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Motivated by recent activities in Lorentzian Taub-NUT space thermodynamics, we calculate conserved
charges of these spacetimes. We find additional mass, nut, angular momentum, and electric and magnetic
charge densities distributed along the Misner string. These additional charges are needed to account for the
difference between the values of the above charges at horizon and at infinity. We propose an unconstrained
thermodynamical treatment for Taub-NUT spaces, where we introduce the nut charge n as a relevant
thermodynamic quantity with its chemical potential ϕn. The internal energy in this treatment is M − nϕn

rather than the massM. This approach leads to an entropy that is a quarter of the area of the horizon and all
thermodynamic quantities satisfy the first law, Gibbs-Duhem relation as well as Smarr’s relation. We found
a general form of the first law where the quantities depend on an arbitrary parameter. Demanding that the
first law is independent of this arbitrary parameter or invariant under electric-magnetic duality leads to a
unique form that depends on Misner string electric and magnetic charges. Misner string charges play an
essential role in the first law, and without them the first law is not satisfied.

DOI: 10.1103/PhysRevD.105.124034

I. INTRODUCTION

The Taub-NUT spacetime [1,2] is considered to be one
of the most interesting solutions of general relativity. It is
known to be an axially symmetric vacuum solution of
Einstein’s field equations with two parameters, the nut
charge and the mass parameter. This spacetime has two
Killing vectors, ∂t and ∂ϕ, the first is timelike, while the
second is spacelike. For the Euclidian metric, the nut charge
n parametrizes a circle bundle over S2, and therefore, the
spacetime has R × S3 topology. The boundary of such a
spacetime is topologically nontrivial since it has a non-
vanishing first Chern number which is related to n. Because
of the last fact, these spacetimes are called asymptotically
locally flat rather than asymptotically flat. For the
Euclidean metric, this family of solutions contains two
classes, the first is called a “nut” solution which has a zero-
dimensional fixed-point set of the Uð1Þ isometry generated
by ∂t. The second is called a bolt solution which has a two-
dimensional fixed-point set of the same Uð1Þ. For the
Lorentzian metric we have only bolt solutions. The
Lorentzian and Euclidean Taub-NUT spacetimes have a
conical singularity which form a one-dimensional string
analogous to the Dirac string. It is called Misner string [3].
The nut charge is considered to be a magnetic-type mass, in
contrast to the electric-type mass m. Therefore, this

solution is considered to be a gravitational dyon and the
Misner string is a gravitational analog of Dirac string.
Higher dimensional versions of these solutions were
introduced in [4] through constructing a S1 bundle over
higher dimensional Kähler manifolds. Extending these
solutions in anti–de Sitter (AdS) spaces was introduced
in [5] in the context of AdS=CFT correspondence as well as
its higher dimensional generalizations in [6,7] and [8,9].
There are two important approaches to study this

solution: the first is Minser’s [3], where one can remove
the conical singularity and render the Misner string
invisible upon using a large coordinate transformation.
This leads to identifying the Euclidian-time direction with
periodicity β ¼ 8πn; see, for example, Ref. [10] and
references therein. Considering the thermodynamics in this
case, one finds that the horizon radius r0 and the parameter
n cannot vary independently since βðr0Þ ¼ 8πn [11–14].
As a result, the parameter n cannot have its own worklike
term in the first law, in contrast with Kerr or Reissner cases.
In addition, the entropy is not proportional to the horizon
area. Furthermore, this identification leads to closed time-
like curves and causes obstructions to the maximal exten-
sion of the spacetime (see, for example, Ref. [15] and
references therein). The second approach is due to Bonner
[16], where he keeps Misner string observable, i.e., keeping
the conical singularity visible. Bonner keeps the string
singularity since he interprets it as a source of angular
momentum. Some authors realized the importance of the
two approaches as they consider them describing different
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physical situations (see, for example, Ref. [17]). Several
years ago, the authors in [15] presented some interesting
results which showed that Taub-NUT spacetimes can be
maximally extended if we abandoned the above periodicity
condition. Other authors [18,19] were able to show that the
spacetime can be made geodesically complete, without
causal pathologies upon abandoning the periodicity
condition.
Motivated by the above developments a number of

authors revisited Taub-NUT thermodynamics [20–23] try-
ing to formulate it in a manner similar to that of Kerr or
Reissner cases, i.e., to have a consistent unconstraint
thermodynamics where β ≠ 8πn. Let us present briefly
some of these approaches that have been introduced by the
above authors to construct unconstrained thermodynamics
of Taub-NUT spaces, more specifically, a first law with
β ≠ 8πn. Some of these approaches are as follows:
(i) Approaches assume entropy is related to the horizon
area, or S ¼ Ah=4; in addition, we have extra charges and
their chemical potentials. An example of these approaches
is the one introduced in [20], where the authors studied the
thermodynamics of unconstrained Lorentzian Taub-NUT-
AdS. They introduced a new charge N related to the NUT
charge (it vanishes upon sending n to zero) together with its
conjugate chemical potential ψ . They were able to write the
first law in the form

dM ¼ TdSþ ψdN : ð1Þ

In their analysis the entropy is a quarter of the horizon area.
Further interpretation of this work is presented in [24],
where ψ is shown to be proportional to Misner string
temperature and N can be interpreted as its entropy. An
issue that might be raised here is that since we deal with a
multitemperature system with horizon and Misner temper-
atures, assuming thermal equilibrium might reduce the
cohomogeneity of the first law again, through identifying
the two temperatures and, therefore, obtaining the above
periodicity condition. Many relevant works followed where
authors studied different aspects of this proposal, for
example, studying the dyonic Taub-NUT-AdS, and its
Smarr’s relation was covered in [25–28], while studying
Taub-NUT-Kerr and Taub-NUT-Kerr-Newmann was
covered in [29–31].
Another approach was introduced in [22], where the

author calculated various thermodynamical quantities.
Among other issues the author stressed on the role of
Misner string angular momentum in Taub-NUT-AdS
thermodynamics where the first law takes the form

dM ¼ Td

�
A
4G

�
þ 1

n
dðnMÞ − 1

2n
dΞ; ð2Þ

where M is the mass, n is the nut charge, rþ is the horizon
radius, and Ξ ¼ nrþ

G ð1þ r2þ=l2 þ 3n2=l2Þ. Although the

first law was complete, the last term needed some inter-
pretation/explanation in terms of the Taub-NUT thermo-
dynamics quantities as was mentioned at the end of the
article. A very similar approach to that in [22] was
presented in [23], where the authors wrote the first law
for charged and Kerr-NUT spaces as well. (ii) A different
approach in which authors considered an entropy that is not
related to the horizon area, or S ≠ Ah=4. One of these was
introduced in [24,26] where they consider an entropy of the
form

S ¼ A
4
þ ψNNN þ ψSNS

T
; ð3Þ

where NN and NS are the nut charges defined in this
approach for the north string and the south string. Also, ψN
and ψS are their conjugate chemical potentials that are
interpreted as surface gravities along the north and south
strings. Another approach was introduced in [32] where
they calculated entropy for the Kerr-NUT space using the
surface charge method [33] and found that S ≠ Ah

4
. The

mass and angular momentum found in their calculations
can be expressed asM ¼ αn and J ¼ αan, where α is some
parameter that is not fixed by this method but can be fixed
by other means. The first law takes the simple form

dM ¼ TdSþ ΩdJ: ð4Þ

As one can notice here, there is no need to introduce an
additional nut charge to the first law, which is the case when
the entropy is different from the horizon area.
In this work, we study Lorentzian Taub-NUT solutions,

including the neutral Taub-NUTas well as the dyonic Taub-
NUT metric. First, we show the existence of extra charge
densities between the horizon and radial infinity, for the
mass, the electric and magnetic charges, as well as angular
momentum and nut charges. Second, motivated by the
work in [20,34] and our previous work [21] we revisit the
thermodynamics of the above Taub-NUT solutions and
propose an alternative treatment that is characterized by the
following features. First, we introduce n as a relevant
thermodynamic quantity, since it is known to be a magnetic
mass. The role of internal energy in this thermodynamical
treatment is played by M − nϕn, rather than the mass M,
where ϕn is the chemical potential of the charge n.
Following [20] several authors presented a first law (which
was satisfied) with one of the charges (electric or magnetic)
at radial infinity but the other at the horizon [25,26,28].
Here we show that there is a more general form of the

first law with thermal quantities that depend on some
arbitrary parameter. This general case contains the above-
mentioned cases in literature. Furthermore, this general
form is not invariant under electric-magnetic duality.
Requiring the first law to be independent of this arbitrary
parameter or to be invariant under electric-magnetic duality
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leads to a unique form. This form can be written in terms of
the horizon charges and the charges on Misner string.
Indeed, Misner string charges play an important role in the
first law, and without them the first law is inconsistent.
This article is organized as follows: in Sec. II, we review

how boundary conditions imply certain thermodynamic
ensembles that will be applied to the nut case afterwards. In
Sec. III, we calculate various conserved charges for the
neutral Taub-NUT space, including the mass, nut charge,
and angular momentum, where we argue for the existence
of charge distributions on the string. Also, we introduce a
conserved charge, i.e., n and its chemical potential, and
then we discuss the thermodynamics of the Taub-NUT
which satisfy the first law and Smarr’s relation. In Sec. IV
we calculate the electric and magnetic charges of the dyonic
Taub-NUT solution, where we show that they have con-
tributions along the string as well. Also, we calculate
various thermodynamical quantities that satisfy, again, the
first law and the Smarr’s relation. In Sec. V, we discuss our
treatments and results for the Taub-NUT solutions and
reflect on possible extensions and future directions.

II. THERMODYNAMICAL ENSEMBLES

There is a strong similarity between the nut charge and
the magnetic charge of the Reissner-Nordstorm solution
that will be discussed in the coming sections. They are both
magnetic-type quantities [35], and therefore, it is instructive
to review the thermodynamics ensembles of the Reissner-
Nordstorm solution [36] with an eye on applying this to
Taub-NUT spaces.
Einstein-Maxwell gravitational action for asymptotically

flat spacetime is given by

I ¼ −
1

16π

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − F2Þ − 1

8π

Z
∂M

d3x
ffiffiffi
h

p
K; ð5Þ

where Fμν ¼ ∂½μAν� is the field strength of a gauge potential
Aμ and the last term is the Gibbons-Hawking boundary
term. Here, hab is the boundary metric and K is the trace of
the extrinsic curvature Kab on the boundary.
The partition function of a charged black hole can be

expressed as a path integral over the spatial components of
the metric gij and the gauge field Ai,

Z ¼
Z

D½A�D½g�e−Iðg;AÞ: ð6Þ

The path integral is subject to boundary conditions that fix
gij and Ai on the boundary, which determines the type of
thermodynamic ensemble of the solution. For example, in
the case of a black hole with only a magnetic charge Qm,
fixing the boundary value of Ai fixes the magnetic charge,
and therefore, the partition function is the canonical
ensemble partition function

Zcanðβ; QmÞ ¼ e−I ¼ e−βF; ð7Þ

where I is the on-shell gravitational action and F is the
Helmholtz free energy. In the electric black hole case the
boundary condition fixes the electric potential, ϕe (chemi-
cal potential), rather than the electric charge Qe. Therefore,
the partition function is the grand canonical one,
Z ¼ Zgrandðβ;ϕeÞ ¼ e−I ¼ e−βΩ, where Ω is the grand
potential. Another possibility for the electrically charged
case is to describe the system using a canonical ensemble,
i.e., a fixed charge, upon adding the following surface term
to the action:

Ĩ ¼ I −
1

4π

Z
∂M

d3x
ffiffiffi
h

p
naFabAa: ð8Þ

This term provides the action with the needed Legendre
transformation to replace its dependence on ϕe with a
dependence on Qe; therefore, one can relate Ĩ to the free
energy F,

Ĩ
β
¼ F ¼ U − TS: ð9Þ

In case of dyonic black holes we have a mixed ensemble
(i.e., fixed ϕe and Qm) with a partition function
Zmixðβ; Qm;ϕeÞ ¼ e−βΩ, and therefore,

I
β
¼ Ω ¼ U − TS −Qeϕe; ð10Þ

where Ω is the grand potential and the internal energy U is
identified with the gravitational mass of the solution M.
One can describe the dyonic black holes using a canonical
ensemble as well upon adding the above surface term to the
action, therefore, fixing both electric and magnetic charges.
In all the above cases, the first law has the form

dM ¼ TdSþ ϕmdQm þ ϕedQe; ð11Þ

where S is the entropy and T is the temperature.

III. TAUB-NUT SPACE

The metric for the Taub-NUT space with a Lorentzian
signature is given by

dS2 ¼ −fðrÞðdtþ 2nðcos θ þ kÞdϕÞ2 þ dr2

fðrÞ
þ ðr2 þ n2Þðdθ2 þ sin2 θdϕ2Þ; ð12Þ

where

fðrÞ ¼ r2 − n2 − 2mr
r2 þ n2

:
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Here r is a radial coordinate, ϕ ∈ ½0; 2π� and θ ∈ ½0; π� are
angular coordinates, m is the mass parameter, and n is the
nut parameter. k is a parameter that determines the position
of Misner string [3,18,20]. Choosing k ¼ 0 leads to a
conical singularity along the z axis, which is the location of
Misner string [3]. Notice that unlike the Euclidian case, the
Lorenztian Taub-NUT solutions have only bolt solutions,
i.e., no nut solutions, since there is no zero-dimensional
fixed-point set of the Uð1Þ isometry of ∂t.
As we pointed out in the Introduction, this conical

singularity can be removed through imposing the perio-
dicity condition, β ¼ 8πn, which leaves the Misner string
invisible. This condition leads to a relation between r0, the
horizon radius, and n, the nut charge. Because of this
relation there is no new independent work term due to n. As
a result, the entropy in this setting is not the area of the
horizon, and the temperature is fixed by the parameter n.
Here we are not going to impose the above periodicity

condition, and therefore, n is independent of r0.
Furthermore, we consider “n” as a conserved quantity,
which provides its own work term in the first law. n is a
conserved charge since the nut charge is the magnetic dual
of the mass as we will see below. Also in this case, the
entropy is the area of the horizon and by taking n → 0 the
expression T ¼ f0ðr0Þ=4π reproduces the Schwarzschild
temperature in contrast with previous treatments [11,12].
The mass of the above Taub-NUT solution is calculated

using Komar’s integral. This leads to

M ¼ −
1

4π

Z
S2∞

�dξ ¼ m; ð13Þ

where ξ ¼ ∂t is a timelike Killing vector. For this solution
the massM and the nut charge n are dual quantities, since n
is given by

n ¼ 1

4π

Z
S2∞

dξ: ð14Þ

Comparing the above integrals to electric and magnetic
charge expressions, one can see clearly that the mass M is
analogous to an electric charge, while n is analogous to a
magnetic one. This is why n is called the magnetic mass.
The quantity n is clearly conserved, and therefore, one
expects that it modifies the first law with its own worklike
term, e.g., ϕndn, where ϕn is the chemical potential of n.
Notice that the charge n does not depend on r0 in contrast
with the thermodynamics considered in [20]. The potential
ϕn can be calculated in a manner similar to that of the
magnetic potential, ϕm ¼ −

R
dr½�F�0r. It takes the form

ϕn ¼ −
Z

dr½�dξ�0r ¼ −
n
2r0

: ð15Þ

We will see how this chemical potential is related to other
thermodynamic quantities in the coming discussions, but

before we do that we show the existence of charge
distributions, i.e., mass, nut charge, and angular momentum
along the Misner string in addition to their values at infinity.

A. Mass, angular momentum, and nut charge

In this subsection we argue for the existence of mass,
angular momentum, and nut charge along the z axis, i.e.,
along the Misner string using Komar integrals, where ξ and
χ are timelike and spacelike Killing vectors, respectively.

1. Mass

Apart from the total mass obtained from the flux crossing
the boundary at infinity, M∞ ¼ m, there are mass densities
along the z axis (remember that k ¼ 0).1 These mass
densities have maximum values close to the horizon,
z0 ¼ r0, but die out as z → ∞. Before showing the existence
of thesemasses in the volume between the horizon and radial
infinity surfaces, it is important to remember the following.
In the case of the Schwarzschild solution, the mass enclosed
by the horizon is the same as that enclosed by the sphere at
infinity S2∞. Therefore, there are no mass distributions in the
volume between the two surfaces. We will see that for
the case with a nut charge n, the situation is different, since
the two spheres contain different masses. One can use the
following two-form to calculate the mass using Komar’s
integral for both S2∞ and S2h:

�dξ ¼ 2n
r2 þ n2

fdt ∧ dr −
4n2f
r2 þ n2

cos θdr ∧ dϕ

− f0ðr2 þ n2Þ sin θdθ ∧ dϕ: ð16Þ

Clearly, the mass contained in S2∞ givesM∞ ¼ m, while the
mass inside the horizon, or S2h, is

Mh ¼ r20 þ n2

2r0
: ð17Þ

Furthermore, one can write the horizon mass as
Mh ¼ M∞ − 2nϕn. Therefore, these masses are clearly
different and this discrepancy reveals the existence of mass
distributions between the two surfaces, which is simply the
difference Ms ¼ 2nϕn. This result becomes less strange
upon noticing that the above two-form is singular along the z
axis, because of the ½�dξ�rϕ component, except at the horizon
and the boundary.
Let us calculate the mass along the positive z axis

through calculating the mass flux crossing a cylinder with
radius r → 0 around the axis and above the black hole
horizon. We call this cylinder Tþ. The mass flux crossing
this cylinder is given by

1These masses along the z axis were also discussed in [37].
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Mþ ¼ −
1

4π

Z
Tþ

�dξ ¼ −
n2

2r0
¼ nϕn: ð18Þ

For the mass on the other side of the z axis we have

M− ¼ nϕn: ð19Þ

This explains why the mass at the horizon is different
from that at infinity. The difference is due to the existence
of mass distributions inside the volume between the two
surfaces and distributed along the z axis. As one might
notice there is a connection between these mass distribu-
tions and the conical singularity. We should keep in mind
that k is a physical parameter and by changing it we
consider different physical systems, since some physical
measurable quantities, such as angular momentum, depend
on it, J ¼ 3knm. It is known that one can change k through
a large coordinate transformation, which relates physically
inequivalent cases. In addition, the boundary metric
depends on k; therefore, one can see that different values
of k correspond to different boundary conditions. Even if
we change the position of the string and the mass
distributions through changing k, one cannot set these
masses to zero. This is unlike the case of Dirac string,
where one can use gauge transformations to move the string
around. Indeed, k is a physical parameter rather than a pure
gauge parameter as was stressed in [18]. As we will see
below, this is the case for all conserved charges as long as
the Misner string is not only the mass. Indeed, this is an
intriguing aspect of the Taub-NUT solutions which is not
shared by other gravitational solutions and was not reported
before.2

Notice that the above two-form is perfectly regular at
these two surfaces; therefore, one can trust the above
calculation. Moreover, the value of Ms ¼ 2nϕn is inde-
pendent of the value of k, i.e., independent of the position
of the string. In fact, even if we make Misner string
invisible through identifying the time direction, this will
not change this result. The existence of this mass density
between the two spheres is necessary to account for the
difference between the horizon mass and the total mass at
infinity. We will see shortly that this is also the case for
electric and magnetic charges of the Taub-NUT solutions.

2. Angular momentum and nut charge

Apart from the mass distributions mentioned above we
calculate angular momentum and nut charge fluxes at
different surfaces to be able to have a consistent picture
of this spacetime. The angular momentum flux contained in
some surface ∂Σ is given by

J ¼ −
1

8π

Z
∂Σ

�dχ; ð20Þ

where χ ¼ ∂ϕ is a Killing vector. At the angular momentum
fluxes crossing S2∞ and S2h are

J∞ ¼ 0; Jh ¼ 0: ð21Þ

The angular momentum fluxes crossing T�
3 are

Jþ ¼ nm; J− ¼ −nm: ð22Þ

Therefore, the total angular momentum on Misner string is
JMS ¼ 0, and this is in agreement with [22] (see also
Ref. [37]). Notice that the angular velocity at the horizon
Ωh and at infinity Ω∞ are vanishing for this spacetime;
therefore, one expects that the total angular momentum
does not play any role in Taub-NUT thermodynamics. In
fact, for the k ≠ 0 case one can find that J∞ ¼ 3kmn,
which means that different values of the parameter k
correspond to different physical systems or setups; i.e., k
is a physical parameter. For the nut charge, one obtains

N∞ ¼ n; Nh ¼ 0: ð23Þ

While on Tþ and T− we have

Nþ ¼ n=2; N− ¼ n=2; ð24Þ

and therefore, the nut charges are basically coming from the
charges on the Misner string.

B. Thermodynamics of Taub-NUT Space

In this subsection, we present an unconstrained treatment
of the Taub-NUT thermodynamics, where there is no extra
identification of the time direction. Calculating the inverse
temperature of this solution one gets

β ¼ 4π

f0ðr0Þ
¼ 4πr0: ð25Þ

Following Gibbons and Perry [38] calculations for the
Taub-NUT on-shell gravitational action (with Minkowski
spacetime as a reference space), one obtains

I ¼ βm=2 ¼ πðr20 − n2Þ: ð26Þ

Also, this action can be obtained from that of Taub-NUT-
AdS upon using the counterterm method, after setting the
cosmological constant to zero as emphasized in [39]. Given
the above discussion of thermodynamic ensembles, the

2Apart from the author in [37] who pointed out the existence of
finite mass and infinite angular momentum along Misner string.

3J� are divergent quantities, and to regularize them one might
use the m ¼ 0 Taub-NUT solution as a background space.
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boundary metric is fixed by boundary conditions, which
fixes the nut charge. The partition function is given by

Zcanðβ; nÞ ¼ e−βF; ð27Þ

which is describing a canonical ensemble. Therefore, the
action is related to the free energy, I=β ¼ Fðβ; nÞ. The
chemical potential can be obtained from the free energy

ϕn ¼
�
∂F
∂n

�
T
¼ −

n
2r0

; ð28Þ

as it should be. This leads to the following relations:

dF ¼ −SdT þ ϕndn: ð29Þ

One can show that

I
β
¼ FðT; nÞ ¼ M − nϕn − TS: ð30Þ

But since the relation between the free energy F and the
internal energyU is given by F ¼ U − TS, one can identify
the internal energy in this case,

U ¼ M − nϕn ¼ 2πr0: ð31Þ

In fact, this agrees with the standard definition of U as

U ¼ hEi ¼ −∂β lnZ ¼ ∂βI: ð32Þ

The entropy in this case is obtained from the standard
definition

S ¼ β∂βI − I ¼ πðr20 þ n2Þ; ð33Þ

which is the area of the horizon. Now one can see that the
first law is satisfied,

dU ¼ TdSþ ϕndn: ð34Þ

One of the important features that distinguish this analysis
from other works (e.g., [20,24]) is that the internal energy is
not the mass of the system, but U ¼ M − nϕn. Also, the
total change in F is given as

dF ¼ −SdT þ ϕndn; ð35Þ

where

S ¼ −
�
∂F
∂T

�
n
; ϕn ¼

�
∂F
∂n

�
T
; ð36Þ

S ¼ AH

4G
: ð37Þ

Here, we explain and motivate the internal energy obtained
above. First, notice that Eqs. (26) and (30) imply

M ¼ 2ðnϕn þ TSÞ; ð38Þ

which is Smarr’s formula apart from one problem.
Remember that we get Smarr’s formula from assuming
that the internal energy is a homogeneous function of the
size of the system r0. But sinceM and n have dimensions of
length, one can observe that U ¼ M − nϕn rather than that
M is a consistent definition of internal energy since U ¼
nϕn þ 2TS has the correct scaling. Furthermore, the
internal energy by definition depends on the entropy and
conserved charges, which is clear from Eq. (34). More
importantly, this quantity is what one gets from applying
the statistical mechanical definition of internal energy or

U ¼ hEi ¼ −∂β lnZ: ð39Þ

The internal energy is not the mass of the system, but
M − nϕn. To understand this result, let us startwith the above
solution and set n ¼ 0, where the internal energy is
U ¼ M ¼ r0=2. The internal energy is the gravitational
energy/mass of the system. Adding a nut charge one finds
that the gravitational mass decreases to r0ð1 − n2

r2
0

Þ=2,
but the total or internal energy of the system is
U ¼ M − nϕn ¼ r0=2. A possible interpretation is that
the system uses part of its original energy, i.e., −nϕn, to
deform a Schwarzschild solution to become a Taub-Bolt
solution. The bottom line is that the internal energy of a
gravitational solution is the total available energy of the
system which might depend on additional parameters that
label the boundary metric rather than the gravitational mass
of the system. Our last comments here are about possible
different forms of the above first law,which can take the form

dðM − 2nϕnÞ ¼ TdS − ndϕn; ð40Þ

where Mh ¼ M − 2nϕn is the horizon mass. Another form
reads

dM ¼ TdSþ dMs − ndϕn; ð41Þ

whereMs ¼ 2nϕn is the mass along the Misner string. This
shows that part of the mass goes to creates the string mass.

IV. DYONIC TAUB-NUT SPACES

In this section we are going to calculate all relevant
thermodynamical quantities for the dyonic Taub-NUT
solution and show that the first law as well as Smarr’s
relation are satisfied. In this case the field equations take the
form

Gab ¼ Tab; ð42Þ
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where

Tab ¼ FacFb
c þHacHb

c: ð43Þ

The field strength two-form is related to the one-form
potential A, F ¼ dA, where H is the Hodge dual of F,
which is related to the one-form potential B,H ¼ �F ¼ dB.
Notice that Tab is invariant under Hodge duality, which
takes F → H and H → −F. The first law for dyonic black
holes, with vanishing nut charge, is invariant under this
duality as is clear from Eq. (11). Also, it enables us to
consider A as a fundamental field variable (i.e., its variation
produces the field equations) in one case where B is not, but
in the other case B is the fundamental variable and A is not.

A. A dyonic solution

The dyonic Taub-NUT solution has the same form as the
metric in Eq. (12) where

fðrÞ ¼ r2 þ p2 þ q2 − n2 − 2mr
r2 þ n2

: ð44Þ

The one-form gauge potential is given by

A ¼
�
np − qr
r2 þ n2

þ V

�
dt

þ
��

2nqr − pðr2 − n2Þ
r2 þ n2

�
cos θ þ C

�
dϕ; ð45Þ

where V and C are integration constants which will be
relevant for the thermodynamics of this solution as we will
see shortly. The field strength two-form F is given by

F ¼ 2nprþ qðn2 − r2Þ
ðr2 þ n2Þ2 dt ∧ dr

þ pðn2 − r2Þ − 2nqr
r2 þ n2

sin θdθ ∧ dϕ

þ 2n cos θ
2nprþ qðn2 − r2Þ

ðr2 þ n2Þ2 dr ∧ dϕ: ð46Þ

Notice that

Frϕ ¼ 2n cosðθÞFtr: ð47Þ

The magnetic charge in a spatial region Σ with a boundary
∂Σ is given by

Qm ¼ −
1

4π

Z
Σ
dF ¼ −

1

4π

Z
∂Σ
F: ð48Þ

Therefore, the magnetic flux at any radius r is

pðrÞ ¼ −
1

4π

Z
S2r

F ¼ pðr2 − n2Þ þ 2nqr
r2 þ n2

; ð49Þ

which produces a magnetic charge at r ¼ ∞,

Q∞
m ¼ p; ð50Þ

and a magnetic charge at the horizon

Qh
m ¼ ðpþ 2nϕeÞ: ð51Þ

We are going to discuss this discrepancy between the
magnetic fluxes at infinity and the horizon in the coming
sections. The dual field strength H ¼ �F is given by

H ¼ −2nqrþ pðn2 − r2Þ
ðr2 þ n2Þ2 dt ∧ dr

þ qðr2 − n2Þ − 2npr
r2 þ n2

sin θdθ ∧ dϕ

þ 2n cos θ
−2nqrþ pðn2 − r2Þ

ðr2 þ n2Þ2 dr ∧ dϕ: ð52Þ

Notice that

Hrϕ ¼ 2n cos θHtr: ð53Þ

The electric charge in a spatial region Σ is given by

Qe ¼
1

4π

Z
Σ
dH ¼ 1

4π

Z
∂Σ
H: ð54Þ

Also, the electric flux at any radius r is

qðrÞ ¼ 1

4π

Z
S2r

H ¼ qðr2 − n2Þ − 2npr
r2 þ n2

; ð55Þ

which produces the following electric charge at infinity:

Q∞
e ¼ q; ð56Þ

but at the horizon it takes the form

Qh
e ¼ ðq − 2nϕmÞ: ð57Þ

The electric and magnetic potentials are defined as

ϕe ¼ Φej∞ −Φejh ¼ V; Φe ¼ Aμξ
μ; ð58Þ

ϕm ¼ Φmj∞ −Φmjh ¼
pþ nV

r0
; Φm ¼ Bμξ

μ; ð59Þ

where ξ is a timelike Killing vector field and the one-form
B is the solution of dB ¼ H, which is given by
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B ¼
�
−
nqþ pr
r2 þ n2

þ V 0
�
dtþ

�
2nprþ qðr2 − n2Þ

r2 þ n2
þ C0

�

× cos θdϕ; ð60Þ

where V 0 and C0 are integration constants. We will see
later the importance of these integration constants in
thermodynamics.
It is known that the thermodynamics of any gravitational

solution is a result of Euclidean path integral treatment that
imposes certain regularity conditions on the gauge potential
Aμ. These conditions are obtained from demanding the
regularity of the norm of the gauge field, A2 ¼ AμAμ, at the
horizon and along the z axis. This quantity can be written as

A2 ¼ ðpþ 2nVÞ2ðcos θ þ sÞ2
ðr2 þ n2Þ sin2 θ −

ðqr − Vðr2 þ n2Þ − npÞ2
fðr2 þ n2Þ2 ;

ð61Þ

where we rewrote C in terms of another constant s, as
C ¼ sðpþ 2nVÞ. To have a nonsingular potential A on the
horizon, the charges q, p and the potential V should be
related as follows:

q ¼ npþ Vðn2 þ r20Þ
r0

: ð62Þ

Furthermore, to have a nonsingular potential along the x
axis, or at θ ¼ 0 and θ ¼ π, we should have two patches for
A, where one is smooth in the northern hemisphere and the
other is smooth in the southern hemisphere as in Dirac’s
monopole case with s ¼ ∓1, or

C� ¼ ∓ðpþ 2nVÞ ð63Þ

or

Aϕ
� ¼ ðpþ 2nVÞðcos θ ∓ 1Þ

ðr2 þ n2Þ sin2 θ : ð64Þ

Notice that the first condition is important for satisfying the
first law4 and the second is needed for obtaining the
magnetic charge which is consistent with the above
path-integral conditions. This is the magnetic charge in
the first law which is different from the total magnetic
charge of the system p. Regularity of the gauge potential
along the z axis is equivalent to removing the whole z axis
(which carries a magnetic charge −2nϕe), and as a result
we get Qm ¼ Qh

m. This is the magnetic charge in the first
law. Now let us calculate this magnetic charge from the
nonsingular one-form A after using Stock’s theorem, and it
gives

Qm ¼−
1

4π

I
A¼−

1

4π

�Z
north−cap

Aþþ
Z
south−cap

A−

�
¼p

þ2nϕe: ð65Þ

Notice also, by removing the z axis, the magnetic charge
becomes

Qm ¼ −
1

4π

Z
∂Σ
F ¼ −

1

4π

�Z
S2∞

F þ
Z
Tþ

F þ
Z
T−

F

�

¼ pþ 2nϕe: ð66Þ

Our conclusion is that the existence of the nut charge causes
a difference between the total magnetic charge and the
charge that appears in thermodynamics. The charge in
thermodynamics is the result of regularizing the gauge
potential A which is required by the Euclidian path integral
treatment.

B. Charges on Misner string

Another intriguing aspect of the Taub-NUT solutions
that was not investigated before is the existence of electric
and magnetic charges along the z axis between the horizon
and radial infinity. Indeed, apart from the total charges at
infinity, Q∞

e ¼ q and Q∞
m ¼ p, there are electric and

magnetic charge densities along the z axis (k ¼ 0).
These density distributions, again, have maximum values
close to the horizon, z0 ¼ r0, but vanish as z → ∞. To
show the existence of these charges one can calculate the
charges trapped between the horizon and radial infinity.
The dual two-form H in Eq. (52) can be used to calculate
the electric flux crossing these spheres. Calculating the
electric charge contained in S2∞ one gets Q∞

e ¼ q, while at
the horizon

Qh
e ¼ q − 2n

pþ nϕe

r0
¼ q − 2nϕm: ð67Þ

There must be electric charges between the two surfaces,
which is equal to Qs

e ¼ 2nϕm. Again, this result is not
surprising if we notice that H is singular along the z axis
except at the horizon and the boundary.
On the other hand, one can calculate the electric charge

along the positive z axis through calculating the flux
crossing a cylinder with radius r → 0, around the axis
and above the black hole horizon similar to what we did in
the mass case. The electric flux crossing this cylinder is
given by

Qþ
e ¼ −

Z
Tþ

H ¼ nϕm: ð68Þ

For the other side of the z axis we have4This was also shown in [27] in a special case where V ¼ 0.
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Q−
e ¼ nϕm: ð69Þ

SinceH is perfectly regular at the horizon and at infinity,
therefore one can trust the above calculation. Moreover,
even if k ≠ 0, one can check that the charge between the
two spheres, i.e., Qs

e ¼ 2nϕm, is independent of the value
of k, i.e., independent of the position of the string. Similar
argument and calculation can be done for the magnetic
charge case, where the magnetic charge contained in S2∞ is
Q∞

m ¼ p, but that at the horizon gives

Qh
e ¼ pþ 2nϕe: ð70Þ

Also,

Qþ
m ¼

Z
Tþ

F ¼ −nϕe: ð71Þ

For the other side of the z axis we have

Q−
m ¼ −nϕe: ð72Þ

Similar to the mass case, we emphasize that the existence of
these extra charges between the two spheres is necessary to
account for the difference in charges collected by the two
spheres. This difference is not affected by moving or
removing the Misner string.

C. Thermodynamics of dyonic Taub-NUT solution

Here we calculate various thermodynamical quantizes
for the Taub-NUT dyonic solution. Its temperature is
given by

T ¼ f0ðr0Þ
4π

¼ ð1 − V2Þr20 − ðpþ nVÞ2
4πr30

: ð73Þ

To calculate the on-shell action we follow Gibbons and
Perry [38] as in the neutral Taub-NUT case. One gets

I ¼ β
ðmr20 þ ðpþ nVÞ2 − V2r20Þ

2r0
¼ βΩ; ð74Þ

where Ω is the grand potential of the system, which can be
written as

Ω ¼ U − TS −ΦeQe ¼ M − nϕn − TS − ϕeQe: ð75Þ

Following our discussion on Sec. II one can observe that
the grand potential is considered to be Ω ¼ Ωðβ;
n;ϕe; QmÞ. The entropy S is given by

S ¼ −
�
∂Ω
∂T

�
n;ϕe;Qm

¼ πðr20 þ n2Þ; ð76Þ

which is a quarter of the horizon area. One can check that
the total charges Qe ¼ q and Qm ¼ p with the other
quantities do not satisfy the first law.

1. Different forms of the first law and E-M duality

In this subsection first we are going to present two
different cases which are related by E-M duality trans-
formation. These forms of the first law are similar to the
cases discussed in [25,28], where one of the charges is at
the horizon and the other at infinity. Then, we are going to
present an E-M invariant form of the first law which can be
written in terms of horizon charges as well as the charges on
the Misner string. For all cases the first law, Smarr’s
relation, and the Gibbs-Duhem relation [i.e., Eq. (75)]
are satisfied.

Case (i).—In this case, the first law has a magnetic charge
Qm ¼ Qh

m ¼ pþ 2nϕe, which coincides with the charge at
the horizon. This leads to a potential

ϕm ¼
�

∂Ω
∂Qh

m

�
T;n;ϕe

¼ Qh
m − nϕe

r0
: ð77Þ

The chemical potential of n is

ϕn
ð1Þ ¼

�
∂Ω
∂n

�
T;ϕe;Qh

m

¼ 1

2r0
½nðϕ2

e þ ϕ2
m − 1Þ − 2r0ϕeϕm�:

ð78Þ

The electric charge that enters the first law is given by

Qe ¼
�
∂Ω
∂ϕe

�
T;n;Qh

m

¼ q: ð79Þ

This is the electric charge at radial infinity. These quantities
satisfy Eq. (75) which suggests that the internal energy of
the system is

U ¼ M − nϕn
ð1Þ: ð80Þ

This agrees with the standard definition of U in grand
canonical or mixed ensemble

U ¼ hEi ¼ ∂βðβFÞ: ð81Þ

Now the variation of the grand potential and the first law
have the forms

dΩ ¼ −SdT þ ϕn
ð1Þdnþ ϕmdQh

m − qdϕe; ð82Þ

dU ¼ dðM − nϕn
ð1ÞÞ ¼ TdSþϕn

ð1ÞdnþϕmdQh
m þϕedq:

ð83Þ
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The electric and magnetic charges that appeared in cases (i)
and (ii) were first derived in [25] and then in [28] but the nut
charge, its chemical potential, and the internal energy were
different from ours. One can check the consistency of the
above relations through Smarr’s relation which is satisfied
and takes the form

U ¼ M − nϕn
ð1Þ ¼ 2TSþ nϕn

ð1Þ þQh
mϕm þ qϕe: ð84Þ

Case (ii).—Notice that in case (i), the first law is not
invariant under electric-magnetic duality, i.e., under

q → p; p → −q; ϕm → −ϕe; ϕe → ϕm;

ð85Þ

as in the n ¼ 0 case. The first law which is dual to case (i) is
given by

dU ¼ dðM − nϕn
ð2ÞÞ ¼ TdSþ ϕn

ð2Þdnþ ϕmdpþ ϕedQh
e;

ð86Þ

where

ϕn
ð2Þ ¼ 1

2r0
½nðϕ2

e þ ϕ2
m − 1Þ þ 2r0ϕeϕm�: ð87Þ

Notice that the Hodge duality transforms ϕedq → ϕmdp,
ϕmdðpþ 2nϕeÞ → ϕedðq − 2nϕmÞ and ϕn

ð1Þ → ϕn
ð2Þ.

This is another consistent first law which has a magnetic
chargeQm ¼ p but an electric chargeQh

e ¼ q − 2nϕm. The
magnetic potential in this case is

ϕm ¼
�
∂Ω
∂p

�
T;n;ϕe

¼ pþ nϕe

r0
: ð88Þ

The chemical potential of n is

ϕn
ð2Þ ¼

�
∂Ω
∂n

�
T;ϕe;p

: ð89Þ

The electric charge in this case is

Qe ¼
�
∂Ω
∂ϕe

�
T;n;p

¼ ðq − 2nϕmÞ ¼ Qh
e ; ð90Þ

notice that this is the electric charge at the horizon not at
radial infinity. Now the variations of the grand potential and
the first law have the forms

dΩ ¼ −SdT þ ϕn
ð2Þdnþ ϕmdp −Qh

edϕe; ð91Þ

dU¼ dðM−nϕn
ð2ÞÞ ¼TdSþϕn

ð2ÞdnþϕmdpþϕedQh
e:

ð92Þ

One can check the consistency of the above relations
through Smarr’s relation which is satisfied and takes the
form

U ¼ M − nϕn
ð2Þ ¼ 2TSþ nϕn

ð2Þ þQh
eϕe þ pϕm: ð93Þ

Again, these quantities satisfy Eq. (75) which leads to

U ¼ M − nϕn
ð2Þ: ð94Þ

Also, this agrees with the definition of U in grand
canonical as

U ¼ hEi ¼ ∂βðβFÞ: ð95Þ

An E-M invariant case.—From the above two cases one can
observe that there is some redundancy or ambiguity in the
first law. In fact, this becomes clear upon showing that the
first law is satisfied for a one parameter family of charges
and ϕn as we will see below. Let us parametrize these
quantizes with some parameter α, starting with a magnetic
charge Qm

ðαÞ ¼ pþ αnϕe, which has a magnetic potential

ϕm ¼
�

∂Ω
∂Qm

�
T;n;ϕe

¼ Qm þ ð1 − αÞnϕe

r0
: ð96Þ

The chemical potential of n is

ϕn
ðαÞ ¼

�
∂Ω
∂n

�
T;ϕe;Qm

¼ n
2r0

½nðϕ2
m þ ϕ2

e − 1Þ þ 2ð1 − αÞϕeϕmr0�: ð97Þ

The electric charge in this case is

Qe
ðαÞ ¼

�
∂Ω
∂ϕe

�
T;n;Qm

¼ qþ ðα − 2Þnϕm: ð98Þ

The variation of the grand potential and the first law have
the forms

dΩ ¼ −SdT þ ϕndnþ ϕmdQm −Qedϕe; ð99Þ

dU ¼ dðM − nϕn
ðαÞÞ ¼ TdSþ ϕn

ðαÞdn

þ ϕmdQm
ðαÞ þ ϕedQe

ðαÞ: ð100Þ

One can check the consistency of the above relations
through Smarr’s relation, which takes the form
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U ¼ M − nϕn
ðαÞ ¼ 2TSþ nϕn

ðαÞ þQm
ðαÞϕm þQe

ðαÞϕe:

ð101Þ

There are two interesting features here, the first is that E-M
duality transformation relates the cases with α and (2 − α).
Here one should remember that the field equations are
invariant under Hodge duality, and therefore, it is natural to
require a first law that carries this property. It is interesting
to notice that a simple calculation can show that this
dependence on α is canceled out if we take

ϕn
ðαÞ ¼ ϕn þ nð1 − αÞϕeϕm; ð102Þ

and then the first law takes this form

dU ¼ dðM − nϕnÞ ¼ TdSþ ϕndnþ ϕmdðpþ nϕeÞ
þ ϕedðq − nϕmÞ: ð103Þ

At the same time requiring the invariance of the first law
under Hodge duality leads to fixing α to be unity, which is
the same α-independent form found above.
Furthermore, thermodynamical quantities of this unique

expression produce an E-M invariant Smarr’s relation as
well. In other words, one can get a unique form of the first
law by either requiring an α-independent expression or an
E-M invariant expression. Another interesting fact is that
the above first law can be put in the following form:

dU ¼ TdSþ ϕndnþ ϕmdðpþ 2nϕeÞ þ ϕedðq − 2nϕmÞ

þ 1

2
ϕmdð−2nϕeÞ þ

1

2
ϕedð2nϕmÞ; ð104Þ

or

dU¼TdSþϕndnþϕmdQh
mþϕedQh

eþϕs
mdQs

mþϕs
edQs

e:

ð105Þ

This form is informative since it expresses the first law in
terms of the horizon charges (black hole charges) and the
Misner string charges, Qs

e and Qs
m, and their potential,

which is ϕs
m ¼ ϕm=2 and ϕs

e ¼ ϕe=2.
5

To understand more about this form of the first law, we
should recall our discussion at the end of Sec. IV. 1 where
we stressed the fact that the magnetic charges that appear in
thermodynamics should be coming from regularizing the
one-form potential A. This leads to a magnetic charge
Qh

m ¼ pþ 2nϕe, not p. Also, as a result of having Hode
dual field equations, one can choose B to be the field
variable instead of A. But this leads to imposing the path
integral boundary conditions on B instead of A. In this case,

one can choose the constants V 0 and C0 in B such that the
potential is nonsingular at the horizon and along the z axis.
These values are

V 0 ¼ pr0 þ nq
r20 þ n2

; C0
� ¼∓ ðq − 2nV 0Þ: ð106Þ

Using Stock’s theorem, one gets the electric charge

Qe ¼
1

4π

I
B ¼ q − 2nϕm; ð107Þ

where V 0 ¼ ϕm. This is the electric charge that appears in
the first law, which is consistent with E-M duality. Notice
that this charge can be produced upon removing the z axis
in the two-form integral

Qe ¼
1

4π

Z
∂Σ
H ¼ 1

4π

�Z
S2∞

H þ
Z
Tþ

H þ
Z
T−

H

�

¼ q − 2nϕm: ð108Þ

V. CONCLUSION

We have revisited the thermodynamics of Lorentzian
Taub-NUT solutions, including the neutral Taub-NUT and
the dyonic Taub-NUT cases. We argue for the existence of
mass, the electric and magnetic charges, as well as angular
momentum and nut charges along the z axis or Misner
string. Furthermore, we introduced an alternative treatment
that adopts the nut charge n as a conserved charge, since it
is known to be dual to the mass. In this treatment the
internal energy is M − nϕn, rather than the mass M as one
can observe from the standard definition,

U ¼ hEi ¼ ∂βðβFÞ: ð109Þ

We show the existence of a more general form of the first
law with quantities that depend on an arbitrary parameter α,
which includes the cases in literature discussed in [25,28].
By requiring that the first law does not depend on this
arbitrary parameter or is invariant under electric-magnetic
duality we are led to a unique form that contains horizon
charges and the charges on the Misner string. The depend-
ence of the first law on horizon charges can be explained as
follows. Thermodynamics requires the smoothness of the
gauge potential on the horizon and along the Misner string.
This condition with electric-magnetic invariance of the first
law leads to horizon magnetic and electric charges in the
first law. It is clear that Misner string charges do play an
important role in the first law, and without them the first law
is inconsistent. It is also clear that the introduction of a nut
charge to the solution changes or shifts the electric and
magnetic charges as well as creates various charges along
the Misner string. It would be interesting to try to

5One can obtain ϕe=2dQs
e as the space average of the work

done to move an infinitesimal charge dQs
e from infinity to a finite

distance r along the z axis.
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understand more the role of these charges on the Misner
string in thermodynamics especially after adding rotation to
the solution. Another extension of this work is to study
possible phase transitions for these thermodynamic sys-
tems, which we would like to report on in the near feature.
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