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We present a quantum description of electrically charged spherically symmetric black holes given
by coherent states of gravitons in which both the central singularity and the Cauchy horizon are not
realized.
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I. INTRODUCTION AND MOTIVATION

Classical black hole solutions of general relativity
contain spacetime singularities [1], which are expected
to be removed in the quantum theory of the gravitational
collapse of a compact source (see, e.g., Refs. [2]).
Moreover, charged and rotating classical black holes also
contain an inner Cauchy horizon, which signals a potential
loss of predictability and also gives rise to mass inflation at
the perturbative level (see, e.g., Refs. [3]). These latter
considerations are the underlying motivations for the strong
cosmic censorship conjecture [4,5], which can be simply
phrased as the fact that the evolution of some sufficiently
regular initial data should always give rise to a globally
hyperbolic spacetime [6]. In particular, this conjecture
implies that perturbations of the inner Cauchy horizon
should turn it into a curvature singularity.
Quite interestingly, many candidates as regular black

holes appearing in the literature (for an incomplete list, see
Refs. [7]) also display a inner horizon (with some interest-
ing exceptions, like those in Refs. [8]). One might then
wonder if trading the central singularity for a Cauchy
horizon represents a real progress in our understanding of
black hole physics. More generally, one would like to
understand how regular the geometry really needs to be for
physical consistency and whether this trade-off can be
avoided. In this respect, it is also interesting to note that the
inner horizon that forms in models of gravitational collapse
[2] is not eternal. Therefore, a regular black hole with an
inner horizon generated by the gravitational collapse does
not necessarily have (lasting) issues concerning the initial

value problem, or the instabilities associated with Cauchy
horizons. On the other hand, there is no guarantee that these
issues are always avoided in collapse models and one must
check on a case by case basis.
In Ref. [9], a quantum coherent state for the spherically

symmetric and electrically neutral Schwarzschild metric
was introduced, following ideas from Refs. [10–13]. This
coherent state is built for a scalar field, which in turn is
meant to effectively describe the geometry itself as a
gravitational potential emerging from the (longitudinal or
temporal) polarizations of the graviton. It was in particular
shown in Ref. [9] that the conditions for the very existence
of such a quantum state require departures from the purely
classical behavior both in the infrared (IR) and, more
importantly, in the ultraviolet (UV). The IR behavior can be
connected with the finite extent of our causally connected
Universe [14]. The UV deviation from the classical general
relativistic vacuum can instead be interpreted as the
existence of a (quantum) extended matter core, which
sources the geometry [15] and gives rise to quantum hair
[16,17]. This quantum core indeed removes the central
singularity and keeps tidal forces everywhere finite.
Geometrical quantities like the Ricci curvature and the
Kretschmann scalar still diverge toward the origin, but their
integrals remain finite, which corresponds to having a so-
called integrable singularity. Furthermore, no inner horizon
appears for any size of the matter core.
In order to investigate the causal structure of spherically

symmetric quantum black holes with electric charge, in this
work we apply the approach of Ref. [9] to the Reissner-
Nordström metric

ds2 ¼ −ð1þ 2VRNÞdt2 þ
dr2

1þ 2VRN
þ r2dΩ2; ð1:1Þ
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with1

VRN ¼ −
GNM
r

þ GNQ2

2r2
≡ VM þ VQ; ð1:2Þ

where M is the ADM mass [18] and Q the charge of the
black hole. We recall that, for GNM2 > Q2, the above
spacetime contains two horizons determined by grr ¼
1þ 2VRN ¼ 0, namely

R� ¼ GNM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

NM
2 −GNQ2

q
; ð1:3Þ

with Rþ being the event horizon and R− a Cauchy horizon.
The quantum version of the functions VM and VQ in
Eq. (1.2) will be employed in order to reconstruct a
quantum corrected complete metric to replace (1.1).
From this new metric, one can then analyze how the
necessary material core predicted by quantum physics
affects the singularity, inner horizon and thermodynamics.
In particular, we assume that it is in this core that resides the
charge Q.
In Sec. II, we will derive in details the coherent state for

the metric (1.1) and the corresponding quantum metric will
then be analyzed in Sec. III; concluding remarks and
outlooks will be provided in Sec. IV.

II. QUANTUM COHERENT STATE FOR THE
REISSNER-NORDSTRÖM GEOMETRY

Following Ref. [9], we assume that the quantum vacuum
j0i corresponds to a spacetime devoid of any matter or
gravitational excitations. In order to effectively describe the
gravitational excitations giving rise to the geometry, we
first rescale the potential VRN so as to obtain a canonically
normalized real scalar field Φ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

mp=lp
p

VRN, and then
quantize Φ as a massless field satisfying the free wave
equation in the Minkowski spacetime

�
−

∂
2

∂t2
þ 1

r2
∂

∂r

�
r2

∂

∂r

��
Φðt; rÞ ¼ 0: ð2:1Þ

Since we are only interested in static configurations, it is
convenient to choose the normal modes of Eq. (2.1)
described in terms of spherical Bessel functions j0 ¼
sinðkrÞ=kr for k > 0, that is

ukðt; rÞ ¼ e−iktj0ðkrÞ: ð2:2Þ

The quantum field operator,

Φ̂ðt; rÞ ¼
Z∞

0

k2dk
2π2

ffiffiffiffiffi
ℏ
2k

r
½âkukðt; rÞ þ â†ku

�
kðt; rÞ�; ð2:3Þ

and its conjugate momentum,

Π̂ðt; rÞ ¼ i
Z∞

0

k2dk
2π2

ffiffiffiffiffiffi
ℏk
2

r
½âkukðt; rÞ − â†ku

�
kðt; rÞ�; ð2:4Þ

satisfy the equal time commutation relations,

½Φ̂ðt; rÞ; Π̂ðt; sÞ� ¼ iℏ
4πr2

δðr − sÞ; ð2:5Þ

if

½âk; â†p� ¼
2π2

k2
δðk − pÞ: ð2:6Þ

The Fock space is then built from the vacuum defined by
âkj0i ¼ 0 for all k > 0.
The classical static configurations (1.2) are realized in

the quantum theory as coherent states jgi such that âkjgi ¼
gðkÞeiγkðtÞjgi and

ffiffiffiffiffiffi
lp

mp

s
hgjΦ̂ðt; rÞjgi ¼ VRNðrÞ: ð2:7Þ

From the expansion (2.3), we obtain

hgjΦ̂ðt;rÞjgi ¼
Z∞

0

k2dk
2π2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lpmp

k

r
gðkÞcos½γkðtÞ−kt�j0ðkrÞ;

ð2:8Þ

and time-independence is obtained by setting γk ¼ kt.2 If
we write the classical potential as

VRN ¼
Z∞

0

k2dk
2π2

½ṼMðkÞ þ ṼQðkÞ�j0ðkrÞ; ð2:9Þ

we obtain

ṼM ¼ −4πGN
M
k2

ð2:10Þ

and
1We shall use units with c ¼ 1=4πϵ0 ¼ 1, GN ¼ lp=mp,

ℏ ¼ lpmp, with lp the Planck length and mp the Planck mass.
Hence, the combinationGNQ2 has dimensions of a length squared.

2We recall that static potentials are obtained from nonpropa-
gating modes in quantum field theory [12,13,19].
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ṼQ ¼ π2GN
Q2

k
: ð2:11Þ

The coherent state is thus determined by the occupation
numbers

gMðkÞ ¼
ffiffiffi
k
2

r
ṼM

lp
¼ −

4πMffiffiffiffiffiffiffi
2k3

p
mp

ð2:12Þ

and

gQðkÞ ¼
ffiffiffi
k
2

r
ṼQ

lp
¼ π2Q2ffiffiffiffiffi

2k
p

mp

; ð2:13Þ

and it finally reads

jgi¼ e−NG=2 exp

�Z∞

0

k2dk
2π2

½gMðkÞþgQðkÞ�â†k
�
j0i; ð2:14Þ

where the total occupation number is given by

NG ¼
Z∞

0

k2dk
2π2

½gMðkÞ þ gQðkÞ�2

≡ NM þ NQ þ NMQ: ð2:15Þ

In particular, the contributionNM associated with the ADM
massM is the same as the one for the Schwarzschild metric
[9] and diverges for the exact occupation numbers gM given
in Eq. (2.12). This divergence implies that the gM ¼ gMðkÞ
which are realized in Nature must have different IR and UV
behaviors, and that the corresponding metric must therefore
differ from the classical expression.
Assuming that we do not know the actual quantum states

which are realized in Nature, we can formally express the
requirement that the state jgi is well defined by introducing
(sharp) IR and UV cutoffs kIR ∼ R−1

∞ and kUV ∼ R−1
UV, with

RUV < Rþ ≪ R∞. It is then important to remark that the
specific functional dependences on R∞ and RUV displayed
in the following are consequences of the choice of sharp
cutoffs in the momentum integrals and should not be taken
too literally. With this proviso, one finds

NM ¼ 4M2

m2
p

ZkUV
kIR

dk
k

¼ 4M2

m2
p
ln

�
R∞

RUV

�
: ð2:16Þ

Likewise, we have

NQ ¼ π2Q4

4m2
p

ZkUV
kIR

kdk ¼ π2Q4

8m2
p

�
1

R2
UV

−
1

R2
∞

�
ð2:17Þ

and the cross term

NMQ¼−
2πMQ2

m2
p

ZkUV
kIR

dk¼−
2πMQ2

m2
p

�
1

RUV
−

1

R∞

�
: ð2:18Þ

Another quantity of interest is the average radial
momentum

hki ¼
Z∞

0

k2dk
2π2

k½gMðkÞ þ gQðkÞ�2

≡ hkiM þ hkiQ þ hkiMQ; ð2:19Þ

where the mass contribution is given by

hkiM ¼ 4M2

m2
p

ZkUV
kIR

dk ¼ 4M2

m2
p

�
1

RUV
−

1

R∞

�
; ð2:20Þ

the charge contribution by

hkiQ ¼ π2Q4

4m2
p

ZkUV
kIR

k2dk ¼ π2Q4

12m2
p

�
1

R3
UV

−
1

R3
∞

�
ð2:21Þ

and the cross term by

hkiMQ ¼ −
πMQ2

m2
p

ZkUV
kIR

kdk

¼ −
πMQ2

m2
p

�
1

R2
UV

−
1

R2
∞

�
: ð2:22Þ

From the above results, one can obtain the “typical”
wavelength λG. Specifically, assuming R∞ ≫ RUV, one
finds at leading order

NG ≃
4M2

m2
p
ln

�
R∞

RUV

�
þ π2Q4

8m2
pR2

UV
−
2πMQ2

m2
pRUV

ð2:23Þ

and

hki ≃ 4M2

m2
pRUV

þ π2Q4

12m2
pR3

UV
−

πMQ2

m2
pR2

UV
: ð2:24Þ

If we further assume 2GNM ≫ GNQ2, we find the approxi-
mate expression

λG ¼ NG

hki ≃ RUV

�
1þ πQ2

4MRUV

�
ln

�
R∞

RUV

�
; ð2:25Þ
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which reduces to the Schwarzschild case [9] forQ ¼ 0. The
effect of (a relatively small) charge is therefore to increase
the typical wavelength of the gravitons building the
geometry.

III. QUANTUM CORRECTED REISSNER-
NORDSTRÖM SPACETIME

We can now reconstruct the quantum corrected metric
functions by simply integrating back the occupation num-
bers (2.12) and (2.13) between the IR and UV cutoffs,
which yields

VqM ¼ −
2GNM
πr

�
Si

�
r

RUV

�
− Si

�
r
R∞

��
; ð3:1Þ

where Si ¼ SiðxÞ denotes the sine integral function, and

VqQ ¼ GNQ2

2r2

�
cos

�
r
R∞

�
− cos

�
r

RUV

��
: ð3:2Þ

In both expressions, we can safely take the limit R∞ → ∞
as an approximation, so that we finally obtain

VqRN ≃ −
2GNM
πr

Si

�
r

RUV

�
þGNQ2

2r2

�
1 − cos

�
r

RUV

��
:

ð3:3Þ

Two examples of the corrected potential are plotted in
Fig. 1. We can in particular notice that the oscillations
around the classical mass contribution asymptote to zero,3

whereas the oscillations around the term containing the
charge Q have constant amplitude (see Fig. 2).

We next use the function (3.3) to define the quantum
corrected metric

ds2 ≃ −ð1þ 2VqRNÞdt2 þ
dr2

1þ 2VqRN
þ r2dΩ2; ð3:4Þ

where the approximate equality is to remind us of all the
simplifying assumptions, including the fact that we have
neglected the IR departure from the classical behavior.
Strictly speaking, the above approximation is valid as long
as we consider RUV ≪ r ≪ R∞. Nonetheless, we will
investigate the entire region r > 0 in the following.

A. Effective source

From the point of view of general relativity, both the
classical Reissner-Nordström metric (1.1) and Eq. (3.4) are
not solutions in the vacuum. The (effective) Einstein
equations are sourced by an (effective) energy-momentum
tensor

Tμ
ν ¼ diagð−ρeff ; peff

r ; peff
t ; peff

t Þ ¼ Gμ
ν

8πGN
: ð3:5Þ

One can then compute the Einstein tensorGμν for the metric
(3.4) in order to determine the effective energy density

ρeff ¼ Q2

8πr4

�
1 − cos

�
r

RUV

��
þ 4MRUV − πQ2

8π2r3RUV
sin

�
r

RUV

�

ð3:6Þ

the radial pressure

peff
r ¼ −ρeff ; ð3:7Þ

and the tension

VqRN

VRN

2 4 6 8 10

r

GN M

–2.0

–1.5

–1.0

–0.5

V

VqRN

VRN

2 4 6 8 10

r

GN M

–2.0

–1.5

–1.0

–0.5

V

FIG. 1. Quantum potential VqRN in Eq. (3.3) (solid line) compared to VRN (dashed line) for RUV ¼ GNM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
(left panel) and

for RUV ¼ GNM=3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=3 (right panel). The thin solid line V ¼ −1=2 crosses the potential at the horizons.

3We recall that limx→∞ SiðxÞ ¼ π=2.
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peff
t ¼ Q2

8πr4

�
1 − cos

�
r

RUV

��
þ
ðπQ2 − 4MRUVÞr cosð r

RUV
Þ þ 2RUVð2MRUV − πQ2Þ sinð r

RUV
Þ

16π2r3R2
UV

: ð3:8Þ

In the above expressions, the first term (independent of the
cutoff RUV) is the standard (traceless) electrostatic con-
tribution for the Reissner-Nordström metric,

ρRN ¼ −pRN
r ¼ pRN

t ¼ Q2

8πr4
: ð3:9Þ

The additional terms in Eq. (3.6),

ρeff −ρRN¼ M
2π2r3

sin

�
r

RUV

�

−
Q2

8πr4

�
cos

�
r

RUV

�
þ r
RUV

sin

�
r

RUV

��
; ð3:10Þ

and those in Eq. (3.8),

peff
t − pRN

t ¼ M
4π2r3

�
sin

�
r

RUV

�
−

r
RUV

cos

�
r

RUV

��

−
Q2

8πr4

��
1 −

r2

2R2
UV

�
cos

�
r

RUV

�

þ r
RUV

sin

�
r

RUV

��
; ð3:11Þ

can therefore be interpreted as representing an effective
(quantum) smearing of both the mass and the charge of the
central source over the length scale RUV. The energy
density and pressures corresponding to the cases in
Figs. 1 and 2 are displayed in Figs. 3 and 4.
The energy-momentum tensor (3.5) satisfies the con-

servation equation ∇μTμν ¼ 0 by construction. In particu-
lar, the only nontrivial condition is for ν ¼ 1 and yields the
Tolman-Oppenheimer-Volkoff (TOV) equation

VqM

VM

2 4 6 8 10

r

GN M

–1.0

–0.8

–0.6

–0.4

–0.2

V

VqQ

VQ

2 4 6 8 10

r

GN M

–0.02

0.02

0.04

0.06

0.08

0.10
V

FIG. 2. Quantum potential VqM in Eq. (3.1) (solid line) compared to VM (dashed line) for RUV ¼ GNM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
(left panel) and

VqQ in Eq. (3.2) (solid line) compared to VQ for RUV ¼ GNM=3 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=3 (right panel).

eff

pt
eff

RN

0 1 2 3 4

r

GN M

0.001

0.010

0.100

1

10
eff

pt
eff

RN

0 1 2 3 4

r

GN M

0.001

0.010

0.100

1

10

FIG. 3. Effective energy density (solid line) and tangential pressure (dashed line) in Eq. (3.5) compared to the Reissner-Nordström
contribution (3.9) (dotted line) for RUV ¼ GNM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
(left panel) and for RUV ¼ GNM=3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=3 (right panel).
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dpeff
r

dr
¼ −

1

1þ 2VqRN

dVqRN

dr
ðρeff þ peff

r Þ þ 2

r
ðpeff

t − peff
r Þ;

ð3:12Þ

which governs the hydrodynamic equilibrium of the
system. In particular, the quantum corrected metric (3.4)
is still of the Kerr-Schild form [20], and the effective fluid is
anisotropic with peff

t ≠ peff
r . We can then note that the

metric (3.4) can be formally thought as the coupling [21,22]
of two mass functions in a Kerr-Schild spacetime, namely

m̃ ¼ mRN þmq; ð3:13Þ

where the mass function of the Reissner-Nordström sol-
ution is given by

mRN ¼ M −
Q2

2r
; ð3:14Þ

while

mq ¼ M

�
2

π
Si

�
r

RUV

�
− 1

�
þQ2

2r
cos

�
r

RUV

�
ð3:15Þ

is the mass function of the effective quantum fluid filling
the spacetime (see Fig. 5).
We next proceed to study the causal structure of the

quantum corrected metric.

B. Singularity

We can start by analyzing the metric (3.4) near r ¼ 0. In
particular, we find

VqRNð0Þ ¼
GNðπQ2 − 8MRUVÞ

4πR2
UV

ð3:16Þ

and

dVqRN

dr

				
r¼0

¼ 0; ð3:17Þ

from which we expect no central singularity. In fact, we can
compute the Ricci scalar to leading order around r ¼ 0,

R ≃
GNð8MRUV − πQ2Þ

πR2
UVr

2
∼ −

VqRNð0Þ
r2

ð3:18Þ

and the Kretschmann scalar

RαβμνRαβμν ≃ R2 ∼ r−4: ð3:19Þ

The center of the system is therefore an integrable singu-
larity [23] where tidal forces remain finite and the volume
integral of the Ricci scalar is also finite. This is to be
compared with the standard results R2 ∼ RαβμνRαβμν ∼
Q4=r8 for the Reissner-Nordström metric (1.1).
The fact that the origin is regular is further supported by

the expressions of the energy density for r ∼ 0, that is

ρeff ¼ −peff
r ≃

8MRUV − πQ2

16π2r2R2
UV

; ð3:20Þ

eff– RN

pt
eff–pRN

1 2 3 4

r

GN M

–0.5

–0.4

–0.3

–0.2

–0.1

0.1

eff– RN

pt
eff–pRN

1 2 3 4

r

GN M

–0.5

–0.4

–0.3

–0.2

–0.1

0.1

eff– RN

pt
eff–pRN

1 2 3 4

r

GN M

–0.5

–0.4

–0.3

–0.2

–0.1

0.1

eff– RN

pt
eff–pRN

1 2 3 4

r

GN M

–0.5

–0.4

–0.3

–0.2

–0.1

0.1

FIG. 4. Quantum contribution to the effective energy density (solid line) and tangential pressure (dashed line) in Eq. (3.5) for
RUV ¼ GNM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
(left panel) and for RUV ¼ GNM=3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=3 (right panel).

RUV=GN M

RUV= 1

3
GN M

2 4 6 8 10

r

GN M

–1.0

–0.5

0.5

1.0

1.5

2.0

mq

FIG. 5. Mass function in Eq. (3.15) for RUV ¼ GNM ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
(solid line) and for RUV ¼ GNM=3 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=3

(dashed line).
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and the analog expression for the tension

peff
t ≃

16MRUV − 3πQ2

192π2R4
UV

: ð3:21Þ

Many regular black holes violate some energy conditions
for r ∼ 0 [7]. However, from Eqs. (3.20) and (3.21), we can
see that for

16MRUV ≥ 3πQ2; ð3:22Þ

the strong energy condition is satisfied.

C. Event and Cauchy horizons

The metric (3.4) can contain horizons determined by

grr ¼ −gtt ¼ 1þ 2VqRN ¼ 0; ð3:23Þ

the largest zero being the event horizon Rqþ analogous to
Rþ in Eq. (1.3). It is not possible to find analytical
expressions for the above zeros for general values of M,
Q and RUV (see also Appendix). A simple numerical

inspection shows that Rqþ exists in general if RUV ≲ Rþ
and Q2 is such that R− ≪ Rþ. We are then particularly
interested in the existence of the inner Cauchy horizon, that
is a second zero Rq− < Rqþ, when the event horizon Rqþ
also exists. Again, a simple numerical analysis shows that
no Cauchy horizon exists if R− ≲ RUV ≲ Rþ, whereas there
can be a inner horizon for RUV ≲ R− (see left and right
panels in Fig. 6, respectively). In Fig. 7 we also show that
there is no event horizon for RUV ≳ Rþ (left panel) and
there can be multiple inner horizons for RUV ≪ R− (right
panel). Since there is no central singularity, the former case
would represent an electrically charged star.
The quantum corrected causal structure for R−≲

RUV ≲ Rþ is in qualitative agreement with the quantum
mechanical description of the gravitational radius in
Ref. [24], where the probability of finding the matter
source inside the inner Cauchy horizon R− was shown
to be small for masses above the Planck scale and chargeQ
sufficiently below extremality. One can then consider
values of M and Q near the classical extremal case
Rþ ¼ R−, that is Q2 ≃GNM2 [25]. Figure 8 shows two
examples of extremal geometries for different values of the
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FIG. 6. Quantum potential VqRN in Eq. (3.3) (solid line) compared to VRN (dashed line) for RUV ¼ GNM=5 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=5 >

R− ≃ 0.13GNM (left panel) and for RUV ¼ GNM=10 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
GNQ2

p
=5 < R− (right panel). The thin solid line V ¼ −1=2 crosses the

potential at the horizons.
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1.8GNM (left panel) and for RUV ¼ GNM=50 ¼
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p
=25 ≪ R− ≃ 0.13GNM (right panel). The thin solid line V ¼ −1=2 crosses the

potential at the horizons.
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scale RUV. For RUV ≳ Rþ, the geometry is regular every-
where, with no horizons and no singularity. If one lets RUV
fall below Rþ, one in general obtains two (or more)
horizons. For a given jQj ¼ ffiffiffiffiffiffiffi

GN
p

M, one can fine-tune
RUV so that one degenerate horizon exists like in the
classical case, but such a value can only be determined
numerically (see Appendix).
For Q2 > GNM2, the classical Reissner-Nordström

geometry becomes a naked singularity.We show an example
of the corresponding quantum correctedmetric in Fig. 9. For
RUV ≳ GNM, one again obtains a regular geometry, whereas
for RUV ≲ GNM a varying number of horizons in general
reappears. In this case, one can therefore have either a
regular distribution of matter and charge, or a regular black
hole. Like for the extremal case discussed above, thevalue of
RUV that separates the two different behaviors can only be
determined numerically for given M and Q.

D. Thermodynamics

We recall that the Bekenstein-Hawking entropy is simply
given by the area law [26]

SqRN ¼ AH

4l2
p
¼ πR2

qþ
l2
p

ð3:24Þ

and the black hole temperature [27]

TqRN ¼ ℏκqRN
2π

¼ ℏ
2π

dVqRN

dr

				
r¼Rqþ

; ð3:25Þ

where κ is the surface gravity at the horizon. Unfortunately,
none of the above expressions can be computed analyti-
cally, because Rqþ can only be estimated numerically.
For M and Q such that R− ≲ RUV ≲ Rþ, like the left

panel in Fig. 6, deviations from the classical metric become
very small and one therefore expects just small numerical
differences with respect to the classical expressions, that is

SqRN ≃ SRN ¼ πR2þ
l2
p

ð3:26Þ

and

κqRN ≃ κRN ¼ GNðMRþ −Q2Þ
R3þ

; ð3:27Þ

where Rþ is given in Eq. (1.3).
Much larger deviations are expected for RUV ≃ Rþ, for

which the quantum corrected event horizon become much
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FIG. 8. Quantum potential VqRN in Eq. (3.3) (solid line) compared to VRN (dashed line) for the extremal case R− ¼ Rþ with
RUV ¼ Rþ (left panel) and RUV ¼ Rþ=4 (right panel). The thin solid line V ¼ −1=2 crosses the potential at the horizon.
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horizon.
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smaller then Rþ or disappears (like in the left panel of
Fig. 7).

IV. CONCLUSIONS AND OUTLOOK

General relativity predicts the existence of singularities,
which appear in black hole solutions as the final product of
the gravitational collapse. This represents a clear limitation
of the theory, and presumably its quantum version should
cure these pathologies. Regular black holes represent
simple workarounds to the problem of curvature singularity
that allow one to remain within the geometric description of
general relativity, thus without resorting to any quantum
argument. However, these solutions often suffer of several
caveats. First, the matter distribution that generates these
geometries has to violate the various energy conditions that
are typically ascribed to standard matter. Nonetheless,
such a scenario can be regarded as a mere effective
description of a system in a fully quantum regime, for
which we still lack a proper UV description. Second, and
most importantly, such regular solutions typically entail the
existence of inner Cauchy horizons, signalling a breakdown
of predictability.
Starting from the idea that the classical geometry of a

compact object should emerge from a suitable description
of the quantum state of both gravity and matter, we have
reconstructed a quantum-corrected Reissner-Nordström
geometry. Such a geometry enjoys an integrable singularity,
where tidal forces remain finite, and the absence of inner
Cauchy horizons when the UV cutoff RUV is such that
R− ≲ RUV ≲ Rþ. If the cutoff scale RUV is associated with
the final size of the collapsing object, it appears sensible
that it will never shrink below the would-be inner horizon,
and the latter is therefore avoided.
The same issues emerge in rotating black holes. In order

to provide a quantum description for these more complex
classical geometries, the approach from Ref. [9] employed
here will have to be generalized, for example by using a
procedure similar to the one in Ref. [28].
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APPENDIX: MASS FUNCTION
AND HORIZON RADIUS

In the standard Reissner-Nordströmmetric, one can trade
the dependence on the ADMmassM for one of the zeros in
Eq. (1.3) of the metric functions grr ¼ −gtt by defining

fðr;QÞ ¼ GNQ2

r2
; ðA1Þ

and

grr ¼ 1 −
R�
r

½1þ fðR�; QÞ� þ fðr;QÞ

¼ 1 −
R2
� þ GNQ2

R�r
þ GNQ2

r2
: ðA2Þ

The ADM mass is now given by

2GNM ¼ R�½1þ fðR�; QÞ� ¼ R�

�
1þGNQ2

R2
�

�
; ðA3Þ

which yields Eq. (1.3) as expected.
For the quantum corrected metric (3.4), it is easier to just

solve Eq. (3.23) for the mass M as a function of a generic
zero r ¼ rH, which yields

2GNM ¼
rH þ GNQ2

rH
½1 − cosð rH

RUV
Þ�

2
π Sið rH

RUV
Þ : ðA4Þ

The metric function then reads

grr ¼ 1 −
Sið r

RUV
Þ

Sið rH
RUV

Þ
�
1þGNQ2

r2H

�
1 − cos

�
rH
RUV

���
rH
r

þGNQ2

r2

�
1 − cos

�
r

RUV

��
: ðA5Þ

By studying the function (A4), one can in principle see for
what values of M and Q there exists more values of rH
depending on RUV. In practice, this analysis can only be
performed numerically.
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FIG. 10. The function F in Eq. (A6) shows the existence of two
horizons for xs ≃ 0.25 (dashed line), one degenerate horizon for
xs ≃ 0.31 (solid line) and no horizons for xs ≃ 0.40 (dotted line).

QUANTUM REISSNER-NORDSTRÖM GEOMETRY: … PHYS. REV. D 105, 124026 (2022)

124026-9



For example, in the classical extremal caseQ2 ¼ GNM2,
Eq. (A3) simplifies to

Fðxh; xsÞ≡ x2h −
4

π
xhSi

�
xh
xs

�
þ 1 − cos

�
xh
xs

�
¼ 0; ðA6Þ

where we defined xh ≡ rH=GNM and xuv ≡ RUV=GNM.
Figure 10 shows the function F for three different
values of xs corresponding to geometries with two
horizons, one degenerate horizon and no horizon,
respectively.
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