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A unified multiscalar field model with three flat regions is discussed. The three flat regions are the
inflation, early- and late dark energy epochs. The potential is obtained by a spontaneous breaking of scale
invariance generated by non-Riemannian measures of integration (or two measures theories (TMT)). We
define the scale invariant couplings of the scalar fields to the different measures through exponential
potentials. Spontaneous breaking of scale invariance takes place when integrating the fields that define the
measures. When going to the Einstein frame we obtain: (i) An effective potential for the scalar fields with
three flat regions which allows for a unified description of both early Universe inflation (in the higher-
energy density flat region) as well as of present dark energy epoch which can be realized with a double
phase, i.e., in two flat regions. (ii) In the slow-roll inflation, only one field combination, the “dilaton,”
which transforms under scale transformations, has nontrivial dynamics; the orthogonal one, which is scale
invariant, remains constant. The corresponding perturbations of the dilaton are calculated. (iii) For a
reasonable choice of the parameters the present model perturbations conforms to the Planck Collaboration
data. (iv) In the late Universe we define scale-invariant couplings of Dark Matter to the dilaton. These
couplings define a matter-induced potential for the dilaton and extremizing this potential determines the
scale-invariant scalar field, while all exotic noncanonical behavior of the Dark Matter as well as any
possible fifth force disappear. (v) We calculate the evolution of the late Universe under these conditions
with the realization of two different possible realizations of Λ cold dark matter-type scenarios depending on
the flat region in the late Universe. These two phases could appear at different times in the history of the
Universe. (vi) From the Planck data, we find the constraints on the parameters during the inflationary epoch
and these values are used to obtain constraints relevant to the present epoch.
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I. INTRODUCTION

In the “standard cosmological” framework for the early
Universe [1–9] the Universe starts with a period of
exponential expansion called “inflation.” At the same time,
after the discovery of the accelerating Universe [10–13], we
have now a late Universe standard cosmological framework
for the late Universe, the Λ Cold Dark Matter (ΛCDM)

picture [14,15], consisting of a cosmological constant, Dark
Matter, and ordinary visible matter, the Universe being now
dominated by the Cosmological Constant or Dark Energy
(DE) and the Dark Matter (DM). This simple ΛCDM is
now being somewhat challenged by the discovery of
several cosmological tensions, the H0 tension [16–19]
and the σ8 tension [20–26]. This suggests that the intro-
duction of a cosmological term to describe the DE and the
addition of DM may be a too simple description of the late
Universe. In the inflationary period also primordial density
perturbations are generated [2]. The inflation is followed by
particle creation, where the observed matter and radiation
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were generated, and finally the evolution arrives at a present
phase of slowly accelerating Universe. In this standard
model, however, at least two fundamental questions remain
unanswered:

(i) The early inflation, although solving many cosmo-
logical puzzles, like the horizon and flatness prob-
lems, cannot address the initial singularity problem;
exponential expansion with such wildly different
scales—the inflationary phase and the present phase
of slowly accelerated expansion of the Universe.

The best-known mechanism for generating a period of
accelerated expansion is through the presence of some
vacuum energy. In the context of a scalar-field theory,
vacuum energy density appears naturally when the scalar
field acquires an effective potential Ueff which has flat
regions so that the scalar field can “slowly roll” [7,8,27,28]
and its kinetic energy can be neglected, resulting in an
energy-momentum tensor Tμν ≃ −gμνUeff.
The possibility of continuously connecting an infla-

tionary phase to a slowly accelerating Universe through
the evolution of a single scalar field—the quintessential
inflation scenario—has been first studied in Ref. [29].
Also, FðRÞ models can yield both an early-time infla-
tionary epoch and a late-time de Sitter phase with vastly
different values of effective vacuum energies [30–32]. For a
recent proposal of a quintessential inflation mechanism
based on the k-essence framework, see Ref. [33]. For
another recent approach to quintessential inflation based on
the “variable gravity” model [34,35] and for an extensive
list of references to earlier work on the topic, see Ref. [36].
Other ideas based on the so-called α attractors [7,37–51],
which use noncanonical kinetic terms, have been studied.
Finally, a quintessential inflation based on a Lorentzian
Slow Roll ansatz [52] which automatically gives two
flat regions.
In previous papers [53–55] we have studied a unified

scenario where both an inflation and a slowly accelerated
phase for the universe can appear naturally from the
existence of two flat regions in the effective scalar-field
potential which we derive systematically from a
Lagrangian action principle. Namely, we started with a
new kind of globally Weyl-scale invariant gravity-matter
action within the first-order (Palatini) approach formulated
in terms of two different non-Riemannian volume forms
(integration measures) [55]. In this new theory there is a
single scalar field with kinetic terms coupled to both non-
Riemannian measures, and in addition to the scalar curva-
ture term R also an R2 term is included (which is similarly
allowed by global Weyl-scale invariance). Scale invariance
is spontaneously broken upon solving part of the corre-
sponding equations of motion due to the appearance of two
arbitrary dimensionful integration constants.
Let us briefly recall the origin of current approach. The

main idea comes fromRefs. [56–58], where some of us have
proposed a new class of gravity-matter theories based on the

idea that the action integral may contain a new metric-
independent generally covariant integration mea-
sure density, i.e., an alternative non-Riemannian volume
form on the space-time manifold defined in terms of an
auxiliary antisymmetric gauge field of maximal rank.
The originally proposed modified-measure gravity-matter
theories [56–58] contained two terms in the pertinent
Lagrangian action—onewith a non-Riemannian integration
measure and a second one with the standard Riemannian
integration measure (in terms of the square root of the
determinant of the Riemannian space-time metric). An
important featurewas the requirement for globalWeyl-scale
invariance which subsequently underwent dynamical spon-
taneous breaking [56–59]. The second action term with the
standard Riemannian integration measure might also con-
tain a Weyl-scale symmetry-preserving R2 term [58].
The latter formalism yields various new interesting

results in all types of known generally covariant theories:
(i) D ¼ four-dimensional models of gravity and matter

fields containing the new measure of integration
appear to be promising candidates for resolution of
the dark energy and dark matter problems, the fifth
force problem, and a natural mechanism for sponta-
neous breakdown of global Weyl-scale symmetry
[56,59–65].

(ii) Study of reparametrization-invariant theories of
extended objects (strings and branes) based on
employing of a modified non-Riemannian world-
sheet/world-volume integration measure [66–68]
leads to dynamically induced variable string/brane
tension and to string models of non-Abelian confine-
ment, interesting consequences from the modified
measures spectrum [69], and construction of new
braneworld scenarios [70]. Recently [71], this for-
malism was generalized to the case of string and
brane models in curved supergravity background.

(iii) Study in [72,73] of modified supergravity models
with an alternative non-Riemannian volume form on
the space-time manifold produces some outstanding
new features: (a) This new formalism applied to
minimal N ¼ 1 supergravity naturally triggers the
appearance of a dynamically generated cosmologi-
cal constant as an arbitrary integration constant,
which signifies a new explicit mechanism of sponta-
neous (dynamical) breaking of supersymmetry;
(b) Applying the same formalism to anti–de Sitter
supergravity allows us to appropriately choose the
above-mentioned arbitrary integration constant so
as to obtain simultaneously a very small effective
observable cosmological constant as well as a very
large physical gravitino mass.

In this paper we will study a quintessential scenario where
we will be driven from inflation to a slowly accelerated
phase describing our Universe using a scale-invariant
two-field model. Multifield inflation has been studied by
several authors; see for example [74–78]. In the context of
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modified measures formalism, the ratio of two measures
can become an additional scalar field if we use the second-
order formalism [79,80]. In the present paper we will
consider only the first-order formulation, however, and the
measure field remains nondynamical, determined by a
constraint, and therefore they do not introduce new degrees
of freedom. Introducing two fields gives rise to very
interesting new possibilities. This is also the case when
we consider multifield scale-invariant inflationary models
leading to DE/DM for the late Universe, where interesting
new features appear for both the inflationary phase and for
the DE/DM late Universe phase; in particular, we will see
that the late Universe acquires a fine structure with two
possible vacuums for the late Universe that can occur at
different times in the late evolution of the Universe.
The plan of the present paper is as follows. In the next

section (Sec. II) we describe in some detail the general
formalism for the new class of gravity-matter systems
defined in terms of two independent non-Riemannian
integration measures. In Sec. III we describe the properties
of the three flat regions in the Einstein-frame effective
scalar potential, one corresponding to the evolution of the
early inflation and the other two for the late Universe. We
also present in this section the relevant solutions for the
slow-roll inflation. In Sec. IV we present a numerical
analysis, for a reasonable choice of the parameters, of the
resulting ratio of tensor-to-scalar perturbations and show
that the present model conforms to the Planck
Collaboration data. In Sec. V we study how the model
can describe Dark Matter in a scale-invariant fashion in the
late Universe, what are the conditions for avoiding 5th force
problem, or what is equivalent for the dust Dark Matter to
behave canonically. We find that in the two flat regions of
the late Universe the Dark Energy and Dark Matter can
acquire different parameters. In Sec. VI we find the
different values of the particle masses in the relevant
vacuums of the two flat regions relevant to the late
Universe where the 5th force is eliminated, the dust is
canonical, etc. The dynamical connection between
these two phases requires a noncanonical dust- and dark-
energy behavior transition, since particle masses have
to change when transitioning between these two states.
This has not been studied in full detail yet. We conclude
in Sec. VIII with some discussions. For simplicity we
will use units where the Newton constant is taken as
GNewton ¼ 1=16π.

II. GRAVITY-MATTER FORMALISM WITH
TWO INDEPENDENT NON-RIEMANNIAN

VOLUME FORMS

In this section, we shall consider the following non-
standard gravity-matter system with an action involving
two independent non-Riemannian integration measure
densities generalizing the model analyzed in [55]. In this
form, the action is given by

S ¼
Z

d4xΦ1ðAÞ½Rþ Lð1Þ�

þ
Z

d4xΦ2ðBÞ
�
Lð2Þ þ ϵR2 þΦðHÞffiffiffiffiffiffi−gp

�
; ð1Þ

where the following notations are used:
(i) The quantities Φ1ðAÞ and Φ2ðBÞ are two indepen-

dent non-Riemannian volume forms, i.e., generally
covariant integration measure densities on the under-
lying space-time manifold and are given by

Φ1ðAÞ ¼
1

3!
εμνκλ∂μAνκλ; Φ2ðBÞ ¼

1

3!
εμνκλ∂μBνκλ;

ð2Þ

defined as a function of field strengths of two
auxiliary 3-index antisymmetric tensor gauge
fields.1 The functions Φ1;2 take over the role of
the standard Riemannian integration measure den-
sity defined as

ffiffiffiffiffiffi−gp ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det kgμνk

p
and it is ex-

pressed in terms of the space-time metric gμν.
(ii) [The functions R ¼ gμνRμνðΓÞ and RμνðΓÞ corre-

spond to the scalar curvature and the Ricci tensor in
the first-order (Palatini) formalism, where the affine
connection Γμ

νλ is a priori independent of the metric
gμν. Also, we have added in the second action term
an R2 gravity term (again in the Palatini form). We
mention that Rþ R2 gravity within the second-order
formalism (which was the first inflationary model)
was originally analyzed in Ref. [6].

(iii) The quantities Lð1;2Þ denote two different Lagran-
gians of two scalar matter fields φ1 and φ2 in
analogy to Refs. [56,59]. These Lagrangians are
defined as

Lð1Þ ¼−
1

2
gμν∂μφ1∂νφ1−

1

2
gμν∂μφ2∂νφ2−Vðφ1;φ2Þ;

ð3Þ

Lð2Þ ¼ Uðφ1;φ2Þ; ð4Þ

where the scalar potential V is given by

Vðφ1;φ2Þ ¼ f1e−α1φ1 þ g1e−α2φ2 ; ð5Þ

and another scalar potential is defined as

1In general for the D space-time dimensions one can always
represent a maximal rank antisymmetric gauge field Aμ1…μD−1

as a
function of D auxiliary scalar fields ϕi (i ¼ 1;…; D) as
Aμ1…μD−1

¼ 1
D εii1…iD−1

ϕi
∂μ1ϕ

i1…∂μD−1
ϕiD−1 , so that its (dual) field

strength ΦðAÞ ¼ 1
D!
εi1…iDε

μ1…μD∂μ1ϕ
i1…∂μDϕ

iD .
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Uðφ1;φ2Þ ¼ f2e−2α1φ1 þ g2e−2α2φ2 ; ð6Þ

where the quantities f1, f2, g1, g2,α1, and α2 are
positive parameters.

(iv) The functionΦðHÞ denotes the dual field strength of
a third auxiliary 3-index antisymmetric tensor gauge
field:

ΦðHÞ ¼ 1

3!
εμνκλ∂μHνκλ; ð7Þ

whose introduction is fundamental for nontriviality
of the model.

We mention the scalar potentials V and U have been
chosen in such a way that the action given Eq. (1) is
invariant under global Weyl-scale transformations:

gμν → λgμν; Γμ
νλ → Γμ

νλ; φ1 → φ1 þ
1

α1
ln λ;

φ2 → φ2 þ
1

α2
ln λ; Aμνκ → λAμνκ;

Bμνκ → λ2Bμνκ; Hμνκ → Hμνκ: ð8Þ

Note that this combination is invariant, α1φ1 − α2φ2 →
α1φ1 − α2φ2, from Eq. (8). Additionally, we observe that
the requirement about the global Weyl-scale symmetry (8)
uniquely fixes the structure of the non-Riemannian-mea-
sure gravity-matter action given by Eq. (1).
In the following we will use ϵ ¼ 0 and in this case the

equations of motion resulting from the variation of (1) with
respect to affine connection Γμ

νλ, areZ
d4x

ffiffiffiffiffiffi
−g

p
gμν
�

Φ1ffiffiffiffiffiffi−gp
�
ð∇κδΓκ

μν −∇μδΓκ
κνÞ ¼ 0: ð9Þ

Therefore, Γμ
νλ corresponds to a Levi-Civita connection,

Γμ
νλ ¼ Γμ

νλðḡÞ ¼
1

2
ḡμκð∂νḡλκ þ ∂λḡνκ − ∂κḡνλÞ; ð10Þ

with respect to the Weyl-rescaled metric ḡμν:

ḡμν ¼ χ1gμν; and χ1 ≡Φ1ðAÞffiffiffiffiffiffi−gp : ð11Þ

Also, from the variation of the action (1) with respect to
auxiliary tensor gauge fields Aμνλ, Bμνλ, andHμνλ that yields
the equations, we have

∂μ½Rþ Lð1Þ� ¼ 0; ∂μ

�
Lð2Þ þΦðHÞffiffiffiffiffiffi−gp

�
¼ 0;

∂μ

�
Φ2ðBÞffiffiffiffiffiffi−gp

�
¼ 0; ð12Þ

whose solutions are given by

Φ2ðBÞffiffiffiffiffiffi−gp ≡ χ2; Rþ Lð1Þ ¼ −M1; Lð2Þ þΦðHÞffiffiffiffiffiffi−gp ¼ −M2:

ð13Þ

Here the quantities M1, M2, and χ2 are integration con-
stants. However, the constantsM1 andM2 are arbitrary and
dimensional and χ2 arbitrary and dimensionless.
We mention that the integration constant χ2 in Eq. (13)

preserves global Weyl-scale invariance in Eq. (8), whereas
the appearance of the other integration constants M1, M2

signifies dynamical spontaneous breakdown of global
Weyl-scale invariance under (8) due to the scale-noninvar-
iant solutions in Eq. (13).
Also, varying the action (1) with respect to gμν and using

relations (13), we have

χ1

�
Rμνþ

1

2
ðgμνLð1Þ−Tð1Þ

μν Þ
�
¼ χ2

2
½Tð2Þ

μν þ gμνM2− 2RRμν�;

ð14Þ

where χ1 and χ2 are defined in (11), and the quantities T
ð1;2Þ
μν

correspond to the energy-momentum tensors of the scalar-
field Lagrangians with the standard definitions:

Tð1;2Þ
μν ¼ gμνLð1;2Þ − 2

∂

∂gμν
Lð1;2Þ: ð15Þ

Now, taking the trace of Eq. (14) and using again the
second relation of Eq. (13), we find that the scale factor χ1
becomes

χ1 ¼ 2χ2
Tð2Þ=4þM2

Lð1Þ − Tð1Þ=2 −M1

; ð16Þ

where Tð1;2Þ ¼ gμνTð1;2Þ
μν .

Thus, considering the second relation of Eq. (13)
together with Eq. (14), we obtain the Einstein-like form

Rμν −
1

2
gμνR ¼ 1

2
gμνðLð1Þ þM1Þ þ

1

2
ðTð1Þ

μν − gμνLð1ÞÞ

þ χ2
2χ1

½Tð2Þ
μν þ gμνM2�: ð17Þ

In this context, we can bring Eqs. (17) into the standard
form of Einstein equations for the metric ḡμν, i.e., the
Einstein-frame gravity equations

RμνðḡÞ −
1

2
ḡμνRðḡÞ ¼

1

2
Teff
μν ; ð18Þ

in with the energy-momentum tensor [analogously to (15)]:
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Teff
μν ¼ gμνLeff − 2

∂

∂gμν
Leff ; ð19Þ

where the effective Einstein-frame scalar-field Lagrangian

Leff ¼
1

χ1

�
Lð1Þ þM1 þ

χ2
χ1

½Lð2Þ þM2�
�
; ð20Þ

where Lð1;2Þ represent Lagrangian densities defined as

Lð1Þ ¼ χ1ðX1 þ X2Þ − V; Lð2Þ ¼ U; ð21Þ

with the potentials V andU as in relations (3) and (4). Also,
to write Leff in terms of the Einstein-frame metric ḡμν we
consider the short-hand notation for the kinetic terms:

X1 ≡ −
1

2
ḡμν∂μφ1∂νφ1; X2 ≡ −

1

2
ḡμν∂μφ2∂νφ2: ð22Þ

By combining Eqs. (16) and (19), and taking into
account (21), we obtain

χ1 ¼
2χ2½U þM2�
ðV −M1Þ

: ð23Þ

From Eqs. (23) and (20), we find at the explicit form for the
Einstein-frame scalar Lagrangian Leff

Leff ¼ X1 þ X2 − Ueffðφ1;φ2Þ; ð24Þ

in which the effective scalar potentialUeffðφ1;φ2Þ becomes

Ueffðφ1;φ2Þ≡ ðV −M1Þ2
4χ2½U þM2�

¼ ðf1e−α1φ1 þ g1e−α2φ2 −M1Þ2
4χ2½f2e−2α1φ1 þ g2e−2α2φ2 þM2�

: ð25Þ

We note that choosing the “wrong” sign of the scalar
potentialU [Eq. (4)] in the initial non-Riemannian-measure
gravity-matter action (1) is necessary to end up with the
right sign in the effective potential (25) associated with
scalar fields φ1 and φ2 in the physical Einstein-frame
effective gravity-matter action given by Eq. (24). On the
other hand, the overall sign of the other initial scalar
potential V [Eq. (4)] is in fact irrelevant since changing
its sign does not alter the positivity of effective potential
given by Eq. (25).

III. FLAT REGIONS OF THE EFFECTIVE
SCALAR POTENTIAL

A. Flat region values

We mention that the important feature of the effective
potential Ueff [see Eq. (25)] is the presence of three
infinitely large flat regions—for large positive values of

the fields φ1 and φ2. For large positive values of φ1 and φ2,
the effective potential reduces to

Ueffðφ1;φ2Þ ≃UðþþÞ ≡ M2
1

4χ2M2

: ð26Þ

For the case in which we only have large negative φ1:

Ueffðφ1;φ2Þ ≃Uðφ1→−∞Þ ≡ f21
4χ2f2

: ð27Þ

In the other flat region in which we only have large
negative φ2:

Ueffðφ1;φ2Þ ≃ Uðφ2→−∞Þ ≡ g21
4χ2g2

: ð28Þ

Figure 1 shows a qualitative example for the three fat
regions. The flat regions (26), (27), and (28) correspond to
the evolution of the early and the late Universe, respec-
tively, provided we choose the ratio of the coupling
constants in the original scalar potentials versus the ratio
of the scale-symmetry breaking integration constants to
obey

M2
1

M2

≫
f21
f2

; and
M2

1

M2

≫
g21
g2

; ð29Þ

which makes the vacuum energy density of the early
Universe UðþþÞ much bigger than that of the late Universe.

FIG. 1. The effective potential with three flat regions. One flat
region refers to the inflationary phase and the other region refers
to dark energy. The third could be another early dark-energy
phase. Here, we have used a positive value for M1.
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On the other hand, from the cosmological perturbations
together with the Planck data [81–86], we have that the first
flat region of the effective potential is approximately

UðþþÞ ∼M2
1=χ2M2 ∼ 6π2rPS ∼ 10−8; ð30Þ

(in units of M4
Pl), where the r denotes the tensor-to-

scalar ratio and PS corresponds to the scalar power
perturbation. Let us recall that, since we are using units
where GNewton ¼ 1=16π, in the present case the Planck
mass MPl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=8πGNewton

p ¼ ffiffiffi
2

p
.

In order to study the dynamics of the Universe, we
consider that the metric corresponds to the standard flat
Friedmann-Lemaitre-Robertson-Walker space-time metric
given by

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ�; ð31Þ

where aðtÞ denotes the scale factor. Thus, the associated
Friedmann equations (recall the presently used units
GNewton ¼ 1=16π) result:

a
::

a
¼ −

1

12
ðρþ 3pÞ; H2 ¼ 1

6
ρ; H ≡ a

:

a
; ð32Þ

whereH is the Hubble parameter. Also, the quantities ρ and
p are defined as

ρ ¼ 1

2
φ
: 2
1 þ

1

2
φ
: 2
2 þ Ueffðφ1;φ2Þ; ð33Þ

p ¼ 1

2
φ
: 2
1 þ

1

2
φ
: 2
2 −Ueffðφ1;φ2Þ; ð34Þ

and denote the total energy density and pressure of the
scalar fields φ1 ¼ φ1ðtÞ and φ2 ¼ φ2ðtÞ, respectively. In
the following, we will consider that the dots indicate
derivatives with respect to the time t.
In relation to the scalar equations of motion for the scalar

field φ1 and φ2, we have

φ
::
1 þ 3Hφ

:
1 þ ∂Ueff=∂φ1 ¼ 0; ð35Þ

and

φ
::
2 þ 3Hφ

:
2 þ ∂Ueff=∂φ2 ¼ 0: ð36Þ

From these equations it is useful to track the behavior of the
solution for different values of the initial condition. From
comparing the potential derivatives into zero, ∂Ueff=∂φ1 ¼
∂Ueff=∂φ2 ¼ 0, we get few points or paths. One path reads

f1e−α1φ1 þ g1e−α2φ2 ¼ M1; ð37Þ

with Ueff ¼ 0, which is possible if M1 > 0—the case we
focus on. The path is a minimum from one side. The other

points has infinite eigenvalues so we do not take them
into account.
Since the potential has three different flat regions that

give ∂Ueff=∂φ1 ¼ ∂Ueff=∂φ2 ¼ 0, the asymptotic behavior
of the quintessential inflationary solution is quantified by
these areas. In early times the potential begins at UðþþÞ and
finishes at the lower value of the late dark energy.

B. Slow-roll approximation

In the context of the slow-roll inflation, we can introduce
the standard slow-roll parameters [27,28]:

ε≡ −
H
:

H2
; η1 ≡ −

φ
::
1

Hφ
:
1

; and η2 ≡ −
φ
::
2

Hφ
:
2

; ð38Þ

and under the slow-roll approximation ε, η1, and η2 ≪ 1;
thus, one ignores the terms with φ

::
1;2, so that the φ1;φ2-

equations of motion together with the second Friedmann
equation (32) simplify to

3Hφ
:
1 þ ∂Ueff=∂φ1 ≃ 0; 3Hφ

:
2 þ ∂Ueff=∂φ2 ≃ 0;

H2 ≃
1

6
Ueff : ð39Þ

Since now the fields φ1 and φ2 evolve on the first flat
region of Ueff for large positive values (26), we can
consider that the effective potential during inflationary
scenario can be approximated to

Ueffðφ1;φ2Þ ≃
M2

1 − 2M1ðf1e−α1φ1 þ g1e−α2φ2Þ
4χ2M2

: ð40Þ

Here, we have used the expansion of the effective potential
given Eq. (25).
In the followingwewill introduce the number of e-foldsN

defined as N ¼ lnða=afÞ, where af corresponds to the scale
factor at the end of the inflation, that is, at the end of inflation
N ¼ 0. Thus, Eqs. (39) and (40) can be rewritten as

dφ1

dN
¼ 6M1α1f1e−α1φ1

½M2
2 − 2M1ðf1e−α1φ1 þ g1e−α2φ2Þ� ; ð41Þ

and

dφ2

dN
¼ 6M1α2g1e−α2φ2

½M2
2 − 2M1ðf1e−α1φ1 þ g1e−α2φ2Þ� : ð42Þ

Dividing these two equations we get a relation between the
scalar fields φ1 and φ2 given by

eα1φ1dφ1 ¼
f1α1
g2α2

eα2φ2dφ2: ð43Þ

Notice that the symmetry-breaking constants M1 and M2

dropped from this equation. The integration of this equation
introduces a new constant of integration C∶
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eα1φ1 ¼ f1α21
g1α22

eα2φ2 þ C: ð44Þ

In the following we will consider that the integration
constant C ¼ 0.
Now, we can redefine two new scalar fields ϕ1 and ϕ2, in

terms of the scalar fields φ1 and φ2, such that

ϕ1 ¼
α1φ1 − α2φ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α21 þ α22
p ; and ϕ2 ¼

α2φ1 þ α1φ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p : ð45Þ

Thus, this transformation is orthogonal, _ϕ2
1 þ _ϕ2

2 ¼
_φ2
1 þ _φ2

2, where ϕ1 is invariant and ϕ2 transforms under
a scale transformation.
Notice that in this case, the scale-invariant combination

α1φ1 − α2φ2 gets determined, which corresponds to fixing
the scalar field ϕ1 defined in (45); this scalar field is scale
invariant and is given by

ϕ1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α21 þ α22
p ln

�
f1α21
g1α22

�
¼ constant: ð46Þ

However, the scalar field ϕ2 defined also in Eq. (45),
evolves in time. This means that although we have broken
the scale invariance, through the integration constants M1

and M2, some of the remaining equations recall such scale
invariance. As we have noticed in particular, the integration
constants M1 and M2 dropped from such equation. That is
indeed the reason that the equation that relates the two
scalars retains the scale invariance, which is not true for
other equations. We can now go back to the fields φ1 and
φ2; in particular, we have that the relation between the
scalar field φ2 and the number of e-folds N becomes

A2

α2
eα2φ2 þ A3φ2 ¼ A1N þ cte; ð47Þ

and we can obtain φ2 ¼ φðNÞ using the ProductLog
function. In mathematics, the product logarithm, also called
the Omega function or Lambert W function, is a multi-
valued function, namely the branches of the converse
relation of the function fðwÞ ¼ wew, see Ref. [87].
Using this definition, we find that the scalar field φ2 in
terms of the number of e-folds results:

φ2ðNÞ ¼ ðA1N þ C1Þ=A3

− α−12 ProductLog½ðA2=A3Þeα2ðA1NþC1Þ=A3 �; ð48Þ

where C1 corresponds to another integration constant and
the quantities A1, A2, and A3 are defined as

A1 ¼ 6M1α2g1; A2 ¼M2
2; A3 ¼−2M1

�
g1α22
α21

þ g1

�
:

In order to obtain a real solution for the scalar field φ2

it is necessary that the argument of the function
ProductLog satisfies the condition in which the quantities
ðA2=A3Þeα2ðA1NþC1Þ=A3 > −e−1; see Ref. [88].
From Eqs. (44) and (45) we find that the new scalar field

ϕ2 can be written as

ϕ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��

α2
α1

�
2

þ 1

�s
φ2 þ C2; ð49Þ

where C2 is a constant defined as

C2 ¼
α2

α1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p ln

�
f1α21
f2α22

�
:

Now, the effective potential associated with the new field
ϕ2 becomes

Ueffðϕ2Þ ≃
M2

1 − 2M1g1½ðα2α1Þ2 þ 1�e
−α1α2ðϕ2−C2Þffiffiffiffiffiffiffiffi

α2
1
þα2

2

p

4χ2M2

: ð50Þ

In this way, the inflationary scenario reduces to a
single field ϕ2, such that the new equations are 6H2 ¼
_ϕ2
2

2
þUeffðϕ2Þ and ϕ̈2 þ 3H _ϕ2 þ ∂Ueffðϕ2Þ=∂ϕ2 ¼ 0.
The new slow-roll parameters ϵ and η associated with the

scalar field ϕ2 are defined as in the standard case:

ϵ ≃
�
∂Ueff=∂ϕ2

Ueff

�
2

; and η ≃ 2

�
∂
2Ueff=∂ϕ2

2

Ueff

�
: ð51Þ

By considering the effective potential given by Eq. (50) we
obtain that the slow-roll parameters result:

ϵ ≃
�
4g21α

2
2ðα21 þ α22Þ
M2

1α
2
1

�
e

−2α1α2ðϕ2−C2Þffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
;

η ≃ −
�
4g1α22
M1

�
e

−α1α2ðϕ2−C2Þffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
: ð52Þ

Here, we have considered that the effective poten-
tial Ueff ∼M2

1=ð4χ2M2Þ.
Additionally, we can obtain the value of ϕ2 at the end of

the slow-roll regime ϕ2end and it is determined from the
condition ϵ ¼ 1 which through (52) becomes

ϕ2end ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p
2α1α2

ln

�
4g21α

2
2ðα21 þ α22Þ
M2

1α
2
1

�
þ C2: ð53Þ

Also, considering Eq. (48) we have that the value of
scalar field ϕ2 at the end of inflation occurs when the
number of e-folds N ¼ 0, and then
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ϕ2end ¼ C2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
α22
α21

�
2

þ 1

s

×

�
C1

A3

−
1

α2
ProducLog½ðA2=A3Þeα2C1=A3 �

�
: ð54Þ

Thus, from the above equations, we obtain that the constant
C1 is given by

C1 ≈
A3

α2

�
1

2
ln

�
4g21α

2
2ðα21 þ α22Þ
M2

1α
2
1

�
þ 1

�
: ð55Þ

Here, we have considered that the term ProductLog is a
function that does not change very much and is of order 1.

IV. PERTURBATIONS

In this section we will describe the scalar and tensor
perturbations during the inflationary stage for our model
of the single field ϕ2. Following Refs. [89,90] the power
spectrum of the scalar perturbation PS under the slow-roll
approximation is defined as

PS ¼
�

H2

2π _ϕ2

�
2

≃
�

1

96π2
U3

eff

ð∂Ueff=∂ϕ2Þ2
�
: ð56Þ

The scalar spectral index ns is given by

ns − 1 ¼ d lnPS

d ln k
¼ −6ϵþ 2η; ð57Þ

where the slow-roll parameters ϵ and η are defined
by Eq. (52).
On the other hand, it is well known that the generation of

tensor perturbations in the scenario of inflation would
generate gravitational waves. In this context, the spectrum
of the tensor perturbations PT is defined as [89,90]

PT ¼
�
H
π

�
2

≃
Ueff

6π2
: ð58Þ

Also, the tensor spectral index nT can be expressed in terms
of the slow parameter ϵ as nT ¼ d lnPT

d ln k ¼ −2ϵ.
Additionally, an important observational quantity is the

tensor-to-scalar ratio r ¼ PT
PS
. We mention that these obser-

vational quantities should be evaluated when the cosmo-
logical scale exits the horizon. In what follows, the
subscript � is utilized to indicate the epoch in which the
cosmological scale exits the horizon.
Considering the slow-roll approximation, the power

spectrum of the scalar perturbation PS from Eq. (56)
can be written as

PS � ≃k1e
2α1α2ffiffiffiffiffiffiffiffi
α2
1
þα2

2

p ðϕ2�−C2Þ
; ð59Þ

where the constant k1 is given by

k1 ¼
�

1

1536π2

��
M4

1

χ2M2g21α
2
2½ðα2=α1Þ2 þ 1�

�
:

From Eq. (57), the scalar spectral index ns becomes

ns� ≃ 1 −
8g1α22
M1

�
3g1ðα21 þ α22Þ

M1α
2
1

e
− α1α2ffiffiffiffiffiffiffiffi

α2
1
þα2

2

p ðϕ2�−C2Þ
þ 1

�

× e
− α1α2ffiffiffiffiffiffiffiffi

α2
1
þα2

2

p ðϕ2�−C2Þ
: ð60Þ

From Eq. (59) we find that the quantity χ2M2g41=M
6
1 as a

function of the power spectrum and the number of e-folds
can be written as

χ2M2g41
M6

1

¼
�
g1
M1

�
4
�

1

4UðþþÞ

�

¼
�

1

6144π2

��
α41

α22ðα21 þ α22Þ2PS

�
e

6α2
2ffiffiffiffiffiffiffiffiffiffiffiffi

ðα2
2
=α2

1
Þþ1

p N�
:

ð61Þ

Also, considering Eq. (60) we obtain that the ratio g1=M1

has four solutions and the real and positive solution is
given by

g1
M1

¼ α3=21ffiffiffiffiffi
12

p
α1=22 ðα21 þ α22Þ3=4

×

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2

ðα21 þ α22Þ
α21α

2
2

ð1 − nsÞ
s #1=2

e

3α1α
2
2

2

ffiffiffiffiffiffiffiffi
α2
1
þα2

2

p N�
:

ð62Þ

Additionally, we find that the tensor-to-scalar ratio r as a
function of the number of e-folds N can be written as

rðN ¼ N�Þ ¼ r� ¼
�
2g1
M1

�
4
�
α42ðα21 þ α22Þ2

α41

�
e

−6α2
1
α2
2

ðα2
1
þα2

2
ÞN�

; ð63Þ

where we have used Eqs. (58) and (59).
By combining Eqs. (61) and (63), we find an upper bond

for the parameter α2 given by

α2 < r1=2�

�
6144π2PS�
26UðþþÞ

�
1=2

: ð64Þ

Also, from Eqs. (61) and (62) we can obtain an equation
that gives a relation between α1 and α2 given by
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�
3γ2ðα21 þ α22Þ1=2

α1
− 1

�
2

¼ 1þ 3

2
ð1 − nsÞ

�ðα21 þ α22Þ
α21α

2
2

�
;

ð65Þ

where γ is defined as γ ¼ 2½UðþþÞ=ð1536π2PSÞ�1=4.
In particular, for the case in which the tensor-to-scalar

ratio takes the value r� ¼ 0.036, PS� ≃ 2.2 × 10−9, and the
vacuum energy UðþþÞ ≃ 6π2r�PS� ≃ 10−8 [see Eq. (30)]
from Refs. [81–86,91], we obtain from Eq. (64) that the
upper limit for the parameter α2 becomes α2 < 2.74. Now,
using this upper bound for α2 ¼ 2.74 and ns� ¼ 0.967, we
find from Eq. (65) that the real solution for α1 is given by
α1 ¼ 0.24. In the case in which r� ¼ 0.01, we find that the
upper bound for α2 ∼ 1.44 and α1 ∼ 0.07.
Additionally, in order to find a constraint for the ratio

g1=M1, we can consider Eq. (61) [or (62)], obtaining that
the ratio g1=M1 for the special case in which α1 ¼ 0.24,
α2 ¼ 2.74, and N� ¼ 60 becomes g1=M1 ≃ 7 × 1025, and
for α1 ¼ 0.07, α2 ¼ 1.44 we get g1=M1 ≃ 4800.
Notice that the slow-roll trajectory defined by (46) for a

given constant defines a straight line in the ðφ1;φ2Þ plane in
the top vacuum and for another constant defines another
parallel line in the top vacuum. We can then choose the line
we desire so as to fall in one of the two lower vacuua from
the top vacuum.

V. EVOLUTION TO DARK ENERGY
AND DARK MATTER

In this section we will analyze the evolution of the dark
energy and dark matter as a remnant of the early Universe.
After the inflation period has ended there must be a period
of particle creation that will produce dark matter as well as
ordinary matter; this can be achieved in many different
ways, even in the case of one scalar field coupled to
different measures [92]. In this section we add now a dark-
matter particle contribution, defined in a scale-invariant
form by the matter action defined as

Sm ¼
Z

ðΦ1 þ bmeκ1ϕ2
ffiffiffiffiffiffi
−g

p ÞLmd4x; ð66Þ

where bm is a constant that defines the strength to the
coupling of ϕ2 to

ffiffiffiffiffiffi−gp
; coupling to Φ2 does not give a

physically different situation, since still Φ2 and
ffiffiffiffiffiffi−gp

are
proportional. Also, the matter Lagrangian density Lm is
given by

Lm ¼−
X
i

mi

Z
eκ2ϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gαβ

dxαi
dλ

dxβi
dλ

s
δ4ðx− xiðλÞÞffiffiffiffiffiffi−gp dλ; ð67Þ

where the constants κ1 and κ2 satisfy the condition of scale
invariance and the quantity mi denotes the mass parameter
of the “ith” particle. This invariance determines the

coupling constants to be equal to κ1 ¼ − α1α2ffiffiffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
and κ2 ¼ − 1

2
κ1.

Under these conditions the presence of matter induces a
potential for the scalar field ϕ2 since there is a scalar-field
dependence ϕ2 which multiplies a “density of matter”
contribution which is ϕ2 independent. The scalar field ϕ2

dependence is of the form

	
e−

1
2
κ1ϕ2Φ1 þ bme

1
2
κ1ϕ2

ffiffiffiffiffiffi
−g

p 

: ð68Þ

Such potential is extremized by the condition

Φ1 − bmeκ1ϕ2
ffiffiffiffiffiffi
−g

p ¼ 0: ð69Þ

Interestingly enough the same condition eliminates all kind
of noncanonical anomalous effects, like the appearance of
pressure in the contribution to the energy momentum from
the particles; see Sec. VII. Also, the constraint equation that
was used to determine the ratio of the measures Φ1 andffiffiffiffiffiffi−gp

becomes unaffected by the presence of the dust when
the condition above (69) is satisfied (see Sec. VII), so we
can use Eq. (23) and in the late Universe, neglectingM1 and
M2, we obtain an equation that determines ϕ1. Analogous
effects were recognized in a scale-invariant two measure
model of gravity, matter, and one scalar field in [93] to
obtain the avoidance of the fifth force problem, which the
ϕ2, the dilaton, could possibly cause, since it is a massless
field. Here, the avoidance of the fifth force problem is also
achieved and we can arrange for this to happen when the
scalar field ϕ1 adjusts itself so as to satisfy the above
equation. In this context, we find that the equation for ϕ1 is
given by

2χ2f2e
−

α2
1ffiffiffiffiffiffiffiffi

α2
1
þα2

2

p ϕ1

þ2χ2g2e

α2
1ffiffiffiffiffiffiffiffi

α2
1
þα2

2

p ϕ1

¼bmf1þbmg1e
ffiffiffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
ϕ1 :

ð70Þ

Thus, Eq. (70) determines the value of ϕ1 to be a given
constant; solving this equation and then the velocity of the
scalar field ϕ1 is zero, i.e., _ϕ1 ¼ 0. In order to determine the

value of the scalar field ϕ1 we consider x ¼ e

α2
1
ϕ1ffiffiffiffiffiffiffiffi

α2
1
þα2

2

p
; then,

Eq. (70) can be rewritten as

2χ2g2x2 − bmg1x
2α2

1
þα2

2

α2
1 − bmf1xþ 2χ2f2 ¼ 0: ð71Þ

Interestingly enough, the field ϕ2 drops from this equation.
This is quite reasonable since the field ϕ2 undergoes a
shift under the scale transformation, so if we were to
determine the field ϕ2, that would correspond to a breaking
of scale invariance, but now we are working in a phase with
exact scale invariance, since we are neglecting the scale
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symmetry-breaking constants M1 and M2. The field ϕ2 is
decoupled from matter, which is a consequence of the
elimination of the 5th force.
In order to obtain a solution for the scalar field ϕ1 from

Eqs. (70) or (71), we consider that for very large value of ϕ1

or equivalently x → ∞ the dominate terms of Eq. (71) are

2χ2g2x2 − bmg1x
2α2

1
þα2

2

α2
1 ∼ 0; then x ∼

�
2χ2g2
g1bm

�ðα1=α2Þ2
;

ð72Þ

where for consistency, we must choose the quantity
ðχ2g2=g1bmÞ → ∞. Here, the value of the scalar field ϕ1

at this point is

ϕ1ðþÞ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p
α22

ln

�
2χ2g2
f1bm

�
: ð73Þ

Now, in the region in which the scalar field ϕ1 → −∞ or
x → 0 we have that the dominant terms are

−bmf1xþ 2χ2f2 ∼ 0; and x ∼
�
2χ2f2
f1bm

�
→ 0; ð74Þ

and the value of the scalar field at this point is

ϕ1ð−Þ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 þ α22

p
α21

ln

�
2χ2f2
f1bm

�
: ð75Þ

In what follows of this section we study the dynamics
of the dark energy and as defined before, with the
equations for the ratio of the two measures obtained
in the absence of dark matter (23) still being valid, so we
can still consider the effective potential for the dark
energy by Eq. (25) and the dark matter is described as a
dust since all noncanonical effects disappear when
Φ1 − bmeκ1ϕ2

ffiffiffiffiffiffi−gp ¼ 0 is satisfied. When we also work
in the very flat region, there is also no inconsistency with
ϕ1 being a constant.
The flat-Friedmann equation for this stage is given by

6H2 ¼ ρφ1;φ2
þ ρm; ð76Þ

where the energy density ρφ1;φ2
associated with the scalar

fields φ1 and φ2 is

ρφ1;φ2
¼ _φ2

1

2
þ _φ2

2

2
þUeffðφ1;φ2Þ: ð77Þ

For the energy density of the dark matter ρm we have

_ρm þ 3Hρm ¼ 0; then ρmðaÞ ∝
�
1

a

�
3

:

From Eq. (25) and considering the region in which
f1e−α1φ1þg1e−α2φ2 ≫M1 and f2e−2α1φ1 þg2e−2α2φ2 ≫M2,
the effective potential reduces to

Ueffðφ1;φ2Þ ¼
ðf1e−α1φ1 þ g1e−α2φ2Þ2

4χ2ðf2e−2α1φ1 þ g2e−2α2φ2Þ : ð78Þ

From Eq. (45) we have that the effective potential given by
Eq. (78) can be rewritten in terms of the single scalar field
ϕ1 in which

Ueffðϕ1Þ ¼
ðf1e−

ffiffiffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
ϕ1 þ g1Þ2

4χ2ðf2e−2
ffiffiffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
ϕ1 þ g2Þ

: ð79Þ

As we have seen before, the condition that the matter-
induced potential of the scalar field ϕ2 is extremized
requires the scalar field ϕ1 to be fixed at a very well-
specified point and now given the scalar-field potential
above, the equation of motion of ϕ1 requires that this
constant value be located at one of the two flat regions
of the above potential at ϕ1ðþÞ and ϕ1ð−Þ; see Eqs. (73)
and (75). Thus, the energy density associated with the dark
energy can be written as

ρφ1;φ2
¼ ρϕ1;ϕ2

¼
_ϕ2
1

2
þ

_ϕ2
2

2
þ Ueffðϕ1Þ ¼

_ϕ2
2

2
þ Ueffðϕ1Þ;

ð80Þ

where now the effective potential Ueff depends only on the
scalar field ϕ1. Also, as we have seen, the scalar field ϕ1 has
been fixed to a constant because of the extremization of the
ϕ2 matter-induced potential, sowe take _ϕ1 ¼ 0; see Eq. (70).
In order to study the evolution of the our model, we can

choose the first flat region after inflation for the effective
potential given by Eq. (79) assuming a very large scalar
field ϕ1 given by Ueffþ ¼ g21=ð4χ2g2Þ, where the value of
the scalar field ϕ1 is fixed in this flat region by Eq. (72)
x ∼ ð2χ2g2=g1bmÞðα1=α2Þ2 ¼ ðg1=½2bmUeffþ�Þðα1=α2Þ2 or equi-
valently ϕ1ðþÞ defined by Eq. (73). For the second flat
region after the inflation we can consider ϕ1 → −∞ where
the effective potential in this region is Ueff− ¼ ðf21=4χ2f2Þ.
Here, the value of the scalar field ϕ1 is fixed at
x ∼ ð2χ2f2=f1bmÞ ¼ ðf1=2bmUeff−Þ or Eq. (75).
Additionally, we can note that the scalar field ϕ2

corresponds to a massless field. In this way, the evolution
of the scalar field ϕ2 as a function of the scale factor results,

ϕ̈2 þ 3H _ϕ2 ¼ 0;→ _ϕ2 ¼
B1

a3
¼ _ϕ2þ

�
aþ
a

�
3

; ð81Þ

where B1 denotes an integration constant. By convenience
B1 ¼ _ϕ2þa3þ, where aþ and _ϕ2þ correspond to the scale
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factor and the velocity of the scalar field in the first flat
regime of the effective potential UeffðþÞ ¼ g21=ð4χ2g2Þ.
The evolution of the scalar field ϕ2 as a function

of the scale factor can be obtained considering that
_ϕ2 ¼ aHda=dt; then, Eq. (81) can be rewritten as

dϕ2

da
¼ B1

a4H
; ð82Þ

and the Hubble parameter in terms of the scalar field is
given by

H ¼ 1ffiffiffi
6

p
�
B2
1

2a6
þ UeffðþÞ þ

B2

a3

�
1=2

; with B2 ¼ ρmþa
3þ;

ð83Þ

where ρmþ is the energy density associated with the dark
matter in the first flat region of the effective potential
UeffðþÞ. In particular, we have that in the first region the

quantities ρmþ and _ϕ2þ become

ρmþ ¼ 6H2þΩmþ;

_ϕ2þ ¼ ½2ð6H2þΩϕþ1
;ϕþ2

−UeffðþÞÞ�1=2: ð84Þ

In this way, we find that the evolution of the scalar field as a
function of the scale factor becomes

ϕ2ðaÞ¼ϕ2þ

þ 2ffiffiffi
3

p
"
Arctanh

 
B2
1þB2a3þ

B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1þ2a3þðB2þUeffðþÞa3þÞ

q
!#

−
2ffiffiffi
3

p
"
Arctanh

 
B2
1þB2a3

B1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
1þ2a3ðB2þUeffðþÞa3Þ

q
!#

:

ð85Þ

Also, we can determine the equation of state (EoS) or EoS
parameter w associated with the scalar fields in terms of the
scale factor given by

wðaÞ ¼
_ϕ2
2

2UeffðþÞ
− 1

_ϕ2
2

2UeffðþÞ
þ 1

¼
	
2χ2g2B2

1

g2
1



a−6 − 1	

2χ2g2B2
1

g2
1



a−6 þ 1

: ð86Þ

Additionally, the total EoS parameter wT associated with
dark matter and scalar fields becomes

wT ¼ w
ð1þ ρm=ρϕ1;ϕ2

Þ ; ð87Þ

and in terms of the scale factor the EoS parameter wTðaÞ is
given by

wTðaÞ ¼

2
64ð

2χ2g2B2
1

g2
1

Þa−6 − 1

ð2χ2g2B2
1

g2
1

Þa−6 þ 1

3
75

×

�
1þ B2a−3

ðB2
1=2Þa−6 þ ðg21=4χ2g2Þ

�−1
: ð88Þ

We note that Eq. (88) can be rewritten in terms of the
density parameter Ωþ, by considering the Friedmann
equation in which 1 ¼ Ωþ þΩmþ, where Ωþ and Ωmþ
denote the densities parameters of different components in
the first flat region and then the EoS parameter becomes

wTðaÞ ¼
�ðΩþyþ − 1Þã−6 − 1

ðΩþyþ − 1Þã−6 þ 1

�

×

�
1þ yþð1 −ΩþÞã−3

ðΩþyþ − 1Þã−6 þ 1

�−1
; ð89Þ

where the new scale factor ã is defined as ã ¼ a=aþ and
the quantity yþ corresponds to the rate yþ ¼ 6H2þ=UeffðþÞ
and Hþ is the Hubble parameter in the first flat region. As
the kinetic energy is defined as positive, then the condition
for the quantity yþ is yþ > 1=Ωþ.
In Fig. 2 we show the development of the total EoS

parameter wT versus the scale factor ã ¼ a=aþ, in the first
flat region of the effective potential UeffðþÞ for different
values of the ratio yþ ¼ 6H2þ=UeffðþÞ > 1=Ωþ. We choose
that the value of the density parameter of the dark energy in
the flat region is Ωþ ¼ 0.85. From the plot we observe that
when we increase the ratio yþ the total EoS parameter wT
also increases. Also, we note that for values of the scale
factor a < aþ, the Universe does not present an accelerated
phase, since the total EoS parameter wT approaches
positive values. However, for values of a ∼ aþ, we observe

0,6 0,9
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0,3
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+
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FIG. 2. In this plot we show the evolution of the total EoS
parameter as a function of the scale factor ã ¼ a=aþ in the first
flat region of the potential UeffðþÞ ¼ g21=ð4χ2g2Þ, for different
values of the ratio yþ ¼ 6H2þ=UeffðþÞ; see Eq. (89). In the first flat
region we have used that the density parameter associated with
the dark energy corresponds to Ωþ ¼ 0.85, in order to satisfy the
constraint from nucleosynthesis.
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that the total EoS parameter is wT < −0.3 and the universe
shows an accelerated expansion for values of yþ near
to 1=Ωþ.
In addition, it is interesting to analyze the evolution of

the barotropic parameter w associated with the dark energy.
Following Refs. [94–97], we can distinguish two categories
from the behavior of (dw=dϕ2): the tracking freezing
(dw=dϕ2 < 0) and thawing (dw=dϕ2 > 0) models. Thus,
in our case for the first flat region and considering that
dw=dϕ2 ¼ ðdw=dãÞðdã=dϕ2Þ, we find

dw
dϕ2

¼ dw
dã

dã
dϕ2

¼ −12
ffiffiffiffiffi
12

p � ½Ωþyþ − 1�
1þ yþΩþã−3 þ ½yþ − 1 −Ωþ�ã−6

�
1=2

×
� ½Ωþyþ − 1�
½Ωþyþ − 1þ ã6�2

�
ã < 0: ð90Þ

Here, we have used Eqs. (82) and (86). In this form, we can
infer that our model has a behavior of freezing model, since
dw=dϕ2 is negative. This behavior of the model occurs
because that the ratio dw=dã results negative, i.e.,
dw=dã < 0, and then we have a tracking freezing model.
In this sense, we have that in general for these tracking
freezing models, are initially characterized by w > −1 and
adw=da ¼ dw=d ln a < 0 [98]. Thus, the tracker fields are
characterized by having the attractor-like solutions that
converge to a common cosmic evolutionary track from
different initial condition [99,100]. This suggests that the
cosmology of the late time is independent of initial
condition due to behavior of w given by Eq. (86).
A new and important constraint on the density energy

associated with the dark energy during the radiation stage
results from the nucleosynthesis. It is well known that
the quintessence scalar field modifies expansion of the
Universe at a given temperature and in particular during the
nucleosynthesis where the temperature T ∼ 1 MeV, see
[101,102]. Following Ref. [101], the energy density of the
scalar field during this scenario can be constrained to
ΩϕðT ∼ 1 MeVÞ < 7ΔNeff=4=ð10.75þ 7ΔNeff=4Þ, where
the value 10.75 corresponds to the effective number of
standard model degrees of freedom and the quantity ΔNeff
denotes the additional relativistic degrees of freedom. In
relation to the additional relativistic degrees of freedom
in the literature it is considered as ΔNeff ≃ 1.5 [103] (see
also Ref. [104] where ΔNeff ≃ 0.9). Thus, considering
ΔNeff ≃ 1.5, then any quintessences models require to
satisfy ΩϕðT ∼ 1 MeVÞ < 0.2 during the nucleosynthesis.
For our model we find that the density energy associated

with dark energy Ωϕ1;ϕ2
¼ ρϕ1;ϕ2

=6H2 can be written

Ωϕ1;ϕ2
ðaÞ ¼

�
1þ ð½Ωþyþ − 1�ã−6 þ 1Þã3

yþð1 −ΩþÞ
�−1

: ð91Þ

Thus, in order to satisfy the constraint imposed by the
nucleosynthesis at the temperature T ∼ 1 MeV, we obtain
the following bounds:

4

5
< Ωþ < 1; 0 < ã3T� <

4 − 4Ωþ
Ωþ

;

and

yþ >
1 − ã6T�

Ωþð1þ 4ã3T� Þ − 4ã3T�

; ð92Þ

where ãT� corresponds to the scale factor evaluated at the
temperature T� ¼ 1 MeV i.e., ãT� ¼ aðT� ¼ 1 MeVÞ=aþ.
Here, we note that the nucleosynthesis epoch imposes a
strong condition on the density parameter Ωþ and ratio
6H2þ=UeffðþÞ ¼ yþ in the flat region.
On the other hand, during the second flat regime

associated with the effective potential Ueffð−Þ, the evolution
of the scalar field ϕ2 as a function of the scale factor can be
obtained considering as before that _ϕ2 ¼ aHda=dt; then,
Eq. (81) can be rewritten as

dϕ2

da
¼ B̃1

a4H
; where B̃1 ¼ _ϕ02a30; ð93Þ

where _ϕ02 and a0 denote the velocity of the scalar field and
the scale factor at the present epoch.
As before, the Hubble parameter in terms of the scale

factor in this region is given by

H ¼ 1ffiffiffi
6

p
�
B̃2
1

2a6
þ Ueffð−Þ þ

B̃2

a3

�
1=2

; with B̃2 ¼ ρm0a30;

ð94Þ
where Ueffð−Þ corresponds to the effective potential for
very negative large scalar field ϕ1 and it is defined as
Ueffð−Þ ¼ f21=ð4χ2f2Þ, from Eq. (79). Also, the value ρm0

corresponds to the dark energy of the matter at the present
epoch in which the scale factor a ¼ a0 ¼ 1. From the
Friedmann equation we have 1 ¼ Ωϕ1;ϕ2

þ Ωm, where
Ωϕ1;ϕ2

andΩm denote thedensities parameters of thedifferent
components. In particular, from this equation we obtain that
at present era the quantities ρm0 and _ϕ02

become

ρm0 ¼ 6H2
0Ωm0;

_ϕ02
¼ ½2ð6H2

0Ωϕ01;ϕ02
−Ueffð−ÞÞ�1=2; ð95Þ

where from the observational data we have Ωm0 ≃ 0.3
and Ωϕ01;ϕ02

≃ 0.7.
Also, we obtain that the evolution of the scalar field as a

function of the scale factor during this second scenario
results:
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ϕ2ðaÞ¼ϕ20

þ 2ffiffiffi
3

p
"
Arctanh

 
B̃2
1þ B̃2a30

B̃1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃2
1þ2a30ðB̃2þUeffð−Þa30Þ

q
!#

−
2ffiffiffi
3

p
"
Arctanh

 
B̃2
1þ B̃2a3

B̃1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̃2
1þ2a3ðB̃2þUeffð−Þa3Þ

q
!#

:

ð96Þ

As before, we can determine the EoS parameter w asso-
ciated with the scalar fields in terms of the scale factor
during this second flat region:

wðaÞ ¼
_ϕ2
2

2Ueff−
− 1

_ϕ2
2

2Ueff−
þ 1

¼
	
2χ2f2B̃2

1

f2
1



a−6 − 1	

2χ2f2B̃2
1

f2
1



a−6 þ 1

: ð97Þ

Also, we find that the total EoS parameter wT ¼ wTðaÞ
associated with dark matter and scalar fields during this
scenario results:

wTðaÞ ¼

2
64
	
2χ2f2B̃2

1

f2
1



a−6 − 1	

2χ2f2B̃2
1

f2
1



a−6 þ 1

3
75

×

�
1þ B̃2a−3

ðB̃2
1=2Þa−6 þ ðf21=4χ2f2Þ

�−1
: ð98Þ

Also, we can rewrite Eq. (98) in terms of the density
parameter at present epoch Ωϕ01;ϕ02

¼ Ω−, and then the total

EoS parameter becomes

wTðaÞ ¼
�ðΩ−y− − 1Þa−6 − 1

ðΩ−y− − 1Þa−6 þ 1

�

×

�
1þ y−ð1 −Ω−Þa−3

ðΩ−y− − 1Þa−6 þ 1

�−1
; ð99Þ

with the scale factor a=a0 ¼ a and the quantity y−
corresponds to the rate y− ¼ 6H2

0=Ueffð−Þ. As the kinetic
energy is positive, then we determine that the condition for
the parameter y− > 1=Ω−. In particular, we have that the
density parameter at the present associated with dark
energy Ω− ≃ 0.7, such that y− > 10=7.
In Fig. 3 we show the evolution of the total EoS

parameter wT versus the scale factor a=a0 ¼ a for different
values of the ratio y− ¼ 6H2

0=Ueffð−Þ > 1=Ω−. From the
observational data we have considered that the density
parameter associated with the dark energy at the present era
Ω− ¼ 0.7. As before in Fig. 2, from the plot we note that
when we increase the ratio y−, the total EoS parameter wT
also grows. We observe that for values of the ratio

y− ≫ 1=Ω−, the Universe does not present an accelerated
phase until now, since wT > −1=3.
On other hand, we can obtain some estimates and

constraints on the parameter space of our model. For the
second flat region of the effective potential Ueffð−Þ, we can
choose that the scales of the scale symmetry-breaking
integration constants f1 ∼M4

EW and χ2f2 ∼M4
Pl, where

MEW;MPl are the electroweak and Plank scales, respec-
tively. In this case, we have a very small vacuum energy
density Uðϕ1→−∞Þ ¼ Ueffð−Þ ∼ f21=χ2f2 given by

Ueffðϕ1→−∞Þ ¼ Ueffð−Þ ∼M8
EW=M

4
Pl ∼ 10−120M4

Pl; ð100Þ

where the mass MEW ∼ 10−15MPl and Eq. (100) corre-
sponds to the right order of magnitude for the present
epoch’s vacuum energy density; see Ref. [105]. Thus, we
can assume that the parameter f1 ∼ 10−60 (in units of
Planck mass to the fourth power).
In order to transfer the information of the inflationary

stage to the present epoch, we can consider the constraints
from inflationary scenario. In this context, we can utilize
the constraint from inflation for the ratio g1=M1 ∼ 1026 for
the special case in which r� ¼ 0.036. In this way, we find
that the effective potential in the first flat region during the
late Universe UeffðþÞ can be written as

Ueffðϕ1→∞Þ ¼ UeffðþÞ ≃
g21

4χ2g2

∼ 1052
M2UðþþÞ

g2
∼ 1044

M2

g2
> Ueffð−Þ: ð101Þ

Here, we have considered that during inflation the energy
density is UðþþÞ ≃ 10−8. Also, as we have assumed that the
effective potentials in the flat regions satisfied the condition
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FIG. 3. In this plot we show the evolution of the total EoS
parameter wT as a function of the scale factor a=a0 ¼ a in the
second flat region of the effective potential Ueffð−Þ ¼ f21=ð4χ2f2Þ.
Here, we have considered different values of the ratio
y− ¼ 6H2

0=Ueffð−Þ, in Eq. (99). At the present time we have
used that the density parameter associated with the dark energy is
Ω− ¼ 0.7 and the scale factor a0 ¼ 1.

UNIFYING INFLATION WITH EARLY AND LATE DARK … PHYS. REV. D 105, 124035 (2022)

124035-13



UeffðþÞ > Ueffð−Þ ∼ 10−120, then we find that lower bound
for the ratioM2=g2 becomesM2=g2 > 10−164. In this form,
we obtain that the ratio between the parameters associated
with inflation (M1 andM2) and the first dark-energy region
(g1 and g2) results,

M2

M1

> 10−138
g2
g1

: ð102Þ

Here, we have used that the ratio g1=M1 ∼ 1026.

VI. DEPENDENCE OF THE POINT-PARTICLE
MASSES ON THE SCALAR FIELD ϕ1

AND ITS CONSEQUENCES

One particular aspect that should be studied is the
dependence of the point-particle masses on the scalar field
ϕ1 and its consequences. We study this field dependence
when the condition (69) is satisfied, which implies certain
values of the scalar field ϕ1 are allowed. In this case we can
solve the measure Φ1 using (69) and then considering the
action in the Einstein frame. In such situation, a straight-
forward calculation shows that the masses of particles
depend only on the scalar field ϕ1 in the following way:

mith-partðϕ1Þ ¼ 2mibm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1e

−
ffiffiffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
ϕ1 þ g1

2χ2ðf2e−2
ffiffiffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
ϕ1 þ g2Þ

vuut e
−

α2
2
ϕ1

2

ffiffiffiffiffiffiffiffi
α2
1
þα2

2

p
:

ð103Þ

As we can see from this equation, the particles in the
solution with large ϕ1, which correspond to the larger dark
energy, will have a much smaller mass than the same
particle when located at the vacuum with a much smaller
value of ϕ1. In a possible transition of these states, which
will necessarily break condition (69), their DE and DM
component will behave therefore in an opposite way after
the process is completed and at the end point (69) is
restored again, so, as a result, when DE decreases, the DM
component masses increase; of course, the DM component
is still being diluted by the expansion of the Universe, but
enhanced by their increase in particle masses. As long as
the particles remain in the states that satisfy (69), the
masses are fixed of course and the dust behaves canonically
as described in the previous section. The discussion here
concerns a transition between the two states that we have
found that satisfy (69), and the masses displayed by (103)
concern masses only for such states. During the transition
itself, the condition given by Eq. (69) must be violated,

since this condition allows only a discrete set of values, like
those provided in (72) and (74) only.

VII. CONDITIONS FOR CANONICAL DUST
BEHAVIOR BEYOND THE BACKGROUND CASE

In our previous considerations we have only considered
cases where the scalar fields and the dust are distributed
homogeneously in the Universe and we have also chosen
the scalar field ϕ1 by the observation that the presence of
matter induces a potential for the scalar field ϕ2 since there
is a scalar-field dependence ϕ2 which multiplies a density
of matter contribution which is ϕ2 independent and the
result of such minimization led us to a value of ϕ1 defined
by Eq. (69), which in turn led us to a dust behavior for our
model of point particles coupled in a scale-invariant
fashion. Here, we will go a bit deeper, following the
method studied in [93] for a single scalar field (for earlier
treatments of the 5th force problems for more field-
theoretical models of matter rather than for point-particle
models of matter; see [106,107]), and establish the more
detailed conditions where this procedure can be more
rigorously justified, we consider χ2 ¼ 1, since this constant
can be reabsorbed into the definitions of particle densities,
etc. In this case, for the purpose of this paper we restrict
ourselves to a zero-temperature gas of particles, i.e., we will
assume that dx⃗i=dλ≡ 0 for all particles, which can be
interpreted as the particles moving as comoving; similar
conclusions are easily derived without this assumption
nevertheless. It is convenient to proceed in the frame where
g0l ¼ 0, l ¼ 1, 2, 3. Then, the particle density is defined by

nðx⃗Þ ¼
X
i

1ffiffiffiffiffiffiffiffiffiffi−gð3Þ
p δð3Þðx⃗ − x⃗iðλÞÞ; ð104Þ

where gð3Þ ¼ detðgklÞ. We transform to the Einstein frame
where this transformation causes the transformation of the
particle density:

nðx⃗Þ ¼ ðχ1Þ−3=2nðx⃗Þ: ð105Þ

The gravitational equations take the standard general
relativity (GR) form:

GμνðḡαβÞ ¼
κ

2
Teff
μν ; ð106Þ

where GμνðḡαβÞ is the Einstein tensor in the Riemannian
space-time with the metric ḡμν. The components of the
effective energy-momentum tensor are as follows:

Teff
00 ¼ ð _ϕ1

2 − g00X1Þ þ ð _ϕ2
2 − g00X2Þ þ ḡ00

"
Ueffðϕ1;ϕ2; χ1;M1;M2Þ þ

3χ1e−
κ1ϕ2
2 þ bme

κ1ϕ2
2

2
ffiffiffiffiffi
χ1

p mn̄

#
; ð107Þ

and
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Teff
ij ¼ ðϕ1;kϕ1;l − ḡklX1Þ þ ðϕ2;kϕ2;l − ḡklX2Þ þ ḡkl

"
Ueffðϕ1;ϕ2; χ1;M1;M2Þ þ

χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2

2
ffiffiffiffiffi
χ1

p mn̄

#
: ð108Þ

Here, the following notations have been used:

X1 ≡ −
1

2
ḡαβϕ1;αϕ1;β and

X2 ≡ −
1

2
ḡαβϕ2;αϕ2;β; ð109Þ

and the function Ueff is defined by

Ueffðϕ1;ϕ2; χ1Þ ¼
1

χ1
½M1 − V� þ χ2

χ21
ðU þM2Þ; ð110Þ

where χ1 has to be solved now for the case particles are
present, which may differ somewhat from the solution in
vacuum. The dilaton ϕ2 field equation is sourced by matter
particles and in the Einstein frame is as follows:

1ffiffiffiffiffiffi
−ḡ

p ∂μ½
ffiffiffiffiffiffi
−ḡ

p
ḡμν∂νϕ2� þ

∂Ueff

∂ϕ2

¼ κ1
χ1e−

κ1ϕ2
2 − bme

κ1ϕ2
2

2
ffiffiffiffiffi
χ1

p mn̄:

ð111Þ

In the above equations, the scalar field χ1 is determined
as a function χ1ðϕ1;ϕ2; n̄Þ by means of the following
constraint:

χ1ðM1 þ VÞ − 2χ2ðU þM2Þ
ðχ1Þ2

¼ χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2

2
ffiffiffiffiffi
χ1

p mn̄:

ð112Þ

In summary, a “miracle” takes place here; the same

combination χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2 appears in the right-hand

side of Eqs. (112), (111) and in the anomalous pressure
contribution produced by the dust displayed in (108). The

vanishing of χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2 was also obtained in our

simplified considerations in Eq. (69) from the condition
of minimization of the matter-induced potential for ϕ2,
which (111) expresses in its full generality.
The 5th force resolution for dense matter: Notice that in

parallel to the idea of minimizing a matter-induced poten-
tial, which gave us the vanishing of the right-hand side of
Eq. (111), we can look at Eq. (112) as consisting of two
parts: the right-hand side can be compared with the energy
density of the scalar fields (110), so we can indeed say that
this side is of the order of magnitude of this DE, but the
other side on the other hand is proportional to the energy
density of matter and for matter in ordinary state, which has
energy density much larger than the vacuum energy of the
Universe, the only way to have consistently is to have the

coefficient χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2 that appears in the right-hand

side of Eqs. (112) to be very close to zero. This coefficient
represents the strength of the coupling of the scalar field ϕ2

to matter.
The next important issue to take notice of is that once

χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2 is taken to be zero, because this mini-

mizes the matter-induced potential for ϕ2, this leads us the
vanishing of the right-hand side of (112) and as a
consequence to the same solution for χ2 as we obtained
in vacuum [Eq. (23)], which means that we can use
the expressions for the effective potential in vacuum,
now in the presence of dust. The dust is now totally
canonical, as we have assumed in sections above, provided

χ1e−
κ1ϕ2
2 − bme

κ1ϕ2
2 ¼ 0, which determine spacial values for

ϕ1 in each of the flat regions of the effective potential as we
have seen.
Finally, the resulting effective potential in these flat

regions is absolutely independent of ϕ2 as we have seen, so
∂Ueff
∂ϕ2

¼ 0 and furthermore there is no source since χ1e−
κ1ϕ2
2 −

bme
κ1ϕ2
2 is taken to be zero, so that indeed, (111) implies

then that 1ffiffiffiffi
−ḡ

p ∂μ½
ffiffiffiffiffiffi
−ḡ

p
ḡμν∂νϕ2� ¼ 0 as we have assumed.

Let us analyze consequences of this wonderful coinci-
dence in the case when the matter energy density (modeled
by dust) is much larger than the dilaton contribution to the
dark-energy density in the space region occupied by this
matter. Evidently this is the condition under which all tests
of Einstein’s GR, including the question of the fifth force,
are fulfilled. If the dust is in the normal conditions there is a
possibility to provide the desirable feature of the dust in
GR: it must be pressureless. This is realized provided that
in normal conditions (n.c.) the following equality holds
with extremely high accuracy:

χðn:c:Þ1 ≈ bmeκ1ϕ2 : ð113Þ

Remember that we have assumed bm > 0, Inserting the
above equation in the last term of Eq. (107) we obtain the
effective dust-energy density in n.c., where the dependence
on ϕ2 has disappeared, as it should be for acceptable
resolution of the 5th force problem:

ρðn:c:Þm ¼ 2
ffiffiffiffiffiffi
bm

p
mñ: ð114Þ

When we get only a slight deviation of from χ1 from
bmeκ1ϕ2 , when the matter-energy density is many orders of
magnitude larger than the dilaton contribution to the dark-
energy density, we obtain an effective 5th force coupling f.
For this, look at the ϕ equation in the form (111) and
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estimate the Yukawa-type coupling constant in the rhs of
this equation. In fact, using the constraint (112) and
representing the particle density in the form ñ ≈ N=υ,
where N is the number of particles in a volume υ, one
can make the following estimation for the effective dilaton
to matter-coupling “constant” f defined by the Yukawa-
type interaction term fn̄ϕ [if we were to invent an effective
action whose variation with respect to ϕ would result in
Eq. (111)]:

f ≡ κ1
χ1e−κ1ϕ2=2 − bmeκ1ϕ2=2

2
ffiffiffiffiffi
χ1

p ≈ κ1
ρvac
ñ

≈ κ1
ρvacυ

N
: ð115Þ

If we consider that κ1 is a number divided by the Planck
mass, then f becomes less than the ratio of the “mass of the
vacuum” in the volume occupied by the matter to the
Planck mass. The model yields this kind of “Archimedes
law” without any special (intended for this) choice of the
underlying action and without fine tuning of the parame-
ters. The model not only explains why all attempts to
discover a scalar-force correction to Newtonian gravity
were unsuccessful so far but also predicts that in the near
future there is no chance to detect such corrections in the
astronomical measurements as well as in the specially
designed fifth force experiments on intermediate, short
(like millimeter), and even ultrashort (a few nanometer)
ranges. This prediction is alternative to predictions of other
known models.
Finally, we want to point out fundamental differences

of our solution of the fifth force force problem to the
Chameleon approach. The important point to make is that
we are talking of totally different mechanisms; in the
Chameleon model, the proposed quintessential scalar, the
Chameleon field has a mass in vacuum which is very small,
of the order of the Hubble parameter for example (or in any
case very very small). The Chameleon scalar however
becomes massive in presence of dense matter, in compact
objects, like Earth; a typical number for this mass has been
cited,m−1 ∼ 60mm [108]. This is why a quanta of this scalar
field can penetrate only into a thin shell of the body in the
depth about 60 micrometer, and the fifth force acts only on
the thin shell. This is a way the Chameleon model is argued
to explain the smallness of the fifth force. In our case there
is no mass generation whatsoever since for our dilaton field
what happens here is the vanishing of the effective coupling
constant between the dilaton field and the dense matter,
while the dilaton keeps its mass zero or very close to zero.
The elimination of interaction between our dilaton field
and dense matter is total and absolute. In comparison, a
Chameleon wave can suffer a total reflection from a dense-
matter region; in such a situation it will not be a total
elimination of the fifth force, but it may be hard indeed to
prepare such an experiment. The elimination of the fifth
force in the Chameleon model is argued to exist because
in a spherically symmetric static configuration of a

macroscopic object only a very small shell of the object
can be a source of the Chameleon scalar, while in our case
there would be no source for the scalar, not even the edge or
surface of the dense object or at any place of the dense
object. Higher-order theories of gravity also have been
studied in connection with fifth force suppression and have
been shown to produce an explicit realization of the
Chameleon scenario from first principles [109–113].

VIII. DISCUSSION

In the present paper we have constructed a new kind of
gravity-matter theory defined in terms of two different non-
Riemannian volume forms (generally covariant integration
measure densities) on the space-time manifold. We also
introduced two scalar fields in a scale-invariant way. The
integration of the equations of motion of the degrees of
freedom that define the measures provides the constants of
integration M1 and M2 which provide us with the sponta-
neous breaking of scale invariance. In the early Universe
inflation M1 and M2 play an important role, determining
the scale of the inflationary energy density and defining
the slow-roll features in the inflationary epoch. In the
slow-roll solutions we have studied one linear combination
of the scalar fields φ1 and φ2, which we have called ϕ1,
that remains constant during the inflationary phase. This
combination is invariant under scale transformations;
see Eq. (8).
The dynamics of inflation reduces to that of only one

scalar field (ϕ2), but the full range of parameters obtained
from the original two scalar-field couplings, which have
different couplings to the different measures, plays a
fundamental role. The parameter range allowed from
observations is studied. This study of allowed parameter
ranges in inflation imposes constraints on the parameter
ranges in the late Universe, where DM in addition to DE
has to be considered. We have recognized also under which
conditions we will fall from inflation to one of the two
possible low-vacuum energy DE states, since the slow-roll
trajectory defined by (46) for a given constant defines a
straight line in the ðφ1;φ2Þ plane and for another constant
defines another parallel line. We can then choose the line
we desire (corresponding to a choice of initial conditions)
to fall in one of the two lower vacuua from the top vacuum.
The DE/DM sector in the late Universe is determined by a
dynamics where the constants of integration M1 and M2,
which provide us with the spontaneous breaking of scale
invariance, can be ignored. In this situation the scalar-field
potential that depends only on ϕ1 allows two different flat
regions for possible dark-energy sectors. In each of these
sectors there are particular values of ϕ1 where the matter-
induced potential for ϕ2 is stabilized. At those points the
matter behaves canonically, i.e., the dust does not produce
pressure, etc., but in these two different regions the point-
particle masses are different. The scalar field ϕ2 remains a
massless field in the two flat regions. Notice that in the
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present treatment, DE and DM are not unified; although
there is the possibility of unifying also DE and DM [64],
such unification has not been studied here in the context
of the quintessential inflation and transition to a slowly
accelerated phase, but it may be a possible generalization in
a future research. What has been done here however is to
introduce the dark matter in a completely scale-invariant
form and we have shown explicitly the conditions under
which this DM behaves as canonical dust, which is not
trivial because of the couplings to the scalar field ϕ2, which
is massless and when possible 5th force effects from this
massless field disappear in each of the two flat regions that
can describe DE.
The above implies that the two flat regions at the values

of ϕ1 where the matter behaves canonically contain the
following three elements: a constant DE, a DM component,
and a massless scalar field; these components differ in
the two different regions. For these regions in the later
Universe, we have chosen the first flat region for the
effective potential given byUeffðþÞ that corresponds to large
scalar field ϕ1, i.e., Ueffðϕ1→∞Þ ¼ UeffðþÞ. For the vacuum-
energy density at the present epoch, we have chosen
the effective potential Ueffðϕ1→−∞Þ ¼ Ueffð−Þ, such that
UeffðþÞ > Ueffð−Þ. For this scenario in which UeffðþÞ >
Ueffð−Þ it is reasonable to consider that the scalar field
ϕ1 that remains fixed is ϕ1ðþÞ; see Eq. (73). Also, for both
regions, we have found analytically the evolution of the
scalar field as a function of the scale factor and also the
total EoS parameter in terms of the scale factor, i.e.,
wT ¼ wTðaÞ. From the total EoS parameter, we have
observed that for values of the ratio y� much bigger than
the density parameter associated with dark energy Ω�, the
Universe does not present an accelerated phase and then the
model does not work. However, for values of y� ∼Ω�, we
have found that in both scenarios in which the effective
potential corresponds to a flat region, the Universe presents
an accelerated expansion, since the total EoS parameter
wT < −0.3. Also, we have found from the barotropic

parameter associated with the dark energy that our model
corresponds to a tracking freezing model and this indicates
that the cosmology of the late time is independent of the
initial condition, once that one of the different slow-roll
trajectories is defined so to fall into one of the two lower
vacuua from the top vacuum. To complement the con-
straints on the parameter space during epoch dominated by
dark energy, we have considered the constraint from the
nucleosynthesis, which imposes a strong condition on the
density parameter and the ratio between the Hubble
parameter and the effective potential in the flat region.
Another possibility that could occur is the inverse situation

in which Ueffð−Þ > UeffðþÞ and the scalar field ϕ1 in this
scenario should be ϕ1ð−Þ. Also, an interesting situation that
could take place is that the second flat region of the effective
potential associated with the dark energywill be in the future
and has not yet been part of the history of the Universe. Also,
we have found from Planck data the different constraints on
the parameters associated with our model during the infla-
tionary stage and these values are considered to obtain
constraints relevant to the DE/DM epoch. The dynamical
connection between these two regions of the late Universe
may provide interesting clues concerning cosmological
puzzles like the H0 tension [114–116].
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