holes as well as Ayon-Beato-Garcia and Bardeen regular spacetimes. First, we
introduce the Hamiltonian system of equations which describes such kind of particles. In the case of null
gravimagnetic moment, the equations are equivalent to the Mathisson-Papapetrou-Tulczyjew-Dixon
(MPTD) equations. Working in the equatorial plane, using the constants of motion generated by the
symmetries of the considered spacetimes and the spin supplementary conditions (SSC), we change the
problem of solving six differential equations for the momenta and the nonvanishing spin-tensor
components to solving six algebraic equations. We show that the equation for the P0ðrÞ component
totally decouples, P0ðrÞ can be found by solving a 6th order polynomial. We analyze the conditions for
existence of solutions of this algebraic system for the relevant cases of gravimagnetic moment equal to unit,
which corresponds to a gravimagnetic particle, and zero which corresponds to the MPTD system. A
numerical algorithm to generate solutions of the momenta Pμ is provided and some solutions are generated.
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I. INTRODUCTION

The detection of gravitational waves by LIGO and
VIRGO detectors comes after years of technological devel-
opments [1,2], confirming one of the most important
predictions of general relativity. Future observations, coming
from the existing ground-based detectors and the planned
space-based missions such as LISA, promise to open new
windows for physics where the gravitational field is strong.
Among the candidates for gravitational waves sources are
the extreme mass-ratio inspirals (EMRIs) systems where one
component has negligible mass as compared to the
companion. As a first approximation, EMRIs are modeled
by a point test particle in motion around an isolated black
hole (BH). Despite the simplification, this approximation
gives essential information about the motion of the bodies
orbiting a supermassive object. A more realistic model is one
that takes into account the internal angular momentum of the

test body. The interaction between the spin and the gravi-
tational field can significantly modify the trajectories and
precessions of the test bodies, reflecting in the forms of
gravitational waves. Besides the observational importance,
the study of relativistic spinning particles in gravitational
fields has importance from the theoretical point of view. For
instance, Wald [3] showed that the interaction between the
spin and the gravitational field of a spherical body with a
slow rotation is similar to the electromagnetic interaction
between two dipoles. This result was recently extended to
the case when the particle has gravimagnetic moment [4,5].
The conventional equations used to describe a spinning
object moving in a gravitational field, are the manifestly
generally covariant Mathisson-Papapetrou-Dixon equations
[6–10]. These equations are formulated assuming that the
test body structure could be described by a set of multipoles
and that the approximation involves only the first two terms
(the pole-dipole approximation). The equations are then
derived by the integration of the conservation law for the
energy-momentum tensor: Tμν

;μ ¼ 0. Those equations are

∇pμ ¼ −
1

2
Rμναβuνsαβ; ð1Þ
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∇sμν ¼ pμuν − pνuμ; ð2Þ

where τ, uμ ¼ dxμ
dτ , p

μ, sμν are the proper time, the four-
velocity of the particle, its momentum and the spin tensor,
respectively. In addition to (1) and (2), it is necessary to
include some conditions on the spin’s components, the so-
called SSC. In this paper, we are interested in the Tulczyjew
SSC

pμsμν ¼ 0: ð3Þ

This condition reduces the number of independent compo-
nents of sμν. Additionally, it permits to establish a relation
between uμ and pμ. We refer the Eqs. (1)–(2) together with
(3) as Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD)
equations. The MPTD equations can be obtained by apply-
ing minimal coupling with gravity to an action which
describes a free spinning particle in Minkowski space time
[11]. Here we shall study the nonminimal coupling (4), with
the interaction constant κ called gravimagnetic moment.
This paper is organized as follows. The dynamical equations
describing a spinning particle with gravimagnetic moment
are established in Sec. II. In Sec. III, we study the motion
of spinning particles in a spacetime given by ds2 ¼
−fðrÞc2dt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ particularly, we

consider the Schwarzschild and Reissner-Nordstrom black
holes as well as the regular Ayon-Beato-Garcia and Bardeen
regular black holes. In Sec. IV, we provide explicit expres-
sion to relate velocities and momenta for both cases: MPTD
and gravimagnetic particles. Conclusions and some final
remarks are provided in Sec. V.
Notation. Our variables employ an arbitrary parametri-

zation σ, then _xμ ¼ dxμ
dσ . Square brackets stand for anti-

symmetrization: P½μ _xν� ¼ Pμ _xν − Pν _xμ. Notation for the
scalar functions constructed from four-dimensional vectors
and second-rank tensors are Z2 ¼ gμνZμZν, _xμGμν _xν ¼
_x · G · _x, θ · S ¼ θμνSμν, μ, ν ¼ 0, 1, 2, 3.

II. HAMILTONIAN SYSTEM OF EQUATIONS FOR
SPINNING PARTICLES

The variational formalism for spinning particle gives an
alternative to the pole-dipole formalism for the approximate
description of a rotating body in general relativity. The
dynamics of a spinning particle can be obtained from the
Lagrangian variational problem, constructed in terms of
variables describing the position and inner angular momen-
tum of the body, and neglecting the degrees of freedom
describing other details of the body’s internal structure.
Many models for spinning particles have been reported
[5,11–16]. One advantage of using spinning-particle mod-
els is the possibility to study the interactions beyond the
minimal coupling. The nonminimal interactions can dras-
tically modify the overall picture of the motion. In

particular, in [17–20] it was shown that three-acceleration,
implied by MPTD equations, has unexpected ultrarelativ-
istic behavior, i.e., acceleration does not stop to grow when
the speed of the particle is closed to the speed of light c. So,
MPTD equations are not appropriate for the ultrarelativistic
particles, and should be properly modified. The unexpected
behavior was improved by adding the nonminimal coupling
(4) in the vector model of spin. As a result, the three-
acceleration in modified theory goes to zero when the
particle’s speed approaches to c [17–20], similarly to the
charged particle in an electromagnetic field. The extra term
(4) is called gravimagnetic interaction. Besides the
improvement of ultra relativistic behavior, the nonminimal
interaction results in some corrections at 1=c2 approxima-
tion. Even for small velocities, this leads to new observable
effects, as compared with MPTD particle [4,5].
In the Hamiltonian formulation of the vector model of

spin [5,11,13,17,18,21], the basic spin variables are the
non-Grassmann vector ωμ and its conjugate momentum πμ.
These variables change under the local symmetry of the
model, called the spin-plane symmetry. According to
general theory of singular systems, the variables are not
observable quantities. However, the components of spin
tensor, defined as Sμν ¼ 2ðωμπν − ωνπμÞ, are invariant, so
S represents an observable quantity. Another advantage of
using the vector model of spin is that we do not need to
introduce some SSC by hand. The Tulczjew SSC and the
constancy of the magnitude of spin appear as a consequence
of the constraints, arising as the conditions of extreme of the
variational problem. The equations of motion and the
constraints, obtained from the Lagrangian, form a closed
system, that determines the evolution of a spinning particle.
Gravimagnetic interaction has been used in several

models [4,5,16–18,22–24]. Here we introduce this as

κ

16
θ · S; ð4Þ

where the tensor θμν ≡ RμναβSαβ is the gravitational anal-
ogy of the electromagnetic field strength. That coupling is
similar to the interaction of a spinning particle with an
electromagnetic field through the gyromagnetic ratio g. For
this reason (4) takes its name, and the constant κ is called
gravimagnetic moment.
The Hamiltonian equations, coming from the vector

model of spin, for the particle’s position xμðσÞ, canonical
momentum Pμ, and the spin tensor are [5]

∇Pμ ¼ −
1

4
θμν _xν −

λκ

32
ð∇μRαβσλÞSαβSσλ; ð5Þ

∇Sμν ¼ 2P½μ _xν� þ λκ

4
θ½μαSν�α; ð6Þ

_xμ ¼ λ½δμν − aðκ − 1ÞSμαθαν�Pν þ λ
cκa
b

Zμ; ð7Þ
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where ∇ denotes the covariant derivative along the curve

xμðσÞ (∇Pμ ¼ dPμ

dσ − Γα
μβ _x

βPα;…). The vector Zμ is defined
as

Zμ ≡ b
8c

Sμνð∇νRαβσλÞSαβSσλ; ð8Þ

and the scalars a and b are

a≡ 2

16μ2 þ ðκ þ 1Þðθ · SÞ ; ð9Þ

b≡ 1

8μ2 þ κðθ · SÞ ; ð10Þ

with μ2 ¼ m2
0c

2 being m0 the mass of the test particle. In
vector models of spin, besides the equations of motion, we
obtain the conditions

SμνPν ¼ 0; ð11Þ

SμνSμν ¼ 8α; ð12Þ

P2 þ κ

16
ðθ · SÞ þ μ2 ¼ 0: ð13Þ

These conditions come from the constraints of the model.
The first condition is just the Tulczyjew SSC (3), and the
second establishes that the magnitude of the spin is a
constant, being α the value of the spin. The conditions (11)
and (12) imply that only two components of spin-tensor are
independent, as it should be for an elementary spin one-half
particle. The last equation is the mass-shell condition of the
model. Let us remark that in this model (11)–(13) are not
introduced by hand; they are a consequence of the Dirac
procedure for singular systems [25–27].
The presence of λ in Eqs. (5)–(7) is related to the

reparameterization invariance of the model. In the follow-
ing subsections, we will exclude it in the particular cases of
gravimagnetic moments equal to one and zero.

A. Gravimagnetic particles κ = 1

Wewill refer to the particles with κ ¼ 1 as gravimagnetic
particles. In this case, Eq. (7) and condition (13) are

_xμ ¼ λ½Pμ þ cZμ�; ð14Þ

P2 þ 1

16
ðθ · SÞ þ μ2 ¼ 0: ð15Þ

The Lagrangian multiplier λ, can be excluded using the
standard procedure, i.e., taking the square of (14)

_xμgμν _xν ¼ λ2½Pμ þ cZμ�gμν½Pν þ cZν�
¼ λ2½P2 þ c2Z2�; ð16Þ

where we have used that PμZμ ¼ 0. Now, replacing P2

from (15) we get

λ2 ¼ −_xμgμν _xν

m2
rc2

; ð17Þ

where we have defined the scalar mr as

m2
rc2 ≡ μ2 þ 1

16
ðθ · SÞ − c2Z2: ð18Þ

Substituting (17) in (14) we get

_xμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x · g · _x

p ¼ 1

mrc
½Pμ þ cZμ�: ð19Þ

The resulting equation of motion is manifestly invariant
under reparameterizations. In (19), we can choose any
parameter to describe the curve, for instance, let us choose
proper time

c2dτ2 ¼ −gμνdxμdxν: ð20Þ

For this choice, the Eqs. (5), (6) and (19) become

∇Pμ ¼ −
1

4
θμν _xν −

1

32mr
ð∇μRαβσλÞSαβSσλ; ð21Þ

∇Sμν ¼ 2P½μ _xν� þ 1

4mr
θ½μαSν�α; ð22Þ

_xμ ¼ 1

mr
½Pμ þ cZμ�: ð23Þ

Equations (21)–(23), together with the SSC (11) and (12)
and the condition (15), form the Hamiltonian system of
equations describing a gravimagnetic particle. The scalar
mr in (23) is a “constant” of normalization, i.e., the square
of the right-hand side (rhs) of (23) is equal to −c2, which is
consistent with (20). Let us remark that both the vector Zμ

and the scalar mr depend on the spin variables and the
Riemann tensor and not on the momenta. Then, from (23),
we trivially obtain the momentum-velocity relation

Pμ ¼ mr _xμ − cZμ: ð24Þ

This relation can be replaced in (21) and (22) resulting the
Lagrangian equations of the system, i.e., second-order
differential equations for xμ.

B. κ= 0 particles

In the case of κ ¼ 0 Eqs. (7) and (13) are

_xμ ¼ λTμ
νPν; ð25Þ

P2 þ μ2 ¼ 0; ð26Þ
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where Tμ
ν is the second rank tensor defined as

Tμ
ν ¼ δμν þ aSμσθσν; ð27Þ

with a ¼ 2
16μ2þθ·S. Following the same procedure to obtain

(17), but using (25), at this time we get

λ2 ¼ −_xμgμν _xν

−P ·G · P
; ð28Þ

where we have defined the second rank tensor

Gαβ ≡ Tμ
αgμνTν

β: ð29Þ

Substituting (28) in (25) we get

_xμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x · g · _x

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−P ·G · P

p Tμ
νPν: ð30Þ

Once again, the resulting equation of motion is manifestly
invariant under reparametrizations. Choosing the proper
time parametrization (20), the Eqs. (5), (6) and (25) become

∇Pμ ¼ −
1

4
θμν _xν; ð31Þ

∇Sμν ¼ 2P½μ _xν�; ð32Þ

_xμ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−P ·G · P

p Tμ
νPν: ð33Þ

Equation (33) is normalized to c2, with a factor of
normalization depending on the momenta. Using the
SSC (11) and (26), the scalar into the square root takes
the form

−PαGαβPβ ¼ μ2 −
4PαθασSσμgμνSνλθλβPβ

ð16μ2 þ θ · SÞ2 : ð34Þ

Replacing this in (33), we obtain the equation for uμ

introduced in [28]. To obtain the momentum-velocity
relation in this case, we first multiplied (25) by the inverse
of Tμ

ν
1

ðT−1Þμν ¼ δμν −
1

8μ2
Sμαθαν; ð35Þ

obtaining

Pμ ¼ 1

λ
ðT−1Þμν _xν: ð36Þ

Now, using (26) we get

λ2 ¼ −_x · Ḡ · _x
μ2

; ð37Þ

where

Ḡμν ≡ ðT−1ÞαμgαβðT−1Þβν: ð38Þ

Finally, replacing (37) in (36) we obtain

Pμ ¼ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−_x · Ḡ · _x

p ðT−1Þμν _xν: ð39Þ

The rhs of this equation does not depend on the
momenta, so, substituting (39) in (31) and (32) we obtain
the Lagrangian equations for the system.

1. Comparison with MPTD equations

We can compare the dynamics of particles with κ ¼ 0,
Eqs. (31)–(33) and conditions (11), (12) and (26) with
the dynamics described by the MPTD equations. The
Eqs. (31) and (32) together with (11) form the MPTD
equations (1)–(3) (our spin is twice that of Dixon).
Concerning to conditions (12) and (26), in [11,18], it is
showed that, the MPTD equations imply that

ffiffiffiffiffiffiffiffiffi
−p2

p
¼

k ¼ const and sμνsμν ¼ β ¼ const, so, the class of trajec-
tories of our spinning particle with κ ¼ 0, μ ¼ k and 8α ¼
β corresponds to the MPTD theory. To close this corre-
spondence, in the following paragraphs, we will show
how (33) is obtained from the MPTD equations.
First, we considered the consistency of (3), i.e.,

d
dσ ðpμsμνÞ ¼ 0, from this, we obtain the equation

p2uμ − ðp · uÞpμ þ 1

2
sμαθ̄αβuβ ¼ 0; ð40Þ

where θ̄μν ≡ Rμναβsαβ. Now, let us consider the auxiliary
vector Aμ, so that

uμ ¼ pμ þ Aμ: ð41Þ

Replacing this in the consistency relation (40) we obtain the
equation

Nν
αAα ¼ A · p

p2

�
δνα −

1

2A · p
sνλθ̄λα

�
pα; ð42Þ

where the second rank tensor Nν
α is defined as

Nν
α ¼ δνα þ

1

2p2
sνλθ̄λα: ð43Þ

This tensor possesses inverse given by

1To show that (35) is the inverse of (27) we use the identity
SμαθαβSβν ¼ − 1

2
ðθ · SÞSμν, which comes from the definition of

Sμν in the vector-model of spin.
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ðN−1Þμα ¼
1

ξ

��
1 −

1

4p2
θ̄ · s

�
δμα −

1

2p2
sμλθ̄λα

�
; ð44Þ

where2

ξ ¼ 1 −
1

4p2
ðθ̄ · sÞ − 1

43p4
ðs · s⋆Þðθ̄ · θ̄⋆Þ: ð45Þ

Multiplying (42) by N−1 we obtain Aα, and substituting the
result in (41) we get

uμ ¼
�ðp2 þ A · pÞðp2 − 1

4
θ · sÞ

ξp4

�
Mμ

αpα; ð46Þ

where

Mμ
α ≡ δμα −

2

4p2 − θ̄ · s
sμλθ̄λα: ð47Þ

To exclude Aμ, we take the square of (46), obtaining

�ðp2 þ A · pÞðp2 − 1
4
θ · sÞ

ξp4

�
2

¼ c2

−p · Ḡ · p
; ð48Þ

where

Ḡαβ ≡Mμ
αgμνMν

β: ð49Þ

Then, the velocity-momentum relation, consistent with
(1)–(3) is

uμ ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p · Ḡ · p

p Mμ
αpα: ð50Þ

As we mentioned p2 is a constant in the MPTD theory, so,
considering the mass-shell condition p2 þ μ2 ¼ 0 (i.e.,
k ¼ μ), Mμ

α becomes

Mμ
α ¼ δμα þ 2

4μ2 þ θ̄ · s
sμλθλα: ð51Þ

This coincides with Tμ
ν of (27) (taking sμν ¼ 1

2
Sμν),

then, (50) becomes (33).
Equations (21) and (22) of gravimagnetic particle can be

compared with Dixon’s equations that take into account the
quadrupole moment, the Eqs. (1.28) and (1.29) in [30].
In 1=c2 approximation, they coincide if we take
Jμναβ ¼ 3

16mr
SμνSαβ. That is our nonminimal interaction

corresponds to the specific choice of quadrupole moment in

terms of spin. Note however, that the vector model of spin
provides also the spin conditions (11) and (12), the mass-
shell condition (13), and the equation (23). In Dixon’s
approach, the Eqs. (11) and (13) are not present.

C. Constants of motion

Depending on the symmetries of the spacetime studied,
the metric could admit Killing vectors, ξμ is a Killing vector
if ξμ;ν þ ξν;μ ¼ 0, such vectors generate constants of
motion. For a spinning particle, the constant of motion
associated with ξμ is

JðξÞ ¼ Pμξμ −
1

4
Sμν∇νξμ: ð52Þ

For the case of κ ¼ 0 [29,31] can be consulted. For κ ≠ 0,
see [5].

III. SPINNING PARTICLES IN
SCHWARZSCHILD-LIKE SPACETIMES

Let us consider the metric in spherical coordinates

ds2¼−fðrÞc2dt2þ 1

fðrÞdr
2þr2dθ2þr2sin2θdϕ2: ð53Þ

Examples of this type of metrics in classical general
relativity are Schwarzschild and Reissner-Nordstrom
spacetimes. In the context of regular BH, (53) includes
Ayon-Beato-Garcia (ABG) and Bardeen BHs which have
been proved to be exact solutions to the Einstein field
equations associated with nonlinear electrodynamics. The
general results found here will be applied to these four
working examples.
The set of phase-space variables which describes

the spinning particle is conformed by its position coor-
dinates xμ ¼ ðx0; r; θ;ϕÞ, with canonical momenta
Pμ ¼ ðP0; Pr; Pθ; PϕÞ and the components of the antisym-
metric tensor of spin, ðS0r; S0ϕ; S0θ; Srθ; Srϕ; SθϕÞ.
The Hamiltonian equations—in a covariant form—are
(21)–(23) for a gravimagnetic particle and (31)–(33) for
a MPTD particle. Besides, we have five algebraical
equations; the conditions (12) and (13), and three inde-
pendent equations derived from the SSC (11)

S0i ¼ SijPj

P0

: ð54Þ

By construction of the vector model, the above mentioned
algebraical equations are functionally independent, so they
can be used to write five phase-space variables through the
others.
Since the metric is rotationally-invariant, it is sufficient

to consider the motion on the equatorial plane. Then, the
problem is to show that the Hamiltonian equations, together
with the algebraic equations (12), (13) and (54) admit

2The symbol ⋆ is used to denote the dual of a skew-symmetric
tensor Aμν, defined as A⋆μν ¼ 1

2
ϵμναβAαβ. To prove that (44) is the

inverse of (43), we use the identities; AμαBαν − B⋆μαA⋆
αν ≡

− 1
2
δμνðAαβBαβÞ where Aμν and Bμν are two arbitrary skew-

symmetric tensors, and the identityAμσA⋆
σν¼−1

4
δμνðAαβA⋆

αβÞ [29].
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solutions with θðσÞ ¼ π
2
for all σ. First, let us establish the

conditions for such motion. If we assume that

Pθ ¼ 0; Sθr ¼ Sθϕ ¼ 0; ∀ σ; ð55Þ

the relations (54) imply

Sθ0 ¼ 0; ð56Þ

P0S0r ¼ SrϕPϕ; ð57Þ

P0S0ϕ ¼ −SrϕPr; ð58Þ

through the motion. On the other hand, from (7) we have
that

_θ ¼ λ½Pθ − aðκ − 1ÞSθμθμβPβ�

þ λκa
8

Sθμð∇μRαβσλÞSαβSσλ: ð59Þ

Then, the conditions (55) and their consequence (56),
imply that the angular velocity _θ vanish for all σ. It is
not difficult to verify that such conditions are consistent
with the equations of motion, i.e., _Pθ ¼ 0 and _Sθμ ¼ 0
through the motion. This affirmation is valid for any value
of the gravimagnetic moment κ.
As a result, the phase-space on the equatorial plane is

conformed by three coordinates xμ ¼ ðx0; r;ϕÞ their
canonical momenta ðP0; Pr; PϕÞ and three nonvanish
components of the spin ðS0r; S0ϕ; SrϕÞ (with their antisym-
metric partners). As a next step, let us show that the
dynamic equations for these variables have a solution. As
we mentioned, we have some independent algebraical
equations, on the equatorial plane remain four, (12),
(13), (57), and (58). Each of these equations can be used
to omit one dynamical equation. In addition to these, we
have two more independent equations coming from the
symmetries of the Schwarzschild-like spacetime. The
metric (53) admits four Killing vectors

ξμð0Þ ¼ ð1;0;0;0Þ; ξμð1Þ ¼ ð0;0;sinϕ;−cotθcosϕÞ; ð60Þ

ξμð2Þ ¼ ð0;0;cosϕ;−cotθsinϕÞ; ξð3Þ ¼ ð0;0;0;1Þ: ð61Þ

For each vector, there is one constant of motion given by
(52). On the equatorial plane, the constants of motion
associated with ξμð0Þ and ξμð3Þ are

Jðξ0Þ ¼ −E ¼ P0 þ
1

4
f0ðrÞS0r; ð62Þ

Jðξ3Þ ¼ L ¼ Pϕ þ
r
2
Srϕ: ð63Þ

Where f0ðrÞ ¼ dfðrÞ
dr . The constant E is the energy of the

particle and L its angular momentum. As a result, with (62)
and (63), we have six algebraical independent relations
among the phase-space coordinates.3 On the equatorial
plane the scalar

θ · S
4

¼ R0r0rðS0rÞ2 þ R0ϕ0ϕðS0ϕÞ2 þ RrϕrϕðSrϕÞ2; ð64Þ

where

R0r0r ¼
1

2
f00ðrÞ; R0ϕ0ϕ ¼ r

2
fðrÞf0ðrÞ;

Rrϕrϕ ¼ −
r
2

f0ðrÞ
fðrÞ : ð65Þ

For the square of the momentum and spin we have

P2 ¼ −
1

fðrÞP
2
0 þ fðrÞP2

r þ
1

r2
P2
ϕ; ð66Þ

S2 ¼ −ðS0rÞ2 − r2fðrÞðS0ϕÞ2 þ r2

fðrÞ ðS
rϕÞ;

¼
�
Srϕ

P0

�
2
�
r2

fðrÞP
2
0 − r2fðrÞP2

r − P2
ϕ

�
¼ 4α ð67Þ

Using (57) and (58) to eliminate the dependence of Sr0 and
Sϕ0 in the Killing relations (62) and (63) and in conditions
(12) and (13), we obtain the system

P0ðP0 þ EÞ þ 1

4
PϕSrϕf0ðrÞ ¼ 0; ð68Þ

Pϕ þ
r
2
Srϕ − L ¼ 0; ð69Þ

P2
0½P2þμ2�þκ

�
Srϕ

2

�
2

½R0r0rP2
ϕþR0ϕ0ϕP2

rþRrϕrϕP2
0�¼0

ð70Þ

4α

r2
P2
0 þ ðSrϕÞ2P2 ¼ 0: ð71Þ

Solving (68)–(71), we can determine ðP0; Pr; PϕÞ and the
component of the spin Srϕ in terms of the radial coordinate
r, the parameters that fðrÞ may have and the constants
ðE;L;αÞ, i.e., to find the first integrals of motion. After
that, the remaining components of the spin are determined
using (57) and (58). At this point, the analysis has been
done for arbitrary gravimagnetic moment κ. In the next

3The equations associated to ξð1Þ and ξð2Þ are not considered
since they are fulfilled identically on the equatorial plane.
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paragraphs, we will study the relevant cases of the unit and
zero gravimagnetic moments.

A. MPTD particles (κ= 0)

In the case of an MPTD particle, the system (68)–(71)
has an exact solution. For κ ¼ 0, Eq. (70) becomes (26),
using this to remove P2 in (71), we obtain that

�
Srϕ −

ffiffiffiffiffiffiffiffiffi
4α

μ2r2

s
P0

��
Srϕ þ

ffiffiffiffiffiffiffiffiffi
4α

μ2r2

s
P0

�
¼ 0; ð72Þ

which implies

Srϕ ¼ � 2a
r
P0: ð73Þ

where a2 ¼ α=μ2. On the other hand, combining (69) and
(68), we get the equation

P0ðP0 þ EÞ − r
8
f0ðrÞSrϕ

�
Srϕ −

2

r
L

�
¼ 0: ð74Þ

Combining this with (73) we obtain

Pð�Þ
0 ¼ −

E� f0ðrÞ aL
2r

1 − β
: ð75Þ

Once P0 has been determined, Srϕ can be found using (73)
and Pϕ using (69), resulting

Srϕð�Þ ¼ −
�
2

r

�
βL� aE
1 − β

; ð76Þ

Pð�Þ
ϕ ¼ L� aE

1 − β
; ð77Þ

where we have introduced β≡ a2f0ðrÞ=2r. Finally, replac-
ing (75) and (77) in (26), that is, in P2 þ μ2 ¼ 0, Pr is
readily attained

P2
r ¼

1

½fðrÞ�2
�
E� f0ðrÞ aL

2r

1 − β

�
2

−
1

fðrÞ
�
1

r2

�
L� aE
1 − β

�
2

þ μ2
�
: ð78Þ

For fðrÞ ¼ 1 − 2m=r, the Schwarzschild solution for the
MPTD equations which have been reported in [28,32] is
recovered. The expressions for P0, Pϕ, Pr and Srϕ

presented here allows us to use space-times of the form
(53) like the Reissner-Nosrdstrom BH as well as Bardeen
and Ayon-Beato-Garcia BG regular BHs among others
[33–35]. In any case, given a set of parameters E, L, a, μ,
and the parameters encoded in the specific space-time, the

condition P2
r > 0 provides the radial spatial domain for the

solution. It is convenient to introduce the variables scaled
with μ and m (the mass parameter of the black hole being
studied)

S̃rϕ ≡ Srϕ=μ; S̃0ϕ ≡ S0ϕ=μ; S̃0r ≡ S0r=mμ;

P̃r ≡Pr=μ; P̃ϕ ≡ =mμ; P̃0 ≡P0=μ; Ẽ≡E=μ;

L̃≡L=ðmμÞ; r̃≡ r=m; ã≡ a=m: ð79Þ

Given a set of parameters ã, Ẽ, L̃, we still have to decide
which sign to use in (75). Using the lower sign in (75) or
equivalently in (78), we may determine the region in space
where P2

r > 0 holds. For Ẽ ¼ 0.97, L̃ ¼ 4.0, in the upper
panel in Fig. 1, we show P̃2

rðr̃Þ for Schwarzschild BH with
different values of ã ¼ 0.1 (the lowest black curve),
followed by ã ¼ 0.2, 0.4, 0.54, 0.6, the last value

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20  25  30

P~
2 r

r/m

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20  25  30  35

P~
2 r

r/m

FIG. 1. In the upper panel, it is shown P̃2
rðr̃Þ with the

parameters Ẽ ¼ 0.97, L̃ ¼ 4 and different values of the parameter
ã ¼ 0.1 (the lowest black curve), followed by ã ¼ 0.2, 0.4, 0.54,
0.6, the last value correspond to the highest red curve, for
Schwarzschild BH. In the lower panel, we show P̃2

rðr̃Þ for ABG
regular BH with Ẽ ¼ 0.97, L̃ ¼ 4 and ã ¼ 0.1 (the lowest black
curve), followed by ã ¼ 0.2, 0.3, 0.5, 0.58, the last value
correspond to the highest red curve.
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correspond to the highest red curve. For ã < ãc ≈ 0.5337
there are three roots of P̃2

rðr̃Þ: r̃1 < r̃2 < r̃3. It turns out that
P̃2
rðr̃Þ is positive for r̃H < r̃ < r̃1 and r̃2 < r̃ < r̃3, where

the scaled r̃H≡ ¼ rH=m ¼ 2 is the location of
Schwarzschild event horizon. As ã climbs up, r̃1 and r̃2
get closer until they collide at ãc ≈ 0.5337 and disappear
for ã > ãc leaving P̃2

rðr̃Þ with just one root, r̃3, for r̃ < r̃3,
P̃2
rðr̃Þ is positive.
In the second panel in Fig. 1, we show P̃2

rðr̃Þ for
ABG regular BH whose −gtt ¼ fðrÞ metric component
is given by

fðrÞ ¼ 1 −
2mr2

ðr2 þ q2Þ3=2 þ
q2r2

ðr2 þ q2Þ2 ;

with different values of the parameter ã ¼ 0.1 (the lowest
black curve), followed by ã ¼ 0.2, 0.3, 0.5, 0.58, the last
value correspond to the highest red curve and
q̃≡ q=m ¼ 0.1. In this case ãc ≈ 0.55804. For Reissner-
Nordstrom BH, with Ẽ ¼ 0.97, L̃ ¼ 4.0 and q̃ ¼ 0.1, the
critical values of the parameter ã is ãc ¼ 0.547320 and
ãc ¼ 0.54406 for Bardeen regular BH. In both of these
cases, P̃2

rðr̃Þ > 0 in the radial intervals r̃extH < r̃ < r̃1 and
r̃2 < r̃ < r̃3, as long as ã < ãc. Reissner-Nordstrom,
Bardeen and ABG possess an exterior and an interior
event horizons r̃intH and r̃extH for certain values of q and m,
specifically the exterior one for Reissner-Nordstrom is
r̃extH ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q̃2

p
. For Bardeen regular BH, the event

interior and exterior horizons must be determined numeri-
cally by solving the equations

r̃6 þ ð3q̃2 − 4Þr̃4 þ 3q̃4r̃2 þ q̃6 ¼ 0:

For ABG regular BH, the event horizon must be found
numerically as well by solving a polynomial. At any rate,
for both types of space times, we work in the interval
r̃ > r̃extH . These three roots r̃1 < r̃2 < r̃3 are the turning
points, defined as those points where the radial momentum
P̃r vanishes.
The upper plot in Fig. 2 shows the radial momentum

P̃rðr̃Þ of spinning particles around the Schwarzschild black
hole, we use the following values for energy and angular
momentum parameters Ẽ ¼ 0.97, L̃ ¼ 4.0 and different
values of the spinning parameter ã ¼ 0.01, 0.2, 0.55. For
the first two values, there are three turning points and the
graph of P̃rðr̃Þ has two sections, one for r̃H ¼ 2 < r̃ < r̃1
which is an open trajectory in phase space and the other for
r̃2 < r̃ < r̃3 which is a close cycle. For ã ¼ 0.55 > ãc
there is solely one turning point; thus a particle may travel
up to that point and then returns. In the lower plot of Fig. 2,
with Ẽ ¼ 0.97, L̃ ¼ 4.0 as well, we show only the cycle
section of P̃rðr̃Þ for the Ayon-Beato-Garcia regular BH
with q̃ ¼ 0.1 and ã ¼ 0.01, 0.1, 0.3 (black, blue and violet
curves respectively). We observed that the area of each

cycle is enlarged for both, Schwarzschild and ABG BHs, as
ã increases. Exactly the same behavior is exhibited by
Reissner-Nordstrom and Bardeen BHs.
Some turning points are shown in Table I for Ẽ ¼ 0.97,

L̃ ¼ 4.0 and for different values of the parameter ã for
Schwarzschild, Reissner-Nordstrom BHs as well as for
Bardeen and ABG regular BHs. In all cases, as ã increases,
the first turning point r1 increases whereas the second one
r2 decreases and the third one r̃3 increases its value. The
first two turning points r̃1 and r̃2 collapse and disappear
at ãc, leaving just one turning point r̃3. The critical
parameters are ãc ¼ 0.5337, 0.54732, 0.55804, 0.54406
for Schwarzschild, Reissner-Nordstrom, ABG and Bardeen
BHs respectively.

-0.3
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 0.1

 0.2

 0.3

 0  5  10  15  20  25

P
r/µ

r/m
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 0.1

 0.2

 5  10  15  20  25

P
r/µ

r/m

FIG. 2. Radial momentum Pr=μ≡ P̃r for energy and angular
momentum Ẽ ¼ 0.97, L̃ ¼ 4.0 of spinning particles around a
Schwarzschild BH is shown in the first plot for ã ¼ 0.01,
black curve which consist of two parts, one open curve for
r̃H ¼ 2 < r̃ < r̃1 ¼ 3.07475 and a close cycle for r̃2 ¼
7.52084 < r̃ < r̃3 ¼ 23.2453. For ã ¼ 0.2 one has also two
parts (blue curve) one open and one close curve. For ã ¼ 0.55
the turning points r̃1 and r̃2 have disappeared and the corre-
sponding curve in violet color is an open one. In the lower plot
with Ẽ ¼ 0.97, L̃ ¼ 4.0, we show only the cycle section of P̃rðr̃Þ
for the Ayon-Beato-Garcia regular BH for q̃ ¼ 0.1 and ã ¼ 0.01,
0.1, 0.3 (black, blue and violet curves respectively).
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For Reissner-Nordstrom BHs as well as for Bardeen and
ABG space-times, we vary the charge parameter q̃, keeping
Ẽ ¼ 0.97, L̃ ¼ 4.0, and show in Table II the corresponding
turning points r̃2 ¼ r̃min and r̃3 ¼ r̃max for the cycle
sections. It is observed that as q̃ increases, the lower
turning point r̃min undergoes an increment, yet the upper
turning point r̃max decreases its value in all cases. It is for
Bardeen regular BH that r̃max stretches farther away. For
q̃ < 0.769 and for q̃ < 0.6342 the Barden and ABG space-
times are regular BHs respectively, otherwise they are
globally regular space-times [33–35].
Had we chosen the upper sign in (78), or equivalently

PðþÞ
0 in (75)

Pð�Þ
0 ¼ −

E� f0ðrÞ aL
2r

1 − β
:

what we would have observed is that, the area of the ðr̃; P̃rÞ
cycle instead of undergoing an increment as the one shown
in Fig. 2, it would have shrunken as ã increases until it
reaches a value ac where the lower and upper turning points
collide. There are no further solutions beyond this value ac
and there is no physical reason for this bound. This feature
is in contrast to the lower sign choice in (78), that means,

the choice of Pð−Þ
0 , which does not present this rare

behavior. In the literature the lower sign is chosen (see
for instance [32]), basically because working with the upper
sign would correspond to 4-momentum pointing toward the
past [36]. Hence, we will choose the lower sign.

B. Gravimagnetic particle (κ= 1)

We are now going to analyse whether there is a solution
for the momenta PνðrÞ and SrϕðrÞ for a given set of
parameters E, L, μ, α of the system (68)–(71) when κ ¼ 1,
the so called gravimagnetic particles. It is convenient to
rewrite the system in an apposite form. It turns out that
the variable P0 totally decouples. Three components of the
Riemann tensor R0r0r, R0ϕ0ϕ and Rrϕrϕ are needed for
the gravimagnetic case. All Riemann tensor components
are provided at the Appendix. After some algebraic steps, it
is possible to transform the set of Eqs. (68)–(71) into the
equivalent system

Pϕ ¼ −
r
2
Srϕ þ L; ð80Þ

−P2 ¼ BðP0Þ; ð81Þ

TABLE I. Values for the turning points r̃1 < r̃2 < r̃3 of MPTD (κ ¼ 0) spinning particles orbiting in our four space-time working
examples with Ẽ ¼ 0.97, L̃ ¼ 4.0. In general, as ã increases, r1 increases as well, r̃2 decreases and r̃3 increases. The charge value was
chosen as q̃ ¼ 0.1. For ã > ãc the first two turning points disappears leaving only one turning point, a particle may travel up to that
unique point and then return. The critical parameters are ãc ¼ 0.5337, 0.54732, 0.55804, 0.54406 for Schwarzschild, Reissner-
Nordstrom, ABG and Bardeen BHs, respectively.

Parameter Schwarzschild Reissner-Nordstrom Ayon-Beato-Garcia Bardeen

ã r̃1 r̃2 r̃3 r̃1 r̃2 r̃3 r̃1 r̃2 r̃3 r̃1 r̃2 r̃3

0.01 3.07475 7.51984 23.24021 3.05927 7.54309 23.22742 3.04418 7.55229 23.22577 3.05961 7.52911 23.85600
0.1 3.08663 6.79552 23.95264 3.06971 6.81915 23.94102 3.05355 6.82943 23.93957 3.07038 6.80589 23.95119
0.2 3.10607 6.06352 24.66466 3.08690 6.08861 24.65403 3.06907 6.10066 24.65273 3.08808 6.07575 24.66337
0.3 3.13684 5.38642 25.31028 3.11407 5.41454 25.30040 3.09361 5.42945 25.29924 3.11605 5.40167 25.30911

TABLE II. Values for the smallest r̃2 and largest r̃3 turning points in the close curves section of MPTD (κ ¼ 0)
spinning particles orbiting around a Reissner-Nordstrom BH as well as ABG and Bardeen regular space-times with
Ẽ ¼ 0.97, L̃ ¼ 4.0 fixed and for some parameter sets ðã; q̃Þ. We observe that as q̃ increases, r̃2 also increases yet r̃3
decreases in all cases. It is for Bardeen regular BH that r̃max is stretches farther away.

Parameters Reissner-Nordstrom Ayon-Beato-Garcia Bardeen

ã q̃ r̃2 r̃3 r̃2 r̃3 r̃2 r̃3

0.01 0.3 7.7270 23.1299 7.8040 23.1148 7.6025 23.2309
0.6 8.3165 22.7698 8.5735 22.7050 7.8320 23.1861
0.9 9.2590 22.1201 9.7490 21.9535 8.1725 23.1105

0.1 0.3 7.0040 23.8529 7.0880 23.8396 6.8750 23.9450
0.6 7.5815 23.5281 7.8475 23.4719 7.1355 23.9055
0.9 8.4695 22.9509 8.9520 22.8105 7.4925 23.8391

0.3 0.3 5.6250 25.2262 5.7350 25.2156 5.5165 23.3050
0.6 6.2215 24.9528 6.5215 24.9086 5.8350 25.2733
0.9 7.0515 24.4760 7.5425 24.3693 6.2445 25.2202
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ðSrϕÞ2BðP0Þ ¼
4α

r2
P2
0; ð82Þ

Srϕ
�
Srϕ −

2

r
L

�
¼ P0AðP0Þ; ð83Þ

where we have introduced BðP0Þ, a second-order poly-
nomial on P0, defined as

BðP0Þ≡ μ2 −
αf0ðrÞ
2r

− 2
ðP0 þ EÞ2
ðf0ðrÞÞ2

�
f0ðrÞ
r

− f00ðrÞ
�
;

¼ μ2
�
1 − βðrÞ − 2afðrÞ

ðf0ðrÞÞ2
�
P0 þ E

μ

�
2
�
; ð84Þ

here we have employed the previously introduced function

βðrÞ≡ a2f0ðrÞ
2r

; ð85Þ

recall that a2 ≡ α=μ2. Since α represents the square of the
internal angular momentum of the test body, a is its angular
momentum per unit mass with dimensions of length, just
like in the Kerr solution for a stationary body with angular
momentum. The function afðrÞ that appears in (84), is
defined as

afðrÞ≡ f0ðrÞ
r

− f00ðrÞ ð86Þ

The first-order polynomial on P0 appearing in (83) AðP0Þ,
is defined as

AðP0Þ ¼
8ðP0 þ EÞ
rf0ðrÞ : ð87Þ

We see that Eqs. (82) and (83) contain only P0, Srϕ and r.
Our goal now is to prove that this subsystem has a solution,
that is to say, that is possible to find P0 and Srϕ as functions
of r for a given set of parameters fE;L; μ; αg. Combining
(82) and (83) the following equivalent subsystem is readily
attained

ðSrϕÞ2BðP0Þ ¼
4α

r2
P2
0 ð88Þ

½QðP0Þ�2 ¼
16L2α

r4
BðP0Þ: ð89Þ

Notice that (89) is an equation only for the momentum
P0, as mentioned before, the variable P0ðrÞ has been
decoupled from the other momenta and Srϕ. It turns out
to be that (89) is a six order polynomial in the momentum
P0ðrÞ. Hence, in order to find P0ðrÞ, one has to find the
roots of this polynomial for each r in a radial domain where

these roots actually exist, this task will have be performed
numerically.
In (89), QðP0Þ is a cubic polynomial for P0, whose

definition involves the linear function AðP0Þ and the
quadratic function BðP0Þ in the following manner

QðP0Þ ¼ AðP0ÞBðP0Þ −
4αP0

r2

¼ −
16μ3afðrÞ
rðf0ðrÞÞ3

��
P0 þ E

μ

�
3

−
ðf0ðrÞÞ2
2afðrÞ

�
ð1 − 2βðrÞÞP0 þ E

μ
þ β

E
μ

��
: ð90Þ

For material particles P2 < 0, as a result (81) implies that
the quadratic function BðP0Þ > 0. The sign of afðrÞ
determines whether the parabola BðP0Þ has a maximum
or a minimum. The roots of BðP0Þ are given by

Pð�Þ
B0 ¼ −E� μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − βðrÞ� ðf

0ðrÞÞ2
2afðrÞ

s
ð91Þ

From (84) we observe that if afðrÞ > 0 then BðP0Þ has a
maximum and it will be positive solely in the interval
between the roots (91) which are real provided that
βðrÞ < 1. Therefore, we must find solutions of the sixth
order polynomial (89) written now as

P6ðP0Þ ¼ ½QðP0Þ�2 −
16L2α

r4
BðP0Þ ð92Þ

exclusively in the interval IB ¼ ðP−
B0; P

þ
B0Þ in order that

(81) makes sense for material particles. Since QðP0Þ is a
cubic equation, it has always at least one real root. Lets
denote such a root by P�

0, if P
�
0 ∈ IB and afðrÞ > 0, then

P6ðP�
0Þ < 0 since BðP0Þ > 0. Due to the fact that

P6ðP0Þ → ∞ as P0 → �∞, we conclude that P6ðP0Þ
has at least two real roots. At any rate, to have a consistent
system, at least, one root ofP6ðP0Þ should be in the interval
IB to guarantee existence of solutions for the system, if that
is the case, the remaining variables are computed using
(80), (81) and (82). To prove analytically that, given a set of
parameters E, L, a, μ, at least one root of P6ðP0Þ is located
in the interval IB may be utterly cumbersome and difficult.
Instead, we will provide numerical proof of its existence. It
is convenient to use the scaled variables (79), thereby, the
system (80)–(83) is rewritten with only three parameters ã,
Ẽ, L̃) instead of five as follows

P̃ϕ ¼ −
r̃
2
S̃rϕ þ L̃ ð93Þ

P̃2
r ¼

P̃2
0

f2ðr̃Þ −
1

fðr̃Þ
�
P̃2
ϕ

r̃2
þ B̃ðP̃0Þ

�
ð94Þ
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ðS̃rϕÞ2 ¼ 4ã2P̃2
0

r̃2B̃ðP̃0Þ
ð95Þ

P6ðP̃0Þ ¼ ½Q̃ðP̃0Þ�2 −
m2½f0ðr̃Þ�6L̃2ã2

16a2fðr̃Þr̃2
B̃ðP̃0Þ ¼ 0: ð96Þ

This is our basic system we will be working with from now
on. The quadratic function B̃ðP̃0Þ reads

B̃ðP̃0Þ ¼ 1 − βðr̃Þ − 2afðr̃Þ
ðf0ðr̃ÞÞ2 ½P̃0 þ Ẽ�2 ð97Þ

and the cubic function Q̃ðP̃0Þ is now written as

Q̃ðP̃0Þ ¼ ðP̃0 þ ẼÞ3

−
ðf0ðr̃ÞÞ2
2afðr̃Þ

½ð1 − 2βðr̃ÞÞðP̃0 þ ẼÞ þ βðr̃ÞẼ�

¼ P̃3
0 þ AP̃2

0 þ BP̃0 þ C ð98Þ

whose coefficients are explicitly given as

A ¼ 3Ẽ

B ¼ 3Ẽ2 −
ðf0ðr̃ÞÞ2
2afðr̃Þ

½1 − 2βðr̃Þ�

C ¼ Ẽ3 −
ðf0ðr̃ÞÞ2
2afðr̃Þ

½1 − βðr̃Þ�Ẽ ð99Þ

The coefficients of the six degree polynomial P6ðP̃0Þ ¼P
6
n¼0KnP̃n

0 are given by

K0 ¼ C2 þK
�
Ẽ2 − ð1 − βðr̃ÞÞ ½f

0ðr̃Þ�2
2afðr̃Þ

�
;

K1 ¼ 2BCþ 2KẼ;

K2 ¼ B2 þ 2ACþK;

K3 ¼ 2ðABþ CÞ;
K4 ¼ A2 þ 2B;

K5 ¼ 6Ẽ and K6 ¼ 1; ð100Þ

with A, B and C are given in (99) and

K ¼ m2L̃2ã2½f0ðr̃Þ�4
8r̃2afðr̃Þ

and βðr̃Þ ¼ ã2f0ðr̃Þm
2r̃

ð101Þ

We have achieved our goal: P0 have been decoupled, to
find it, we only need to find roots of the polynomial P6

given a set of parameters ã, Ẽ, L̃, yet keeping only those
roots which lie on the interval IB. Now we proceed to
numerically solve the system for gravimagnetic particles
for the Schwarzschild and Reissner-Nosrdström BHs as

well as for the Bardeen and ABG regular BHs. These last
two spacetimes are exact solutions of Einstein field
equation with nonlinear electromagnetism [33–35].
The corresponding fðrÞ, afðrÞ and βðrÞ for these four

spacetimes are given next.
Schwarzschild

fðrÞ¼1−
2m
r
; afðrÞ¼

6m
r3

; βðrÞ¼a2m
r3

ð102Þ

Reissner-Nordstrom

fðrÞ ¼ 1 −
2m
r

þ q2

r2
; afðrÞ ¼

6mr − 8q2

r4
;

βðrÞ ¼ a2ðmr − q2Þ
r4

ð103Þ

Bardeen

fðrÞ ¼ 1 −
2mr2

R3=2 ; afðrÞ ¼ 6mr2
r2 − 4q2

R7=2 ;

βðrÞ ¼ a2m
r2 − 2q2

R5=2 ð104Þ

Ayon-Beato-Garcia

fðrÞ ¼ 1 −
2mr2

R3=2 þ q2r2

R2
;

afðrÞ ¼ 2r2
4q2ð2q2 − r2Þ ffiffiffiffi

R
p þ 3mðr4 − 3q2r2 − 4q4Þ

R9=2

βðrÞ ¼ a2
q2ðq2 − r2Þ ffiffiffiffi

R
p þmðr4 − r2q2 − 2q4Þ

R7=2 ð105Þ

where R≡ r2 þ q2. In all cases, as q → 0 we recover fðrÞ,
afðrÞ and βðrÞ for Schwarzschild BH.
We work first with the Scwarzschild BH, in this case

afðrÞ ¼ 6m=r3 which is always positive; therefore BðrÞ is
a downward parabola whose roots are given as

P̃�
B0 ¼ −Ẽ�

ffiffiffiffiffiffiffiffiffiffiffi
1 − β

3r̃

r
¼ −Ẽ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃3 − ã2

3r̃4

s
; ð106Þ

which are real quantities provided that 1 − β > 0, or
equivalently r̃ > ã2=3. In order to get P̃0ðr̃Þ, one has to
find the roots of the polynomial P6ðP̃0Þ given in(96). As
mentioned before, the system (93)–(96) has a consistent
solution provided that at least one root of P6ðP̃0Þ is located
in the interval where B̃ðP̃0Þ > 0. Since af > 0 for
Schwarzschild BH, we have a downwards parabola, and
this interval is IB ¼ ðP̃−

B0; P̃
þ
B0Þ (see Fig. 3).

Given a set of fixed parameters ã, Ẽ, L̃, we vary r̃ > ã2=3

and at each value of r̃, we search for roots of the polynomial
P̃6ðP̃0Þ only in the interval IB. Any of the Newton’s
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methods family can be employed, we shall use a hybrid
method of bisection and Newton-Raphson [37]. We sum-
marize the numerical algorithm now
(1) An arbitrary fixed set of parameter ã, Ẽ, L̃ is first

given together with an arbitrary radial domain Ir ¼
½r̃min; r̃max� with r̃min > r̃extH , being r̃extH the (exterior)
event horizon.

(2) We construct a partition of Ir as r̃n ¼ r̃min þ nΔN
from n ¼ 0;…; N with ΔN ¼ ðr̃max − r̃minÞ=N.

(3) Then we search for real roots of P6ðP̃0ðr̃nÞÞ ¼ 0

solely in the interval IB ¼ ðP−
B0; P

þ
B0Þ where

BðP̃0Þ > 0. If such real roots exist in that interval,
we call them P⋆

0ðr̃Þ ∈ IB.
(4) For each real root P⋆

0ðr̃nÞ, S̃rϕðP̃⋆
0ðr̃nÞÞ is computed

using (95) and P̃ϕðP̃⋆
0ðr̃nÞÞ is computed with (93).

(5) P̃2
rðP̃⋆

0ðr̃nÞÞ is calculated using (94), if this quantity
is positive, this dataset is stored to plot the momenta
(and S̃rϕðP̃0ðr̃nÞÞ), otherwise is discarded.

(6) We select the next radial coordinate r̃nþ1 and
continue until we reach r̃max.

1. Gravimagnetic solutions for L = 0

According to (96), in order to find P̃0ðr̃Þ for L ¼ 0, one
deals with the cubic Q̃ðP̃0ðr̃ÞÞ ¼ 0 instead of the six order
polynomial P̃6ðP̃0ðr̃ÞÞ ¼ 0. A cubic equation might have
either one real and two complex roots or three real roots all
at once. For gravimagnetic particles, any root P̃�

0 must
imply BðP̃�

0Þ > 0 to be physically meaningful. In all the
surveys performed, following the algorithm just described
above, we found three real roots, yet only two of them
fulfilled this requirement.
We show in Table III some examples of the parameter

space ã; Ẽ; L̃ ¼ 0 where these such two solutions of the
system (93)–(96) indeed exist. r̃min is chosen arbitrarily a
little greater than r̃extH ¼ 2, the Schwarzschild BH event
horizon. For a given set of parameters ã; Ẽ; L̃ ¼ 0, r̃tp
represents the spinning particle’s turning point, defined as
the point where the radial component of the momentum Pr
vanishes. In other words, solutions of our system (93)–(96)
for gravimagnetic particles indeed exist for r̃ ≤ r̃ðiÞtp with
i ¼ 1, 2. Although mathematically there are two solutions

fulfilling the requirement BðP̃�
0Þ > 0, thereby two r̃ðiÞtp

turning points for each single set of parameters

ã; Ẽ; L̃ ¼ 0, only r̃ð1Þtp is admissible since

lim
r̃→r̃tp

P̃0 ¼ −Ẽ

holds solely for r̃ð1Þtp not for rð2Þtp . This assertion was
numerically verified, for instance, for Schwarzschild BH

with ã ¼ 0.01, Ẽ ¼ 0.8, as r̃ → r̃ð2Þtp , the momentum P̃0 →

−1.02576while as r̃ → r̃ð1Þtp P̃0 → −0.8000065. As a result,
we keep only the P̃r branch whose corresponding turning

FIG. 3. Due to af > 0 for Schwarzschild BH, the parabola
BðP0Þ is positive in the interval IB ¼ ðP−

B0; P
þ
B0Þ. To have a

solution physically acceptable, at least one real root of the six
order polynomial P6ðP0Þmust be located in this interval. See text
for details.

TABLE III. We show some examples of parameter sets ã; Ẽ; L̃ ¼ 0 for which solutions of the system for gravimagnetic spinning

particles exist. There are two solution branches that end up at rðiÞtp (i ¼ 1, 2) which are turning points, defined as the points where the

radial component of the momentum Pr vanishes. It turns out that only the branch related to rð1Þtp is acceptable (see text for details). For
Reissner-Nordstrom, Bardeen and ABG BHs, the charge parameter was chosen as q̃ ¼ 0.5.

Parameters Schwarzschild Reissner-Nordstrom Ayon-Beato-Garcia Bardeen

ã Ẽ r̃ð1Þtp r̃ð2Þtp r̃ð1Þtp r̃ð2Þtp r̃ð1Þtp r̃ð2Þtp r̃ð1Þtp r̃ð2Þtp

0.01 0.50 2.6667 4.9211 2.5332 4.7043 2.3689 4.4827 2.5162 4.7209
0.80 5.5555 6.5448 5.4276 6.3075 5.3562 6.1197 5.4870 6.3717
0.90 10.5262 7.1751 10.3997 6.9323 10.3632 6.7553 10.4904 7.0116

0.1 0.50 2.6678 4.9206 2.5363 4.7038 2.3701 4.4821 2.5173 4.7204
0.80 5.5552 6.5446 5.4272 6.3073 5.3558 6.1195 5.4866 6.3715
0.90 10.5241 7.1750 10.3976 6.6322 10.3610 6.7552 10.4882 7.0115

0.3 0.50 2.6765 4.9164 2.5454 46994 2.3793 4.4775 2.5262 4.7159
0.80 5.5526 6.5432 5.4242 6.3058 5.3522 6.1179 5.4836 6.3700
0.90 10.5070 7.1526 10.3800 6.6314 10.3432 6.7544 10.4710 7.0107

0.5 0.50 2.6942 4.9080 2.5637 4.6906 2.3980 4.4683 2.5443 4.7071
0.80 5.5477 6.5402 5.4182 6.3027 5.3454 6.1148 5.4778 6.3669
0.90 10.4730 7.1725 10.3448 6.6297 10.3076 6.7527 10.4366 7.0091
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point is r̃ð1Þtp and disregard the other branch. Hereafter by r̃tp
we mean r̃ð1Þtp . A spinning particle may travel away from the
BH up until r̃tp where its radial momentum P̃r vanishes,
and then return.
The second column shows rtp for Schwarzschild BH.

Other examples of parameter sets ã; Ẽ; L̃ ¼ 0 where
solutions exist, together with the corresponding turning
points, are constructed and shown in the same Table III, for
Reissner-Nordstrom BH, ABG and Bardeen regular black
holes (with q̃ ¼ 0.5) as well. In all the surveys we
performed, we observed that, for a fixed value of ã, as
Ẽ increases, the turning point r̃tp increases as well (not
linearly). In all cases, as Ẽ is near unity, r̃tp → ∞. The
further away finite turning point shown in this table
corresponds to Schwarzschild BH followed by Bardeen,
then Reissner-Nordstrom and ABG BHs. As ã increases
(and for a fixed Ẽ close to unity), the turning points values

(slightly) decrease their values for the four space-times
working examples considered here.
Plots of P̃rðr̃Þ for ã ¼ 0.01, L̃ ¼ 0 and Ẽ ¼ 0.5, 0.8 are

shown in Fig. 4. The curves in the upper panel correspond
to the very first row in Table III. The upper (black) curve
represents P̃rðr̃Þ that crosses the horizontal axis at r̃max ¼
2.6667 for Schwarzschild BH. The second curve (in red)
corresponds to the radial momentum that vanishes at
r̃max ¼ 2.5332 for Reissner-Nordstrom BH. The third
(green) curve is P̃rðr̃Þ that vanishes at r̃max ¼ 2.5162
and the fourth lower curve (in blue) corresponds to the
radial momentum for ABG BH with r̃max ¼ 2.3689. The
curves in the lower panel in Fig. 4 correspond to the second
row in Table III for our four spacetime working examples.

2. Gravimagnetic solutions for L ≠ 0

We shall now be concerned with the nonzero angular
momentum case. Given a set of parameters ã, Ẽ, L̃, by
following our numerical algorithm described in this sec-
tion, we construct solutions for our system (93)–(96) for
gravimagnetic spinning particles. The momenta P̃0ðr̃Þ is
now obtained by finding the roots of the sixth degree
polynomial P6ðP̃0Þ, in principle, for at any value of the
radial coordinate r, up to six roots might be found. The
question about what roots we should work with again arise.
One may notice from the polynomial

P6ðP̃0Þ ¼ ½Q̃ðP̃0Þ�2 −
m2½f0ðr̃Þ�6L̃2ã2

16a2fðr̃Þr̃2
B̃ðP̃0Þ

that it is the second term on the right-hand side, that could
make P6ðP̃0Þ have negative values, thereby P6ðP̃0Þ could
have roots. Figure 5 shows the P6ðP̃0ðr̃ÞÞ for different
values of r̃ and ã ¼ 0.1, Ẽ ¼ 0.97, L̃ ¼ 4.0 for the
Schwarzschild case. Regions on the P̃0-axis where
P6ðP̃0Þ < 0 are exceedingly narrow; in the top graph in
Fig. 5, one can clearly observe that region at first glance just
for r̃ ¼ 2.1 (solid black curve) and in the vicinity of
P̃0 ¼ −0.97. For r̃ ¼ 3.0, 5.0, enhanced graphs of the
polynomial around P̃0 ¼ −0.97 are shown, it is then
apparent that P6ðP̃0Þ < 0; hence roots exist there. One
also notices that all roots approaches−Ẽ as r̃ increases, as it
should be. We employed quadruple precision in the roots
finding hybrid numerical method since the intervals where
P6ðP̃0Þ < 0 are tiny, moreover, for instance, for r̃ ¼ 5.0,
one observes (see Fig. 5) that −10−8 < P6ðP̃0Þ < 0; with
just single or double precision, a root may have been
missed.
For small values of r̃, usually six roots are found, they

come in rather close pairs, two of these pairs cease to exist
as r̃ increases. Only the pair of roots near to −Ẽ remains,
and this pair satisfy P̃0ðr̃Þ → −Ẽ as r̃ → ∞. This behavior
is shown in Fig. 6 for the Schwarzschild case, with the
parameters ã ¼ 0.1, Ẽ ¼ 0.97, L̃ ¼ 4.0. The upper (blue)
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FIG. 4. We show P̃rðr̃Þ for ã ¼ 0.01, L̃ ¼ 0 and Ẽ ¼ 0.5 (upper
panel) as well as Ẽ ¼ 0.8 (lower panel) for gravimagnetic
particles. These curves are numerically generated following
the algorithm described in the text, and correspond to the first
and second row of table III respectively. The upper (black curves)
correspond to Schwarzschild BH, the second (red) curves to
Reissner-Nordstrom, the third (green) curves to ABG and the
fourth and lowest (blue) curves to Bardeen regular BH.

SPINNING GRAVIMAGNETIC PARTICLES IN SCHWARZSCHILD- … PHYS. REV. D 105, 124036 (2022)

124036-13



pair of roots, which are very close and are indistinguishable
by sight, ceases to exist at r̃ ¼ 2.63, the lower (red) pair of
roots, which are also indistinguishable by sight, terminates
at r̃ ¼ 5.96, solely the middle pair of roots remains for all
values of r̃ greater than the event horizon.
Similar plots to those shown in Fig. 6, exist for our other

three working examples, Reissner-Nordstrom, Bardeen,
and ABG black holes.
However, we found another behavior of the roots of

P6ðP̃0ðr̃ÞÞ different to the one shown in Fig. 6, but with
other sets of parameters, for instance, with ã ¼ 0.01,
Ẽ ¼ 0.8, L̃ ¼ 4, for small values of r̃, there are exclusively
two roots, which are approaching Ẽ ¼ −0.8 very fast as r̃
increases, specifically jP̃0ðr̃Þ − Ẽj < 10−4 for r̃ > 6.0, yet
for r̃ > 30.0, P̃0 is practically Ẽ ¼ −0.8 (and these roots
branches exist for all values of r̃). Nonetheless, other roots
appear for r > r̃ ¼ 14.17, yet farther away from Ẽ ¼ −0.8,
these roots converge to −Ẽ as r̃ increases yet, rather slowly;
for instance, specifically at r̃ ≈ 14.17, jP̃0 − Ẽj ≈ 0.153 and
at r̃ ≈ 30.0, jP̃0 − Ẽj ≈ 0.105.
We shall solely consider those two branches of roots of

P6ðP̃0Þ that are the closest to −Ẽ, one above (P̃ðaÞ
0 > −Ẽ)

and one below (P̃ðbÞ
0 < −Ẽ) the value −Ẽ; besides, this pair

prevails along all the radial coordinate. In all the surveys we

have done, generally speaking, we have always found this

pair P̃ðaÞ
0 and P̃ðbÞ

0 that rapidly approaches −Ẽ and exists in
all our numerical radial domain, the other roots may exist in
finite sections of the domain, and they do approach −Ẽ yet
rather slowly; hence, they will not be considered in our
analysis.
Despite the fact that P̃ðaÞ

0 and P̃ðbÞ
0 exist throughout the

whole range of the radial coordinate, there are regions in the
radial coordinate where

P̃2
rðr̃Þ ¼

P̃2
0ðr̃Þ

f2ðr̃Þ −
1

fðr̃Þ
�
P̃2
ϕðr̃Þ
r̃2

þ B̃ðP̃0ðr̃ÞÞ
�

is actually positive and regions where is not, the former
case is physically acceptable, the latter is not. Figure 7
shows the curve P̃2

rðr̃Þ for Schwarzschild BH for Ẽ ¼ 0.97,
L̃ ¼ 4.0 and ã ¼ 0.2 (black lowest curve), with these
parameter’s values, one finds that there are three roots of
P̃2
rðr̃Þ ¼ 0 that we call r̃1 < r̃2 < r̃3. For r̃ < r̃1 ¼ 3.12732

and r̃2 ¼ 6.04514 < r̃ < r̃3 ¼ 24.66632we found P̃2
rðr̃Þ to

be positive. As ã increases its value 0.3,0.4,0.45 and ã ¼
0.5 (green highest curve), the roots r̃1 and r̃2 get closer to
each other, collide and then disappear at a certain critical
value of ãc. For ã > ãc there is solely a single root of
P̃2
rðr̃Þ ¼ 0. For Schwarzschild, ãc ≈ 0.4585. These curves

were obtained working with the branch of roots P̃ðaÞ
0 ðr̃Þ

which is above −Ẽ (P̃ðaÞ
0 ðr̃Þ > −Ẽ).

There are similar curves to those presented in Fig. 7 for
the other working examples, Reissner-Nordstrom, Ayon-
Beato-García and Bardeen regular BHs. The critical value
ãc where the roots r̃1 and r̃2 collide is ãc ¼ 0.689 for
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FIG. 6. For the Schwarzschild BH case, we show the six roots
of the polynomial P6ðP̃0ðr̃ÞÞ for ã ¼ 0.1, Ẽ ¼ 0.97, L̃ ¼ 4.0, for
this set of parameters, the roots come in pairs. There are two roots
in the lower red curve which ends at r̃ ¼ 5.96, there are another
two roots in the upper blue curve which ceases to exist at
r̃ ¼ 2.63. The roots in the middle (black curves) remain all along
our numerical domain, they rapidly approach −Ẽ, one from above

P̃ðaÞ
0 ≡ P̃⋆

0 > −Ẽ, and the other from below P̃ðbÞ
0 ≡ P̃⋆

0 < −Ẽ.
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FIG. 5. In the upper panel, it is shown, for the Schwarzschild
case, the polynomial P6ðP̃0ðr̃ÞÞ for r̃ ¼ 2.1 (solid black line), r̃ ¼
3.0 (dash red line), r̃ ¼ 5.0 (dotted blue line) and the parameters
ã ¼ 0.1, Ẽ ¼ 0.97, L̃ ¼ 4.0. In the lower graphs, the sixth degree
polynomial is enhanced for r̃ ¼ 3.0, 5.0 to make evident that
indeed, there are roots in the vicinity of P̃0 ¼ −Ẽ ¼ −0.97.
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Reissner-Nordstrom, ãc ¼ 0.9241 for ABG and ãc ¼
0.6436 for Bardeen BH. Had we employed the lower

branch P̃ðbÞ
0 ðr̃Þ < −Ẽ, one would have found that P̃2

rðr̃Þ had
just one root r̃1 such that, for r̃ < r̃1, P̃2

rðr̃Þ is positive and
negative otherwise. This fact would mean that close curves
(cycles) in the space ðr̃; P̃rÞ are not allowed. In the end, we
avoid working with P̃ðbÞ

0 ðr̃Þ. Hereafter, we will work with

the upper branch P̃ðaÞ
0 ðr̃Þ only and consider solely the

regions where P̃2
rðr̃Þ is positive so that P̃rðr̃Þ makes sense.

For the Schwarzschild BH, we plot P̃rðr̃Þwith Ẽ ¼ 0.97,
L̃ ¼ 4.0 and four different values of ã ¼ 0.01, 0.2, 0.45,
0.5, red, green, blue and black curves respectively (first plot
in Fig. 8). For the first three values of ã the trajectory in
phase space ðr̃; P̃rÞ comprises two sections, one in the
interval ðr̃H; r̃1Þ and the other in the interval ðr̃2; r̃3Þ which
is a close cycle. As ã climbs, r̃1 and r̃2 approach each other
and r̃3 is pushed farther to the right. For ã ¼ 0.5 > ãc ¼
0.458 (black outer curve) there is only one turning point.
In Table IV, we show turning points for Ẽ ¼ 0.97, L̃ ¼

4.0 and four different values of ã, namely ã ¼ 0.01, 0.1,

0.2, 0.3 for our four spacetime working examples. The
behavior is similar to that found for MPTD spinning
particles: as ã increases, the first turning point r̃1 increases
its value whereas the second turning point r̃2 declines and
third r̃3 climbs up. This feature is followed by the four
spacetimes shown in Table IV.
In order to quantify somehow the effect of the grav-

imagnetic term on the computation of momenta P̃μ, we will
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FIG. 7. We show the curve P̃2
rðr̃Þ for Schwarzschild BH with

the parameters Ẽ ¼ 0.97, L̃ ¼ 4 and ã ¼ 0.2 (black lowest curve)
which has a negative minimum; as ã increases its value 0.3, 0.4,
0.45 and ã ¼ 0.5 (green highest curve), the minimum also
increases and become positive at ãc ¼ 0.4585. For ã < ãc,
P̃2
rðr̃Þ has three roots and has just one root otherwise.
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FIG. 8. P̃rðr̃Þ is shown in the upper panel for Ẽ ¼ 0.97, L̃ ¼
4.0 and four different values of ã ¼ 0.01, 0.2, 0.45, 0.5 (red
green, blue and black curves) for the Schwarzschild BH. The
lower curve is a zoom of the upper plot, showing how the turning
points r̃1 and r̃2 approach each other as ã grows; for ã ¼ 0.5 >
ãc ¼ 0.458 (black curve) the have disappeared.

TABLE IV. Values for the turning points r̃1 < r̃2 < r̃3 turning points of gravimagnetic (κ ¼ 1) spinning particles orbiting in our four
space-time working examples with Ẽ ¼ 0.97, L̃ ¼ 4.0. As ã increases, r̃1 grows and r̃2 decreases until the collide and disappear at ãc,
whereas r̃3 keeps moving to the right. It is for the ABGmetric that those changes are the least. The charge value for Reissner-Nordstrom,
ABG and Bardeen BH was chosen as q̃ ¼ 0.1.

Parameter Schwarzschild Reissner-Nordstrom Ayon-Beato-Garcia Bardeen

ã r̃1 r̃2 r̃3 r̃1 r̃2 r̃3 r̃1 r̃2 r̃3 r̃1 r̃2 r̃3

0.01 3.07475 7.51981 23.24020 3.05928 7.54306 23.22743 3.04419 7.55225 23.22577 3.05962 7.52908 23.23856
0.1 3.09107 6.79176 23.95311 3.07411 6.81544 23.94149 3.05790 6.82573 23.94004 3.07478 6.80215 23.95165
0.2 3.12728 6.04514 24.66632 3.10777 6.07052 24.65569 3.08966 6.08276 24.65440 3.10901 6.05756 24.66503
0.3 3.19757 5.33184 25.31366 3.17329 5.36136 25.30379 3.15179 5.37716 25.30262 3.17559 5.34806 25.31250
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heed the difference in the turning points r̃1 and r̃2 of the
cycle trajectories in phase space ðr̃; P̃rÞ. Defining△MPTD

r ¼
r̃3 − r̃2 and similarly △GRAV

r for the gravimagnetic par-
ticles, we may evaluate how the difference △≡△GRAV

r −
△MPTD

r would vary with ã. The results are shown in
Table V. As expected, variations in the radial traveling
range of spinning particles increases for gravimagnetic
particles compared with those MPTD particles. The differ-
ence △ is of the order 10−5 for ã ¼ 0.01 and of the order
10−2 for ã ¼ 0.3

IV. RELATIONSHIP BETWEEN VELOCITIES
AND MOMENTA

In this final section, we write down explicit expressions
for four-velocities _xμ (which are not parallel to the
momenta) for both cases, the MPTD (κ ¼ 0) and the
gravimagnetic (κ ¼ 1) spinning particles moving in space-
times with a Schwarzschild-like metric we have been
working

ds2 ¼ −fðrÞc2dt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2sin2θdϕ2

A. Gravimagnetic particles

For this case, the velocity of gravimagnetic spinning
particles is given in (23), which we rewrite here

_x0 ¼ 1

mr

�
−

P0

fðrÞ þ cZ0

�
ð107Þ

_xr ¼ 1

mr
½fðrÞPr þ cZr� ð108Þ

_xϕ ¼ 1

mr

�
Pϕ

r2
þ cZϕ

�
ð109Þ

where

1

mr
¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ 1
16
θ · S − c2Z2

q : ð110Þ

In order to obtain the velocities, it is necessary to compute
the Zμ vector components, which in turn employ the
Riemann tensor covariant derivatives (the nonvanished
covariant derivatives are listed in the Appendix) together
with the Sμν. After a long but straightforward computation,
the Zμ components are attained, they read

Z0 ¼ b
4c

�
f000ðrÞP2

ϕ þ ðrf00ðrÞ − f0ðrÞÞ

×

�
3fðrÞP2

r −
P2
0

fðrÞ
��

Pϕ

�
Srϕ

P0

�
3

ð111Þ

Zr ¼ −
b
2c

fðrÞ½rf00ðrÞ − f0ðrÞ�PϕPrP0

�
Srϕ

P0

�
2

ð112Þ

Zϕ ¼ −
b
4c

�
f000ðrÞP2

ϕ þ ðrf00ðrÞ − f0ðrÞÞ

×

�
fðrÞP2

r −
P2
0

fðrÞ
��

P0

�
Srϕ

P0

�
3

ð113Þ

where the scalar b ¼ ð8μ2 þ θ · SÞ−1. Combining (64) with
(57) and (58) we have

TABLE V. Looking at the cycles in phase space ðr̃; P̃rÞ as those shown in Fig. 8, with the values of the smallest r̃2 and largest r̃3
turning points of MPTD (κ ¼ 0) and the gravimagnetic (κ ¼ 1) spinning particles orbiting in our four space-time working examples with
Ẽ ¼ 0.97, L̃ ¼ 4.0, one may compute the interval distance a particle may travel△r ≡ r̃3 − r̃2. For the values of ã shown, in this table we
present how much this distance increase △≡△

Gravmag
r −△MPTD

r as we consider gravimagnetic particles. The charge value was chosen
as q̃ ¼ 0.1.

Parameter Schwarzschild Reissner-Nordstrom

ã △
Gravmag
r △MPTD

r △ △
Gravmag
r △MPTD

r △

0.01 15.72039 15.72036 3ð10−5Þ 15.68437 15.68433 4ð10−5Þ
0.1 17.16135 17.15712 4.23ð10−3Þ 17.12605 17.12187 4.18ð10−3Þ
0.2 18.62118 18.60114 2ð10−2Þ 18.58517 18.56542 1.97ð10−2Þ
0.3 19.98182 19.92386 5.79ð10−2Þ 19.94243 19.88586 5.65ð10−2Þ

Ayon-Beato-Garcia Bardeen

ã △
Gravmag
r △MPTD

r △ △
Gravmag
r △MPTD

r △

0.01 15.67352 15.67348 4ð10−5Þ 15.70948 15.70945 3ð10−5Þ
0.1 17.11431 17.11015 4.16ð10−3Þ 17.1495 17.14531 4.19ð10−3Þ
0.2 18.54164 18.55208 1.95ð10−2Þ 18.60747 18.58762 1.98ð10−2Þ
0.3 19.92546 19.86979 5.56ð10−2Þ 19.96444 19.90744 5.7ð10−2Þ
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θ ·S¼2

�
f00ðrÞP2

ϕþrfðrÞf0ðrÞP2
r−r

f0ðrÞ
fðrÞ P

2
o

��
Srϕ

P0

�
2

ð114Þ
Zθ is omitted since we are considering motion in the
equatorial plane solely. Z2 is also needed

Z2 ≡ ZμZμ ¼ −fðrÞðZ0Þ2 þ ðZrÞ2
fðrÞ þ r2ðZϕÞ2 ð115Þ

B. MPTD particles

The velocity components in this case are given in (33),
which we rewrite here

_x0 ¼
c½− P0

fðrÞ þ aξ0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − aξ2

p ð116Þ

_xr ¼ c½fðrÞPr þ aξr�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − aξ2

p ð117Þ

_xϕ ¼ c½Pϕ

r2 þ aξϕ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − aξ2

p ð118Þ

where a ¼ 2ð16μ2 þ θ · SÞ−1. ξμ is defined as

ξμ ≡ SμαθανPν ð119Þ

which turn out to be

ξ0 ¼ −
1

fðrÞ
�
f0ðrÞ
r

− f00ðrÞ
�
P0P2

ϕ

�
Srϕ

P0

�
2

ð120Þ

ξr ¼ fðrÞ
�
f0ðrÞ
r

− f00ðrÞ
�
PrP2

ϕ

�
Srϕ

P0

�
2

ð121Þ

ξϕ ¼ −
1

fðrÞ
�
f0ðrÞ
r

− f00ðrÞ
�
½f2ðrÞP2

r − P2
0�Pϕ

�
Srϕ

P0

�
2

ð122Þ

and

ξ2 ¼ −fðrÞðξ0Þ2 þ ðξrÞ2
fðrÞ þ r2ðξϕÞ2 ð123Þ

V. CONCLUSIONS AND FINAL REMARKS

In this work, we have studied the equations of motion of
spinning particles with gravimagnetic interaction (4). We
focused on two choices of gravimagnetic moment κ; one
corresponds to κ ¼ 0, where the equations are fully
comparable with the MPTD equations (see Sec. II B).
The other choice is κ ¼ 1, in this case, the equations have
a correct behavior in ultrarelativistic limit (see [17–20]).

The study has been done in a geometrical background
with a metric of the form ds2 ¼ −fðrÞc2dt2 þ dr2

fðrÞ þ
r2ðdθ2 þ sin2θdϕ2Þ, specifically with Schwarzschild,
Reisser-Nordstrom black holes as well as Ayon-Beato-
Garcia and Bardeen regular spacetimes. Yet any spacetime
with this form of the metric, can be included in our study.
The equations for κ ¼ 0 (MPTD particles) and κ ¼ 1
(Gravimagnetic particles) were fully analysed on the
equatorial plane and we proved that the set of differential
equations for the momenta and the nonvanishing compo-
nents of Sμν might be replaced by the set of algebraic
equations (68)–(71). For κ ¼ 0, explicit analytical expres-
sions for the momenta PμðrÞ and the relevant components
Sμν were presented.
For κ ¼ 1, the equation for P0 turned out to be a single

polynomial of sixth degree P6ðP0Þ, which in principle may
have six real roots. In order for a root P�

0 to be physically
acceptable, it must lie in the interval ðP−

0 ; P
þ
0 Þwhere P�

0 are
roots of the quadratic equation for P0 given by (84); for our
four spacetime examples, we numerically verified that there
are always roots in that interval, at least two. A numerical
algorithm was presented in Sec. III, to construct solutions
for the momenta PμðrÞ and SμνðrÞ for a given set of the
particles parameters E, L and a (energy, angular momen-
tum and spin).
It was numerically shown that, for close trajectories

(cycles) in phase space ðr; PrÞ, the radial traveling range of
spinning particles increases for gravimagnetic particles
compared with those MPTD particles.
The expressions found in the previous section for

velocities, might be employed to study the orbits for
MTDP and gravimagnetic particles using any of the
spacetimes studied in this article. A further step would
be to study under which conditions chaotic behavior may
be found [28,38]. It might be also interesting to carry out
similar studies of spacetimes with a metric of the form

ds2 ¼ −AðrÞc2dt2 þ dr2

BðrÞ þ r2ðdθ2 þ sin2θdϕ2Þ

which includes the case for boson stars and boson-
fermion stars [39–43]. These studies will be reported
somewhere else.
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APPENDIX: RIEMANN TENSOR COMPONENTS,
THEIR DERIVATIVES AND RELATED

QUANTITIES

Nonvanishing components of the Riemann tensor, Rμναβ:

R0r0r ¼
1

2

d2fðrÞ
dr2

;

R0θ0θ ¼
rfðrÞ
2

dfðrÞ
dr

;

R0ϕ0ϕ ¼ rfðrÞ
2

dfðrÞ
dr

sin2ðθÞ;

Rrθrθ ¼ −
r

2fðrÞ
dfðrÞ
dr

;

Rrϕrϕ ¼ −
r

2fðrÞ
dfðrÞ
dr

sin2ðθÞ;

Rθϕθϕ ¼ −r2sin2ðθÞ − r2sin2ðθÞfðrÞ: ðA1Þ

Nonvanishing covariant derivatives components of the
Riemann tensor:
∇rRμναβ:

∇rR0r0r ¼
1

2

d3fðrÞ
dr3

;

∇rR0θ0θ ¼
1

2

�
−fðrÞ dfðrÞ

dr
þ rfðrÞ d

2fðrÞ
dr2

�
;

∇rR0ϕ0ϕ ¼ −
1

2
fðrÞ dfðrÞ

dr
sin2θ þ 1

2
rfðrÞ d

2fðrÞ
dr2

sin2θ;

∇rRrθrθ ¼ −
1

2fðrÞ
�
r
d2fðrÞ
d2r

−
dfðrÞ
dr

�
;

∇rRrϕrϕ ¼ −
sin2ðθÞ
2fðrÞ

�
r
d2fðrÞ
d2r

−
dfðrÞ
dr

�
;

∇rRθϕθϕ ¼ −rsin2ðθÞ
�
r
dfðrÞ
dr

− 2fðrÞ þ 2

�
:

∇θRμναβ:

∇θR0r0θ ¼ −
fðrÞ
2

�
dfðrÞ
dr

− r
d2fðrÞ
d2r

�
;

∇θRrϕθϕ ¼ − sin2ðθÞ
2

�
r
dfðrÞ
dr

− 2fðrÞ þ 2

�
:

∇ϕRμναβ:

∇ϕR0r0ϕ ¼ −
fðrÞ sin2ðθÞ

2

�
dfðrÞ
dr

− r
d2f
dr2

�
;

∇ϕRrϕθϕ ¼ −
r sin2ðθÞ

2

�
r
dfðrÞ
dr

− 2fðrÞ þ 2

�
:

θμν ¼ RμναβSαβ—components.
θμν ¼ 2Rμνi0Si0 þ RμνikSik

θμν _xν:

θ0ν _xν ¼ 2½Rr0r0Sr0 _rþ Rθ0θ0Sθ0 _θ þ Rϕ0ϕ0Sϕ0 _ϕ�;
θrν _xν ¼ 2½Rr0r0Sr0 _x0 þ RrθrθSrθ _θ þ RrϕrϕSrϕ _ϕ�;
θθν _xν ¼ 2½Rθ0θ0Sθ0 _x0 − RrθrθSrθ _rþ RθϕθϕSθϕ _ϕ�;
θϕν _xν ¼ 2½Rϕ0ϕ0Sϕ0 _x0 − RrϕrϕSrϕ _r − RθϕθϕSθϕ _θ�:
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