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We consider the periapsis shifts in dark matter distribution with a dense core. We model the dark matter
distribution as an isotropic gas sphere, the Emden polytropic sphere of index 5 in general relativity. This
model has a parameter range where all the energy conditions are satisfied in the entire region. Within the
parameter range, the asymptotic analysis for stellar motion allows us to identify two competing effects on
the bounded motion: the general-relativistic effect and a local-density effect of matter. Furthermore, using
nearly circular bound orbits, we demonstrate that retrograde periapsis shifts occur near the center, where the
local-density effect dominates over the general-relativistic effect, whereas prograde periapsis shifts occur in
the far region, where the general-relativistic effect dominates over the local-density effect. This result
means that a natural explanation for the retrograde periapsis shifts is not the existence of exotic objects
(e.g., naked singularities or wormholes) but the local distribution of physically reasonable matter on the
stellar orbit. Furthermore, it also implies that the periapsis shift plays a crucial role in distinguishing black
hole alternatives, such as dark matter cores, from a pure black hole.
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I. INTRODUCTION

Sagittarius A� (Sgr A�) is a massive and compact radio
source located at the center of our Galaxy. This source is
surrounded by a cluster of stars in close orbits [1,2]. The
observations of individual stars (S stars) demonstrate that
each of the dynamics is well described by a test particle
approximation in the gravitational field of Sgr A� [3–7].
This suggests that S stars are ideal probes for studying the
nature of the central object as a gravitational source and its
surroundings.
One of the main concerns about Sgr A� is the true

identity—whether it is a black hole or an alternative such as
a naked singularity, a wormhole, and an exotic compact
object. Answering this question requires further investiga-
tions of the central region, not only the visible components
but invisible mass distribution. The observations of
S2/S0-2, the closest S star to the center, have reported
so far that upper limits on the total dark mass inside the
orbit (≲0.01 pc) are less than 1% of the Sgr A� [4,6].
In fact, it was pointed out that the effect of the dark

component around Sgr A� can be observed through the
periapsis shift phenomenon of S stars. In a vacuum spacetime
centered on a black hole, the prograde periapsis shifts of
stellar bound orbits occur due to the general-relativistic effect

(see, e.g., Ref. [8]). In contrast, post-Newtonian analysis
reveals that the effect of matter distribution decreases the
periapsis shift angle and even cancels out the prograde shift
due to the general-relativistic effect [9]. This result suggests
that even a dark component with sufficiently small mass
relative to the central object can still affect the dynamics of
the surrounding stars. For example, suppose that the dis-
tribution has a region of locally high energy density, through
which a star passes. Then, the Ricci curvature, which takes a
large value there, affects the stellar dynamics through the
metric. However, it remains unclear how matter distribution
contributes to the retrograde shift in the fully general-
relativistic regime.
Recently, it has been pointed out that the retrograde

periapsis shifts can occur in spacetimes centered on naked
singularities [10,11]. This suggests that we can use the
periapsis shift phenomenon in distinguishing between
black holes and their alternatives. However, the presence
of naked singularities often creates a physically unaccept-
able situation in which associated matter violates energy
conditions.
In view of these situations, it is useful to consider the

periapsis shift phenomenon in a black hole alternative
spacetime, which consists only of physically reasonable
dark matter with a dense core region. Therefore, the
purpose of this study is to model the distribution of dark
matter with a dense core as a solution to the Einstein
equations and to clarify the mechanism for determining the
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sign of the periapsis shift angles of stellar bound orbits in
that spacetime. Thus, this study focuses on a general-
relativistic generalization of the Newtonian Plummer
model, described by the Buchdahl spacetime [12]. It
may be useful for a qualitative understanding of the
competing effects of general relativity and local matter
density distribution because the solution is characterized by
two parameters and has a physically reasonable parameter
range in the sense of the energy conditions.
This paper is organized as follows. In Sec. II, we briefly

review the Buchdahl spacetime. In Sec. III, we formulate
the dynamics of a freely falling stellar object in this
spacetime. Furthermore, we discuss two competing effects
of the general-relativistic correction and the local matter
density distribution on the bounded motion. In Sec. IV, we
consider the nearly circular bound orbits of stars and clarify
the appearance of prograde and retrograde periapsis shifts.
Section V is devoted to a summary and discussion.
Throughout this paper, we use geometrized units in which
G ¼ 1 and c ¼ 1.

II. BUCHDAHL SPACETIME

We review the Buchdahl spacetime [12]. The metric is
given by

ds2¼−
ð1−fÞ2
ð1þfÞ2dt

2þð1þfÞ4ðdr2þr2dθ2þr2 sin2θdφ2Þ;

ð1Þ

fðrÞ ¼ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kr2

p ; ð2Þ

where a and k are constants. The physical interpretation of
these parameters becomes clear in Eqs. (12) and (14) below.
The spatial part is conformally isometric to the Euclidean
flat metric and is written by the standard spherical coor-
dinates ðr; θ;φÞ. This metric admits stationarity and
spherical symmetry. We assume that a > 0 and k > 0.
Then, the function f takes the value fð0Þ ¼ a=2 > 0 at the
center r ¼ 0 and decreases monotonically with r to zero,
where 0 ≤ r < ∞.
The Einstein equations lead to matter distribution being a

perfect fluid with a stress-energy tensor,

Tab ¼ ρuaub þ pðgab þ uaubÞ; ð3Þ

where gab denotes the metric tensor, ua denotes the tangent
field of static observers filling the spacetime, and

ρðrÞ ¼ 24kf5

πa4ð1þ fÞ5 ; ð4Þ

pðrÞ ¼ 8kf6

πa4ð1 − f2Þð1þ fÞ4 ð5Þ

are energy density and pressure, respectively. We also
introduce q as

q ¼ 3p
ρ

¼ f
1 − f

: ð6Þ

From Eqs. (4) and (5), we obtain the equation of state of the
fluid,

p
pc

¼ ðρ=ρcÞ6=5
1þ 2qc½1 − ðρ=ρcÞ1=5�

; ð7Þ

where ρc, pc, and qc are the values of ρ, p, and q evaluated
at the center r ¼ 0, respectively,

ρc ¼
24ak

πð2þ aÞ5 ; ð8Þ

pc ¼
8a2k

πð2 − aÞð2þ aÞ5 ; ð9Þ

qc ¼
a

2 − a
: ð10Þ

If qc ≪ 1 (i.e., a ≪ 1), the equation of state (7) reduces to
the polytropic one with the polytropic index 5, and the
gravitational potential, the energy density, and the pressure
of the Newtonian Plummer model are recovered.1

Therefore, this model is known as the general-relativistic
Plummer model.
Imposing energy conditions on the matter field further

restricts the parameter region of the solution. Several
energy conditions are written as follows: (i) weak energy
condition, ρ ≥ 0 and ρþ p ≥ 0; (ii) strong energy con-
dition, ρþ 3p ≥ 0 and ρþ p ≥ 0; (iii) null energy con-
dition, ρþ p ≥ 0; and (iv) dominant energy condition,
ρ ≥ jpj. For a ≤ 2, ρ and p are non-negative in the entire
region, thus satisfying the weak, strong, null energy
condition. In contrast, the dominant energy condition does
not hold at least near the center for 3=2 < a ≤ 2 but holds
in the entire region for a ≤ 3=2. Therefore, we assume
a ≤ 3=2, thus satisfying all the energy conditions in the
entire region.
We define the proper mass inside the radius r by

mðrÞ ¼
Z

r

0

ρðξÞ
ffiffiffi
h

p
d3x ¼ akr3

ð1þ kr2Þ3=2

þ 3a2

16
ffiffiffi
k

p
�
arctanð

ffiffiffi
k

p
rÞ −

ffiffiffi
k

p
rð1 − kr2Þ

ð1þ kr2Þ2
�
; ð11Þ

1Φ ¼ −2f ¼ − affiffiffiffiffiffiffiffiffi
1þkr2

p . ρ ¼ 3ka
4πð1þkr2Þ5=2, p ¼ a2k

8πð1þkr2Þ3 ; where

Φ corresponds to the Newtonian gravitational potential.
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where
ffiffiffi
h

p
d3x ¼ ξ2½1þ fðξÞ�6 sin θdξdθdφ is the three-

dimensional volume element on a static hypersurface.
Thus, the total proper mass is given by

M ¼ lim
r→∞

mðrÞ ¼ affiffiffi
k

p
�
1þ 3πa

32

�
: ð12Þ

We now introduce the areal radius r̃, which has a much
clearer physical interpretation than r, as

r̃ ¼ rð1þ fÞ2: ð13Þ

We define the core radius R as r̃ evaluated at the core scale
r ¼ 1=

ffiffiffi
k

p
,

R ¼ r̃jr¼1=
ffiffi
k

p ¼ 1ffiffiffi
k

p
�
1þ a

2
ffiffiffi
2

p
�

2

: ð14Þ

We call the region where r̃ ≤ R the core and call the ratio
M=R the compactness of the core. Since this ratio depends
monotonically on a and is reduced to a for a ≪ 1, we will
somewhat loosely refer to a itself as the compactness.
Figure 1 shows ρ=ρc and m=M as functions of the
normalized areal radius r̃=R. These figures imply that
the mass distribution of this model is localized near the
center, particularly inside the core radius R. Even if the
compactness is small (i.e., a ≪ 1), the quantities ρ andm at
the core radius still take the values

ρ

ρc

����
r¼1=

ffiffi
k

p ¼
�

2þ a

2
ffiffiffi
2

p þ a

�
5

≃
1

4
ffiffiffi
2

p ¼ 0.1767…; ð15Þ

m
M

����
r¼1=

ffiffi
k

p ≃
1

2
ffiffiffi
2

p ¼ 0.3535…; ð16Þ

respectively. As the system becomes more compact, that is,
as the compactness increases, these values increase
accordingly.

III. FORMULATION OF THE
STELLAR DYNAMICS

We consider stellar dynamics in the Buchdahl spacetime.
Assume that the local interactions of matter with the stellar
object is negligible. Hence, the matter distribution contrib-
utes to the dynamics only through the gravitational field so
that the motion is freely falling (i.e., geodesic motion). Let
pa denote the canonical momentum of a freely falling
test particle with unit mass. Then, the Hamiltonian H is
given by

H ¼ 1

2
gabpapb ¼

1

2ð1þ fÞ4

×
�
−
ð1þ fÞ6
ð1 − fÞ2 p

2
t þ p2

r þ
1

r2

�
p2
θ þ

p2
φ

sin2θ

��
; ð17Þ

where gab is the inverse metric. Since the metric (1) admits
a stationary Killing vector ∂=∂t and an axial Killing vector
∂=∂φ, a test particle has constants of motion associated with
these symmetries,

E ¼ −pað∂=∂tÞa ¼ −pt; ð18Þ

L ¼ pað∂=∂φÞa ¼ pφ; ð19Þ

which are interpreted as energy and angular momentum,
respectively. Without loss of generality, we may assume
that the particle motion is in any case confined on the
equatorial plane θ ¼ π=2 because of the spherical sym-
metry, and therefore pθ ¼ 0.
We focus on the constraint equation

gabpapb ¼ −1: ð20Þ

Using the Hamilton equation _r ¼ ∂H=∂pr ¼ pr=ð1þ fÞ4,
this condition is rewritten as

_r2

2
þ V ¼ 0; ð21Þ
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FIG. 1. Energy density distribution ρ and the proper mass function m. Left: each ρ normalized by the central value ρc is denoted as a
function of the areal radius r̃ normalized by the core radius R. Right: each massm normalized by the total proper massM is denoted as a
function of r̃=R.
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VðrÞ ¼ 1

2ð1þ fÞ4 þ
L2

2r2ð1þ fÞ8 −
E2

2ð1 − f2Þ2 ; ð22Þ

where the dot denotes differentiation with respect to the
affine parameter. Now, we derive the asymptotic form of
this equation and investigate the role of each order of the
effective potential. To compare the asymptotic form with
the conventional expression, we rewrite Eq. (21) in terms of
the areal radius r̃,

_̃r2

2
þ Ṽ ¼ 0; ð23Þ

Ṽ ¼ β2

2

�
−

E2

ð1 − f2Þ2 þ
1

ð1þ fÞ4
�
L2

r̃2
þ 1

��
; ð24Þ

where r ¼ rðr̃Þ and β is the coordinate transformation
factor

β ¼ dr̃
dr

¼ ð1þ fÞ
�
1þ a

2

1 − kr2

ð1þ kr2Þ3=2
�
: ð25Þ

Expanding Ṽ by a sufficiently small compactness a (i.e.,
a ≪ 1), we obtain an expression to linear order in a,

Ṽ ¼
�
1 −

2akr̃2

ð1þ kr̃2Þ3=2
��

L2

2r̃2
þ 1

2

�

−
�
1þ 2a

ð1þ kr̃2Þ3=2
�
E2

2
þOða2Þ: ð26Þ

Furthermore, up to linear order in a, the asymptotic
expansion of Ṽ yields

Ṽ ≃
1 − E2

2
−
M
r̃
þ L2

2r̃2
−
ML2

r̃3
þ
�
3

2
− E2

�
MR2

r̃3
; ð27Þ

where we have used the leading-order expressions M ¼
a=

ffiffiffi
k

p
and R ¼ 1=

ffiffiffi
k

p
of Eqs. (12) and (14), respectively.

The first term is a constant, giving the difference in energy
from unit rest mass. The following three terms have the
same form as the conventional effective potential of particle
motion around a point source of mass M in general
relativity (i.e., the Schwarzschild case). The last term—
not appearing in the conventional expression—depends on
the extended distribution of matter via the core radius R.
This term has the same power r̃−3 as the fourth general-
relativistic correction term but with the opposite sign at
least in the bounded motion (i.e., E ≤ 1). In the series of
circular orbits and nearly circular bound orbits, the angular
momentum decreases with decreasing orbital radius, and
hence the general-relativistic correction term dominates
over the last term at far region, while the last term
dominates over the general-relativistic correction term near

the center. This implies that the effect of the extended
matter distribution may compensate for the phenomena
associated with the familiar general-relativistic correction
term. One of the phenomena where the effects of extended
matter distributions would be observed is the periapsis
shift.

IV. PERIAPSIS SHIFTS IN THE
BUCHDAHL SPACETIME

We consider the periapsis shift phenomenon of a star in
the Buchdahl spacetime. The equation of radial motion
takes the form

̈r ¼ −V 0; ð28Þ

where the prime denotes differentiation with respect to r.
As seen from this equation together with Eq. (21), the
conditions for a star staying in a circular orbit, _r ¼ 0 and
̈r ¼ 0, are given by

V ¼ 0; ð29Þ

V 0 ¼ 0: ð30Þ

Solving these equations for E2 and L2, we obtain

E2ðrÞ ¼ ð1 − fÞ3ð1þ f þ 2rf0Þ
ð1þ fÞ2½2rf0 þ ð1 − fÞð1þ f þ 2rf0Þ� ; ð31Þ

L2ðrÞ ¼ −2r3f0ð1þ fÞ4
2rf0 þ ð1 − fÞð1þ f þ 2rf0Þ ; ð32Þ

where r denotes the orbital radius of a circular orbit. These
quantities must take non-negative values for circular orbits.
The circular orbits are stable if V 00 > 0, marginally (un)
stable if V 00 ¼ 0, and unstable if V 00 < 0, where the explicit
form of V 00 is given by

V 00 ¼ 3ð1þ f þ rf0Þ − 2r2f00

r4ð1þ fÞ9 L2ðrÞ

−
6f02ð3 − fÞ þ 2f00ð1 − f2Þ

ð1 − f2Þ4 E2ðrÞ: ð33Þ

Figure 2 shows the ranges of the circular orbit radii for
various values of a. The orange and blue shaded regions
show the regions where stable and unstable circular orbits
exist, respectively. The boundary between the orange and
blue regions denotes marginally (un)stable circular orbits.
There are no circular orbits in the uncolored region. For
0 < a ≤ a1, stable circular orbits exist in the whole range
of r, where

a1 ¼ 0.9842… ð34Þ
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is determined as the value of a at the multiple root of
V 00 ¼ 0. In contrast, unstable circular orbits, one of the
characteristic phenomena in the general-relativistic strong
gravitational field, do not appear. This is interpreted as the
compactness being so small that the effect of the matter
distribution is strong enough to suppress the higher-order
general-relativistic effects. For a1 ≤ a < a0,

2 where

a0 ¼ 1.3629…; ð35Þ

stable circular orbits exist only in 0 ≤ r ≤ r−ms or r ≥ rþms,
where r�ms are the orbital radii of themarginally stable circular
orbits, determined by solving V 00 ¼ 0. In contrast, unstable
circular orbits appear in r−ms ≤ r ≤ rþms. The appearance of
unstable circular orbits is a sign of the general-relativistic
effects associated with increasing compactness. The orbital
radii r�ms coincide with each other at a ¼ a1, whereffiffiffi
k

p
r�ms ¼ 2.6788… (i.e., r̃�ms=R ¼ 2.0254…). Note that

the appearance of stable circular orbits near the center is a
universal phenomenon when a regular center exists. In such
cases, the effective potential is generally reduced to the two-
dimensional isotropic harmonic oscillator type approxi-
mately. Correspondingly, in the current case, the expansion
of V around r ¼ 0 becomes

V ¼ c0 þ
128L2

ð2þ aÞ8r2 þ
16ak

ð2þ aÞ5

×

�
1þ að2þ aÞ2E2

ð2 − aÞ3 þ 48ða − 1ÞkL2

ð2þ aÞ5
�
r2 þOðr4Þ;

ð36Þ

c0 ¼
8

ð2þ aÞ4
�
1 −

ð2þ aÞ2E2

ð2 − aÞ2 þ 64akL2

ð2þ aÞ5
�
: ð37Þ

The second and third terms in Eq. (36) balance to form the
potential bottom, and hence a stable circular orbit appears
there. For a0 ≤ a ≤ 3=2, stable circular orbits exist in r ≥
rþms or 0 ≤ r < r−ph, and unstable circular orbits exist in
rþph < r < rþms, where r�ph correspond to the radii of photon
circular orbits, and LðrÞ and EðrÞ diverge in the limit
r → r�ph. The orbital radii r�ph coincide with each other at

a ¼ a0, where
ffiffiffi
k

p
r−ph ¼

ffiffiffi
k

p
rþph ¼ 1.3194… (i.e., r̃−ph=R ¼

r̃þph=R ¼ 1.1972…). Note that there are no circular orbits in
r−ph ≤ r ≤ rþph. The compactness is even larger, and a region
near the center shows the absence of circular orbits due to the
effect of strong gravity in general relativity. However, for the
same reasonsmentioned above, there are again stable circular
orbits in the vicinity of the center.
If a star is displaced slightly from the “equilibrium”

radius r of a stable circular orbit, the particle will oscillate
in radius about r. Since the amplitude of the oscillation is
sufficiently small compared to the equilibrium radius r, this
orbit is nearly circular. The frequency of the radial
oscillation is given by

ωr ¼
ffiffiffiffiffiffi
V00p

; ð38Þ

where V 00 is given by Eq. (33). The angular frequency ωφ is
given by

ωφ ¼ _φ ¼ LðrÞ
r2ð1þ fÞ4 : ð39Þ

Then, we can introduce the precession rate for nearly
circular bound orbits

ν ¼ ωφ − ωr

ωφ
: ð40Þ

If ν > 0, then the prograde periapsis shift of the nearly
circular bound orbit occurs; if ν ¼ 0, the orbit is elliptic;
and if ν < 0, the retrograde periapsis shift occurs. Up to
linear order in a, the asymptotic form of ν is reduced to

ν ≃
3

2

�
2M
r̃

−
ρ

ρ̄

�
; ð41Þ

where

FIG. 2. Orbital radii of stable and unstable circular orbits of a
star in the Buchdahl spacetime. The boundary between these two
shaded regions denotes marginally (un)stable circular orbits. The
upper curve (r ¼ rþms) and the lower curve (r ¼ r−ms) coincide
with each other at a ¼ a1. There are no circular orbits in the
uncolored region. Its upper boundary (r ¼ rþph) and lower
boundary (r ¼ r−ph) show photon circular orbit radii, which
coincide with each other at a ¼ a0.

2The value a0 is a positive real-valued solution to the equation
3a6 − 1512a4 þ 10240a2 − 13824 ¼ 0. The exact expression of
a0 is given bya0 ¼f168þ 16

ffiffiffiffiffiffiffi
3809

p
3

cos ½1
3
arccosð 470097

7618
ffiffiffiffiffiffiffi
3809

p Þþ 2π
3
�g1=2.
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ρ

ρ̄
≃
R2

r̃2
ð42Þ

and ρ̄ ¼ 3m=ð4πr̃3Þ is the averaged energy density inside
radius r̃. The first term, proportional to 2M=r̃, shows how
close r̃ to the gravitational radius 2M, indicating the general-
relativistic effect. In contrast, the second term, proportional
to ρ=ρ̄, shows the magnitude of the matter local density,
indicating the local-density effect. The asymptotic for-
mula (41) explicitly demonstrates that ν > 0 (i.e., the
prograde periapsis shift) if the general-relativistic effect
dominates over the local-density effect, whereas ν < 0
(i.e., the retrograde periapsis shift) if the local-density effect
dominates over the general-relativistic effect.3

Figure 3 shows the behavior of ν. The left figure shows ν
as a function of the equilibrium radius r̃ for several values
of a, and the right figure shows the contour plot of ν in the
ða; r̃=RÞ plane. In the region sufficiently far from the center
(i.e., r̃ ≫ R), the region ν > 0 appears, where the prograde
periapsis shifts occur. This implies that the general-
relativistic effect dominates over the local-density effect
in the asymptotic region. In contrast, the region ν < 0
appears near the center (i.e., r̃ ≪ R). This implies that the
local-density effect dominates over the general-relativistic
effect near the center. This behavior of ν is independent of

the value of a. Note that the region ν < 0 extends to r̃ > R
in the case of a ≪ 1. This is consistent with the consid-
eration in the previous section. Furthermore, we can see
that the function ν converges to −1 in the limit r̃ → 0
regardless of the value of a. In this limit, the frequencies ωφ

and ωr behave as ωφ → ω0 and ωr → 2ω0, respectively,
where

ω0 ¼
8

ð2þ aÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ak

4 − a2

r
: ð43Þ

This result implies that a star moves in a two-dimensional
isotropic harmonic oscillator potential near the center.

V. SUMMARY AND DISCUSSION

We have considered the dynamics of a freely falling star
in the Buchdahl spacetime. To prevent anomalous effects
due to matter distributions from affecting the dynamics, we
have restricted the parameter range where all the energy
conditions are satisfied in the entire spacetime region.
Except for the system scale, the geometry is characterized
by one parameter, the compactness, given by the ratio of the
total mass to the scale of the dense core region. For small
compactness, stable circular orbits of stars can exist in the
entire region, whereas for large compactness, unstable
circular orbits and the absence of circular orbits occur
near the center, which are the signs of the general-
relativistic effect. Furthermore, the stable circular orbits
exist near the center independent of the compactness
because the stellar dynamics is generally reduced to the
two-dimensional isotropic harmonic oscillation around the
regular center.

1.5

1.2

1

0.7

0.4

0.1

FIG. 3. Precession rate ν on the matter distribution. The left figure shows ν as a function of r̃ for several values of a, where r̃ is the
equilibrium radius of nearly circular bound orbits. The right figure shows the contour plot of ν in the ða; r̃=RÞ plane. The red contour
denotes ν ¼ 0. The contour interval is 0.3.

3The observable quantity for the periapsis shift is the
shift angle Δφp per unit period of radial oscillation,
Δφp ¼ 2π

ωφ−ωr

ωr
¼ 2π ν

1−ν. Up to linear order in a, the asymptotic
form of Δφp is reduced to Δφp ≃ 3πð2Mr̃ − ρ

ρ̄Þ. The first term is the
same as the conventional general-relativistic term, whereas the
second term is a contribution from the local-density effect of
matter.
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We have particularly focused on how the competing
effects of the local matter density and general relativity
determine the periapsis shifts of nearly circular bound
orbits. The asymptotic analysis of the effective potential
allows us to identify two competing effects on the bounded
motion: the general-relativistic effect and a local-density
effect of matter. Furthermore, in the quasi-Newtonian
analysis, we have explicitly demonstrated that the preces-
sion rate is determined by positive contribution of the
general-relativistic effect and negative contribution of the
local-density effect of matter. In fact, the analysis in the full
geometry shows that the prograde periapsis shifts occur in
the region sufficiently far from the center, where the
general-relativistic effect dominates over the local-density
effect. In contrast, the retrograde periapsis shifts occur near
the center, where the local-density effect dominates over
the general-relativistic effect. In particular, for small com-
pactness, the retrograde periapsis shifts are observed even
in the region outside the core radius. Recently, the
retrograde periapsis shift was found near the center of a
numerical spacetime solution modeling dark matter dis-
tribution [13], which is qualitatively consistent with our
result.
If the observation of the shift angle Δφp for S2/S0-2 near

Sgr A� is consistent with general relativity [6], then it must
satisfy at least Δφp > 0, or equivalently, ν > 0. This
inequality leads to an upper bound of the core radius of
the dark matter distribution,

R <
ffiffiffiffiffiffiffiffiffi
2Mr̃

p
≈ 3au

�
M

4 × 106 M⊙

�
1=2

�
r̃

120 au

�
1=2

: ð44Þ

The upper limit is still 1 order of magnitude larger than the
gravitational radius of Sgr A� (i.e., 3 au ≈ 77M > 2M).
This result still allows the possibility that the central object
is a dark matter core.

Recently, a bright spot has been observed orbiting in the
vicinity of Sgr A� [14]. Assuming that the motion of this
spot is geodesic circular motion, we verify the existence
of model parameters that reproduce this phenomenon.
If we choose a ¼ 0.55 and R ¼ 0.1au, then we obtain
the orbital period T ≈ 60 min, the orbital radius
r̃ ≈ 0.4 au ≈ 8 kpc × 50 μas, and the total mass M≈
4 × 106 M⊙. Furthermore, we confirm whether these
model parameters consistently explain the observational
results of S2/S0-2. Evaluating the proper mass m at the
periapsis and apoapsis distances of S2/S0-2, we have
mð120 auÞ ≈mð1900 auÞ ≈M. Then, the mass fraction
is mð1900 auÞ=mð120 auÞ − 1 ¼ Oð10−7Þ ≪ 1%. These
results suggest that this dark matter model with a dense
core is a possible alternative to a black hole that explains
the observations of S2/S0-2 and the hot spot consistently.
Recently, several models of a black hole surrounded by

matter distribution have been constructed in the class of the
Einstein cluster [15–17]. Moreover, periapsis shifts of
stellar motion due to the local-density effect were studied
in this system [17], and its feature is similar to the present
case. Our study implies that we need more information than
periapsis shifts to distinguish a black hole surrounded by
matter distribution from a dark matter distribution with a
dense core.
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