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As is well known, asymptotically flat, static, and spherically symmetric black holes do not admit stable
bound orbits of massive or massless particles outside the horizon in higher-dimensional Einstein gravity.
However, for massive particles, this dramatically changes in higher curvature theories. We clarify the
parameter range such that there exist stable bound orbits in d-dimensional Einstein-Gauss-Bonnet theories
for 6 ≤ d ≤ 9. In particular, we show the existence of the lower bound of the Gauss-Bonnet coupling
constant below which stable bound orbits cease to exist. Moreover, we also find that for AdS black holes in
the theories, there can exist two stable circular orbits outside the horizon.
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I. INTRODUCTION

A stable bound orbit is an orbit in which a particle keeps
moving in a bounded spatial region without reaching
infinity or singularities when small perturbations are done.
Such an orbit often appears in astrophysical phenomena.
For instance, the existence of an innermost stable circular
orbit (ISCO) plays an essential role in the formation of the
accretion disk around a black hole. One can understand the
essence of this mechanism by considering the motions of a
massive particle moving around a Schwarzschild black
hole. The massive particle moving along a stable bound
orbit is localized near a radial potential well, which is made
by a balance between the gravitational potential −Mm=r
and the centrifugal potential l2=ðmr2Þ, where M is the
black hole mass, m and l are the mass and angular
momentum of a particle, and r is the circumferential radius.
The relativistic correction effect −Ml2=ðmr3Þ becomes
dominant over the other effects in the neighborhood of the
event horizon and causes proper relativistic phenomena
such as perihelion shift and ISCO. Similarly, such a stable
bound orbit appears even around a rotating black hole such
as a Kerr background [1].
On the other hand, it is suggested that the existence of

stable bound orbits for massless particles may cause
nonlinear instability [2]. For Schwarzschild spacetime
and Kerr spacetime, it is well known that there exists an

unstable circular orbit but not a stable one, whereas for the
Kerr-Newman spacetime with relatively large electric
charge, a stable photon orbit exists on the horizon [3].
Moreover, for the Majumdar-Papapetrou spacetimes with
two black holes, such orbits appear even outside the
horizon [4–6]. From the wave perspective, linear waves
localize in the vicinity of the trapping null geodesics,
resulting in a long timescale for the decay [7], which also
suggests the existence of nonlinear instabilities of the
background spacetime [2].
It is also notable that the particle motion drastically

changes in dð≥ 5Þ dimensions because the gravitational
potential and the relativistic correction are replaced with,
respectively, −Mm=rd−3 and −Ml2=ðmrd−1Þ, while the
centrifugal potential remains the four-dimensional one.
For the Schwarzschild-Tangherlini solutions and Myers-
Perry solutions in d ¼ 5, it is shown that for massive
particles as well as massless particles, there are no stable
circular orbits in equatorial planes [8–12]. In contrast, for
the black ring solutions [13–15] and the black lens
solutions [16,17] having nonspherical horizon topologies,
it should be surprising that stable bound orbits for
both massive and massless particles exist. In addition,
for various types of black holes such as multi-black
holes [18] and Kaluza-Klein black holes [19,20], the
existence of stable bound orbits was also investigated.
Recently, it was shown that there exist stable bound
orbits even in microstate geometries, which are the
horizonless geometries that can be regarded as a
certain kind of approximation of black hole geometries
[21–23].
Moreover, it is surprising that in higher curvature

theories, even asymptotically flat, static, spherically sym-
metric black hole backgrounds admit stable bound orbits
for massive particles in some cases, unlike the
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Schwarzschild-Tangherlini black holes in any dimensions
of d ≥ 5. It has been clarified that black holes in the d-
dimensional pure Gauss-Bonnet (GB) theories ð6 ≤ d ≤ 8Þ
and the pure Nth Lovelock theories (2N þ 2 ≤ d ≤
4N þ 4) allow stable bound orbits [24,25].1 However,
the appearance of stable bound orbits in the Einstein-
Gauss-Bonnet (EGB) and Einstein-Lovelock theories is not
yet fully understood. Asymptotically flat, static, and spheri-
cally symmetric EGB black holes [27] do not have stable
bound orbits in d ¼ 5 [28], but they do have them in 6 ≤
d ≤ 9 regardless of the presence of a cosmological constant
[29],2 which apparently seems inconsistent with the non-
existence of stable bound orbits in the d ¼ 9 pure GB
theory [24,25].
In this paper, we aim to clarify the effect of the GB

correction and the dimension dependence for the existence
of stable bound orbits of static EGB black holes. We see
that stable bound orbits exist for 6 ≤ d ≤ 9 EGB black
holes if the GB coupling constant is sufficiently large
compared to the horizon radius. In d ¼ 9, we observe that
stable bound orbits have larger radii as the coupling grows
and, finally, goes to infinity as the GB coupling goes to
infinity, consistent with the pure GB result. We also find
two stable circular orbits when the negative cosmological
constant is included.
The remaining part of this paper is organized as follows:

In Sec. II, we give a brief review of the GB black holes and
explain our formalism used in this paper. In Sec. III, we
analytically study the particle motion around EGB black
holes with a large enough GB coupling constant. In Sec. IV,
we discuss the existence of bound orbits in 6 ≤ d ≤ 9 by
numerically investigating the existence of local minima of
the effective potential. Moreover, in Sec. V, we also study
the effect on the particle motion by a negative cosmological
constant. Finally, Sec. VI is devoted to the summary of our
results and our future works.

II. SETUP

First, we consider asymptotically flat, static, and spheri-
cally symmetric black holes in d-dimensional EGB theory,
whose action is given by

S ¼ −
1

16πG

Z
ðRþ αGBLGBÞddx; ð1Þ

where the GB term LGB is written as

LGB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ: ð2Þ

The metric of the EGB black holes [27] is given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2
d−2; ð3Þ

with the metric on the (d − 2)-dimensional sphere,

dΩ2
d−2 ¼ dθ2 þ sin2 θdϕ2 þ cos2 θdΩ2

d−4; ð4Þ

the metric function

fðrÞ ¼ 1þ r2

2α

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4αðαþ r20Þrd−50

rd−1

s !
; ð5Þ

and the scaled GB coupling constant

α ≔ ðd − 3Þðd − 4ÞαGB: ð6Þ

In this paper, we consider only the GR (General
Relativity) branch which has an asymptotically flat region.
We set the parametrization so that the horizon appears at
r ¼ r0 for any values of α. The black hole mass is not fixed
for α because

MBH ¼ ðd − 2ÞΩd−2ðαþ r20Þrd−10

16πG
: ð7Þ

Thanks to the spherical symmetry, we can set θ ¼ π=2
without loss of generality. The geodesic motion of massive
or massless particles on an equatorial plane θ ¼ π=2 is
described by the Hamiltonian

H ¼ grrp2
r þ E2gtt þ L2

ϕg
ϕϕ þm2; ð8Þ

where pt ¼ −E; pϕ ¼ L are the constants of motion which
correspond to the energy and angular momentum of
particles, respectively. Following the Hamiltonian con-
straint H ¼ 0, the particles can move only in the region
where the effective potential Veff satisfies

Veff þm2=E2 ¼ −E−2grrp2
r ≤ 0 ð9Þ

where

Veff ≔ gtt þ ðL2
ϕ=E

2Þgϕϕ ¼ −
1

fðrÞ þ
l2

r2
: ð10Þ

From the symmetry ϕ → −ϕ of the solution, we can
assume l ≔ Lϕ=E ≥ 0 without loss of generality. Stable
bound orbits for massive particles exist if the effective
potential Veff has a negative local minimum, whereas those
for massless particles exist if it has a finite negative region

1Interestingly, a similar dimensionality bound in the massive
dust collapse has been shown in the EGB theory [26].

2In Ref. [29], the authors also claimed to find the stable bound
orbits in d ¼ 5 static EGB solutions, which is contrary to the
result in Ref. [28]. This is because the former paid no attention to
whether the solution describes a black hole spacetime or a
horizonless spacetime with naked singularities, which depends
on the parameters. As a result, their d ¼ 5 result happened to be
in the parameter range of naked singularities.
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bounded by Veff ¼ 0. In particular, the stable circular orbits
(SCOs) at r ¼ rSCO are given by the local minima of Veff ,

V 0
effðrSCOÞ ¼

f0ðrSCOÞ
fðrSCOÞ2

−
2l2

rSCO3
¼ 0; V 00

effðrSCOÞ > 0; ð11Þ

where SCOs for massless particles should satisfy the
condition of VeffðrSCOÞ ¼ 0. By further differentiating
with l, one can show that rSCO is a monotonic function
of l,

drSCO
dl

����
α

¼ 4l
r3SCOV

00
effðrSCOÞ

> 0: ð12Þ

Thus, the minimum and maximum values of l for bound
orbits correspond to the ISCO and outermost stable circular
orbit (OSCO), respectively.

III. LARGE α LIMIT

First, we study the stable bound orbits at the large α limit.
More precisely, we assume that α is large in units of the
horizon radius

α=r20 ≫ 1; ð13Þ

which can also be regarded as the approximation of a small
black hole when α is fixed. In particular, the effective
potential at the pure GB limit α → ∞ behaves like that of
the ðdþ 1Þ=2-dimensional Schwarzschild black hole
spacetime,

Veff → −
�
1 −

�
r0
r

�d−5
2

�−1
þ l2

r2
: ð14Þ

In this limit, as explained in [24,25] (see Table I), the power
ðd − 5Þ=2 of the gravitational potential is smaller than the
power 2 of the centrifugal potential only for 6 ≤ d ≤ 8,
which gives the potential a local minimum for these
dimensions. As was shown in the Nth pure Lovelock
theory for d ¼ 2N þ 2 [24], which corresponds to the pure
GB case for d ¼ 6, the minimum values of l and rISCO are
obtained for 6 ≤ d ≤ 8 by solving the conditions V 0

eff ¼ 0

and V 00
eff ¼ 0 as

lα¼∞
min ¼ ð9 − dÞ d−9

2ðd−5Þðd − 1Þ d−1
2ðd−5Þ

4
ffiffiffiffiffiffiffiffiffiffiffi
d − 5

p r0; ð15Þ

rα¼∞
ISCO ¼

�
d − 1

9 − d

� 2
d−5
r0: ð16Þ

Furthermore, these values can be smoothly continued to the
finite α by the 1=α expansion

lmin ¼ lα¼∞
min ð1þ c1ðr20=αÞ þ…Þ;

rISCO ¼ rα¼∞
ISCOð1þ c2ðr20=αÞ þ…Þ; ð17Þ

where the first coefficients for each dimension are given by

cd¼6
1 ¼ 4097

972
; cd¼7

1 ¼ 29

7
; cd¼8

1 ¼ 1

3
þ 49

4
71=3;

ð18Þ

cd¼6
2 ¼ −

14896

729
; cd¼7

2 ¼ −40; cd¼8
2 ¼ 1

3
−
343

3
71=3:

ð19Þ

Since for d ≥ 9 the potential behaves like that of the
Schwarzschild in d ≥ 5 even at the pure GB limit, one may
not be able to expect the existence of stable bound orbits.
However, as will be seen later, the potential admits the
existence of stable bound orbits even in d ¼ 9 for large and
finite α, though it does not do so for the pure GB
limit α → ∞.
Next, we consider the case in which α is large but still

finite, where the effective potential has an inflection point at
which the behavior of the gravitational potential switches
from one in lower dimensions to one in higher dimensions,
or from the potential of pure GB to that of GR. This
transition leads to the existence of a maximum for rSCO,
namely, the existence of OSCO for d ¼ 9 as well as
6 ≤ d ≤ 8. It can be expected qualitatively that the tran-
sition happens in the range where both terms in the square
root in Eq. (5) become comparable,

α2rd−50

rd−1
∼ 1; ð20Þ

which gives a transition scale

r ∼ rtr ¼
�
α

r20

� 2
d−1
r0: ð21Þ

For α=r20 ≫ 1, the transition occurs at a distance far enough
from the horizon, rtr ≫ r0. For r ≫ rtr, the effective

TABLE I. Powers of gravitational potentials for d-dimensional
Schwarzschild black holes and d-dimensional GB black holes.

d Schwarzschild BH Gauss-Bonnet BH

5 2 0
6 3 1=2
7 4 1
8 5 3=2
9 6 2
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potential behaves like that of the d-dimensional
Schwarzschild black hole spacetime,

Veff ≃ −1 −
ðα=r20 þ 1Þrd−30

rd−3
þ l2

r2
; ð22Þ

which does not admit a local minimum for d ≥ 5. Thus, for
d ¼ 6, 7, 8, the potential behaves as

Veff ∼
�
−1 − ðr=r0Þ−d−5

2 ðr0 ≪ r ≪ rtrÞ
−1þ l2r−2 ðr ≫ rtrÞ;

ð23Þ

which guarantees the local maximum across r ∼ rtr.
Moreover, it is notable that this transition still occurs even
for d ¼ 9, though we need a slight modification since the
potential behaves as

Veff ∼
�
−1þ ðl2 − r20Þr−2 ðr0 ≪ r ≪ rtrÞ
−1þ l2r−2 ðr ≫ rtrÞ;

ð24Þ

which again guarantees the local maximum if l≲ r0.
Since, as previously mentioned, a larger angular
momentum yields a larger stable circular orbit radius
(12), the orbit has maximum l when rSCO reaches this
maximum. To roughly estimate the maximum around
r ∼ rtr, we expand the effective potential in the power
series of r20=α,

Veff ≃ −1þ
�
α

r20

�
−d−5
d−1
Ul=ltrðr=rtrÞ ð25Þ

where the leading order contribution is given in the scale-
invariant form

Ul̂ðr̂Þ ¼
r̂2

2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

r̂d−1

r �
þ l̂2

r̂2
; ð26Þ

and the typical transition scale for the angular momentum is
also given by

ltr ≔
�
α

r20

� 9−d
2ðd−1Þ

r0: ð27Þ

In some parameter range, Ul̂ðr̂Þ admits a local minimum
and a local maximum. The maximum value of such l̂ is
given by solving U0

l̂
ðr̂Þ ¼ U00

l̂
ðr̂Þ ¼ 0, which also deter-

mines r̂OSCO. For 6 ≤ d ≤ 9, the values of l̂max and r̂OSCO
are listed in Table II. Therefore, for large α, lmax, and rmax
behave, respectively, as

lmax ∝ ltr ∝ α
9−d

2ðd−1Þ; rOSCO ∝ rtr ∝ α
2

d−1: ð28Þ

IV. BOUND ORBITS FOR 6 ≤ d ≤ 9

Figures 1 and 2 show the parameter range of l
for the existence of stable bound orbits and the radii of
ISCO/OSCO for given α, respectively. The curves for
l ¼ lmin =maxðαÞ and r ¼ rISCO=OSCOðαÞ are numerically
determined by solving V0

effðrÞ ¼ V 00
effðrÞ ¼ 0. In any

dimension, we find no stable bound orbits when α is
below a critical value αc. The large α behavior of lmin =max

and rISCO=OSCO is consistent with the analytic result from
the large α limit. Although we could not find the analytical
limit for lmin and rISCO in d ¼ 9, the numerical fit implies
rISCO ∝ α1=4 at large α, which indicates the stable bound
orbits disappear at α → ∞ in d ¼ 9.
Figure 3 shows typical shapes of the effective potential.

At the limiting value of l, the potential minimum at r ¼ r2
disappears by merging with either of the local maxima at
both sides. As seen in Fig. 4, all three extrema become
degenerate at r1 ¼ r2 ¼ r3 ¼ rc at the critical values
α ¼ αc and l ¼ lmax ¼ lmin ¼ lc in Table III, which
are determined by

TABLE II. Values of l̂max and r̂OSCO for 6 ≤ d ≤ 9.

d 6 7 8 9

l̂max 0.869 0.903 0.980 1.086
r̂OSCO 1.569 1.238 1.072 0.942

FIG. 1. Stable bound orbits, shown in the colored region. Note that l and α are normalized in units of r0. The dashed lines represent
l ¼ lα¼∞

min .
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V 0
effðrcÞjαc;lc ¼ V 00

effðrcÞjαc;lc ¼ Vð3Þ
eff ðrcÞjαc;lc ¼ 0: ð29Þ

This in turn determines the maximum size of the black hole
for stable bound orbits when α is fixed.
Finally, let us evaluate the possible height of the outer

maximum Veffðr3Þ, which determines the maximum
energy of the particles trapped in stable bound orbits.
Furthermore, the positivity of Veffðr3Þ is the necessary
condition for massless particles to have stable bound orbits.
It is easy to show that Veffðr3Þ is a monotonic function of l
for fixed α,

dVeffðr3Þ
dl

����
α

¼ 2l
r23

> 0; ð30Þ

which leads to Veffðr3Þ ≤ Veffðr3Þl¼lmax
for given α. In

addition, our numerical calculation shows that VeffðrcÞαc;lc
gives the maximum value of Veffðr3Þl¼lmax

(Fig. 5)
and hence the upper bound for all Veffðr3Þ. The values
of VmaxðrcÞαc;lc for 6 ≤ d ≤ 9 are shown in the bottom
row of Table III. Since the outer maximum is always
negative, there are no stable bound orbits for massless
particles.

FIG. 4. Effective potential in d ¼ 6 with the critical parameters
α ¼ αc ¼ 17.48r20 and l ¼ lc ¼ 2.652r0.

TABLE III. The αc and corresponding values of Veff at r ¼ rc
for 6 ≤ d ≤ 9. The latter gives the upper bound of the outer
maximum Veffðr3Þ in each dimension.

d 6 7 8 9

αc=r20 17.48 32.97 89.49 640.6
VeffðrcÞlc;αc −0.857 −0.889 −0.930 −0.975

FIG. 3. Effective potential for d ¼ 6, α ¼ 400r20 with l ¼ 3.5r0 (first two panels), l ¼ lmin ≈ 2.71r0 (third panel), and l ¼
lmax ≈ 5.73r0 (fourth panel). The position is normalized by r0 and plotted in the log scale so that all extrema are visible. The second
panel shows the detailed profile around the maximum at r ¼ r3 in the first panel.

FIG. 2. Position of ISCO and OSCO for each α. Note that r and α are normalized in units of r0. The dashed lines represent r ¼ rα¼∞
ISCO.

FIG. 5. The α dependence of Veffðr3Þ with l ¼ lmax in d ¼ 6.
Note that d ¼ 7, 8, 9 show the same behavior.
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V. TWO STABLE CIRCULAR ORBITS WITH Λ < 0

It is known that the existence of a negative cosmological
constant allows stable bound orbits around static black
holes in Einstein-Lovelock theories [30]. Therefore, one
can expect that the effective potential admits two local
minima for 6 ≤ d ≤ 9, if the increase of the potential due to
the AdS barrier occurs sufficiently far away from the
transition at r ∼ rtr, which we discussed in the previous
section.
For the EGB-AdS black hole, in terms of the AdS scale L

introduced by

Λ ¼ −
ðd − 1Þðd − 2Þ

2L2
; ð31Þ

Eq. (5) is merely replaced with

fðrÞ ¼ 1þ r2

2α

0
BB@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4α

L2
þ
4rd−30 αð1þ α

r2
0

þ r2
0

L2Þ
rd−1

vuut
1
CCA;

ð32Þ

where the horizon radius is fixed at r ¼ r0.
We find that the potential can have either one or two local

minima, which depends on the parameters ðα;l; LÞ.
Figure 6 displays how the number of local minima depends
on the parameters ðα;lÞ for fixed ðL; r0Þ in the d ¼ 6 AdS-
EGB black hole, where we set L ¼ 500r0 as a large enough

FIG. 6. Left panel: number of local minima in ðα;lÞ space for d ¼ 6 EGB-AdS black holes, where we set r0 ¼ 1 and L ¼ 500r0.
Middle panel: closeup region of the box in the left panel. The black dots, (a)–(f), in the middle panel correspond to the effective
potentials, (a)–(f), in Fig. 7, respectively. The effective potential allows only one local minimum in the blue region and two local minima
in the red region, respectively. In the red region, the two local minima become equal values on the dashed curve [(c) in Fig. 7], above
which the outer minimum is smaller and vice versa [(b) and (d) in Fig. 7, respectively]. The right panel shows how the red regions in
d ¼ 6 change when L changes within the range of 13.03… ≤ L ≤ 15 for r0 ¼ 1, and the red region shrinks to a point at
L ¼ Lc ≕ 13.03….

(a)

(d) (e) (f)

(b) (c)

FIG. 7. Effective potentials for EGB-AdS black holes with L ¼ 500r0 and α ¼ 150r0. In the plot, every quantity is written in units of
r0. The two minima have equal depth in panel (c).
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L. The two local minima are allowed in the red region,
whereas only one local minimum is allowed in the blue
region. As L becomes smaller, the red region shrinks and
eventually disappears below a certain critical value L ¼ Lc,
which can be obtained by solving

V 0
effðr0cÞα0c;l0c;Lc

¼ V 00
effðr0cÞα0c;l0c;Lc

¼ Vð3Þ
eff ðr0cÞα0c;l0c;Lc

¼ Vð4Þ
eff ðr0cÞα0c;l0c;Lc

¼ 0; ð33Þ

where it should be noted that ðα0c;l0
c; r0cÞ are different from

ðαc;lc; rcÞ in Eq. (29). Note that α0c also gives the lower
bound of α for the allowance of two SCOs in each
dimension. The critical values Lc and α0c are listed in
Table IV.

VI. DISCUSSION

In this paper, we have studied stable bound orbits around
the static, spherically symmetric black holes in EGB
theories with and without a negative cosmological constant.
We have analytically shown that stable bound orbits exist
only for a sufficiently large GB coupling in 6 ≤ d ≤ 9,
which was numerically observed in Ref. [29]. Furthermore,
we have numerically derived the parameter region of ðα;lÞ
for a fixed AdS radius in which stable bound orbits exist
outside a black hole horizon. As is essentially different
from 6 ≤ d ≤ 8, the ISCO radius in d ¼ 9 seems to diverge
at the pure GB limit α → ∞, which is consistent with the
nonexistence of stable bound orbits in d ¼ 9 pure GB
theory.

As for the AdS-EGB black holes, the interplay between
the GB correction and AdS barrier can make two local
minima of the effective potential. This existence of more
than one stable bound orbit is expected to admit a variety of
rich dynamics. In particular, in the context of AdS=CFT
correspondence, this will also lead to some interesting
physics. In contrast, the dS-EGB black holes, which we
have not dealt with in this paper, will qualitatively have the
same properties as the vacuum EGB black holes since the
positive cosmological constant cannot make a further
potential well.
Recently, using a so-called largeD approach for the EGB

theories [31], we found the first analytic solutions of
equally rotating EGB black holes in odd dimensions. It
may be physically interesting to investigate stable bound
orbits around such rotating black holes since a particle
rotating in the same direction as a black hole rotation
behaves entirely differently from one rotating in the
opposite direction. Therefore, particle motion becomes
more complicated around a rotating black hole. This
analysis is the focus of our future work.
Our result also provides an interesting implication on the

formation of higher dimensional black holes that may occur
in a future collider such as the Future Circular Collider,
although it has not yet been confirmed at the Large Hadron
Collider. If a EGB black hole is formed and radiates
massive particles by Hawking radiation, these particles
can be stably trapped in the potential well outside the
horizon. This may significantly change the energy spec-
trum observed by a detector, compared with the
Schwarzschild-Tangherlini black holes.
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