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We consider a system representing self-gravitating balls of dust in an expanding Universe. It is
demonstrated that one can prescribe data for such a system at infinity and evolve it backward in time
without the development of shocks or singularities. The resulting solution to the Einstein-λ-dust equations
exists for an infinite amount of time in the asymptotic region of the spacetime. Furthermore, we find that if
the density is small compared to the cosmological constant, then it is possible to construct Cosmological
solutions to the Einstein constraint equations on a standard Cauchy hypersurface representing self-
gravitating balls of dust. If, in addition, the density is assumed to be sufficiently small, then this initial data
gives rise to a future geodesically complete solution to the Einstein-λ-dust equations admitting a smooth
conformal extension at infinity which can be regarded as a perturbation of de Sitter spacetime. The main
technical tools in this analysis are Friedrich’s conformal Einstein field equations for the Einstein-λ-dust
written in terms of a gauge in which the flow lines of the dust are recast as conformal geodesics.
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I. INTRODUCTION

Much of physics is the study of evolution of a system
under certain conditions and laws. In Cosmology one is
thus interested in the evolution of our Universe from the far
past to the distant future. The dominant law governing
galaxies and the evolution of the Cosmos is embedded in
Einsteins theory of gravitation. In the large scale structure
of the Universe, galaxies can be treated as dust—i.e., each
galaxy is represented by a “dust” particle—exerting no
pressure on the surrounding particles. Given that current
observations suggest our Universe is expanding, the setting
to investigate the evolution of our Universe is thus the
Einstein equations coupled to dust matter with a positive
cosmological constant. There is a challenge associated to
the study of our Universe at such large scales and its
evolution over long time: namely, the global properties of
the theory become important. Accordingly, any compre-
hensive study of a solution to the Einstein field equations
should also take into account its global properties.
In the attempt to model astrophysical objects such as

stars and galaxies and solar systems, it is necessary to
consider solutions of the Einstein field equations which
represent an isolated system. This is far from a trivial
endeavor. In Newtonian gravity and relativistic electrody-
namics, one has a flat background metric upon which the
fields propagate, and one can meaningfully speak about the

fall-off properties of the fields as one moves away from the
sources. In these terms an isolated system is a system for
which the field strength vanishes at infinity and the source
density is zero outside a finite radius. In general relativity,
the metric is part of the unknowns for which one solves the
equations. Thus, there is no “background” metric upon
which the gravitational field propagate and in terms of
which we may define fall-off properties in a meaningful
way. Accordingly, attempts at solving the Einstein equa-
tions for an isolated system by introducing approximations
in terms of a background metric plus perturbations cannot
be satisfactory as they disregard the nonlinear aspect of the
full theory.
A procedure which has proved successful in the study of

global properties of spacetimes describing isolated systems
was devised by Roger Penrose in [1], and involves a
conformal compactification of space time—essentially
allowing for a treatment of infinity as a three dimensional
submanifold; see [2] for details. This allow for a rigorous
description of the asymptotic behavior and global proper-
ties of a space time [3–5]. But not all spacetimes allow for a
conformal treatment. Accordingly, one is interested in
knowing which solutions to the Einstein field equations
admit a smooth conformal compactification.
One important aspect of Penrose’s conformal method

which will be extensively used in the present article, is that
a small conformal time can represent an infinite amount of
physical time. Hence, if the equations describing the
conformally rescaled spacetime imply a regular system
of evolution equations one could, in turn, apply general
results of the theory of partial differential equations to show

*s.beheshti@qmul.ac.uk
†mikael.normann@usn.no
‡j.a.valiente-kroon@qmul.ac.uk

PHYSICAL REVIEW D 105, 124027 (2022)

2470-0010=2022=105(12)=124027(13) 124027-1 © 2022 American Physical Society

https://orcid.org/0000-0001-9239-1165
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.124027&domain=pdf&date_stamp=2022-06-14
https://doi.org/10.1103/PhysRevD.105.124027
https://doi.org/10.1103/PhysRevD.105.124027
https://doi.org/10.1103/PhysRevD.105.124027
https://doi.org/10.1103/PhysRevD.105.124027


global existence and stability. The seminal work of H.
Friedrich has established that the Einstein vacuum equa-
tions [6], including de Sitter-like spacetimes with positive
cosmological constant [7,8], the Einstein-Maxwell-Yang-
Mills equations [9] and the Einstein-λ-dust equations [10],
all can be described in terms of a set of regular conformal
Einstein field equations from which, in turn, one can extract
a symmetric hyperbolic evolution system for which general
theory is available—in particular, locally the Cauchy
problem is well posed and stability over a small time is
guaranteed.
In [11], Y. Choquet-Bruhat and H. Friedrich have

established the local existence in time of solutions to the
Einstein field equations representing isolated self-gravitat-
ing dust bodies. However, the mathematical technology
available did not allow to pursue the pressing question of
the global existence of solutions. One of the key technical
aspects of their analysis is the use of a formulation of the
evolution equations which is well behaved independently
of whether the density of the dust vanishes or not. This
formulation crucially depends on the fact that the flow lines
of the dust are geodesics.
A suitable framework for the analysis of global proper-

ties of solutions to the Einstein-λ-dust system by means of
conformal methods was given in [10]. This setup was used
to study the backwards evolution of asymptotic data
prescribed on the conformal boundary Iþ. The work in
[10] is remarkable in that it is one of the few conformal
treatments of a matter model with nonvanishing trace of the
energy-momentum. The conformal evolution system used
in this analysis is well-defined up to and beyond the
conformal boundary. Its construction depends crucially
on the observation that the flow lines of the dust can be
recast as certain conformally invariant curves—the so-
called conformal geodesics. Moreover, as in the case of
the analysis in [11], the evolution system is also regular
independently of whether the density vanishes or not.
Accordingly, as it will be discussed in this article, it
provides an ideal framework to study global properties
of the evolution of isolated dust bodies in general relativity
in the presence of a positive cosmological constant. The
analysis of these relativistic self-gravitating matter con-
figurations is a subject of physical relevance as the
cosmological constant is generally believed to be connected
with the observed expansion of our Universe, and dust to
the solutions to the Einstein field equations are good
models for the description of the matter content of the
Universe.
In order to analyze the stability of a cosmological system

it is convenient to choose a well-known background
solution and then study its behavior under perturbations.
Reula show [12] that locally sufficiently small perturba-
tions decay exponentially for flat expanding cosmologies.
In [13] it is found that this holds also in the asymptotic case
for second order perturbations. In this work we show that

perturbations of de Sitter-like cosmologies which repre-
sents patches of dust may exist indefinitely given the
density function is sufficiently small. More precisely, we
combine the approaches followed in [11] and [10] to
provide a toy model of self-gravitating dust balls in an
expanding Universe for which it is possible to make
assertions regarding global existence and stability. More
precisely, we show that in a spacelike conformal boundary
(which, for simplicity one can assume as having the
topology of S3) one can prescribe asymptotic data which
represents patches of dust on the conformal boundary.
Using then the conformal evolution equations one can then
show that these configurations will exist for some small
amount of conformal time—which, when translated into
the physical picture corrresponds to an infinite amount of
physical time. To complement the above backwards evo-
lution problem, we provide sufficient conditions for the
existence of solutions to the Einstein constraint equations
on a standard Cauchy initial hypersurface which represent
patches of dust in a de Sitter-like universe. We further show
future stability of these patches, provided the density
function satisfies a smallness condition. The resulting
spacetime is future geodesically complete. The above
analysis provides a nontrivial example of fairly generic
matter configurations which exist arbitrarily into the
future. The physical mechanism ensuring this result is
the expansion driven by the cosmological constant λ.

A. Outline of the article

The structure of the article is as follows. In the Appendix,
we introduce the geometric framework we will be working
in. Section II gives a brief discussion of the conformal
evolution system for the Einstein-λ-dust system of equa-
tions that will be used in our analysis. This framework is
based on the work in [10]—this discussion includes a brief
discussion on the conformal method. Section III discuss the
construction of asymptotic data for self-gravitating dust
balls and provides a proof of the evolution, backwards in
time, of this data. In Sec. IV we show how the conformal
method of Licnerowicz can be used to obtain solutions to
the constraints describing an initial configuration of dust
balls. Moreover, it is proven that under certain smallness
assumptions this initial data gives rise to a future geodesi-
cally complete spacetime with positive cosmological con-
stant containing self-gravitating dust balls. The final
Sec. IV B provides some concluding remarks.

B. Conventions and notation

In this article, Lorentzian metrics are assumed to have
signature ð−þþþÞ. Throughout, a coordinate free nota-
tion will be preferred where it is most convenient. To avoid
confusion, we specify here the precise meaning of some
symbols. Where indices are used, the following hold: Greek
and Latin letters will be used as coordinate indices in the
spacetime manifold, where μ; ν; λ;… ¼ f0; 1; 2; 3g and
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i; j; k… ¼ f1; 2; 3g. To denote frame indices we will make
use of bold latin letters where a; b; c… ¼ f0; 1; 2; 3g and
i; j; k… ¼ f1; 2; 3g. Hence, the components in a frame
basis of a vector v ∈ M is thus labelled va.

1. Derivative expressions

Given local coordinates xμ and a covector ω, we write

∇ω≡∇μωνdxμ ⊗ dxν;

∇·ω≡∇μωμ;

∇2ω≡ gμν∇μ∇νωγdxγ;

∇∇ω≡∇μ∇νωγdxμ ⊗ dxν ⊗ dxγ:

where∇μ denotes the usual covariant derivative, and gμν the
components of the metric tensor expressed in a local
coordinate system.

2. Covariant and contravariant tensors

We will use the musical notation ♯ and ♭ to distinguish
between contravariant and covariant tensors, respectively.
Given the coordinates xμ, we may write

g ¼ gμνdxμ ⊗ dxν; g♯ ¼ gμν∂μ ⊗ ∂ν:

Note, however, that this will not be used consistently, but
only where it is important to distinguish between the two.
The introduction of index-free notation allow the discus-
sion on the conformal field equations to focus on the
structural aspects, and thus be more conceptual, rather then
paying attention to the gory details.

II. CONFORMAL EINSTEIN DUST FLOWS WITH
POSITIVE COSMOLOGICAL CONSTANT

In the following let ðM̃; g̃Þ denote a spacetime satisfying
the Einstein field equations. Following the standard usage
we call ðM̃; g̃Þ the physical spacetime. We will also
consider a conformally rescaled spacetime ðM; gÞ, the
unphysical spacetime, whose metric satisfies

g ¼ Ω2g̃; g♯ ¼ Ω−2g̃♯; ð1Þ

with Ω a smooth function defined on M which plays the
role of a boundary defining function. The conformal
boundary Iþ is defined as all the points where Ω vanish
—i.e., Iþ ≡ fp ∈ MjΩðpÞ ¼ 0g. Again, following stan-
dard usage we identify the interior of M by M̃, and adopt
the standard convention that fields with/without a tilde
indicate they are defined in relation to the physical/
unphysical spacetime.

A. Einstein-λ-dust system

In this article we are concerned with the Einstein-λ-dust
system governed by the equations

Ric½g̃� −
�
1

2
R½g̃� − λ

�
g̃ ¼ κT̃; ð2aÞ

T̃ ¼ ρ̃ Ũ ⊗ Ũ: ð2bÞ

In the above, Ric½g̃�, T̃ and Ũ are the Ricci tensor, energy
momentum tensor for the physical metric and the four
velocity of the particle trajectories, respectively. We also let
κ and λ be positive constants. In the following we shall set
κ ¼ 1 to simplify the discussion. We obtain the equations of
motion of the system (3a)–(2b) through the divergence-free
condition ∇̃·T̃ ¼ 0:

∇̃ŨŨ ¼ 0; ð3aÞ

∇̃·j̃ ¼ 0: ð3bÞ

Here we have defined the matter current j̃ as

j̃≡ ρ̃ Ũ;

with ρ̃ a positive function representing the energy-density
of the matter. Equation (3a) states that the flow lines of the
dust matter model are geodesics.

B. Conformal transformations

The conformal transformation (1) implies the following
relationship between the two respective connections,

ð∇ − ∇̃Þω ¼ Q · ω; ð4Þ

where Q is a symmetric 3-rank tensor defined in local
coordinates xμ by

Q≡Ω−1ð∇δΩgμνgδγ−∇μΩδγν−∇νΩδγμÞdxμ⊗∂γ⊗dxν:

Furthermore we introduce an unphysical 4-velocity U
related to the physical tangent vector to the flow lines Ũ
in such a way that gðU;UÞ ¼ g̃ðŨ; ŨÞ ¼ −1—i.e., we have

U ¼ Ω−1Ũ U♭ ¼ ΩŨ♭:

Since ρ̃ is a scalar field independent of the metric, its
transformation rule can be freely specified. The unphysical
energy density is defined as

ρ ¼ Ω−3ρ̃:

Using the conformal transformation (1) one can thus use
(4) to obtain the transformation rule of Ricci tensor of the
physical metric Ric½g̃�,
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Ric½g� −Ric½g̃� ¼ −2Ω−1∇∇Ω

− g ⊗ ðΩ−1∇2Ω − 3Ω−2ð∇ΩÞ2Þ: ð5Þ

Contracting the above equation with g, we find the trans-
formation of the Ricci scalar R½g̃�,

R½g� −Ω−2R½g̃� ¼ −6Ω−1∇2Ωþ 12Ω−3ð∇ΩÞ2: ð6Þ

Remark 1: Observe that Eqs. (5) and (6) are singular at
the points where Ω ¼ 0. Thus, using the form of the Ricci
tensor and scalar as above will not directly lead to a set of
field equations which extends to the conformal boundary
Iþ. It is, therefore, necessary to find another set of
equations which are equivalent to (5) and (6) but that
extends smoothly to the conformal boundary. Another issue
is the freedom in the choice of the conformal factor Ω. This
gauge freedommeans a solution to the equations (5) and (6)
are, in some sense, not unique. Hence, the new set of
equations must be constructed such that one can fix this
gauge freedom.

C. The conformal regular
Einstein-λ-dust system

We refer to [2] for a derivation of the regular conformal
field equations. In what follows we will only give a short
summary of some results from [10] which make up the
basis of the next section. We refer the interested reader to
the original paper for details.
As in Section A, we introduce a g-orthonormal frame

field feag onM such that in local coordinates x ¼ ðxμÞ we
have that ea ¼ eμa∂μ. Furthermore, gab ≡ gðea; ebÞ ¼ ηab
and we assume the frame connection defined by (A) to be
such that the metric compatibility condition (A1) holds.
Then, one can recover the physical metric g̃ by the
transformation (1). Most equations and tensor fields are
henceforth given in terms of frame indices.
Using feag as the fundamental geometric unknown, we

may write a new set of equations entirely in terms of fields
on M which is equivalent to the system (2a)–(3b) in the
domain Ω > 0—namely

6sΩ − 3∇aΩ∇aΩ − λ ¼ 1

4
Ω3ρ; ð7aÞ

∇b∇dΩþΩLbd − sgbd ¼
1

2
Ω2ρ

�
UbUd þ

1

4
gbd

�
; ð7bÞ

∇dsþ∇aΩLa
d ¼

1

2
∇aΩρ

�
UaUd þ

1

4
gad

�
þ 1

8
Ωρ∇dΩþ 1

24
Ω2∇dρ; ð7cÞ

2∇½dLc�b −∇aΩWa
bdc ¼ Ω

�
ρð∇½dUc�Ub þU½c∇d�UbÞ þ∇½dρUc�Ub þ

1

3
∇½dρgc�b

�
þ ρZbdc ð7dÞ

∇aWa
bdc ¼ ρð∇½dUc�Ub þ U½c∇d�UbÞ þ∇½dρUc�Ub þ

1

3
∇½dρgc�b þ

ρ

Ω
Zbdc: ð7eÞ

The matter equations are given by,

Ua∇aUd ¼ 1

Ω
ðgda þUdUaÞ; ð8aÞ

Ua∇aρ ¼ −ρχaa: ð8bÞ

In the above, the following fields has been defined:

s≡ 1

4
∇a∇aΩþ 1

24
ΩR½g�; ð9aÞ

Wd
abc ≡Ω−1Cd

abc; ð9bÞ

Zbdc ≡∇½dΩgc�b þ 2∇½dΩUc�Ub þU½dgc�bgef∇eΩUf : ð9cÞ

Remark 2: The main interest is to find solutions to the
system (7a)–(8b) in the domain Ω > 0 which admit a
meaningful limit on Iþ. It was found by Friedrich that a
necessary condition to have this type of solutions is that the
geodesics generated by Ũ approach Iþ orthogonally—
see [10].
In the above and in what follows, the frame field is fixed

by choosing e0 ¼ U and the Lagrangian gauge—i.e.,
given coordinates xμ in a neighborhood U ⊂ M then the
frame components of e0 are given by e0μ ¼ δ0

μ. Moreover,
Fermi propagation of the spatial components of the frame
will be employed. More precisely, one has that,

Γ0
a
b ¼ 0:
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D. Regularization of the equations

In order for the above system to be of use, it is necessary
to deal with the singular equations (7e) and (8a). To do so,
one makes use of the conformal geodesic equation,

∇̃UU þ 2hb;ViU − g̃ðU;UÞb♯ ¼ 0

∇̃Ub − hb;Uibþ 1

2
g̃ðb; bÞU♭ − L̃ðU; ·Þ ¼ 0;

where L̃ is the Shouten tensor for the physical metric and b
a one form associated with a curve γðτÞ for which U is the
tangent vector. A solution ðbðτÞ;UðτÞÞ to the conformal
geodesic equation is called a conformal geodesic.
Remark 3: The one form b can be thought of as an

acceleration associated with U. Thus, for b ¼ 0, a con-
formal geodesic coincides with a metric geodesic.
Given local coordinates x ¼ ðxμÞ and a curve para-

metrized by σ ∈ R, Friedrich defines a new 1-form f with
components,

fνðσÞ≡ bνðσÞ −Ω−1∇νΩjxðσÞ; ð10Þ

where bν are the components of a one-form satisfying the
geodesic equation. If, in addition, the components of a
vector V are given by VμðσÞ ¼ dxμ

dσ , then ðf ;VÞ is a solution
to the equations

∇VV þ 2hf ;ViV − gðV;VÞf ♯ ¼ 0 ð11aÞ

∇Vf − hf ;Vif þ 1

2
gðf ; f ÞV♭ − LðV; ·Þ ¼ 0: ð11bÞ

Remark 4: Observe that Eqs. (11a) and (11b) involves
only conformal fields, as opposed to the conformal geo-
desic equation.
By assuming that V is related to the tangent vector of a
geodesic of the matter particles via

V ¼ ω−1Ũ; ω−1 ≡ dt
dσ

and with the relations

gðV;VÞ ¼ −θ−2; θ ¼ ω

Ω
; ∇Uθ ¼ θhU; f i;

it can then be shown, using the definition for f , that one
obtains a regularising relationwhich in frame indices takes
the form,

∇aΩ ¼ −∇0Ωþ Ωf0ÞðUa − Ωfa: ð12Þ

Using the above equation in (7e) and (8a) one removes the
singularities in the system of equations (7a)–(8b) which
now can be smoothly extended to the conformal boundary.
In other words, one has a regular system of field equations.
Moreover, it can be shown that these equations imply a
symmetric hyperbolic system of equations for the
unknowns

ðeiμ;Γk
i
j; fd; ςij; ξ;Ω;Σd; s; L0i; Lij; ρ;ωij;ω�

ijÞ:

More precisely, one has the equations

∂0eiμ ¼ −fiδ0μ − χi
jejμ; ð13aÞ

∂f0 ¼ −
1

2
fafa þ L00; ð13bÞ

∂0fi ¼ L0i; ð13cÞ

∂0ςij ¼ −Ω
�
ςi
kςkj −

1

3
ςklςlkgij

�
−
2

3
ð∇UΩÞ−1ðΩξ − 3sÞςij −W0i0j; ð13dÞ

∂0ξ ¼ ð∇UΩÞ−1ðΩξ − 3sÞ
�
−
1

3
ξþ fifi − L00 þ

1

4
ρΩ

�
−∇UΩΩςklςlk þ 3fiLi0 −

3

4
ρ∇UΩ; ð13eÞ

∇0Ω ¼ Σ0; ð13fÞ

∇0Σd ¼ −ΩL0d þ sg0d þ
1

2
Ω2ρ

�
U0Ud þ

1

4
g0d

�
; ð13gÞ

∇0s ¼ −∇aΩLa0 ¼
1

2
Ωρ∇aΩ

�
U0Ud þ

1

4
g0d

�
þ 1

8
Ωρ∇0Ωþ 1

24
Ω2∇0ρ; ð13hÞ
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∇0L0i ¼ hij∇jLik þ
1

6
∇iRþ Kb

bi; ð13iÞ

∇0Lii ¼ ∇iL0i þ Ki0i; ð13jÞ

∇0Lij ¼ ∇iL0j þ∇jL0i þ Ki0j þ Kj0i; ð13kÞ

∇0ωij þDkω
�
lðjϵiÞkl ¼ L:O:T; ð13lÞ

∇0ω
�
ij −DkωlðjϵiÞkl ¼ L:O:T; ð13mÞ

where L:O:T stand for “lower order terms.” In the above,
the following fields have been defined,

ωab ≡WcdrsUcUrhdahsb;

ω�
ab ≡ 1

2
Wcdpqϵ

mn
rsUcUrhdahsb ð14aÞ

ςij ≡Ω−1
�
ξij −

1

3
gijξ

�
;

ξ≡Ω−1ð∇UΩχ þ 3sÞ; Σd ≡∇dΩ: ð14bÞ

It has also been made use of the following relations,

χij ¼ Ωςij þ
1

3
ð∇UΩÞ−1ðΩξ − 3sÞgij; ð15aÞ

ςij ¼ −ð∇UΩÞ−1
�
Difj − fifj − Lij

−
1

3
ðDkfk − fkfk − Lk

kgijÞ
�
; ð15bÞ

ξ ¼ −Difi þ fifi þ Li
i −

3

8
Ωρ; ð15cÞ

−L00 þ gijLij ¼ Lb
b ¼ 1

6
R: ð15dÞ

E. Relation to the physical field equations

The Eqs. (7a)–(7e) and (8a)–(8b) are evolution equations
to the reduced system. This is, however, only a subset of the
full Einstein-frame-equations. The remaining equations are
constraints. It is therefore necessary to show that these
constraints propagate, which indeed has been done in [10].
We thus have the following theorem adapted fromFriedrich:
Theorem 1: A solution

u ¼ ðeiμ;Γk
i
j; fd; ςij; ξ;Ω;Σd; s; L0i; Lij; ρ;ωij;ω�

ijÞ

to the symmetric hyperbolic system (13a)–(13m) satisfying
the constraint equations associated to the conformal equa-
tions (7a)–(7e) and (8a)–(8b) on an initial hypersurface
implies a solution to the Einstein-λ-dust system (2a)–(3b)
whenever Ω ≠ 0.

In the following we will consider two different types of
initial hypersurfaces for the conformal evolution equa-
tions (13a)–(13m):

(i) the conformal boundary Iþ;
(ii) standard Cauchy hypersurface S⋆.
As it will be seen in more detail in the sequel, initial data

for the conformal evolution equations on a standard hyper-
surface can be obtained from the solution of the
Hamiltonian and momentum constraints implied by the
Einstein-λ-dust system (2a)–(3b).

III. BACKWARD EVOLUTION OF SELF-
GRAVITATING DUST BALLS

The purpose of this section is to study the (backward)
evolution of asymptotic initial data for the conformal
Einstein-λ-dust system which describes a collection of
self-gravitating dust balls.
The following result is obtained by assuming certain

gauge choices on a hyper surface S which later is
interpreted to be the conformal boundary Iþ. These are,

s ¼ 0; ξij ¼ 0; ∇a∇bΩ ¼ 0; L0i ¼ Li0 ¼ 0:

Note, however, that these choices may not be satisfied if
one evolves a solution fromM to S. In that case, the reader
is referred to the original article [10] for details.

A. Asymptotic initial data for self-gravitating dust balls

All throughout it is assumed that the initial hyper surface
Iþ representing the conformal boundary is a compact 3-
manifold. For (asymptotic) initial data prescribed on an
hyper surface corresponding to the conformal boundary the
following holds:
Lemma 1: Any smooth1 initial data set for the con-

formal evolution equations (13a)–(13m) is uniquely deter-
mined on Iþ by a Riemannian metric hij, the density ρ ≥ 0,

1We mean by smooth that the fields are C∞. That is, the
derivatives of all orders are continuous. This may also be
expressed in terms of Sobolev spaces Hs with s sufficiently
large. But to not make the discussion unnecessarily complicated
we refrain from this.
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the acceleration fi and symmetric, h-tracefree tensor field
ωij, which are arbitrary up to the relation

Diωij ¼
1

3
Djρ − ρfj; ð16Þ

on Iþ, and where D denotes the Levi-Civita operator
defined by hij.
Observe that ρ is allowed to be zero. This suggest to

consider a density profile which represents patches of dust
in an otherwise empty space. In the case of a strictly
positive density function, the data ρ, ω and h can be
prescribed freely, and equation (16) is read as a defining
equation for the acceleration f , unless one has further
conditions on f such as hyper surface orthogonality etc., in
which case the equation must be treated as a differential
equation.
In the following it will be shown how the above result

can be used to construct asymptotic initial data representing
a collection of dust balls.
The starting observation of our analysis is the fact that

equation (16) in Lemma 1 is an underdetermined condition
(3 equations) for the 5 independent components of the
tracefree tensor ωij. Nevertheless, this type of divergence
equations are well understood in the context of the analysis
of the momentum constraint—see, e.g., [14].
In the following it will be convenient to define

ϖij ≡Disj þDjsi −
2

3
hijDksk þ Ψ0

ij; ð17Þ

whereΨ0
ij is a symmetric h-tracefree tensor field which may

be freely specified and si is an arbitrary covector field. A
direct computation shows that ϖij is a solution of (16) if si
satisfies

Δhsj þDiDjsi −
2

3
DjDksk ¼ kj −DiΨ0

ij; ð18Þ

where we have defined

ki ≡ 1

3
Djρ − ρfj:

Equation (18) is of elliptic type—in particular, it provides 3
equations for the 3 components of si. It is convenient to
reformulate the above equations by defining the operators

δðωÞj ≡Diωij;

LðsÞij ≡Disj þDjsi −
2

3
hijDksk;

LðsÞj ≡ Δhsj þDiDjsi −
2

3
DjDksk:

We shall refer to these throughout as the divergence
operator, the conformal Killing operator and the vector

Laplacian operator, respectively. It is readily seen that the
vector Laplacian operator is a result of the composition of
the divergence and conformal Killing operator—i.e., we
have

LðsÞ ¼ ðδ ∘ LÞðsÞ: ð19Þ

In terms of the above definitions, Eqs. (16) and (18) take
the simple form

δðωÞj ¼ kj; ð20aÞ

LðsÞj ¼ kj −DiΨ0
ij: ð20bÞ

A solution s of Eq. (20b) solves Eq. (20a) if the
symmetric tracefree tensor ω is of the form given by
(17). To solve the elliptic equation for the covector s we
make use of the following [15]:
Fact (Fredholm alternative): Given any u and v ∈ L2,

then there exists a solution u of the elliptic equation

LðuÞ ¼ F

if there exists a v which solves L�ðvÞ ¼ 0 and satisfy the
L2-inner product

hv;Fi ¼
Z
S
hijviFjdμ ¼ 0: ð21Þ

The operators δ and L can be regarded as formal adjoints
of each other under the standard L2-inner product over a
compact 3-manifold S. It then follows that their compo-
sition, the operator L, is self-adjoint—that is,

hu;LðsÞi ¼ hLðuÞ; si:

In order to make use of the Fredholm alternative to
establish the existence of solutions to equation (20b) it is
necessary to identify the Kernel of the operator L. For this,
it is observed that

0 ¼ hv;LðvÞi ¼ hv; ðδ ∘ LÞðvÞi
¼ hδ�ðvÞ;LðvÞi ¼ hLðvÞ;LðvÞi:

Consequently, any element of the Kernel of L satisfies the
equation LðvÞ ¼ 0—that is, the Kernel consists of con-
formal Killing vectors. Thus, if the pair ðS; hÞ does not have
conformal Killing vectors (this is the generic situation) then
there are no obstructions to the existence of solutions to
equation (20b). On the other hand, if conformal Killing
vectors are present then the Kernel orthogonality condition
in the Fredholm alternative, Eq. (21), has to be satisfied.
The discussion of the previous paragraph is summarized

in the following result where all the relevant fields are
assumed to be suitably smooth:
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Lemma 2: Let S denote a compact 3-dimensional
manifold. Given a (Riemannian) metric hij, a h-tracefree
tensor Ψ0

ij, a covector fi and a scalar ρ over S then one of
the following holds:

(i) if ðS; hijÞ admits no conformal Killing vectors then
the tracefree tensor ϖij given by Eq. (17) gives a
solution to the asymptotic constraint (16);

(ii) if ðS; hijÞ admits conformal Killing vectors then ϖij
given by Eq. (17) gives a solution to the asymptotic
constraint (16) if and only ifZ

S
viðki −DjΨ0

ijÞdμ ¼ 0

for any conformal Killing vector vi.
Remark 5: In the present context, the simplest example

of a pair ðS; hijÞ with conformal Killing vectors is the 3-
sphere S3 with the round metric. In this case one has, in
fact, the maximal number of conformal Killing vectors (10)
for a 3-dimensioanl manifold.
Remark 6: The freely specifiable data given by the

tracefree tensor Ψ0
ij can be thought of as describing some

gravitational wave content.
In order to construct initial data representing a collection

of balls of dust, let Σi, i ¼ 1;…; n denote n compact open
subsets on S and consider a smooth non-negative scalar
field ρ over S with support on the union of the sets Σi. That
is, we require that

( ρ > 0; ρ ∈ ∪
n

i¼1
Σi;

ρ ¼ 0; ρ ∈ Iþ= ∪
n

i¼1
Σi:

ð22Þ

Lemma 2 gives the conditions for the existence of solution
to the asymptotic constraint (16) for this type of density
profile ρ and a given choice of metric hij and fields Ψ0

ij
and fi.
Remark 7: Let ρ be a smooth non-negative scalar field

given by (22). Furthermore, let Ψ0 be a symmetric, h-
tracefree spatial tensor field, h the projector metric and f a
one form, then we say that ðρ; h;Ψ0; f Þ is n-body dust
asymptotic data if either condition (i) or (ii) of Lemma 2
holds on Iþ.

B. Evolution of the asymptotic data

The asymptotic data constructed in the previous sub-
section can be readily combined with the conformal
evolution equations of Sec. II D to obtain the asymptotic
region of a spacetime with positive Cosmological constant
containing a collection of n balls of dust. The key
observation here is that as we are working in the conformal
picture, any interval of time of the conformal boundary
represents an infinite time domain from the physical
perspective. The existence result can be stared as follows:

Theorem 2: Given a choice of asymptotic data repre-
senting a collection of n dust balls, there exists a time τ > 0
such that the conformal Einstein-λ-dust equations have a
unique smooth solution on the slab ½0; τÞ × S associated to
this data. This solution implies, in turn, a solution to the
(physical) Einstein-λ-dust system on ð0; τÞ × S for which
the hypersurface f0g × S corresponds to the conformal
boundary Iþ.
Remark 8: By restricting the existence time further, if

necessary, it is possible to ensure that the congruence of
conformal geodesics on which our gauge is based remains
nonintersecting for the interval ½0; τ�. This, in turn, ensures
that dust balls in the initial asymptotic configuration do not
intersect each other in the past.
In terms of physics, theorem 2, suggest the following. If,

in the infinite far future of an expanding universe, one is
given a matter distribution representing patches of dust
balls, then one can evolve this system backward in time for
as long as one wish, and still have that the patches of dust
remain noninteracting.

IV. FORWARD EVOLUTION OF DUST BALLS

In this section we consider the more physically realistic
setting of the evolution of dust balls from a standard
Cauchy hypersurface in a spacetime with positive
Cosmological constant. Our strategy is to consider this
setting as a perturbation of the de Sitter spacetime in order
to make a statement of the future global existence of the
dust balls. As in the case of the backwards evolution we
start by constructing suitable initial data.

A. Standard Cauchy initial data for
self-gravitating dust balls

Let τ ∈ M̃ be a positive function such that for t ∈ R,
τðpÞ ¼ t gives the level surfaces S̃t. We denote by S̃⋆ ⊂ M̃
the hypersurface which coincides with the level surface
τðpÞ ¼ 0, and interpret this as an initial hypersurface at
some fiduciary time.Einstein constraints on S̃⋆ are given by

r½h̃� þ K̃2 − K̃ijK̃ij ¼ 2ðρ̃ − λÞ; ð23aÞ

D̃iK̃ij − D̃jK̃ ¼ −j̃j; ð23bÞ

where h̃ and K̃ij denote, respectively, the intrinsic metric
and extrinsic curvature of S̃⋆, D̃ is the Levi-Civita con-
nection of metric h̃ and r½h̃� its Ricci scalar. Moreover, ρ̃
and j̃ denote, respectively, the energy-density and flux
current of the matter content. The constraints (23a) and
(23b) will be solved using the conformal method of
Licnerowicz-York—see, e.g., [14]. Following the discus-
sion in [2], Chapter 11, let hij ¼ Ω2h̃ij. Implementing this
rescaling in equations (23a)–(23b) leads to
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2ΩDiDiΩ − 3DiΩDiΩþ 1

2
Ω2rþ 3Σ2

þ 1

2
Ω2ðK2 − KijKijÞ − 2ΩΣK

¼ Ω4ρ − λ; ð24aÞ

Ω3DiKij − 2Ki
jDiΩ −ΩDkK þ 2DkΣ ¼ Ω3jk; ; ð24bÞ

where

ρ≡ Ω−4ρ̃; jk ≡Ω−3j̃k; Σ≡ νiDiΞ;

and Ω ¼ ΞjS̃⋆ . Now, by setting Ω ¼ θ−2, Eq. (24a) leads to
the manifestly elliptic equation

Lhθ ¼ 1

8
θðK2 − KijKijÞ − 1

2
θ2ΣK −

1

4
θ5ðθ−8ρ − λÞ; ð25Þ

where we have defined the Yamabe operator

Lhθ≡DiDiθ −
1

8
r½h�θ:

Now, defining

ψ ij ≡ θ4Kfijg; Kfijg ¼ Kj −
1

3
Khij;

it follows that Eq. (24b) leads to the equation

Diψ ij ¼
2

3
θ6DjK̃ − 2θ6DjΣþ jj: ð26Þ

Remark 9: We will consider equations (25) and (26) in
the particular case that

K ¼ Σ ¼ 0:

It can be readily verified that the above conditions imply
that S̃⋆ is a maximal hypersurface.
In order to put equation (26) in an elliptic form, we make

use of the York splitting—i.e., given an arbitrary covector
field Xi, we consider solutions ψ ij of the form

ψ ij ¼ ðLhXÞij þ ψ 0
ij; ð27Þ

where ψ 0
ij is a freely specifiable symmetric and tracefree

tensor field, and LhX is the conformal Killing operator
defined by

ðLhXÞij ≡DiXj þDjXi −
2

3
hijDkXk:

For simplicity, we set ψ 0
ij ¼ 0, so that substituting (27) into

Eq. (26), we obtain the elliptic equation

DiðLhXÞij ¼ jj: ð28Þ

We thus seek to show that there exist a solution to the
elliptic equations (25) and (28) which represents initial data
for a de Sitter-like spacetime with an energy density
function given by (22)—so that it can be regarded as
describing a collection of dust balls.
With regards to the solution to Eq. (28) we adapt the

following result from [14], Chapter VII, Section 6:
Proposition 1: Let h ∈ H2ðS̃⋆Þ and ξ be, respectively, a

Riemannian metric and a conformal Killing vector over S̃⋆.
Then Eq. (28) has a solution X ∈ H2ðS̃⋆Þ if j ∈ L2ðS̃⋆Þ andZ

S̃⋆
h♯ðj; ξÞϵh ¼ 0:

The solution is determined up to the addition of a
conformal Killing vector. Furthermore, the solution is
unique if one imposesZ

S̃⋆
hX; ξiϵh ¼ 0:

In that case there exists a positive constant C such that

kXk2L2 ≤ Ckjk2L2 :

Now, setting K ¼ Σ ¼ 0 and the using tracefree tensor
ψ ij defined in Eq. (27), the Licnerowicz equation (25) can
be written as

DiDiθ − aθ þ bθ−7 þ cθ5 ¼ 0; ð29Þ

where,

a≡ 1

8
r½h�; b≡ 1

8
ψ ijψ

ij;

c≡ 1

4
ðρ̃ − λÞ; ρ̃ ¼ Ω4ρ ¼ θ−8ρ:

Following the theory developed in [14] Chapter VII,
Sections 5, 6 and 7 (see also [16]) the above equation
has a unique solution θ > 0 if b ≥ 0 and c < 0. Since one
readily has that ψ ijψ

ij > 0, the only condition to be
imposed is

ρ̃ < λ:

Thus, one has the following
Proposition 2: Let h, ψ ij, λ and ρ̃ be smooth. Then, for

r½h� > 0, ψ ijψ
ij > 0 and λ > 0, the condition ρ̃ < λ is a

sufficient condition for the existence of a unique solution θ
to the Lichnerowicz equation (29).
Together, Propositions 1 and 2 ensure the existence of a

large class of solutions to the Einstein constraint equations
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representing an arbitrary configuration of dust balls at a
some fiduciary time. For this, as in the asymptotic problem,
one chooses the density ρ̃ as in Eq. (22)—the method for
the construction of solutions to the Einstein constraints
described above works irrespectively from the fact that the
density is only nonzero on a finite number of subsets of S̃⋆.
If, in addition, one chooses the metric h as a constant
multiple of the round metric on S3—as in the case of the de
Sitter spacetime—one can then regard the dust balls as
matter-sourced perturbation of the de Sitter spacetime. The
size of ρ̃ as described in terms of Sobolev norms controls
the closeness of θ to the value 1 (the de Sitter value). This
observation is of importance in the discussion of the
stability of solutions to the evolution problem.
Remark 10: For the purpose of simplicity of presen-

tation of the subsequent discussion it is convenient to
consider a setting in which the initial current vector j
vanishes. This choice of free data is consistent with the 4-
velocity u being orthogonal to the initial hypersurface S̃⋆.
This choice is made throughout the whole hypersurface
regardless of whether the density vanishes or not in a given
region. For this choice, if the density vanishes all over the
initial hypersurface, then one obtains trivial data corre-
sponding to the de Sitter spacetime.
Following the discussion in [2] Chapter 11, from a

solution to the Einstein constraint equations it is possible to
obtain a solution to the conformal Einstein field equations
by algebraic manipulations and differentiation. The
deviation of this data from (vacuum) data for the de
Sitter spacetime is controlled by the size of the current j
and the density ρ̃.

B. Long time evolution

In this section we discuss the evolution of the initial data
given by Propositions 1 and 2. In particular, we discuss how
the ideas used in the stability of the de Sitter spacetime [8]
(see also [2], Chapter 15) can be used to obtain a future
global existence statement for the dust balls if the initial
density is sufficiently small.
In the following let u denote a solution to the conformal

evolution equations discussed in Sec. II D. Moreover, let u
∘

denote the solution to these evolution equations with ρ ¼ 0
(i.e., vanishing density) and the 4-velocity ua chosen so
that it is tangent to timelike geodesics in the physical
spacetime—see Remark 10. Denoted by u⋆ and u

∘
⋆ the

associated initial data on some fiduciary initial hypersur-
face S⋆. The solution u provides a conformal representa-
tion of the de Sitter spacetime which is smooth up to and
beyond the conformal boundary Iþ. In particular, it has
vanishing rescaled Weyl tensor. For concreteness assume
that the conformal boundary for this (background) solution
is given by the condition τ ¼ τ∞, for τ∞ some constant. To
this background solution one can readily apply the standard
theory of stability for symmetric hyperbolic equations—see
[17]; also [2]—to ensure the existence of nearby solutions

(in the sense of Sobolev spaces) to the evolution equations
with a similar existence time. Accordingly, these solutions
extend up to and beyond the conformal boundary. This
amounts to a future global existence result. More precisely,
one has the following:
Theorem 3: Let u⋆ denote smooth initial data for the

conformal-λ-dust evolution equations on a compact mani-
fold S⋆ describing a configuration of dust balls as given by
Propositions 1 and 2. There exists ε > 0 such that for any
initial data u⋆ such that

ku⋆ − u
∘
⋆km < ε; m ≥ 5;

there exists a smooth solution u to the conformal evolution
equations over the domain

M≡ ½τ⋆; τ∞� × S;

S ≈ S⋆. Moreover, given a sequence of initial data uðnÞ⋆ , as
above, such that

ku⋆ − u
∘
⋆km → 0; as n → ∞;

one has that the corresponding solutions satisfy

kuðτ; ·Þ − u
∘ ðτ; ·Þkm → 0; as n → ∞:

The solution u implies, in turn, a future geodesically
complete solution to the (physical) Einstein-λ-dust system
for which Iþ corresponds to future (timelike) infinity.
Proof.—The proof of this result follows the same

structure of that of the stability of the de Sitter spacetime
[7,8]—see also [2], Chapter 15. Here we provide a brief
outline of the main ideas. As already mentioned, the
evolution equations (13a)-(13m) implies a symmetric
hyperbolic evolution system for the components of the
vector unknown u. Now writing u ¼ u

∘ þ ŭ where u
∘

denotes the background de Sitter solution, it follows that
the perturbation ŭ also satisfies a symmetric hyperbolic
evolution system. Existence of solutions for this system
follows from the theory developed in [17]. Moreover, as the
perturbed initial data ŭ⋆ is small (in the sense of Sobolev
spaces), it follows then from Cauchy stability that its
existence interval includes the time τ∞—so that the devel-
opment includes the conformal factor. Finally, a propaga-
tion of the constraints argument ensures the solution to the
reduced evolution system implies a solution to the physical
Einstein-λ-dust system. ▪
Remark 11: From the discussion leading to

Propositions 1 and 2, it follows that the size (in the
Sobolev norm) of the initial data u⋆ is controlled by the
initial value of the density over S⋆. In particular, if ρ⋆ ¼ 0
then u⋆ ¼ u

∘
⋆. Accordingly, Theorem 3 states that the

initial configuration of dust balls will exist globally into the
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future if the density is sufficiently small—that is, if the dust
making up the balls is sufficiently diluted.
Remark 12: The spacetimes arising from Theorem 3

can be readily shown to be geodesically complete. The
simplest manner of doing this is to make use of the theory
developed in [18]. The required estimates needed to
establish geodesic completeness follow from the closeness
(in the sense of Sobolev spaces) of the solution provided by
Theorem 3 and the background exact de Sitter solution. In
the present case it is possible to show even more: as the
background 4-velocity u

∘ a is chosen to be tangent to a
congruence of nonintersecting conformal geodesics, it
follows that if the perturbed solutions given by
Theorem 3 are the flow lines of ua, then they are also
nonintersecting. This observation shows, in addition, that
the various members of an arbitrary configuration of dust
balls never intersect in the future.
The purpose of this article is the development of a model

of self-gravitating bodies in general relativity for which it is
possible to make statements of long-term existence. As
mentioned in the introduction, the well-posedness and local
existence in time of self-gravitating balls of dust has been
given in [11]. These self-gravitating bodies possess a
smooth boundary (in the sense that the density is assumed
to go to zero smoothly). This observation, combined with
an evolution law for the 4-velocity which is well defined
even in the regions where the density vanishes allows to
obtain a suitable evolution system for which existence
theory is available. The analysis of the Einstein-λ-dust
system in [10] provides a conformal analogue to this
system and thus, it allows to implement an argument
establishing long-term existence of dust ball configura-
tions. The physical mechanism making it possible to run
this argument is the acceleration provided by the cosmo-
logical constant λ. A natural next step would be to consider
the asymptotically flat setting (where λ ¼ 0). In this
scenario the technical obstruction anticipated would be,
following a conformal point of view, that the timelike
geodesics converge at future timelike infinity iþ.
Accordingly, any attempt to analyse the long-term exist-
ence of matter configurations is tied to the development of a
suitable description of this asymptotic point.

APPENDIX: GEOMETRIC BACKGROUND

In what follows, let ðM; gÞ denote a spacetime repre-
sented by a 4-dimensional manifold,M, with a Lorentzian
metric g. In the following we assume the existence of a
smooth timelike vector field u. Moreover, it is assumed that

gðu; uÞ ¼ −1;

and that at each point p ∈ M there exists a g-orthonormal
frame field—i.e., it is assumed that

gðea; ebÞ ¼ ηab:

Associated to the frame feag one has a coframe, fωag
satisfying

hea;ωbi ¼ δa
b:

In the following all tensorial objects will be expressed in
terms of their components with respect to the frame and
coframe unless otherwise stated. The metric tensor g gives
rise to a natural connection ∇ such that ∇g ¼ 0, which is
the metric compatibility condition. In terms of the frames,
this condition takes the form

Γa
b
cηbd þ Γa

b
dηbc ¼ 0; ðA1Þ

where the frame connection coefficients are defined by the
directional derivative along the direction of the frame
indices

∇aeb ¼ Γa
c
bec; ∇a ¼ hea;∇i:

Furthermore, if the connection ∇ is torsion-free, we have
that

Σa
c
b ¼ 0; ðA2Þ

where the frame components of the torsion tensor are
defined by

Σa
c
bec ¼ ½ea; eb� þ ðΓa

c
b − Γb

c
aÞec:

The commutation of the connection may be expressed in
terms of the Riemann curvature tensor and the torsion
tensor

∇½a∇b�vc ¼ Rc
dabvd þ Σa

d
b∇dvc;

∇½a∇b�wc ¼ −Rd
cabwd þ Σa

d
b∇dwc:

The frame components of the Riemann curvature tensor is
given by

Rc
dab ¼ ∂aΓb

c
d − ∂bΓa

c
d þ Γf

c
dðΓb

f
a − Γa

f
bÞ

þ Γb
f
dΓa

c
f − Γa

f
dΓb

c
f − Σa

f
bΓf

c
d ðA3Þ

—see [2] for details. The Riemann tensor has all the usual
symmetries, and it satisfies the Bianchi identity for a
general connection

Rd ½cab� þ∇½aΣb
d
c� þ Σ½aebΣc�de ¼ 0; ðA4Þ

∇½aRd jejbc� þ Σ½af bR
d jejc�f ¼ 0: ðA5Þ

Furthermore, we recall that the Riemann tensor admits the
irreducible decomposition
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Rc
dab ¼ Cc

dab þ 2ðδc½aLb�d − ηd½aLb�cÞ; ðA6Þ

with Cc
dab the components of the Weyl tensor and

Lab ≡ Rab −
1

6
Rηab ðA7Þ

denotes the components of the Schouten tensor. The
connection ∇ is called the Levi-Civita connection of g if
it satisfies (A1) and (A2). In what follows we will assume
the connection to be Levi-Civita.

1. A projection formalism

At each point in the spacetime manifold M the flow
lines give rise to a tangent space which can be split into
parts in the direction of u and those orthogonal. This means
that without implying a foliation, we may decompose every
tensor defined at each point p ∈ M into its orthogonal and
timelike part. This may be done by contracting with u and
the projector defined as

hab ≡ ηa
b þ uaub; u ¼ uaea:

Thus, a tensor Tab may be split into its timelike, mixed, and
spacelike parts given, respectively, by

T00 ¼ uaubTab; T 0
0c ¼ uahbcTab;

T 0
cd ¼ hachbdTab;

where 0 denotes that the free indices left are spatial—e.g.,
T 0
a0u

a ¼ 0. In what follows we will not put a 0 on projected
tensors, as we will mostly deal with timelike parts and pure

spatial parts—in which case we use the components
fi; j;…g. Decomposing ∇u we obtain

∇aub ¼ χa
b þ uaab; ðA8Þ

where χa
b and ab are the components of the Weingarten

tensor and 4-acceleration, respectively, defined by

χa
b ≡ hac∇cub; ab ≡ uc∇cub:

In the literature (e.g., see [19] p. 217) the trace, tracefree
and antisymmetric part of (A8) is called, respectively, the
expansion, shear and the twist of the fluid. Given a tensor
Tabc which is antisymmetric in its two last indices, we may
construct the electric and magnetic parts with respect to u.
In frame indices this is, respectively, defined by

ωcd ≡ Tabehcahdbue; ω�
cd ≡ T�

abehcahdbue;

where theHodge dual operator, denoted by �, is defined by

T�
abe ≡ −

1

2
ϵmn

beTamn;

and has the property that

T��
abc ¼ −Tabc:

Depending on the symmetries and rank of the tensor, the
above definition for electric and magnetic decomposition
may vary slightly. Central for our discussion is that ωab and
ω�
ab are spatial and symmetric.
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