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The information loss paradox is widely regarded as one of the biggest open problems in theoretical
physics. Several classical and quantum features must be present to enable its formulation. First, an event
horizon is needed to justify the objective status of tracing out degrees of freedom inside the black hole.
Second, evaporation must be completed (or nearly completed) in finite time according to a distant observer,
and thus the formation of the black hole should also occur in finite time. In spherical symmetry these
requirements constrain the possible metrics strongly enough to obtain a unique black hole formation
scenario and match their parameters with the semiclassical results. However, the two principal
generalizations of surface gravity, the quantity that determines the Hawking temperature, do not agree
with each other on the dynamic background. Neither can correspond to the emission of nearly-thermal
radiation. We infer from this that the information loss problem cannot be consistently posed in its standard
form.

DOI: 10.1103/PhysRevD.105.124032

I. INTRODUCTION

Information loss in black hole evolution is one of the
longest-running controversies in theoretical physics [1–11].
Its essence is captured by the following scenario: according
to distant observers, matter collapsing into a black hole
completely evaporates via Hawking radiation within a finite
time. If quantum correlations between the inside and
outside of the black hole horizon are not restored during
the evaporation, this evolution of low-entropy collapsing
matter into high-entropy radiation implies information loss.
This problem is referred to as a paradox because a
combination of information-preserving theories—quantum
field theory and general relativity (GR)—ostensibly leads
to a loss of information [12].
Its status as a paradox, the necessity and/or validity of

particular resolutions and their implications for a putative
theory of quantum gravity or the fundamental structure of
quantum theory are not the subject of our discussion here.
Instead, we focus on the consequences of its formulation
within the framework of semiclassical gravity. In common
with the paradoxes of quantum mechanics, the information
loss problem combines classical and quantum elements and
some counterfactual reasoning. In this paper, we consider

the physical and mathematical consequences of having the
necessary elements for its formulation realized.
We find that the conditions required for the formulation of

the paradox (in contrast to its resolution) cannot be realized
without significant modifications of the late-time black hole
radiation, which is considered to be one of the most
established results of quantum field theory in curved
spacetime. The key technical findings that we report are
the discordant properties of generalizations of surface
gravity. As a result, we conclude that, while gravitational
collapse and gravitationally-induced radiation contain sev-
eral important physical questions, including matter-gravity
correlations, observability of various horizons, and the
applicability of semiclassical physics, the standard formu-
lation of apparent loss of information cannot consistently be
made in the context of semiclassical gravity. Consequently,
if the paradox cannot be self-consistently formulated in the
best tested framework we currently have available, this
suggests that its various proposed resolutions should be
reappraised.
We first note that the setting for the formulation of the

information loss problem involves at least the following:
(1) Formation of a transient trapped region. Such a

region either completely disappears or turns into a
stable remnant; in either case, this takes place in
finite time as measured by a distant observer Bob.
This provides the scatteringlike setting to describe
the states (and their alleged information content)
“before” and “after”.
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(2) Formation of an event horizon (and not just any other
special surface). Its existence is necessary to provide
an objective, observer-independent separation of the
spacetime into accessible and inaccessible regions,
and it is onlywith respect to this boundary that tracing
out of the interior degrees of freedom is not just a
technical limitation (akin to our inability to recover
correlations between the smoke and information that
was contained in the proverbial burned encyclo-
pedia), but a fundamental physical restriction [2,13].

(3) Thermal or nearly-thermal character of the radiation.
It is responsible for the eventual disappearance of the
trapped region and for the high entropy of the
reduced exterior density operator.

Additional assumptions may or should be made to enable a
particular formulation of the paradox, but the triad of finite
lifetime, event horizon, and temperature are the ineluctable
components of the paradox formulation.
The logical framework of our result is as follows: the

existence of a transient trapped region implies its formation
at some finite time tS as measured by Bob (Sec. II).
Together with the minimal regularity assumption (finite-
ness of all curvature scalars that are obtained as polynomial
invariants of the Riemann tensor at the apparent horizon),
this constrains the possible spherically symmetric geom-
etries enough to prescribe a unique formation scenario
(Sec. III) that requires us to generalize the notion of surface
gravity. Figure 1 schematically represents the geometry that
underpins the paradox.
Dynamical black hole spacetimes do not possess a

timelike Killing field, and thus require different methods
to define the surface gravity. The literature contains several
possible definitions that are broadly classified according to
which of the (equivalent in the stationary case) properties of
surface gravity they are related. The results serve as analogs
of the Hawking temperature, which they approach in a
suitable limit. Under quite general conditions these classes
provide close values for their respective quantities.
However, we will show that these conditions are not
satisfied if the apparent horizon is formed at finite tS.
Consequently, these values differ significantly, and none of
them can approach the Hawking temperature 1=4Mwithout
violating the semiclassical luminosity relation L ∝ M−2 as
we shall demonstrate (Sec. V).
Our article is organized as follows: in the next section we

review the assumptions of semiclassical black hole physics.
We restrict our discussion to spherical symmetry. Then, we
translate the necessary requirements for the formulation of
the information loss problem into conditions on self-
consistent solutions of the Einstein equations. In
Sec. III, we summarize the properties of these solutions,
emphasizing the near-horizon geometry and the unique
scenario of black hole formation. In Sec. IV, we identify the
leading terms in the self-consistent metric using a general
evaporation law. Section V outlines the consequences of

this identification; we demonstrate that the two natural
candidates for the Hawking temperature, when evaluated
for the configurations of Sec. III, disagree with each other
and cannot be reconciled with the standard semiclassical
result without contradicting the results of Sec. IV.
We use the ð−þþþÞ signature of the metric and work

in units where ℏ ¼ c ¼ G ¼ kB ¼ 1. Derivatives of a
function of a single variable are marked with a prime:
r0gðtÞ≡ drg=dt, r0þðvÞ≡ drþ=dv, etc. Derivatives with

FIG. 1. Schematic depiction of collapse into and complete
evaporation of a black hole as outlined in Ref. [1]. Spacetime
regions corresponding to PBH and MBH solutions are indicated
by arrows. Different proposals for the spacetime structure after
the singular corner point that corresponds to complete evapora-
tion appear in various resolutions of the information loss paradox
(see, e.g., Refs. [3–5,8,11]). Finite formation time tS of the
apparent horizon according to a distant observer is a necessary
condition for the formulation of the paradox. Part of the equal
time surface ΣtS is shown as a dashed purple line. The outer
apparent horizon rgðtÞ and the inner apparent horizon form the
boundary of a PBH and are shown in blue. The apparent horizon
rgðtÞ is a timelike hypersurface during its entire existence [14].
Bob’s trajectory is indicated by the green curve. The collapsing
matter and its surface are shown as in conventional depictions of
the collapse. However, the matter in the vicinity of the outer
apparent horizon ðt; rgðtÞÞ violates the NEC for t ≥ tS. Moreover,
the energy density, pressure, and flux as seen by an infalling
observer Alice vary continuously across it, and the equation of
state dramatically differs from that of normal matter that may
have been used to model the initial EMT of the collapse (see
Sec. III and Ref. [15] for details).
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respect to the proper time σ are denoted by the dot,
_r ¼ dr=dσ.

II. PREREQUISITES FOR THE PARADOX

We work in semiclassical gravity. That means we use
classical notions (horizons, trajectories, etc.) and describe
dynamics via the Einstein equations Gμν ¼ 8πTμν, where
the standard Einstein tensor on the left-hand side is equated
to the expectation value of the renormalized energy-
momentum tensor (EMT), Tμν ¼ hT̂μνiω [16–18]. The
quantum state ω represents both the collapsing matter
and the created excitations of the quantum fields.
A general spherically symmetric metric in Schwarzschild

coordinates is given by

ds2 ¼ −e2hðt;rÞfðt; rÞdt2 þ fðt; rÞ−1dr2 þ r2dΩ; ð1Þ

where r is the areal radius [19,20]. The function fðt; rÞ ¼
1 − Cðt; rÞ=r is coordinate independent. The Misner-Sharp
(MS) mass [21–23] Cðt; rÞ=2 is invariantly defined via

1 − C=r ≔ ∂μr∂μr: ð2Þ

The same geometry can be described using the advanced
null coordinate v as

ds2 ¼ −e2hþ
�
1 −

Cþ
r

�
dv2 þ 2ehþdvdrþ r2dΩ: ð3Þ

Invariance of the MS mass implies Cþðv; rÞ ¼
Cðtðv; rÞ; rÞ, while the functions hþðv; rÞ and hðt; rÞ are
the integrating factors in various coordinate transforma-
tions, such as

dt ¼ e−hðehþdv − f−1drÞ: ð4Þ

The study of null geodesics and their congruences is one of
the principal tools of black hole physics. Assuming
spherical symmetry, radial null geodesics are determined
in Schwarzschild coordinates as the solutions of

dr
dt

¼ �ehf; ð5Þ

where for f > 0 the upper sign corresponds to an outgoing
geodesic. In ðv; rÞ coordinates the ingoing geodesics
correspond to v ¼ const, and the outgoing geodesics
satisfy

dr
dv

¼ ehþf: ð6Þ

We assume that the spacetime is asymptotically flat and t is
the physical time of a distant observer (Bob) to simplify the
exposition, though we emphasize that it is not necessary to

assume any particular structure at infinity to derive the
results we present in the next section.
A future event horizon [19,20,22,24] is a causal boun-

dary separating the domain of outer communication (the
region from which it is possible to send signals to any
future asymptotic observer) from the rest of spacetime
(regions where this is not possible). However, to determine
its existence/presence requires knowledge of the entire
history of spacetime (and therefore also infinitely far into
its future) [13,22,24,25]. In what follows we refer to the
causally disconnected spacetime domain as a mathematical
black hole (MBH) [20,26].
A much more practical and useful definition captures the

idea of a black hole as part of space from which nothing
can escape at a given moment in time. A trapped region
is a domain where both ingoing and outgoing future-
directed null geodesics emanating from a spacelike two-
dimensional surface with spherical topology have negative
expansion. The apparent horizon [19,22,23] is its evolving
outer boundary. In general this notion depends on the
spacetime foliation, but the apparent horizon is unambig-
uously defined in all foliations that respect spherical
symmetry [22,23].
In ðv; rÞ coordinates the expansions of ingoing and

outgoing radial geodesic congruences with the tangents

nμ ¼ ð0;−e−hþ ; 0; 0Þ; lμ ¼
�
1;
1

2
ehþf; 0; 0

�
; ð7Þ

that satisfy n · l ¼ −1 are

θn ¼ −
2e−hþ

r
; θl ¼

ehþf
r

; ð8Þ

respectively. The apparent horizon is located at the
Schwarzschild radius rgðtÞ≡ rþðvÞ, namely the largest
root of fðt; rÞ ¼ 0. Following the nomenclature of
Ref. [26], we refer to its interior as a physical black hole
(PBH).
Using the retarded null coordinate u leads to the metric in

the form

ds2 ¼ −e2h−
�
1 −

C−

r

�
du2 − 2eh−dudrþ r2dΩ; ð9Þ

which is particularly suitable for describing the spacetime
of a white hole (then the Schwarzschild radius r−ðuÞ is the
boundary of the antitrapped region where both expansions
are positive).
In classical GR the event and the apparent horizon are

regular surfaces: the curvature scalars, such as the Ricci
curvature R and the Kretschmann scalar RμνρσRμνρσ are
finite. In studies of field theories on curved backgrounds
this assumption is necessary to maintain predictability of
the theory [16,27].

SURFACE GRAVITY AND THE INFORMATION LOSS PROBLEM PHYS. REV. D 105, 124032 (2022)

124032-3



The event horizon is an indispensable concept in for-
mulating the paradox [2,12,13]. Tracing out the inacces-
sible degrees of freedom naturally leads to entropy
production in an overall unitary evolution. To differ from
nonparadoxical entropy increases common in thermo-
dynamic subsystems, this separation of spacetime regions
should not represent a practical limitation on a distant Bob,
but rather an absolute physical restriction. This is provided
by an event horizon that bounds the absolutely inaccessible
spacetime region according to Bob, which is distinct from
the transient (albeit extremely long-lived) trapped region of
regular black holes [28–34].
According to Bob, the formation of black holes from

classical collapsing matter takes an infinite amount of time.
After at most a few dozen multiples of light-crossing time
rg, he cannot receive signals from an infalling observer
Alice (an observer comoving with the matter who is
initially at or near its edge); the redshift requires that the
energy of any such detected signal is greater than the mass
of the black hole.
Consequently, in classical GR the event horizon and

Alice’s experiences, like crossing the Schwarzschild radius,
are counterfactual [12]. Her clock readings should indicate
various processes occurring at finite proper times τi. As
Alice cannot communicate her clock readings to Bob, these
are experimentally unverifiable consequences of the for-
malism of GR. Nevertheless, a finite proper crossing time
promotes the event horizon, and by extension the quantum
states associated with the black hole horizon and its
interior, from convenient mathematical concepts to physi-
cal entities in the theory.
The paradox that is based on properties of Hawking-like

radiation cannot be constructed in such a case. Even if the
existence of collapse-induced radiation does not require a
horizon for its production [17,35–37] (thereby resolving an
obvious causal difficulty of the collapse and evaporation
process taking a finite time according to Bob), formation of
the event horizon should also occur at some finite time t�
that precedes the evaporation time te.
If the null energy condition (NEC) [38,39] is satisfied,

i.e., for any null vector kμ, kμkμ ¼ 0, contraction with the
EMT is non-negative, Tμνkμkν ≥ 0, then the apparent
horizon is located inside of the event horizon [19,24].
This condition is violated by Hawking radiation. A detailed
semiclassical analysis subsequently indicates that part of
the trapped region is outside of the MBH [22,24,40].
For an evaporating black hole (r0g ≔ drg=dt < 0) a

weaker statement—existence of the event horizon in finite
t implies formation of the apparent horizon at some finite
time tS—ensues on the following logical grounds: consider
an outward-pointing radial null geodesic that is emitted
from a location ðr; tÞ that is outside of the apparent horizon
rgðtÞ. Equation (5) indicates that r0ðtÞ≕ vðtÞ > 0, and as
r0gðtÞ < 0 this is true along the entire trajectory. For this
geodesic to avoid reaching infinity as t → ∞, at least either

limt→∞ limr→r� h ¼ −∞ or limt→∞ limr→r� f ¼ 0 should
hold for some r� < ∞. The former is impossible as the
Schwarzschild coordinates are regular outside of rg, while
the latter contradicts the definition of the MS mass and its
relationship with the apparent horizon as rgðtÞ is the largest
root of f ¼ 0. Hence such a geodesic does reach future
null infinity, and a geodesic that is emitted outside of the
receding apparent horizon is not contained within a MBH.
This discussion leads to two conditions that are neces-

sary for the formulation of the information loss problem.
First, an apparent horizon must be a regular surface to
ensure predictability, and second, it must form at some
finite time according to Bob (otherwise formation of the
event horizon prior to evaporation of the black hole is
impossible, thus preventing formulation of the alleged
paradox). In spherical symmetry this is enough to describe
the black hole formation scenario and geometry near the
apparent horizon [15].

III. NEAR-HORIZON GEOMETRY

Both the regularity conditions and the Einstein equations
can be conveniently expressed in terms of combined
expressions

τt ≔ e−2hTtt; τr ≔ Trr; τt
r ≔ e−hT r

t ; ð10Þ

that are used instead of the EMT components [14].
In particular, the three Einstein equations for Gtt, Gr

t ,
and Grr are

∂rC ¼ 8πr2τt=f; ð11Þ

∂tC ¼ 8πr2ehτ rt ; ð12Þ

∂rh ¼ 4πrðτt þ τrÞ=f2; ð13Þ

respectively.
The requirement of regularity of the apparent horizon

and existence of real solutions describing geometry in its
vicinity constrain the generic limiting form of the EMTand,
eventually, the metric in its vicinity. Regularity is expressed
as the demand that curvature scalars obtained from poly-
nomials of components of the Riemann tensor are finite.
However, in practice it is sufficient to require that the
contractions TμνTμν and Tμ

μ are finite at the apparent
horizon to satisfy the regularity requirement [41].
Leading terms in the reduced EMT components can in
principle scale as τa ∝ fka , for some powers ka with τa
being one of τt, τr, and τ rt .
However, a careful analysis shows that only two sol-

utions are possible; those that satisfy ka ≡ k ¼ 0 and a
subset of the solutions with ka ≡ k ¼ 1 [15,41,42]. In the
former case the metric functions that solve Eqs. (11) and
(13) are
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C¼ rg − 4
ffiffiffi
π

p
r3=2g ϒ

ffiffiffi
x

p þOðxÞ; h¼ −
1

2
ln
x
ξ
þOð ffiffiffi

x
p Þ;

ð14Þ

where x ≔ r − rgðtÞ, and ξðtÞ is determined by the choice
of time variable. The leading contributions to the reduced
EMT components

τt ≈ τr ¼ −ϒ2 þOð ffiffiffi
x

p Þ; ð15Þ

τ rt ¼ �ϒ2 þOð ffiffiffi
x

p Þ; ð16Þ

are parametrized by ϒðtÞ. The minus sign in Eq. (15) is
necessary to ensure that the solutions of the Einstein
equations are real valued [14,41].
The near-horizon geometry is most conveniently

expressed [14] in ðv; rÞ coordinates for τ rt ≈ −ϒ2, i.e.,
r0g < 0, and in ðu; rÞ coordinates for τ rt ≈þϒ2, i.e., r0g > 0.
In both cases the metric functions are continuous across the
horizons, and the expansions of ingoing and outgoing
congruences can be readily evaluated. We see that the case
r0g < 0 corresponds to an evaporating PBH, and r0g > 0 to
an expanding white hole (contrary to erroneous interpre-
tations of Refs. [41,42] that misidentified the latter as an
accreting PBH). As our interest lies in the final stages of the
collapse, we consider only evaporating PBH solutions in
what follows.
Equation (12) must then hold identically, which yields

the relationship

r0g=
ffiffiffi
ξ

p
¼ −4 ffiffiffiffiffiffiffi

πrg
p

ϒ; ð17Þ

where the prime denotes a derivative with respect to t.
While the derivation uses the finiteness of Tμ

μ ¼ −R=8π
and TμνTμν ¼ RμνRμν=64π2, all quadratic curvature invar-
iants [43] are finite [41,42]. This is also true for k ¼ 1
solutions that are described below.
For both black and white hole solutions the negative sign

of τt and τr leads to the violation of the NEC [14,15] in the
vicinity of the apparent horizon. This can be deduced by
studying a future-directed outward (inward) pointing radial
null vector kμ [14].
Dynamic solutions with k ¼ 1 lead to finite energy

density ρðt; rgÞ≡ E and pressure pðt; rgÞ≡ P. However,
only their maximal possible values are consistent [15],

E ¼ −P ¼ 1=ð8πr2gÞ; ð18Þ

and the corresponding metric functions are

C¼ r−c32x3=2þOðx2Þ; h¼−
3

2
ln
x
ξ
þOð ffiffiffi

x
p Þ; ð19Þ

where c32ðtÞ > 0, and the consistency condition is

r0g ¼ −c32ξ3=2=rg; ð20Þ

as we consider only evaporation.
Comparison of various expressions in ðt; rÞ and ðv; rÞ

coordinates helps to establish many useful results. Since we
use such comparisons quite extensively, we quote some
useful expressions below. Components of the EMT are
related by

θv ≔ e−2hþΘvv ¼ τt; ð21Þ

θvr ≔ e−hþΘvr ¼ ðτ r
t − τtÞ=f; ð22Þ

θr ≔ Θrr ¼ ðτr þ τt − 2τ rt Þ=f2; ð23Þ

where Θμν is used to denote EMT components in ðv; rÞ
coordinates. The relevant Einstein equations then take the
form

∂vCþ ¼ 8πehþr2ðθv − θvrfÞ; ð24Þ

∂rCþ ¼ −8πr2θvr; ð25Þ

∂rhþ ¼ 4πrθr: ð26Þ

An arbitrary spherically symmetric metric that is regular at
the apparent horizon satisfies

Cþðv; rÞ ¼ rþðvÞ þ w1ðvÞyþOðy2Þ; ð27Þ

hþðv; rÞ ¼ χ1ðvÞyþOðy2Þ; ð28Þ

where y ≔ r − rþðvÞ, w1 ≤ 1, while rþðvÞ ¼
rgðtðv; rþÞ; rgÞ. The limits Θþ

μν ≔ limr→rþΘμν yield

θþv ¼ ð1−w1Þ
r0þ

8πr2þ
; θþvr ¼ −

w1

8πr2þ
; θþr ¼ χ1

4πrþ
:

ð29Þ

Both k ¼ 0 and k ¼ 1 solutions are needed to describe the
formation of a black hole [15]. Assume that the first
marginally trapped surface appears at some vS at
r ¼ rþðvSÞ. For v ≤ vS, the MS mass Cðv; rÞ=2 in its
vicinity is described in ðv; rÞ coordinates by

Cþðv; rÞ ¼ σðvÞ þ r�ðvÞ þ
X∞
i≥1

wiðvÞðr − r�Þi; ð30Þ

where r�ðvÞ corresponds to the maximum of
ΔvðrÞ ≔ Cðv; rÞ − r. The deficit σðvÞ ≔ Δvðr�ðvÞÞ ≤ 0
by definition. At the advanced time vS the location of
the maximum corresponds to the first marginally trapped
surface, r�ðvSÞ ¼ rþðvSÞ, and σðvSÞ ¼ 0. For v > vS, the
deficit σ ≡ 0 and the MS mass is described by Eq. (27).
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For v ≤ vS, the (local) maximum of Δv satisfies
∂Δv=∂r ¼ 0, hence w1ðvÞ − 1≡ 0. From Eqs. (29)
and (21) it follows that the newly formed black hole is
described by a k ¼ 1 solution, since w1 ¼ 1 implies θþv ¼ 0
and thus ϒ ¼ 0. However, after its formation rþðvÞ is no
longer a local maximum of Cþðv; rÞ, w1 < 1, and thus at
later times the black hole is described by a k ¼ 0 solution.
In the vicinity of the apparent horizon the equation for

radial null geodesics becomes

dr
dt

����
r¼rg

¼ �ehfjr¼rg ¼ �4
ffiffiffiffiffiffiffiffiffi
ξπrg

q
ϒ ¼∓ r0g; ð31Þ

where the upper (lower) signature corresponds to outgoing
(ingoing) geodesics. This result indicates that massless
particles cross the apparent horizon in finite time according
to Bob. Massive particles likewise cross the apparent
horizon in finite time t [41,44], unless they are too slow.
Some additional relations between the two sets of

coordinates are useful: a point on the apparent horizon
has the coordinates ðv; rþðvÞÞ and ðt; rgðtÞÞ in the two
coordinate systems. Moving from rþðvÞ along the line of
constant v (i.e., along the ingoing radial null geodesic) by
δr leads to the point ðtþ δt; rg þ δrÞ. Using Eq. (20) we
obtain

δt ¼ −
e−h

f

����
r¼rg

δr ¼ δr
r0g

ð32Þ

for an evaporating black hole in both the k ¼ 0 and
k ¼ 1 solutions. This implies that tðv; rþ þ δyÞ ¼
tðrgÞ − δy=jr0gj, resulting in the relation

xðrþ þ y; vÞ ¼ rþ þ y − rgðtðv; rþ þ yÞÞ
¼ −r00gy2=ð2r0g2Þ þOðy3Þ; ð33Þ

between the coordinates xðr; tÞ and yðr; vÞ in the vicinity of
the apparent horizon. Then, using the invariance of the MS
mass and expanding Cðt; rÞ up to the first order in
r − rþðvÞ, we obtain

Cþðv;rÞ¼ rþðvÞþw1yþ…¼Cðtðv;rÞ;rÞ

¼ rgðtðv;rþÞÞþr0g

�
y
r0g

�
−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πr3gjr00g j

q ϒ
jr0gj

yþ…

¼ rþþ
�
1−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πr3gjr00g j

q ϒ
jr0gj

�
yþ…; ð34Þ

and find

w1 ¼ 1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πr3gjr00g j

q ϒ
jr0gj

: ð35Þ

IV. PARAMETER IDENTIFICATION

The values of ϒ and ξ can be obtained from first
principles only if one performs a complete analysis of
the collapse of some matter distribution and the quantum
excitations it generates. Such an analysis would provide a
constructive proof of the existence of PBHs. In absence of
such results we first obtain some general relations and then
match them with the semiclassical results.
The apparent horizon of a PBH that was formed at a

finite time of Bob is timelike [14]. Hence it is possible to
introduce the induced metric

ds2jAH ¼ −dσ2 þ rAHdΩ; ð36Þ

where in the case of evaporation the proper time is most
conveniently expressed in ðv; rÞ coordinates as
dσ ¼ ffiffiffiffiffiffiffiffiffiffi

2jr0þj
p

dv. To remove the ambiguity we express
coordinates of the apparent horizon as functions of proper
time, such as rAHðσÞ, tAHðσÞ, and vAHðσÞ. The invariance
of the apparent horizon in spherically symmetric foliations
means rAHðσÞ≡ rgðtAHðσÞÞ, etc., and its rate of change is
given by

drAH
dσ

¼ r0gðtAHðσÞÞ_tAH ¼ r0þðvAHðσÞÞ_vAH: ð37Þ

If one assumes that for an evaporating PBH rg is a
monotonously decreasing function of time, one can
write

_rAH¼ΓAHðrAHÞ; r0g¼ΓgðrgÞ; r0þ ¼ΓþðrþÞ; ð38Þ

where the relations between the functions ΓAH, Γg, and Γþ
follow from Eq. (37). Without assuming any particular
relation between r0g and r0þ, by using the first expression of
Eqs. (29) and (21) with τt ¼ −ϒ2 þOð ffiffiffi

x
p Þ, we obtain

ϒ ¼ 1

2

ffiffiffiffiffiffiffiffiffi
jr00g j
2πrg

s
jr0þj
jr0gj

; ð39Þ

and from Eq. (17),

ξ ¼ r0g4

2jr00g jr0þ2
: ð40Þ

The semicalssical analysis is based on perturbative back-
reaction calculations that represent the metric as modified
by the Hawking radiation that is produced by a slowly-
varying sequence of Schwarzschild metrics. It results in
[24,40,45] ΓgðrÞ ¼ ΓþðrÞ,

drg
dt

¼ −
α

r2g
;

drþ
dv

¼ −
α

r2þ
; ð41Þ
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where α denotes the emission rate coefficient. Using this
result we obtain

ϒ ¼ 1

2

ffiffiffiffiffiffiffiffiffi
jr00g j
2πrg

s
¼ α

2
ffiffiffi
π

p
r3g
; ð42Þ

and

ξ ¼ r0g2

2jr00g j
¼ 1

4
rg; ð43Þ

where the last equalities on the rhs follow from Eq. (41).
We note that this result agrees on the order of magnitude
with the guess of Ref. [14], but as we will see below the
assumptions of Ref. [46] are not fulfilled and its estimate is
in general incorrect.

V. TEMPERATURE AND SURFACE GRAVITY

The surface gravity κ plays an important role in GR,
particularly in black hole thermodynamics and more gen-
erally in semiclassical gravity [19,22,24]. For an observer
at infinity the Hawking radiation that is produced on the
background of a stationary black hole is thermal with its
temperature given by κ=2π [24,47]. However, surface
gravity is unambiguously defined only in stationary space-
times, where there are several equivalent definitions. These
definitions are related to the inaffinity of null geodesics on
the horizon, and to the peeling off properties of null
geodesics near the horizon [22,48,49].
Stationary asymptotically flat spacetimes admit a Killing

vector field ξμ that is timelike at infinity [19,20,22,43]. A
Killing horizon is a hypersurface on which the normffiffiffiffiffiffiffiffiffi
ξμξμ

p ¼ 0. While logically this concept is independent
of the notion of an event horizon, the two are related: for a
black hole that is a solution of the Einstein equations in a
stationary asymptotically flat spacetime the event horizon
coincides with the Killing horizon [2,24].
A Killing orbit is the integral curve of the Killing vector

field. The Killing property ξðμ;νÞ ¼ 0 results in ξμξμ ¼ const
on each orbit. Coincidence of the two horizons allows one
to introduce the surface gravity κ as the inaffinity of null
Killing geodesics on the event horizon,

ξμ;νξν ≔ κξμ: ð44Þ
Assuming sufficient regularity of the metric, expansion of
the null geodesics near the apparent horizon r > rg then
establishes the concept of peeling affine gravity [48,49],

dr
dt

¼ �2κpeelðtÞxþOðx2Þ: ð45Þ

The two definitions coincide in stationary spacetimes. For a
Schwarzschild metric with mass M the surface gravity
is κ ¼ 1=ð4MÞ ¼ 1=ð2rgÞ.

Intuitively, the physical meaning of κ can be interpreted
as the force that would be required by an observer at
infinity to hold a particle (of unit mass) stationary
at the event horizon. Since the acceleration of a static
observer will play a role in what follows, we reproduce here
the derivation in ðt; rÞ coordinates. Consider an
observer Eve at some fixed areal radius r. Her four-velocity
is uμE ¼ δμ0=

ffiffiffiffiffiffiffiffiffiffi−g00
p

, and her four-acceleration aμE ¼
ð0;Γr

tt=g00; 0; 0Þ in the Schwarzschild spacetime satisfies

g ≔
ffiffiffiffiffiffiffiffiffiffiffiffi
aμEaEμ

q
¼ rg

2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rg=r

p : ð46Þ

Correcting by the redshift factor z ¼ − ffiffiffiffiffiffi
g00

p
gives the

surface gravity on approach to the horizon,

κ ¼ lim
r→rg

zg ¼ 1=ð2rgÞ: ð47Þ

Absence of the asymptotically timelike Killing vector in
general dynamic spacetimes not only makes various ana-
lytic tasks computationally harder, but also requires gen-
eralization and reappraisal of the notions that are used in
black hole physics. Adapting one of the equivalent versions
of surface gravity in stationary spacetimes is necessary. For
sufficiently slowly evolving horizons with properties suf-
ficiently close to their classical counterparts these different
generalizations of surface gravity are practically indistin-
guishable [48,49]. This is important, as the role of the
Hawking temperature is captured in various derivations
either by the peeling [50] or the Kodama [51] surface
gravity. Indeed, gravitational collapse triggers radiation
[35–37] that for macroscopic black holes at sufficiently late
times approaches the standard Hawking radiation.
Nevertheless, this similarity fails for the self-consistent

solutions that were described in Sec. III. Consider first the
peeling surface gravity κpeel [15]. For differentiable C and h
the result is [48,49]

κpeel ¼
ehðt;rgÞð1 − C0ðt; rgÞÞ

2rg
: ð48Þ

However, such an expansion is impossible for both k ¼ 0
and k ¼ 1 solutions. The metric functions of Eqs. (14) and
(19) lead to a divergent peeling gravity. This happens
because Eq. (31) ensures that there is a nonzero constant
term in the expansion of the geodesics, and instead of
Eq. (45) we have

dr
dt

¼ �r0g þ a12ðtÞ
ffiffiffi
x

p þOðxÞ; ð49Þ

where a12 depends on the higher-order terms of the EMT.
Similarly, the redshifted acceleration of a static observer
diverges as
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zg ¼ jr0gj
4x

þOðx−1=2Þ: ð50Þ

However, the peeling surface gravity was originally intro-
duced using regular Painlevé-Gullstrand coordinates ðt̄; rÞ
[52] (whose properties are briefly summarized in the
Appendix). In fact, the two possible definitions are [52]

κPG1
¼ 1

2rg
ð1 − ∂rC̄Þ

����
r¼rg

; ð51Þ

where C̄ ¼ Cðtðt̄; rÞ; rÞ is the MS mass in Painlevé-
Gullstrand coordinates, and [53]

κPG2
¼ 1

2rg
ð1 − ∂rC̄þ ∂t̄C̄Þ

����
r¼rg

: ð52Þ

Using the invariance of the MS mass, we have

∂C̄
∂r

¼ ∂C
∂t

∂t
∂r

����
t̄
þ ∂C

∂r
: ð53Þ

Recalling that for an evaporating PBH

lim
r→rg

fðt; rÞehðt;rÞ ¼ −r0g; ð54Þ

we have [selecting the positive sign in Eq. (A4)]

∂t
∂r

����
t̄
¼ −

∂t̄=∂r
∂t̄=∂t

→
1

r0g
: ð55Þ

For k ¼ 0 solutions, we then have for r → rg

∂Cðt; rÞ
∂t

¼ r0g

0
B@1þ

2
ffiffiffiffiffiffiffi
πr3g

q
ϒffiffiffiffiffiffiffiffiffiffiffiffir − rg

p

1
CAþOð ffiffiffi

x
p Þ; ð56Þ

∂Cðt; rÞ
∂r

¼ −
2

ffiffiffiffiffiffiffi
πr3g

q
ϒffiffiffiffiffiffiffiffiffiffiffiffir − rg

p þOð ffiffiffi
x

p Þ: ð57Þ

Substituting everything into the definition Eq. (51)
results in

κPG1
¼ 0: ð58Þ

Furthermore, we also obtain

κPG2
¼ ∂t̄C̄

2rg

����
r¼rg

: ð59Þ

Since

∂t̄C̄ ¼ ∂tC∂t̄tjr; ð60Þ

using Eq. (56) we find

∂t̄C̄ ≈
r0g
∂tt̄

�
1þ

2
ffiffiffiffiffiffiffi
πr3g

q
ϒffiffiffiffiffiffiffiffiffiffiffiffir − rg

p
�
; ð61Þ

that in the limit r → rg results in three distinct possibilities
that depend on the behavior of the function t̄ðt; rÞ. If as
r → rg the Painlevé-Gullstrand time t̄ diverges faster than
1= ffiffiffiffiffiffiffiffiffiffiffiffir − rg
p , then κPG2

¼ 0 ¼ κPG1
. If t̄ diverges slower than

1= ffiffiffiffiffiffiffiffiffiffiffiffir − rg
p , then κPG2

is divergent. Finally,

t̄ ¼ τðtÞ ffiffiffiffiffiffiffiffiffiffiffiffi
r − rg

p þOðr − rgÞ; ð62Þ

where τðtÞ is some function, leads to a finite value of κPG2
.

In fact, this form is consistent with the limiting form of
Eq. (A4) (see Appendix for details).
The Kodama vector field can be introduced in any

spherically symmetric spacetime [54,55]. It has many
useful properties of the Killing field to which, modulo
possible rescaling, it reduces in the static case
[22,48,49,55]. Similar to the Killing vector, it is most
conveniently expressed in ðv; rÞ coordinates,

Kμ ¼ ðe−hþ ; 0; 0; 0Þ: ð63Þ

It is covariantly conserved, and generates the conserved
current

∇μKμ ¼ 0; ð64Þ

∇μJμ ¼ 0; Jμ ≔ GμνKν; ð65Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor, thereby

giving a natural geometric meaning to the Schwarzschild
coordinate time t. The MS mass is its Noether charge.
Since Kðμ;νÞ ≠ 0, the generalized Hayward-Kodama sur-

face gravity is defined via [56]

1

2
Kμð∇μKν −∇νKμÞ ≔ κKKν; ð66Þ

evaluated on the apparent horizon. Hence,

κK ¼ 1

2

�
Cþðv; rÞ

r2
−
∂rCþðv; rÞ

r

�����
r¼rþ

¼ ð1 − w1Þ
2rþ

; ð67Þ

where we used Eq. (27) to obtain the final result. Thus at the
formation of a black hole (i.e., of the first trapped surface)
this version of surface gravity is zero. At the subsequent
evolution stages that correspond to a k ¼ 0 solution, κK is
nonzero. However, it approaches the static value κ ¼
1=ð4MÞ only if the metric is close to the pure Vaidya
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metric with w1 ≡ 0. This in turn leads to another contra-
diction with the semiclassical results.
Formation of a PBH as a k ¼ 1 solution requires

w1ðtSÞ ¼ 1. At the subsequent stages w1 < 1. This tran-
sition is continuous, as ϒðtSÞ≡ 0 in k ¼ 1 solutions and
increases thereafter, and thus

w1 ¼ 1 − rg
r00g
r0g

¼ 1 −
2α

r2þ
: ð68Þ

However, for the standard evaporation law w1 ≈ 0 only
when rg ∼

ffiffiffi
α

p
, i.e., in the sub-Planckian regime, and

semiclassical physics indubitably breaks down.
If we try to identify the evaporation law ΓðrgÞ by

requiring w1 ≡ 0, then we obtain the equation

Γ0ðrgÞrg ¼ 1: ð69Þ

Maintaining a negative r0g < 0 corresponding to the process
of evaporation at times t > tS is only possible if

r0g ¼ ΓðrgÞ ¼ ln
rgðtÞ
B

; ð70Þ

where B ¼ rgðtSÞ þ β > rgðtSÞ. The solution rgðtÞ can
be expressed in terms of the integral logarithm
liðzÞ ¼ R

z
0 dt= lnt. Using its asymptotic form for β ≪ 1

we obtain the evaporation time

te ≈ rgðtSÞ ln
rgðtSÞ
β

; ð71Þ

which is radically different from the standard semiclassical
results.

VI. DISCUSSION

Our considerations have shown that a proper formulation
of the information loss paradox is quite subtle, and that its
standard exposition at the very least warrants considerable
revision. Formation of the apparent horizon at some finite
time tS that distant Bob measures is a necessary condition
to set up the information loss problem. A consistent
solution of the field equations admits evaporation whilst
yielding regularity at the horizon, but necessarily entails
violation of the NEC.
The necessity of the NEC violation is an obstacle, as it

requires a mechanism to convert the original collapsing
matter into exotic matter that must be present in the vicinity
of the forming apparent horizon. Conventional mechanisms
for mass loss, such as the emission of gravitational waves,
should work in tandem with production of the negative-
energy density matter. Collapse-induced Hawking-like
radiation is thus not only a necessary quantum-mechanical
ingredient of the paradox, but is necessary for producing its
classical setting.

This brings us to a more serious difficulty; two “close”
generalizations of surface gravity [namely the peeling
surface gravity (48) and the Kodama-Hayward surface
gravity (67)] that underpin different derivations of
Hawking radiation on the background of an evolving
spacetime are irreconcilable. In fact, three versions of
the same peeling surface gravity [Eqs. (48), (51), and
(52)] are irreconcilable as well. Moreover, it is not clear if
the required structure of the EMT can be matched [15].
In addition, if the Hawking temperature is indeed

proportional to the peeling surface gravity, then black
holes explode (or freeze) on their formation. In this case
the semiclassical picture is not valid, and it is impossible to
formulate the information loss problem. Alternatively, if the
Hawking temperature is proportional to the Kodama sur-
face gravity, then it vanishes at the formation of a black
hole; although it increases during evaporation, it can never
attain the Hawking result. If the Kodama surface gravity
reaches the classical value κK ¼ 1=ð2rgÞ, then it cannot be
the black hole temperature. Moreover, it is not clear how,
given indications to the contrary [57], a process with close
to zero flux can ensure the necessary dominance of
quantum effects over normal matter in the vicinity of the
outer apparent horizon.
Our analysis indicates that the circumstances surround-

ing the formation of PBHs do not provide a basis to
formulate the information loss problem within the semi-
classical framework. Therefore, in order to resolve the
“paradox”, new physics is required to provide a mechanism
to explain why information is lost to begin with, and
describe how this process may occur in a self-consistent
way. It should be noted that, even if the issues that have
been raised so far are resolved, scrutiny of the precise
technical aspects of commonly invoked semiclassical
notions indicate that “Page time unitarity” may appear to
be violated even if the underlying physics is unitary [10]. A
recent study [11] that is complementary to the argumenta-
tion presented here also indicates that the standard form of
the paradox can be consistently rendered only if new
physics begins to play a role before reaching the
Planck scale.
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APPENDIX: PAINLEVÉ-GULLSTRAND
COORDINATES

One possible set of coordinates that are regular across the
horizon [52,53,58] is obtained by taking the proper time of
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an infalling observer (with zero initial velocity at infinity)
as the time coordinate. The Painlevé-Gullstrand time t̄ for
the Schwarzschild metric is given by [58]

t̄ ¼ tþ 2
ffiffiffiffiffiffiffi
rgr

p þ rg ln

����
ffiffiffi
r

p
− ffiffiffiffirgpffiffiffi

r
p þ ffiffiffiffirgp

����; ðA1Þ

and the metric takes the form

ds2 ¼ −fdt̄2 þ 2
ffiffiffiffiffiffiffiffiffi
rg=r

q
dt̄drþ dr2 þ r2dΩ: ðA2Þ

For a general metric of Eq. (1), writing [52]

dt̄ ¼ ∂tt̄dtþ ∂rt̄dr; ðA3Þ

and requiring that in these coordinates, similar to Eq. (A2),
the metric component g0rr ¼ 1, leads to the first-order linear
homogenous partial differential equation for the Painlevé-
Gullstrand time

∂rt̄ ¼ �
ffiffiffiffi
C
r

r
e−h

f
∂tt̄: ðA4Þ

Subject to appropriate boundary conditions this equation
has a unique solution. The metric in ðt̄; rÞ coordinates is
then

ds2 ¼ −
e2h

ð∂tt̄Þ2
dt̄2 � 2

eh

∂tt̄

ffiffiffiffi
C
r

r
dt̄drþ dr2 þ r2dΩ; ðA5Þ

where the metric functions are Cðtðt̄; rÞ; rÞ≕ C̄ðt̄; rÞ and
hðtðt̄; rÞ; rÞ≕ h̄ðt̄; rÞ. To match the Painlevé-Gullstrand

coordinates for the Schwarzschild spacetime we select
the upper sign in the above expressions.
We now identify the scaling of ∂tt̄ on the apparent

horizon by considering the changes in tAHðσÞ and t̄AHðσÞ,
_̄tAH
_tAH

¼ dt̄
dt

����
AH

≡ dt̄ðt; rgðtÞÞ
dt

: ðA6Þ

As r → rgffiffiffiffi
C
r

r
e−h

f
¼ 1

jr0gj
þ ΔðtÞ ffiffiffiffiffiffiffiffiffiffiffiffi

r − rg
p þOðr − rgÞ; ðA7Þ

whereΔðtÞ depends on the higher-order terms in the metric.
Taking into account Eqs. (A3) and (A4), we have

dt̄
dt

����
AH

¼ lim
r→rg

∂t̄
∂t

�
1þ

ffiffiffiffi
C
r

r
e−h

f
drðtÞ
dt

�
ðA8Þ

¼ lim
r→rg

∂tt̄r0gΔ
ffiffiffiffiffiffiffiffiffiffiffiffi
r − rg

p
: ðA9Þ

As both t and t̄ are finite throughout the evolution of the
apparent horizon, we must conclude that ∂tt̄ diverges as

∂t̄
∂t

����
r→rg

∝
1ffiffiffiffiffiffiffiffiffiffiffiffir − rg

p : ðA10Þ

Then Eq. (61) implies that the surface gravity κPG2
is finite,

κPG2
¼ 2

ffiffiffiffiffiffiffi
πr3g

q
ϒΔ: ðA11Þ
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